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We report observations of numerical experiments involving the carbuncle phenomenon.

highlighting three distinct phases in its development. We stress that the second and third

stages are logically consistent consequences of the �rst stage, which can largely but not

wholly be explained by a one-dimensional nonlinear stability analysis. However, we do not

present a cure, and are careful not to promise one, although we do feel free to criticize

others.

I. Introduction

Shock capturing, in one form or another, has become an essential element in the prediction of aerodynamic

ows, largely because the alternative of �tting the shock as a surface of discontinuity seems to be prohibitively
complex in three dimensions. Shock-capturing is based theoretically on the Lax-Wendro� Theorem,1 that
conservation plus stability implies convergence to a weak solution. The technology surged forward during
the 1980s, largely based on use of the �nite-volume technique with some form of limited reconstruction
within the volumes, and a 
ux function or Riemann solver to compute the exchange of conserved quantities
between cells. Most of the applications at that time were either to steady transonic 
ows in aerodynamics,
or to unsteady high-energy 
ows in weapons simulations or astrophysics. It may be signi�cant that much
of the present unease derives from those whose interests lie in steady high-energy 
ows. During the time of
rapid algorithm development, hypersonic research was in one of its dormant phases.

Despite the apparently secure theoretical foundations, some anomalies seem to arise from the use of
shock-capturing methods. The most pervasive of these, in one form or another, is the carbuncle phenomenon

It was �rst reported by Peery and Imlay2 that the 
ow past a circular cylinder. when computed by a
capturing technique, did not display the expected smooth bow shock, but a rather bizarre con�guration like
the one shown in Figure 1. Similar behavior has since been reported by many authors. A simpler form of
the anomaly was demonstrated by Quirk,3 who examined a simple one-dimensional shock propagating in
a very slightly nonuniform grid; the shock broke up and took on a similar con�guration. Quirk surmised
that the instability was numerical, possibly an odd-even decoupling. Since then the two phenomena have
gathered a large literature. Pandol� and d'Ambrosio4 amassed a large collection of computational data for
supersonic 
ows past circular cylinders, and concluded that `most' shock-capturing schemes would produce a
carbuncle, except for a few notoriously dissipative schemes. With some schemes, however, the phenomenon
only appeared on very �ne grids.

They, and other authors, have noted that the phenomenon passes all tests for a weak solution to the Euler
equations. The shocks satisfy the jump conditions and are compressive, entropy-satisfying discontinuities.
They resemble 
ows that are observed experimentally, both in two-dimensional5 and axisymmetric 
ows.6

However, the 
ows have never, to my knowledge, been observed unless provoked by some arti�cial feature,
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Figure 1. A typical carbuncle. The free stream is at M = 15 with 
 = 5=3.

in two dimensions a thin plate, or in axisymmetric 
ow a �ne spike, extending ahead of the stagnation point.
Computationally, however, the occurrence is often spontaneous.

It is annoying that the phenomenon arises most readily when the 
ux function employed has low numerical
dissipation, in particular, with schemes that are able to capture contact and shear discontinuities with
minimal smearing. Liou7 has hypothesized that the problem arises with any 
ux function for which the mass

ux across an interface depends on the pressure di�erence, and proposes designing schemes that suppress such
a dependence. This is disconcertingly non-physical, although not necessarily inconsistent with convergence
to an Euler solution. Kim et al8 have developed a very elaborate 
ux having Liou's property that F1 does
not depend on �p. However, both they, and Liou himself, recommend adding dissipation locally to those
interfaces that lie normal to the captured shock, as was also suggested by Lin9 and Sanders, Morano and
Drouguet.10 If if should turn that this strategy is really necessary, we may anticipate trouble trying to
compute shock/boundary-layer interactions. Moreover, nobody has yet suggested how to implement such an
adaptive dissipation on unstructured grids.

An alternative path to understanding was pioneered by Robinet et al.11 They revisited the classical
theory of shockwave stability, as worked out by Dyakov,12 and presented in Landau and Livshitz.13 One
seeks normal modes for the subsonic 
ow behind a stationary normal shock, sinusoidal along the shock
and exponential normal to it. This analysis will be presented below. Yet another approach was taken by
Dumbser, Moschetta and Gressier14 who formulated the stability of a planar captured shock as a numerical
eigenvalue problem. However, this does little more than con�rm the instability of cases already known to be
unstable, without supplying much insight into the mechanisms involved. In an earlier paper15 the �rst author
speculated that since the carbuncle invariably seemed to result in spurious vorticity, a form of damping that
controlled vorticity might prove e�ective. Such a damping has now been implemented,16 but has proved
ine�ective unless applied in a very heavy-handed manner. When the carbuncle wants to happen, it is very
hard to stop it. It now seems wiser to hedge one's bets by declaring that there may well be more than
mechanism involved.
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Rather surprisingly, there is a purely one-dimensional version of the carbuncle, involving nothing more
than the one-dimensional computation of a stationary shock. It is an obvious practical requirement that the
shock must be able to sit stably at any location relative to the grid. However, Barth, in 198917 discovered
that certain locations correspond to unstable equilibria, but that this only happens above a critical Mach
number that depends on the ratio of speci�c heats (and presumably in general on the equation of state).
Once again, however, the analysis is purely numerical, and a�ords not a lot of insight into the mechanism.

II. Phenomenology

We have made movie visualizations of the evolving instability of a planar shockwave on a uniform grida.
Although we have tested various combinations of schemes, grids and Mach numbers, we make at present no
claim to comprehensive coverage of the possibilities. Nevertheless, we are struck by a remarkable universality
in our observations so far. The carbuncle invariably develops in three phases.

Pimples The �rst phase of instability is localized around the shock itself. Contour maps (of any 
ow
variable) take on a spotty appearance. Exactly where the spots appear along the shock can be in
uenced by
seeding the initial data, either with a single perturbation, a periodic perturbation, or random perturbations.
This makes it plain that the phenomenon is not associated with odd-even decoupling. It can develop with
any periodicity in the y-direction. However, if you provide an odd-even seeding, then an odd-even pattern
will develop.
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Figure 2. The initial stage of the shock instability. Colors correspond to Mach number. The Mach number
ahead of the shock is 3.0, and one cell in the supersonic region was slightly perturbed.

Bleeding The �rst stage can develop quite strongly before any perturbations behind the shock become
strongly visible, but when they do, they correlate exactly with the locations of the pimples. Contours of
velocity or Mach number show the strongest patterns, revealing parallel jets of alternating high and low
velocity. Pressure perturbations are much smaller. The magnitude of these velocity disturbances grows. The
faster ones become supersonic and form contracting jets, while the slower regions expand. Progressively, the
slow jets �rst stagnate, and eventually go into reverse, penetrating through the shock to form ..

aQuirk triggered his instabilities by slightly perturbing the grid, but actually any kind of perturbation will work, and

sometimes nothing seems to be needed except rounding errors
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Figure 3. The second stage of the shock instability. The shock is still plane in an average sense, but a series
of parallel jets develop behind it.

Carbuncles It usually happens that one of the reverse jets in the bleeding stage develops faster than the
others, and dominates the �nal stage of computational evolution. A wedge-shaped region develops ahead of
the shock, growing in self-similar fashion from the point of initial penetration. It is bounded by a pair of
oblique shocks, which of course de
ect the incoming 
ow, leaving a region of almost stagnant gas in the core.
The angle made by these shocks is highly repeatable from run to run with given initial Mach number, and
indeed does not change much when the Mach number is varied. It is tempting to say that when you have
seen one carbuncle you have seen them all! In fact, results from a fully multidimensional 
uctuation-splitting
code gave very similar results to regular �nite-volume schemes.
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Figure 4. The third stage of the shock instability. The wedges extending into the supersonic region have
developed in a self-similar fashion, but stabilize (in this case) on reaching the in
ow boundary.

The boundary conditions for our simulations were simply to over specify one row of cells at inlet and one
row at outlet. This is not enough to �x the shock in a particular location, so that once the instability has
developed, it may begin to drift to the left or to the right. Sometimes the shock would remain center-stage
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for a long period, and the original carbuncle might collapse, to be succeeded by others.

III. Analysis of Stage Two

We give here an abbreviated version of the standard shock stability analysis.12, 13 This begins by con-
sidering possible perturbations of the sub sonic 
ow behind the shock. It would not be surprising if the
initial-value problem for an elliptic 
ow were to be unstable; it will be interesting to �nd the exact modality.
We begin by seeking solutions to the linearized equations

ut +Aux +Buy = 0 (1)

in the form

u = eiky+�x�!tr; u = (p; u; v; s)T :

Under suitable nondimensionalization, we have

A =

2
6664

M 1 0 0

1 M 0 0

0 0 M 0

0 0 0 M

3
7775 ; B =

2
6664

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

3
7775 ; (2)

and hence we require that

det

2
6664

M� � ! � k 0

� M� � ! 0 0

k 0 M� � ! 0

0 0 0 M� � !

3
7775

= (M� � !)2)((M� � !)2)� �2 + k2) = 0 (3)

The repeated root ! = M� relates to shear and entropy disturbances; the remaining roots are related to
acoustic waves. To see whether these disturbances are linearly independent, we assemble the right eigenvec-
tors into a square matrix;

R =

2
6664

p
�2 � k2 �

p
�2 � k2 0 0

� � �ik 0

ik ik � 0

0 0 0 1

3
7775 (4)

and calculate detR = �2(k2 � �2)3=2. We �nd that if k = � three of the eigenvectors coincide. Rather
surprisingly, the acoustic and shear disturbances are indistinguishable. This resonance creates the possibility
of a non-normal mode, with associated growth and instability. The unstable modes are

u = eiky+k(x�Mt)(0; 1; i; 0)T

with k any positive numberb. The modes have two interesting properties; they convect with the 
ow, being
functions only of x�Mt, and they are divergence free (ux+ vy = �r2+ ikr3 = 0). Xu18 described this mode
intuitively, but rejected it as an explanation because he felt that a plane parallel 
ow must be stable.

We �nd that these properties are shared by the second stage of our computations. Figures 5 ad 6 show,
respectively, L2 norms of the vorticity and divergence for that part of the 
ow in the right half of the domain.
The vorticity (enstrophy) grows rapidly with the onset of Stage Two, peaking when Stage Three is reached.
The divergence remains virtually 
at the whole time.

bIt is to be expected that no length scale emerges from this analysis.
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Figure 5. The L2 norm of the vorticity \enstrophy"
grows rapidly once the second stage sets in.
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Figure 6. The L2 norm of the divergence remains
almost 
at, even when the 
ow is violently per-
turbed.

IV. Analysis of Stage One

The next step in the classical analysis of shockwave stability is to determine whether the unstable modes,
now including a generalized eigenvector, are compatible with the boundary conditions on a perturbed shock.
It can be shown, for a perfect gas, that they are not, and it may be concluded that the shock is stable, but the
analysis is delicate, and in fact for some equations of state the opposite conclusion is reached. The next step
in analyzing the carbuncle would be to see if the unstable mode is compatible with the boundary conditions
imposed by a captured shock. However, this is extremely diÆcult, because captured shocks have a structure
not describable by simple algebra. However, it is known, from a 1989 paper that was not widely read17 that
captured shocks have properties di�erent in some respects from those of ideally thin discontinuities.

Consider, then, a purely one-dimensional computation of a stationary shock. The solution will be a
sequence of cells, all in the state uL, followed by another sequence of cells all in the state uR where F(uR) =
F(uL). There must also be at least one cell that is in an intermediate state uC , otherwise we will not be
able to accommodate the shock in a continuous manner if it makes a slow t translation along the grid. The
simplest case to analyze is that of one intermediate state, which is encountered for both the Godunov and
Roe 
uxes. Then, there exists some set of states uC including uL and uR as limiting cases, such that the
con�guration uL; : : : ;uL;uC ;uR; : : :uR) is in equilibrium. For the two 
uxes named, this set is the set of
states connected to uR by a reverse shock. that is the states uC such that F(uC)� F(uR) = S(uC � uR),
with �L � �C � �L.

Barth's under-appreciated discovery is that not all of these equilibria are stable. At suÆciently high Mach
numbers, the shock is stable only at certain locations on the grid. At other locations it will spontaneously
shift to a stable location c The analysis is purely numerical, but Barth shows that only four cells need to be
considered, creating a system with 16 degrees of freedom. Barth then created a numerical eigenvalue problem
by studying an arbitrary perturbation of the data. Some modes are always neutrally stable, because they
correspond to moving from one equilibrium to another, and others are always stable. However, some modes
are either stable or unstable, depending on the selection of uC , or, what amounts to the same thing, where
the shock sits relative to the grid. Interestingly, for a given value of 
, the instability only occurs for Mach
numbers greater than some critical value, which `explains' why shock instability seems to be a hypersonic
phenomenon.

Some indication that the algebra might, with enough e�ort, prove tractable comes from making a curve-�t

cQ. Where does a Mach 20 shock wave sit? A. Any place it likes!
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to Barth's numerical results, which gives an excellent prediction of the threshold Mach number as

Mcrit =
3� 


5=3� 

(5)

We will return later to an interesting implication of this formula.
The idea that captured shocks can be stable or unstable depending on their location does explain some

common observations. SuÆciently strong shocks often take on a rather jagged appearance, clinging closely
to one grid line before suddenly jumping to the next. An example is shown in Figure 7 Sometimes the rough
nature of a plot can be explained by some idiosyncracy of the plotting package, but I do not think that this
is enough to explain all the cases. Clearly, such a shock structure cannot be conducive to accuracy, and
the kinks may well be starting points for larger instabilities. The �rst author, in 1978, developing an early
version of his Euler solver, studied the subsonic 
ow over a forward-facing step, a test case made famous
by.19 The number of cells de�ning the front face was varied between 10 and 20, using every integer value
(no upper wall was included) The convergence of the stagnation conditions to their correct values was very
erratic, perhaps because the captured shock was sticking to the grid. Many papers claiming to `cure' the
carbuncle show only a few contour plots that look clean. Genuine evidence of convergence is largely missing.
On unstructured grids, the shock often has a very irregular shape, but seems less likely to develop into the

Figure 7. Flow over a cylinder at M = 15; 
 = 5=3.
The shock seems to `stick' to one row of cells, before
jumping to the next.

Figure 8. The grid used for the computation on
the left.

full carbuncle. The quality of the results, however, can be very poor.
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V. The Strange Case of the Monatomic Gas

From the equation 5 it can be predicted that no one-dimensional shock instability will occur at any Mach
number if 
 = 5=3 so that we deal with a monatomic gas. After becoming aware of this result, we requested
Peter Gno�o, of the NASA Langley Aerothermodynamics Branch, to conduct some tests with the LAURA
code. Much to his surprise (Gno�o, private communication) cases that had been unstable when run with

 = 7=5 proved to be stable with 
 = 5=3. This seemed to be strong con�rmation that we had a handle
on the problem. However, after presenting these conclusions at a seminar in Paris, Jean-Marc Moschetta
informed us that he found carbuncles in cylinder 
ows, even with 
 = 5=3. Subsequently, when we ran
our own codes on cylinder 
ows rather than plane shock 
ows, we found the same. We also found that
our experimentally-determined threshold Mach numbers were di�erent on one-dimensional grids (where they
agreed with Barth's analysis) and on two-dimensional grids. In the latter case, the threshold Mach numbers
were much smaller (2.0 rather than 6.0 for 
 = 7=5) although somewhat greater than those reported by
Robinet et al. Perhaps the di�erence is we did not count a case as unstable unless it went all the way to
Stage Three.

The inescapable conclusion seems to be that even if one-dimensional stability is necessary, it is not
suÆcient. Nevertheless, our opinion is that some form of discrete shock instability is the driving mechanism
for these anomalous solutions.
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Figure 9. Threshhold Mach numbers observed experimentally for the stationary one-dimensional shock on
one-or two-dimensional grids, using the �rst-order Roe scheme.

VI. Lax-Wendro� Theorem

At the most theoretical level, we are left struggling to explain the discrepancy between the observations
and the Lax-Wendro� theorem, implying that consistency and stability, together with an entropy condition,
will yield convergence to correct weak solutions. In fact, I suspect that there are no hidden 
aws in the
theorem. We need to view it a little more broadly. To begin with, there is no uniqueness proof for the Euler
equations, and several examples of nonuniqueness. It would be logically consistent if the theorem merely
guaranteed convergence to some weak solution, with no promise that we will like it. Of course, a theoretical
resolution of this kind would be small cosolation to frustrated engineers.

Also, the de�nition of stability in the proof is rather general, but in practice we assume that linear
stability in the sense of von Neumann is suÆcient. In fact as the mesh is re�ned, most pairs of neighbor cells
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will approach each other closely in their states, and a linear analysis will, in the limit, apparently be enough.
However, pairs of cells that straddle a captured shock will never approach the same state, and a nonlinear
stability analysis will be needed locally. Such an analysis is diÆcult, even in the scalar case. One needs
some positive quantity that be guaranteed to remain bounded in exact solutions of the governing equations,
and then to shown that such a result continues to hold for some choice of discretization. Almost the only
candidate for this is the total entropy of the 
uidd Pioneering attempts to develop a nonlinear, entropy-based
theory of CFD stability were made by Merriam20 and considerably extended by Barth.21

It is important to note that the notion of entropy here is a stronger one than that usually invoked in
CFD. We commonly speak of schemes as `entropy-satisfying' if they distinguish correctly between physical
and non-physical shocks, but it is still possible that a discrete version of the Second Law of Thermodynamics
may be violated locally. Both Barth21 and22 have designed schemes that provably satisfy entropy conditions
of this stronger kind. Barth (private communication) �nds that his 
ux leads to shocks having more than one
internal state, and which are stable (in the purely one-dimensional sense) at any grid location at any Mach
number. However, the schemes are at present very complicated and only demonstrated on very academic
problems. It is not yet known whether they can contribute to solving the carbuncle issue.

VII. Acknowledgements

We are grateful to Dr Aldo Bon�glioli for numerous interesting discussions during his tenure as a Fulbright
Fellow in our Department. Also we thank Peter Gno�o and Bil Kleb, NASA Langley for constant interest.
The �rst author thanks Jack Benek and Jim Miller for valuable feedback during a visit to the Air Force
Research Laboratories at Wright-Patterson Air Foce Base, Dayton, Ohio. This work was supported by the
Space Vehicle Technology Institute under grant NCC3-989 jointly funded by NASA and DOD within the
NASA Constellation University Institutes Project, with Claudia Meyer as the project manager.

References

1Lax, P. D., Wendro�, B, Systems of conservation laws, Comm Pure Appl Math, 13, p.217, 1960.
2Peery, K.M. Imlay, S.T., Blunt body 
ow simulations, AIAA Paper 88-2924, 1988.
3Quirk, J.J., A contribution to the great Riemann solver debate, Int. J. Num. Meth. Fluids 18 p.555. 1994.
4Pandol�, M., d'Ambrosio, D., Numerical instabilies in upwind methods, analysis and cures for the `Carbuncle' phe-

nomenon, J. Comp. Phys., 166, p.271, 2001.
5van Dyke, M. D., An Album of Fluid Motion Plate 272, Parabolic Press, 1982.
6S. Bogdono�, I.E. Vas, Preliminary investigation of spiked bodies at supersonic speeds, J. Aero. Sci. 26. p.584, 1959.
7Liou, M. S., Mass 
ux schemes and connections to shock instability, J. Comp Phys., 160, p.632, 2000.
8Kim, S-s, Kim, C, Rho, O-H, Hong, S.K., Cures for the shock instability, Development of a shock-stable Roe scheme, J.

Comp Phys., 186, p.342, 2003.
9Lin, H-C, Dissipative additions to 
ux-di�erence splitting, J. Comp Phys., 117, p.20, 1995.
10Sanders, R., Morano, E., Drouget, M. C., Multidimensional dissipation for upwind schemes, stability and applications to

gasdynamics, J. Comp Phys., 145, p.511, 1998.
11Robinet, J. C., Gressier,J., Casalis, G., Moschetta, J-M., Shock wave instability and carbuncle phenomenon; same intrinsic

origin J. Fluid Mech, 417, p.237, 2000.
12D'yakov, S. P. Z. Eksper. Teort. Fiz., 27, p. 288, 1954.
13Landau, L. D. , Livshitz, E. M. , Fluid Mechanics, Pergammon, 1959.
14Dumbser, M. Moschetta, J-M., Gressier, J., A matrix stability analysis of the carbuncle phenomenon, J. Comp Phys.,

197, p.647, 2004.
15Roe, P. L. Capturing vorticity, AIAA-2001-2523 AIAA 16th Computational Fluid Dynamics Conference, Anaheim, CA,

June 11-14, 2001
16F.Ismail, P. L. Roe, Toward a vorticity-preserving second-order �nite-volumescheme solving the Euler equations, AIAA

CFD meeting,Toronto, 2005.

d. Stability proofs are usually given in terms of a mathematical entropy, which is the negative of the physical entropy S, can
be de�ned as positive and always decreases

9 of 10

American Institute of Aeronautics and Astronautics



17Barth, T. J., Some notes on shock-resolving 
ux functions part I, stationary characteristics, NASA TM-101087, Ames

Research Center, 1989.
18Xu, K., Gas-kinetic schemes for unsteady compressible 
ow simulations, VKI Lecture series 1998-03, 1998.
19Woodward, P., Colella, P., The numerical simulation of two-dimensional 
uid 
ow with strong shocks, J. Comp. Phys.,

54, p.115, 1984.
20Merriam, M. L., An entropy-based approach to nonlinear stability, NASA TM 101086, 1989.
21Barth T. J., Numerical methods for gasdynamic systems on unstructured meshes, in An Introduction to Recent Devel-

opments in Theory and Numerics of Conservation Laws, eds. Kr�oner, D., Ohlberger, M., Rohde, C., Springer , 1999.
22Tadmor, E., Twenty examples of entropy-stable schemes, colloquium presentation available at

www.ima.umn.edu/talks/workshops/5-11-15.2004/tadmor Lecture entropy stability 20 examples.pdf

10 of 10

American Institute of Aeronautics and Astronautics


