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Modeling of Guided-wave Excitation by Finite-dimensional  
Piezoelectric Transducers in Composite Plates 
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This paper addresses modeling of guided-wave excitation by surface-bonded piezoelectric 
wafer transducers in multi-layered composite plate structures. Each of the individual layers 
is assumed to have unidirectional fibers in an epoxy matrix and is modeled as being 
transversely isotropic. The piezoelectric actuators are modeled as causing shear traction 
along their edges on the plate surface and uncoupled actuator-substrate dynamics are 
assumed. The formulation is generic enough to accommodate arbitrary shape actuators, and 
specific expressions are derived for the cases of rectangular and ring-shapes. The surface 
and interfacial conditions are implemented using the global matrix approach. Since the 
three-dimensional guided-wave field is modeled without using reduced structural 
formulations, all possible guided-wave modes are captured. The two-dimensional spatial 
Fourier transform is used to solve the problem, and a rigorous inversion procedure is 
outlined. These models are implemented numerically and results in the form of harmonic 
radiation plots are presented for various configurations. 

I. Introduction 
he prospect of having aerospace and other structures instrumented with on-board damage prognosis systems has 
generated a lot of interest in the area of structural health monitoring (SHM) over the past decade. The hope is 

that such systems would be able to regularly scan the structure for damage and warn the user in near-real time about 
any incipient damage. They should also be able to tie in with prognostic algorithms to furnish estimates about the 
remaining service life of the structure. The presence of damage prognosis systems may increase safety. In addition, 
they could enable a transition from schedule-driven inspection to condition-based maintenance. The monetary and 
labor savings benefits of such systems may be also very significant. 
 Another growing trend in aerospace structures is the widespread use of composites. The primary advantage of 
using composites is their higher stiffness-to-mass ratio compared to metals, which translates into significant fuel and 
operational-cost savings. In addition, they have better corrosion resistance and can be tailored for preferentially 
bearing loads along specific directions. However, they are more susceptible to impact damage. Impact can cause 
damage in the form of delaminations or cracks, reduce load-bearing capability, and potentially lead to structural 
failure. The capability of health monitoring could increase confidence in the use of composite structures by alerting 
operators about damage from unexpected impact events. 
 
A.  Guided-wave structural health monitoring 
While several approaches have been examined for SHM, guided-wave (GW) methods have shown potential to 
actively interrogate large structural areas with a sparse network of transducers. These essentially involve exciting the 
structure with high frequency stress waves and processing the difference in structural response with respect to a 
baseline signal for the pristine condition, from which damage, if present, can be detected and characterized. A 
detailed survey on GW SHM, including fundamentals and early history, is presented in a review paper by the 
authors1. GWs can be defined as stress waves forced to follow a path defined by the material boundaries of the 
structure. Aerospace vehicles usually consist of different substructures, each of which can act as waveguides, 
thereby making them attractive application areas for GW SHM. In SHM, typically surface-bonded piezoelectric 
wafer transducers (called “piezos” in this work) are used. 
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However, GW SHM has some caveats associated with it. In isotropic structures, typically, more than one mode 
is possible in a waveguide at any frequency. Furthermore, as shown in Figure 1(a), each mode has a unique 
dispersion curve, which represents the relation between phase velocity and frequency. In composite structures, this 
is further complicated by the directional dependence of wavespeeds, due to the difference in elastic properties along 
different directions (e.g., see Figure 1 (b)). Therefore, it is important to have a fundamental understanding of GW 
propagation and characterize the GW field excited and sensed by the transducers being used. Earlier work by the 
authors2, 3 has addressed this issue for isotropic structures. With composite materials becoming increasingly common 
in aerospace structures, there is a need to address that in composite plate structures as well. That is the aim of the 
present paper. 

 
B. Previous work 
The theory of free GW propagation in isotropic, anisotropic and layered materials for various geometries as well as 
excitation using conventional NDE ultrasonic transducers is well-documented4. The free GW modes in isotropic 
plates and shells were first studied by Lamb5 and Gazis6 respectively using the theory of elasticity. Earlier works on 
modeling excitation of GW fields using the theory of elasticity mostly used two-dimensional (2-D) models, wherein 
variations along one direction in the plane of the plate were ignored. Work done on modeling excitation in isotropic 
structures has been reviewed in the authors’ survey paper1. Some works have examined GW excitation by 
transducers for non-destructive testing (NDT) in composites. Ditri and Rose7 used 2-D elasticity models along with 
the normal modes expansion technique to describe GW excitation in composites. Mal8 and Lih and Mal9 developed 
a theoretical formulation to solve for the problem of forced GW excitation by finite-dimensional sources using 3-D 
elasticity in multilayered composite plates. The Fourier spatial integrals were inverted using a numerical scheme. 
Viscoelastic damping was addressed, and specifically, the cases of excitation by NDT transducers and acoustic 
emission were solved based on the developed formulation. More recently, Mal and Banerjee10 proposed a semi-
analytical approach for the inversion of the spatial domain Fourier transform, using the residue theorem along one 
direction in the plane of the plate and then numerically evaluating the integral along the other. However, that 
approach leads to a standing wave in the first direction, which is counter-intuitive. 
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Figure 1.    (a) Dispersion curve (plot of phase velocity versus frequency) for the first four Lamb modes in 

an aluminum alloy plate (isotropic) and (b) Slowness surfaces (plot of inverse of phase velocity versus 
direction) in a 1-mm thick unidirectional graphite-epoxy composite plate at 500 kHz (with graphite fibers 

along 0o/180o). 
 

In comparison, less modeling work has been done for GW testing using structurally integrated piezos for SHM. 
Due to this, often little or no theoretical basis is provided by researchers for their choice of the various testing 
parameters involved such as transducer geometry, dimensions, location and materials, excitation frequency, 
bandwidth among others. Among the works that have sought to bridge this gap, Moulin et al.11 used a coupled finite 
element-normal modes expansion method to model GW excitation in composite plates with piezos. This was also a 
2-D analysis. Some researchers (Lin and Yuan12, Rose and Wang13, Veidt et al.14) have looked at using Mindlin 
plate theory for modeling GW excitation by circular and/or rectangular piezos in isotropic plates. That approach 
yields approximate solutions and cannot model higher GW modes. Giurgiutiu15 studied the 2-D harmonic excitation 
of Lamb-waves in isotropic plates by infinitely wide surface-bonded piezos. As he suggested, the key difference 



 
American Institute of Aeronautics and Astronautics 

 

3

between NDE transducers and surface-bonded piezos is that the former operate by “tapping” or causing normal 
traction on the surface, while the latter operate by “pinching” or causing shear traction at the actuator edges on the 
structural surface. Thus, the problem of modeling the 3-D GW field excited by finite dimensional piezos in 
composite plates has not received much attention. 

 
C. Objective of this work 
In previous work by the authors2, analytical solutions were presented for the problem of GW excitation and sensing 
by finite-dimensional piezo transducers in isotropic plates using 3-D elasticity. The actuators were modeled as 
causing surface shear traction along their free edges, while the sensors were modeled as sensing the average in-plane 
extensional strain over their surface area. Those were validated with numerical and experimental results. In the 
present paper, multilayered composite plates are addressed. The transducer models are identical to that in the 
authors’ earlier work2. The formulation and notation for the underlying multilayered composite plate is largely 
adapted from Lih and Mal9 and are summarized here for completeness. A semi-analytical approach is used for the 
spatial Fourier inversion, which is distinct from that in Ref. 10. The new approach in the present work yields 
traveling waves along both directions in the plane of the plate, as one would expect. 

II. Theoretical Formulation 
In this section, a general expression for the GW field excited by an arbitrary shape (finite dimensional) piezo-

actuator surface-bonded on a multilayered composite plate is derived. Consider an infinite N-layered composite plate 
of total thickness H, with such an actuator bonded on one free surface, as illustrated in Figure 2. The origin is 
located on the free surface with the actuator and the X3-axis is normal to the plate surface. The individual layers are 
assumed to have unidirectional fibers in a matrix and are modeled as being transversely isotropic with uniform 
density. This is a reasonable assumption if the GW wavelength is large compared to the inter-fiber spacing and the 
fiber diameter. The solution procedure consists of the following four components (illustrated in Figure 3):  
(a) First, one sets up the 3-D governing equations of motion for the bulk composite medium. The 2-D Fourier 

transform is applied (or equivalently, plane waves propagating at a given angle in the plane of the fibers are 
assumed). This yields the free-wave solution in terms of the eigenvectors and possible wavenumbers through 
the thickness of the fibers. 

(b) Then, one imposes the free-surface conditions of the plate along with the continuity conditions across interfaces 
(using the global matrix formulation). This also gives the allowable in-plane wavenumbers for the possible GW 
modes. 

(c) Next, the forcing function due to the presence of the surface-bonded piezo-actuators is imposed (assuming they 
cause shear traction along their free edges). This gives the solution in terms of a 2-D Fourier integral in the 
wavenumber domain. 

(d) Finally, the 2-D wavenumber-domain Fourier integral is inverted (semi-analytically) to yield the GW field due 
to harmonic excitation by the piezo-actuator. The response to an arbitrary excitation waveform can then be 
obtained by integrating the individual harmonic components of the time-domain signal (i.e., inverting the 
frequency-domain Fourier integral). 
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Figure 2.     Infinite multilayered composite plate with arbitrary shape surface-bonded piezo actuator and 
piezo sensor 
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Among these, parts (a) and (b) are adopted from Refs. 9 and 16. Part (c) is based on the authors’ earlier work for 
isotropic plates2,3. The details of the solution procedure are explained in the following sub-sections. 

 
A. Bulk waves in fiber-reinforced composites 

First, consider the general solution for bulk waves in a transversely isotropic medium. The equations of motion 
for the bulk medium in each layer are: 

T ρ=c u u∇ ∇  (1) 
where u  is the displacement vector, c is the stiffness matrix, the ⋅ over a variable indicates derivative with respect to 
time, ρ is the material density, and the operator ∇  is defined as: 

1 3 2

2 3 1

3 2 1

0 0 0

0 0 0

0 0 0

x x x

x x x

x x x

⎡ ⎤∂ ∂ ∂
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂

= ⎢ ⎥
∂ ∂ ∂⎢ ⎥

⎢ ⎥∂ ∂ ∂
⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦

∇  (2) 

If the fibers are oriented along the 1-direction in the local coordinate system (x1, x2, x3) of the material, the stress-
strain relation and the stiffness matrix c for a transversely isotropic material are: 
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Here σij, with i and j taking integer values from 1 to 3, are the stress components. Next, constants are introduced that 
correspond to the squares of bulk wave speeds along different directions: 
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Figure 3.     Illustration of solution procedure 
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Viscoelastic damping can be modeled by the use of complex stiffness constants. Suppose the wavenumber 
components are ξ1, ξ2 and ζ  along the 1-, 2- and 3- local directions, respectively. Furthermore, without loss of 
generality, consider harmonic excitation at angular frequency ω. Then the wave field is of the form:  

( )1 1 2 2 3i x x x te ξ ξ ζ ω− + + −=u C (5) 
where C is a vector of constants. Then, from Eqs. (1)-(5), one obtains the Christoffel equation:  

2 2 2
11 1 55 2 12 55 1 2 12 55 1 1 1

2 2 2 2
12 55 1 2 55 1 22 2 44 23 44 2 2 2

2 2 2
12 55 1 23 44 2 55 1 44 2 22 3 3
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 (6) 

For fixed values of ξ1, ξ2, and ω, there are six possible roots ±ζi, i = 1 to 3, of this equation. The first two pairs of 
roots correspond to pairs of quasi-longitudinal waves and quasi-shear waves9,16. The wavenumbers in the thickness 
direction for these four roots are, respectively: 

2 2 2 2
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 (7) 

The third pair of roots corresponds to pure shear waves and their through-thickness wavenumbers are given by: 
2 2 2 2
3 2 5 1 4( ) /a aζ ξ ω ξ= − + −  (8) 

The displacement eigenvectors resulting from Eq. (6) corresponding to these roots are: 
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where 
2 2
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q a b q a a b

ω ξ

ω ξ

= = − −
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 (10) 

and the other three eigenvectors e4, e5 and e6 are obtained by replacing ζi by −ζi. The general solution for the 
displacement vector is then given by: 

( )1 3 2 3 3 3 1 3 2 3 3 3 1 1 2 2( )
1 1 2 2 3 3 1 4 2 5 3 6

i x i x i x i x i x i x i x x tC e C e C e C e C e C e eζ ζ ζ ζ ζ ζ ξ ξ ω− − − − + −
+ + + − − −+ + + + +u = e e e e e e  (11) 

where Ci±, i = 1 to 3, are free constants. 
 
B. Assembling the laminate global matrix from the individual layer matrices 

With the general solution for the bulk medium in place, one can then seek the particular solution for the 
problem at hand. As mentioned earlier, the equations in this particular sub-section are from Lih and Mal9, and details 
can be found there. They are only summarized here.   

Due to the different orientations of the fibers in the different layers, it is useful to work with a global coordinate 
system (X1, X2, X3) distinct from the local coordinate system, for which the 1

mx -axis is aligned with the fiber 
direction. However, the X3- and 3

mx -axes are coincident and the two coordinate systems differ only in the plane of 
the plate. One can relate the displacement vector u in the global system and u  in the local system using the 
transformation matrix Lm (with the superscript m indicating the layer number between 1 and N, and φm being the 
angle between the X1- and 1

mx -axes): 
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where the functions f1 and f2 depend on the shape of the actuator and 3 0f = . In addition, traction and displacement 
continuity must be maintained across the interfaces between the different layers. The 2-D spatial Fourier transform 
is used to ease solution of this problem. For a generic variable ψ,  it is defined by: 
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Let U, Σ  and F denote the 2-D spatial Fourier transform of the variables u, σ and f, respectively. Furthermore, as 
for the bulk medium solution, without loss of generality, harmonic excitation at angular frequency ω is considered 
(the i te ω  factor is suppressed for convenience and is brought back at the end). Since continuity of both traction and 
displacement has to be ensured across all interfaces, it is convenient to work with a “displacement-stress vector” Sm
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where: 

11 1 2 3 12 4 5 6

5 1 1 11 21 5 1 2 11 22 5 1 2
2 2

21 4 2 1 21 4 2 2 22 4 2 3

1 2 4 2 3

5 1 1 11 21 5 1 2 11 22 5 1 2

22 4

     ;     

( ) ( )
2 2 ( )

2

( ) ( )
2

m m m m m m m m

m

m

a q q a q q a
a q a q a

a

a q q a q q a
a

ρ ξ ζ ρ ξ ζ ρ ξ ξ
ρ ξ ζ ρ ξ ζ ρ ξ ζ

µ µ ρ ξ ζ

ρ ξ ζ ρ ξ ζ ρ ξ ξ
ρ ξ

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦
− + − +⎡ ⎤
⎢ ⎥= − − −⎢ ⎥
⎢ ⎥⎣ ⎦

+ +
=

Q e e e Q e e e

Q

Q

1 1
1 3 3 2 3 3

2 2
2 1 21 4 2 2 22 4 2 3

1 2 4 2 3

2 2 2
1 5 3 1 11 1 4 2 21 1 1 21

2 2 2
2 5 3 1 12 1 4 2 22 1 1 22

( ) ( )
3

2 ( )
2

( ) ( 2 )

( ) ( 2 )

( ) Diag , ,
m m

Tm m m

i X X i X X im

q a q a
a

a a q a a q a q

a a q a a q a q

X e e eζ ζ

ζ ρ ξ ζ ρ ξ ζ
µ µ ρ ξ ζ

µ ρ ξ ξ ζ

µ ρ ξ ξ ζ
− −

+ −

− −
+

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

⎡ ⎤= ⎣ ⎦
⎡ ⎤= − − − −⎣ ⎦
⎡ ⎤= − − − −⎣ ⎦

=

C C C

E
1

3 3 3

1 3 3 2 3 3 3 3 3

( )

( ) ( ) ( )
3( ) Diag , ,

m

m m m

X X

i X X i X X i X Xm X e e e

ζ

ζ ζ ζ

−−

− − −
−

⎡ ⎤
⎣ ⎦
⎡ ⎤= ⎣ ⎦E

 (18) 

with 3
mX  being the X3-coordinate of the interface between layers m and (m−1). Here 21

mQ  and 22
mQ  are matrices 

whose columns are the stress eigenvectors for the mth layer corresponding to wavenumbers along the 3-axis, ζi  and 
−ζi, respectively. These are obtained from the displacement eigenvectors using Eq. (2). The interface continuity 
conditions can then be expressed as: 

1 1

1 1 1 1
3 3
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These equations ensure continuity of all displacement and traction components at the interface across two layers. 
The surface traction conditions can be expressed as: 

1 1

1 1 1 1 1 1
21 22 21 22

ˆ ˆ                                             ;
ˆ ˆwhere                                        ;     
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 (20) 

Here the matrices Q̂ correspond to the lower-half of Q  relating to stress. The system of equations is then solved by 
assembling Eqs. (19) and (20) together into a 6N × 6N banded matrix (called the global matrix, say G): 
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 (21) 

Alternatively, if the layup is symmetric about the mid-plane of the plate, then the system can be solved for the 
symmetric and anti-symmetric modes separately, thereby saving some computational time. The surface condition 
must also be split into its “symmetric” and “anti-symmetric” components. Then, the relevant surface condition on 
the top layer is enforced along with the continuity conditions up to the interface between layers N/2 and N/2−1 along 
with conditions of symmetry (u3, σ32 and σ31 being zero at the mid-plane) or anti-symmetry (u1, u2 and σ33 being 
zero at the mid-plane). The problem is thus reduced to two systems, each of complexity 3N × 3N. With the problem 
constraints now enforced, if the forcing function is also known, this equation can be solved to find the constants, Cm.  
 
C. Forcing function due to piezo-actuator 

The piezo actuator is modeled as causing in-plane shear traction of uniform magnitude (say τ0 per unit length) 
along its perimeter, in the direction normal to the free edge on the plate surface X3 = 0 (see Figure 2). In this model, 
the dynamics of the actuator are neglected and it is assumed that the plate dynamics are uncoupled from the actuator 
dynamics. This model was proposed by Crawley and de Luis17 to describe quasi-static induced strain actuation of 
beams by surface-bonded piezo-actuators. For that case, they proved that the model is a good approximation if the 
actuator thickness is small compared to that of the substrate and the bond layer is thin and stiff. This was also proven 
to be a good assumption in the authors’ earlier work for isotropic plates2. In this work, two specific shapes of the 
piezo-actuator are considered: rectangular and ring-shaped. These are the most commonly used shapes in GW SHM.  

For the ring-shaped actuator located at the center of the coordinate system, the actuation components fi, i = 1 to 
3 and their respective 2-D spatial Fourier transforms Fi are given by: 

( ) ( )
( ) ( )

1 1 1 1 1

2 2 1 1 2

3 3

( ) ( ) cos            ( ) ( )

( ) ( ) sin            ( ) ( )
0                                                      0

o i o o i i

o i o o i i

f R A R A F i A J KA A J KA K K

f R A R A F i A J KA A J KA K K
f F

δ δ

δ δ

= − − − Θ = − −

= − − − Θ = − −

= =
 (22) 

where Ai is the inner radius of the ring-shaped actuator and Ao is the outer radius. ( )1J  is the Bessel function of the 

first kind and order one. ( )δ  is the Dirac-delta function. R and Θ are the polar spatial coordinates, i.e., 

( )2 2
1 2R X X= +  and ( )1

2 1tan X X−Θ =  and K and Γ are polar wavenumber coordinates, i.e., ( )2 2
1 2K K K= +  

and ( )1
2 1tan K K−Γ = . Similarly, for the rectangular actuator of dimensions 2A1 × 2A2 (along the X1- and X2-axes 

respectively), which is located at the center of the coordinate system: 
( )( )

( )( )

1 0 1 1 1 1 2 2 2 2

1 0 1 1 2 2 2

2 0 1 1 1 1 2 2 2 2

2 0 1 1 2 2 1

3 3

( ) ( ) ( ) ( )
4 sin( )sin( ) /

( ) ( ) ( ) ( )
4 sin( )sin( ) /

0        ;       0

f X A X A He X A He X A
F K A K A iK
f He X A He X A X A X A
F K A K A iK
f F

τ δ δ
τ

τ δ δ
τ

= − − + + − −

= −

= + − − − − +

= −

= =

 (23) 
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Figure 4.    Configurations considered: (a) rectangular and (b) ring-shaped actuators 

 
where He( ) is the Heaviside function. The constants in Eq. (21) can then be analytically solved using Cramer’s rule:  

1
1
1

2

1
1

1

1

( , ) ,     etc.,
( , )

where                         ( , ) det

ˆ

              ( , ) det( )

m m

m m

N N

N

N KC
K

N K

K

+

+

−
− +

+
− +

−
− +

−

Γ
=

∆ Γ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Γ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∆ Γ =

0
0 0

0 0
0 0

0

0 0

F
Q

Q Q
Q Q

Q Q

Q
G

 
(24) 

 
 
D. Spatial Fourier integral inversion 
With the constants known, the expression for displacement in the wavenumber domain can be obtained from Eqs. 
(17) and (24). The Fourier inversion formula, Eq. (15), can then be used to recover the spatial domain solution. For 
the case of a rectangular actuator, this leads to an expression of the following form for displacement along the 1-
direction in the spatial domain: 

1 2

2
( ( cos sin ) )0

1 1 2 1 22
0 0

( , )( , ,0) sin( cos )sin( sin )
( , )

i K X X tN Ku X X KA KA e KdKd
Ki

π
ωτ

π

∞
− Γ+ Γ −− Γ

= Γ Γ Γ
∆ Γ∫ ∫ (25) 

To solve the inverse Fourier integral, the residue theorem from complex analysis is used for the integral along the K-
direction. For convenience, the integral in Eq. (25) is rewritten as: 

( ) ( )1 1 2 2

1 2

2
cos cos sin sin

1 1 2
0 0

( ( cos sin ) )0
2

( , ,0) .

( , )                                     .
( , )4

iK A iKA iKA iKA

i K X X t

u X X e e e e

N K e KdKd
Ki

π

ωτ
π

∞
Γ − Γ Γ − Γ

− Γ+ Γ −

= − −

Γ
× Γ

∆ Γ

∫ ∫
 (26) 
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1 1 2 2

1 1 2 2

1 1 2 2

2
( (( ) cos ( ) sin ) )0

1 1 2 2
0 0

2
( (( ) cos ( )sin ) )0

2
0 0

( (( ) cos ( )sin )0
2

( , )( , ,0) .
( , )4

( , ).
( , )4

( , ).
( , )4

i K X A X A t

i K X A X A t

i K X A X A t

N Ku X X e KdKd
Ki

N K e KdKd
Ki

N K e
Ki

π
ω

π
ω

ω

τ
π

τ
π

τ
π

∞
− − Γ+ − Γ −

∞
− − Γ+ + Γ −

− + Γ+ − Γ −

Γ
= Γ +

∆ Γ

− Γ
+ Γ +

∆ Γ

− Γ
+

∆ Γ

∫ ∫

∫ ∫

1 1 2 2

2
)

0 0
2

( (( ) cos ( ) sin ) )0
2

0 0

( , ).
( , )4

i K X A X A t

KdKd

N K e KdKd
Ki

π

π
ωτ

π

∞

∞
− + Γ+ + Γ −

Γ +

Γ
+ Γ

∆ Γ

∫ ∫

∫ ∫

 (27) 

First, consider the first of the four integrals in the second line of Eq. (26), say I1, which corresponds to (a1, a2). It is 
further rewritten as follows: 

( ) ( )

1

1 1

1

2
( cos( ) )0

1 2

2

2 21 2 2
1 1 1 1 2 2

1 1

( , ).
( , )4

where                                tan      ;     

i KR tN KI e KdKd
Ki

X A
R X A X A

X A

π

ω

π

τ
π

Θ + ∞
− Γ−Θ −

−∞Θ −

−

Γ
= Γ

∆ Γ

⎛ ⎞−
Θ = = − + −⎜ ⎟−⎝ ⎠

∫ ∫
 (28) 

This ensures that the coefficient of K in the complex exponential remains positive over the domain of integration. 
The inner integral along the real K−axis is replaced by a contour integral in the complex K−plane, the semi-circular 
portion of which has radius K →∞

 
(see Figure 5). The integrand is singular at the roots K̂ of ( , ) 0K∆ Γ = , which 

is the dispersion equation for the multilayered composite plate. These roots are the allowable in-plane radial 
wavenumbers for the multilayered composite plate at angular frequency ω. ( , )K∆ Γ  is symmetric about the K-axis. 

Therefore, if K̂  is a root of ( , ) 0K∆ Γ = , then so is K̂− . However, since only the outgoing wave is desired, the 
negative roots are not included in the contour.  Using the residue theorem for the inner integral in Eq. (26) yields in 
this case (assuming I is the integrand in I1):  

( )
ˆ

ˆRes I( )
KC

IdK IdK i Kπ
∞

−∞

+ = − ∑∫ ∫  (29) 

 

O

1K̂ 2K̂

K →∞

C

1K̂−2K̂−
RK

IK

Figure 5.    Contour integral in the complex K-plane to invert the displacement integrals using residue 
theory 
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It remains to be shown that the contribution from C vanishes. As explained in Miklowitz18 for a similar plane wave 
excitation problem, ( )( ) ( ). , ,K N K KΓ ∆ Γ  for large K  is of order 1 K , and therefore tends to zero as K →∞ . 

Furthermore, along C, if     ;       , 0R I R IK K iK K K= − > : 
1 1 1 1 1 1 1 1( cos( ) ) cos( ) cos( ) cos( ). .

R I Ii KR t iK R K R K Ri te e e e eω ω− Γ−Θ − − Γ−Θ − Γ−Θ − Γ−Θ= ≤  (30) 

Since 1R  and ( )1cos Γ −Θ  are both always positive, the term 1 1cos( )IK Re− Γ−Θ  is finite and is bounded by zero as 
IK →∞ . Therefore:  

( )
1

1 1

1

1
ˆ

2
ˆ( cos( ) )0

1
ˆ

2

ˆ0      ;      Res I( )

ˆ( , ). ˆ4 ( , )

KC

i KR t

K

IdK I IdK i K

N KI e d
K

π

ω

π

π

τ
π

∞

−∞

Θ +

− Γ−Θ −

Θ −

= = = −

− Γ
= Γ

′∆ Γ

∑∫ ∫

∑ ∫
 (31) 

where ( )′  indicates derivative with respect to K. Similar analysis can be used to solve the other three integrals in 
Eq. (26), to finally yield the expression for u1: 

1 2

1 1 2 2

1 2

3

3 3

3

2 2
ˆ ˆ( cos( ) ) ( cos( ) )0 0

1
ˆ ˆ

2 2

2
ˆ( cos( ) )0 0

ˆ
2

ˆ ˆ( , ) ( , ). .ˆ ˆ4 4( , ) ( , )

ˆ( , )     . ˆ4 4( , )

i KR t i KR t

K K

i KR t

K

N K N Ku e d e d
K K

N K e d
K

π π

ω ω

π π

π

ω

π

τ τ
π π

τ τ
π

Θ + Θ +

− Γ−Θ − − Γ−Θ −

Θ − Θ −

Θ +

− Γ−Θ −

Θ −

− Γ Γ
= Γ + Γ +

′ ′∆ Γ ∆ Γ

−Γ
+ Γ +

′∆ Γ

∑ ∑∫ ∫

∑ ∫
4

4 4

4

2
ˆ( cos( ) )

ˆ
2

ˆ( , ). ˆ( , )
i KR t

K

N K e d
K

π

ω

π π

Θ +

− Γ−Θ −

Θ −

Γ
Γ

′∆ Γ
∑ ∫

 (32) 

This procedure can also be used for the other displacement components. An approximate closed form solution can 
be obtained for the far field using the method of stationary phase. This is assuming damping is not modeled and that 
the integrand is real-valued. If damping is modeled, then a similar approximation can be done using the method of 
steepest descent19. As explained in Graff19, for large r: 

2
0

1

( )( ) 4
0

0

2( ) ( )
( )

i rirhf e d f e
rh

ψ
πψψ

ψ

πψ ψ ψ
ψ

+≈
′′∫  (33) 

Therefore, for large values of R (which leads to large values of ,  1 to 4kR k = ): 

1 1 1

1

2 2 2

2

3

ˆ( cos( ) )0 1 4
1 2ˆ 11

1 2

ˆ( cos( ) )0 2 4
2ˆ 22

2 2

0

2
3

3 2

ˆ( , )2
ˆˆ 4 ( , )( cos( )).

ˆ( , )2
ˆˆ 4 ( , )( cos( )).

2
ˆ( cos( )).

i KR t

K

i KR t

K

N K
u e

Kd KR
d

N K
e

Kd KR
d

N

d KR
d

πω

πω

τπ
π

τπ
π

τπ

− Γ −Θ − +

Γ=Γ

− Γ −Θ − +

Γ=Γ

Γ=Γ

− Γ
= +

′∆ ΓΓ −Θ
Γ

Γ
+ +

′∆ ΓΓ −Θ
Γ

+
Γ −Θ

Γ

∑

∑

3 3 3

4 4 4

4

ˆ( cos( ) )3 4

ˆ 3

ˆ( cos( ) )0 4 4
2ˆ 44

4 2

ˆ( , )
ˆ4 ( , )

ˆ( , )2
ˆˆ 4 ( , )( cos( )).

i KR t

K

i KR t

K

K
e

K

N K
e

Kd KR
d

πω

πω

π

τπ
π

− Γ −Θ − +

− Γ −Θ − +

Γ=Γ

Γ
+

′∆ Γ

− Γ
+

′∆ ΓΓ −Θ
Γ

∑

∑

 (34) 

where 
ˆ1tan( ) ˆk k

dK
dK

Γ −Θ =
Γ

. Thus, ( )k kΓ −Θ  is the angle between the phase velocity and group velocity vectors16. 

This implies that the contributions from kΓ  dominate the integrals over Γ at large distances from the source. This 



 
American Institute of Aeronautics and Astronautics 

 

11

reiterates a well-known fact about wave propagation in composites, i.e., the wave travels at a “steering angle,” 
which may be different from the angle that it was launched along by its source. 

An analogous solution can be obtained for the ring-shaped actuators. In this case, an expression of the following 
form for displacement along the 1-direction in the spatial domain is obtained: 

( ) ( )1 2

2
( cos sin )0

1 1 2 1 1 2
0 0

( , )( , ,0) ( ) ( ) .
( , )4

i K X X t
o o i i

N Ku X X A J KA A J KA e KdKd
K

π
ωτ

π

∞
− Γ+ Γ −Γ

= − Γ
∆ Γ∫ ∫  (35) 

For simplicity of analysis, consider the case of a circular actuator (Ai = 0). The integral in Eq. (35) is rewritten thus: 

( )

( ) ( )

2
cos0

1 1 2

2

2
cos(1) (2) 0

1 1 2

2

( , )( , ,0) ( ) .
( , )4

( , )( ) ( ) .
( , )8

i KR t
o o

i KR t
o o o

N Ku R A J KA e KdKd
K

N KA H KA H KA e KdKd
K

π

ω

π

π

ω

π

τ
π

τ
π

Θ+ ∞
− Θ−

−∞Θ−

Θ+ ∞
− Θ−

−∞Θ−

Γ
Θ = Γ

∆ Γ

Γ
= + Γ

∆ Γ

∫ ∫

∫ ∫

 (36) 

This is then re-arranged as follows: 

( )

( )

2
cos(2) 0

1 1 2

2

2
cos(1) 0

1 2

2

( , )( , ,0) ( ) .
( , )8

( , )( ) .
( , )8

i KR t
o o

i KR t
o o

N Ku R A H KA e KdKd
K

N KA H KA e KdKd
K

π

ω

π

π

ω

π

τ
π

τ
π

Θ+ ∞
− Θ−

−∞Θ−

Θ+ ∞
− Θ−

−∞Θ−

Γ
Θ = Γ +

∆ Γ

Γ
+ Γ

∆ Γ

∫ ∫

∫ ∫
 (37) 

As before, for each of the two integrals, residue calculus is used. The contours must be chosen such that the 
integrands remain finite-valued. Over the semi-circular contour C: 

( 3 ) ( 3 )(2) (1)2 2
1 1

2 2  ( ) ;  ( )o oi KA i KA
o o

o o
K H KA e H KA eKA KA

π π

π π
− − −→ ∞ ∴ ≈ ≈  (38) 

Therefore, for the first integral, over C, the integrand in the first integral of Eq. (37) is approximately: 
( ( cos ) 3 )2 ( , )2

( , )
oi K R A

o

N Ke KKA K
π

π
− Θ+ − Γ

∆ Γ
(39) 

Therefore, the coefficient of K in the exponent always remains positive and the contour can be closed in the lower 
half-plane over the full angular range, as was done for the rectangular actuator. However, for the second integral of 
Eq. (37), over C, the integrand is approximately: 

( ( cos ) 3 )2 ( , )2
( , )

oi K R A

o

N Ke KKA K
π

π
− Θ− − Γ

∆ Γ
(40) 

In this case, the coefficient of K in the exponent is negative over part of angular range (defined by cos oA RΘ < ). 
Therefore, over this part of the angular range, the contour must be closed in the upper half of the complex K-plane. 
This results in a positive sign for the residue over that part of the angular range unlike earlier when closing in the 
lower half plane resulted in a negative sign for the residue.   

III. Implementation of the Formulation and Results for Harmonic Excitation 
The theoretical formulation described above was implemented in Fortran 90. The linear algebra package 

LAPACK20 for Fortran 90 was employed to evaluate the determinants of large banded matrices. The roots of the 
dispersion equation ( , ,0) 0K∆ Γ =  were simply computed by the “zero-crossing” approach, i.e., by evaluating the 
determinant of the matrix over a fine grid in the (K,Γ) plane and looking for sign changes in the value of the 
determinant. In doing so, one has to avoid the bulk wave velocities of the composite material, which are also roots of 
the dispersion equation. One also has to take care to use double-precision variables and compute the roots with high 
precision since with the very large matrices involved, small errors in the values of the roots cause large errors in the 
response solution. The code implemented in Fortran 90 was computationally efficient, with each run being 
completed in a few minutes on a standard desktop computer (1.2 GHz Pentium IV with 256 MB RAM).  

Some results from the proposed formulation are presented here. First, a unidirectional graphite-epoxy composite 
plate (material properties: ρ = 1578 kg/m3; c11 =  160.73 GPa, c12 = 6.44 GPa, c22 = 13.92 GPa, c23 = 6.92 GPa, c55 
= 7.07 GPa, this is the same material used in Ref. 9) was analyzed. Damping was not considered for these analyses. 
The slowness surfaces (plots of inverse of phase velocity versus propagation direction) for the A0 and S0 modes at 
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500 kHz are shown in Figure 1 (b). The out-of-plane harmonic surface displacement plots over a quarter section of 
this unidirectional plate at 500 kHz due to a 1-cm diameter circular actuator surface-bonded at the center (S0 mode) 
is shown in Figure 6. There is uniform actuation along all directions and the actuator diameter is equal to the half-
wavelength along the 0o/180o direction, which is close to the optimal size along that direction (actuator size 
optimization is discussed in more detail for isotropic structures in the authors’ earlier work for isotropic plates2). 
Despite this, and the fact that the predominant direction of the group velocity vector is along the 0o/180o direction, 
there is a strong preference for radiation along the 90o/270o direction, normal to the fiber direction. (The group 
velocity vector is normal to the slowness surface.) This is logical, since the composite plate is much less stiff along 
this direction, thereby offering less impedance to the GW field at 90o/270o compared to 0o/180o. This is evident in 
the semi-log plot of the kernel function N/∆′ versus the propagation angle (Figure 7), which relates to the excitability 
of the GW field along different propagation directions in the composite plate. There is a difference of three orders of 
magnitude between the excitability along 90o and 0o (the local valleys between 90o and 0o are possibly due to 
structural anti-resonances). The directionality can only be weakly controlled by actuator design, as illustrated in 
Figure 8. In this configuration, the actuator dimension along the 0o/180o direction is still equal to the half-
wavelength along this direction. However, the actuator dimension along the 90o/270o direction is equal to two times 
the wavelength along this direction, which nullifies the radiation emerging from the actuator along it. However, the 
GWs launched at other angles tend to “steer” towards a direction close to 90o/270o. Similar harmonic plots for the A0 
mode at 500 kHz are shown in Figure 9 for a circular actuator and in Figure 10 for a rectangular actuator. The 
dimension of the circular actuator is “optimal” approximately at 48o relative to the fiber direction, which results in 
the peak amplitude occurring roughly at that polar angle along the actuator perimeter. However, again due to 
steering, the GW field is predominantly along 90o/270o. The dimensions of the rectangular actuator in Figure 10 
were again chosen to maximize radiation along 0o/180o and minimize radiation along 90o/270o. 

Analysis was also done for plates with different quasi-isotropic layups of the same graphite-epoxy material. The 
first layup was [0/45/-45/90]s, with each ply being 0.11-mm thick. For this configuration, up to around 500 kHz, the 
S0 mode is practically isotropic. The slight variations in wavespeed with direction are imperceptible to the naked eye 
(e.g., see Figure 11). In addition, when excited by a circular actuator, the harmonic GW field seems to be uniform 
across different directions (shown in Figure 13 for 200 kHz) for the S0 mode in this quasi-isotropic layup.  For the 
A0 mode at 200 kHz, the harmonic GW field seems to be focused along two directions in the far-field (see Figure 
14), which are the predominant directions of the group velocity vector over the 360o angular range. The layup 
[0/90/45/-45]s was also analyzed for the A0 mode. The slowness surfaces of both layups are shown in Figure 12 for 
the A0 mode (at 200 kHz). In this case, the slowness curve is closer to being isotropic and, therefore, the GW field 
tends to be more uniform over the angular span in the far-field (see Figure 15). There is some mild tendency of the 
group velocity vectors to be along the 0o/180o and 90o/270o directions, which possibly explains the slightly stronger 
GW amplitude along these directions in the far-field. 

3 cmFiber direction
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Figure 6.    Harmonic radiation plot (u3) over a 
quarter-section of a 1-mm unidirectional graphite-

epoxy plate (S0 mode) at 500 kHz due to excitation by 
a 1-cm diameter actuator (lower-left corner, gray)  

Figure 7.    Variation of the kernel function N/∆′ with 
propagation angle at 500 kHz, S0 mode in the 1-mm 

thick unidirectional graphite epoxy plate 
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3 cmFiber direction 1 cmFiber direction

Figure 8.    Harmonic radiation plot (u3) over a 
quarter-section of a 1-mm unidirectional graphite-

epoxy plate (S0 mode) at 500 kHz due to excitation by 
a rectangular actuator of dimensions a1 = 0.5 cm, a2 = 

2 cm (in gray, lower-left corner). 

Figure 9.    Harmonic radiation plot (u3) over a 
quarter-section of a 1-mm unidirectional graphite-

epoxy plate (A0 mode) at 500 kHz due to excitation by 
a 0.3-cm diameter actuator (at the lower-left corner, 

in gray) 
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Figure 10.    Harmonic radiation plot (u3) over a 
quarter-section of a 1-mm unidirectional graphite-

epoxy plate (A0 mode) at 500 kHz due to excitation by 
a rectangular actuator of dimensions a1 = 0.055 cm, a2 

= 0.36 cm (in gray, lower-left corner). 

Figure 11.    Slowness surface for S0 mode in a quasi-
isotropic ([0/45/-45/90]s, with each ply being 0.11-mm 

thick) graphite-epoxy composite plate at 200 kHz. 

IV. Concluding Remarks 
This work addressed the modeling of the guided-wave (GW) field excited by finite-dimensional surface-bonded 

piezoelectric wafer transducers in multi-layered composite plates. The objective was to use the models to support the 
design of GW structural health monitoring (SHM) systems using this class of transducers for composite structures. 
The individual layers were assumed to be transversely isotropic, and the actuators were treated as causing shear 
traction along their free edges on the plate surface (assuming uncoupled actuator-substrate dynamics). The three-
dimensional governing equations for the composite substrate were used, and the global matrix approach was adopted 
to enforce surface and interfacial conditions, thereby capturing all possible GW modes without using reduced 
structural formulations. Expressions for the specific shapes of rectangular and ring-shaped piezo-actuators were 
derived. A rigorous Fourier inversion procedure was outlined to extract the outgoing wave solution. The numerical 
implementation of the developed formulation was described. Sample results from analysis done on some 
configurations were then presented. For unidirectional composites, it was observed that the direction normal to the 
fiber direction (90o) was the preferential direction of GW radiation, due to the lowest impedance along it. By 
appropriately designing rectangular actuators, this tendency can be somewhat controlled close to the source. 
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However, in the far-field, the GW tends to steer back to a direction close to the least impedance one. For quasi-
isotropic layups, the S0 mode is approximately isotropic at frequency-plate thickness products up to around 500 
kHz-mm while the A0 mode tends to steer towards the directions along which the group velocity vector is dominant. 
Future experiments are planned with graphite-epoxy plates to further investigate the phenomenon. 
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Figure 12.    Slowness surfaces for A0 mode  in  
graphite-epoxy plates with quasi-isotropic layups 
(with each ply being 0.11-mm thick), at 200 kHz. 

Figure 13.    Harmonic radiation plot (u3) over a half-
section of the quasi-isotropic ([0/45/-45/90]s) graphite-
epoxy plate at 200 kHz (S0 mode) due to excitation by 

a 1.6-cm dia. circular actuator (in gray). 
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Figure 14.    Harmonic radiation plot (u3) over a half-
section of the quasi-isotropic ([0/45/-45/90]s) graphite-
epoxy plate at 200 kHz (A0 mode) due to excitation by 

a 0.25-cm dia. circular actuator (in gray). 

Figure 15.    Harmonic radiation plot (u3) over a half-
section of the quasi-isotropic ([0/90/45/-45]s) graphite-
epoxy plate at 200 kHz (A0 mode) due to excitation by 

a 0.25-cm dia. circular actuator (in gray). 
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