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Determining a solar sail’smathematicalmodel on the ground is an inherently difficult task.Uncertainties in the sail

shape are always present because the sail’s precise curvature and surface structure may change after deployment in

space. These changes may invalidate previous measurements and computations. For accurate navigation, it is

essential that the postlaunch sail mathematical model is estimated. In this paper, we provide a methodology for

estimating the force andmoment generated by a sail of arbitrary, but constant, shape based on in-flight data. This is

accomplished by finding the force and moment tensor coefficients defined by the generalized sail model, which

analytically models the characteristics of solar sails with arbitrary shapes. Several data sampling examples are

studied to determine the attitudes that allow for better estimation of the sail’s force and moment coefficients.

I. Introduction

A S WITH all space missions, success depends on having a
precise spacecraft mathematical model. This is also true for

solar sails and is a capability needed for them because several of the
world’s space agencies are considering solar sails for spacemissions.
Initial mission planning can be performed based on data from ground
measurements. However, due to the complexity of sail shapes a
refinement of the sail propulsionmodelwill be necessary after launch
for navigating the sail to its target. Sail wrinkles after in-space
deployment, deformation from nominal shape, and surface
degradation due to the space environment [1] are some of the
effects thatmake prelaunch sail propulsion determination inaccurate.

The recently developed generalized sail model [2], GSM, allows
for the analytic computation of forces and moments acting on a solar
sail of arbitrary fixed shape. These forces andmoments are computed
analytically using a set of tensor coefficients, which for constant
optical parameters are defined solely by the sail shape. The GSM
assumes that the sail shape remains fixed with attitude; however
small changes in the sail shape due to attitude should not affect the
estimation results as the estimation is not on the sail shape but on the
GSM tensor coefficients. If the sail remains in a fixed attitude for a
given period of time, the sail shape is expected to change due to
thermal effects [3], and although accurate sail shape models can be
obtained in ground tests [4], sails with varying geometry should be
further studied when more data are available on how these changes
take place. Despite these limitations, we believe the changes to the
estimated coefficients will be small and future work on this subject
will start from our current analysis. The coefficients for computing
the force number 19 arranged in three tensors. The moment
computation requires at most 27 coefficients arranged in two tensors.

The generalized equations for the sail force and moment are linear
in the GSM coefficients. This fact and its analytic nature allows us to
develop linear estimation methods for these coefficients using
measured accelerations and moments as input data. The force and

moment tensor coefficients are estimated using a least-squares
algorithm from simulated navigation data and predictions from finite
element models of solar sails. The estimation results are highly
dependent on the attitudes at which the sail navigation data are taken.
It is not only important to takemeasurements at several different sun-
relative attitudes, but also to find those attitudes that capture the
geometry of the sail. The accuracy of the estimates will vary for
different data sampling strategies. Here, we present several data
sampling examples and comment on their impact to the accuracy of
the estimation results.

The sail surface degrades due to the solar radiation and space
environment [1] making the optical parameters change with time.
Thus, estimating the GSM coefficients with fixed optical parameters
may lead to inaccurate results. It may be possible to estimate both the
optical parameters and theGSMcoefficients, but this would require a
nonlinear estimation method or an iterative procedure. Instead, by
including the optical parameters into the definition of the tensor
coefficients, the estimation can be done on the combination of the
optical parameters and tensor coefficients. This would allow for
tracking changes on the sail properties over time through the tensor
coefficients.

II. Solar-Sail Modeling

The flat sail model is derived in [5]. This model captures nonideal
optical parameters and decomposes the force into normal and
transverse components:

Fn � P�r�A
�
�1� �s�cos2�� Bf�1 � s�� cos�

� �1 � ��
�fBf � �bBb
�f � �b

cos�

�
n̂ (1)

F t � P�r�A�1 � �s� cos� sin�t̂ (2)

where P is the solar radiation pressure at a distance r from the sun as
derived in [5],A is the sail area, � is the reflectivity, s is the fraction of
specular reflection, B and � are the Lambertian coefficient and the
surface emissivity with the subscripts f and b denoting the front and
back sides of the sail, � is the sun-sail line angle, n̂ is the sail normal

vector, and t̂ is the transverse vector.
The generalized sail model is a generalization of the flat sail model

for arbitrary shapes. Deviations from flatness in the sail membrane
are captured in tensors obtained by performing a surface integration
of all the differential forces generated by the differential areas. Here,
it is assumed that the sail shape remainsfixed, irrespective of attitude,
and that no self-shadowing occurs so that all the sail surface remains
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illuminated all the time. With these assumptions, when this surface
integration is performed, the total force in the sail body fixed frame is
given by [2]

F � P�r�A�J2 � r̂ � 2r̂ � J3 � r̂ � �J1 � r̂�r̂� (3)

where r̂ is the sun’s unit position vector from the sun into the sail. The

vectors r̂, n̂, and t̂ lie in the same plane. n̂ and t̂ are orthogonal to each
other. Jm is a rank—m force tensor defined as integrals over the
surface area [2]:

J 1 � 1

A

Z
A

a3n̂ dA (4)

J 2 � 1

A

Z
A

a2n̂ n̂ dA (5)

J 3 � 1

A

Z
A

�sn̂ n̂ n̂ dA (6)

where

a2 � Bf�1 � s��� �1 � ��
�fBf � �bBb
�f � �b

a3 � 1 � �s, and n̂ is a function of location on the sail. This general
result captures arbitrary optical parameters across the sail surface by
including them inside the integrals. Because the force tensors are
defined as integrals of the outer product of the same vector (n̂), they
are symmetrical in all their indices, that is, Jmi���j���k � Jmk���i���j, hence
only 19 parameters are needed to specify the force on a sail of
arbitrary shape.

The differential moment acting on the sail due to a differential sail
element is

dM� % 	 dF� ~% � dF (7)

where % is the position vector of the differential element dA with
respect to a given reference frame on the sail. The operator �~� allows
us to write the cross product as the product of a matrix and a vector,
by arranging the elements of the vector % into a skew-symmetric
matrix:

~%�
0 �%3 %2
%3 0 �%1
�%2 �%1 0

2
4

3
5 (8)

Thus, the differential moment acting on the sail is just

dM� P�r��a2 ~% � n̂ n̂ dA � r̂� r̂ � ��2�s ~% � n̂ n̂ n̂ dA � a3 ~%

� n̂ ��U dA� � r̂� (9)

where ��U is the identity dyad.
The moment integrals can be defined as

K 2 � 1

Alr

Z
A

a2 ~% � n̂ n̂ dA (10)

K 3 � 1

Alr

Z
A

��s��2 ~% � n̂ n̂ n̂� ~% � n̂ ��U� � ~% � n̂ ��U� dA (11)

where lr is an arbitrary reference length. The total moment is just

M � PAlr�K2 � r̂� r̂ �K3 � r̂� (12)

K3 is a rank-3 tensor symmetric in its last two indices, that is,
K3
ijk �K3

ikj, since two n̂ vectors appear inside the integral, requiring

18 coefficients. Thus, only 27 parameters are needed to capture the

moment being generated by an arbitrary sail. Note that this is a more
compact definition than defined previously in [2].

III. Linear Estimation of GSM Tensor Coefficients

To correct inaccuracies in the prelaunch prediction of the sail
model performance, wewish to estimate the GSM tensor coefficients
from navigation or initial data provided from detailed measurements
or simulations. In the following the sail force and moments are
reported in a nondimensional form by dividing the force values by
the solar radiation pressure and total sail area and the moments by an
additional reference length lr [6]. Thus, the force and moment
vectors can be written as

F � PACF (13)

M � PAlrCM (14)

where C is a vector containing the normalized values from actual
navigation data or tested data with the subscripts denoting force or
moment.

In the followingwe assume that the navigation data are reported as
normalized force andmoment vectors. The normalized version of the
GSM equations are

F c � J2 � r̂ � 2r̂ � J3 � r̂ � �J1 � r̂�r̂ (15)

M c �K2 � r̂� r̂ �K3 � r̂ (16)

Force and moment can be obtained from measurements taken
through on-board instruments such as inertial measurement units,
gyroscopes, and with ground tracking. Note that the measured on-
board rotational accelerations must be related, via the moment of
inertia, to the totalmoment acting on the sailcraft.We do not consider
the estimation of the inertia tensor or sailcraft mass in our current
work.

A. Force and Moment in Linear Form

The normalized force and moment are linear in all the coefficients
of the Jm and Km tensors, thus a least-squares estimation can be
easily employed for finding the best values of the tensor coefficients.
But before this step is done, it is necessary to manipulate the
equations and write them in a more useful way as the product of a
matrix and a vector. The matrix contains information on the sail
attitude whereas the vector contains the tensor coefficients that need
to be estimated. Thus, the normalized force can be written as

F c �AF�r̂�J (17)

where thematrixAF�r̂� is a function of the sail attitude alone, and J is
a 19 	 1 vector containing the independent force tensor coefficients.
The force matrix is just

A F � �AF1 AF2 �2AF3

� �
(18)

where

A F1 �
r̂21 r̂1r̂2 r̂1r̂3
r̂1r̂2 r̂22 r̂2r̂3
r̂1r̂3 r̂2r̂3 r̂23

2
4

3
5 (19)

A F2 �
r̂1 r̂2 r̂3 0 0 0
0 r̂1 0 r̂2 r̂3 0
0 0 r̂1 0 r̂2 r̂3

" #
(20)
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A F3 �
r̂21 2r̂1r̂2 r̂22 2r̂2r̂3 2r̂1r̂3 r̂23 0 0 0 0
0 r̂21 2r̂1r̂2 2r̂1r̂3 0 0 r̂22 2r̂2r̂3 r̂23 0
0 0 0 2r̂1r̂2 r̂21 2r̂1r̂3 0 r̂22 2r̂2r̂3 r̂23

2
4

3
5 (21)

and the force coefficient vector is

J �
h
J11 J

1
2 J

1
3 J

2
11 J

2
12 J

2
13 J

2
22 J

2
23 J

2
33 J

3
111 J

3
121 J

3
221 J

3
231 J

3
131 J

3
331 J

3
222 J

3
232 J

3
332 J

3
333

i
T

(22)

Similarly, the moment equation also can be written as the product of a matrix, which contains information on the sail attitude at which the
measurements are taken, and a vector, which includes the information of the moment tensor coefficients:

M c �AMK (23)

where

AM � AM2 AM3

� �
(24)

AM2 �
r̂1 r̂2 r̂3 0 0 0 0 0 0
0 0 0 r̂1 r̂2 r̂3 0 0 0
0 0 0 0 0 0 r̂1 r̂2 r̂3

" #
(25)

AM3 �
r̂21 r̂1r̂2 r̂1r̂3 r̂1r̂2 r̂22 r̂2r̂3 r̂1r̂3 r̂2r̂3 r̂23 0 0 0 0 0 0 0 0 0
0 r̂21 0 0 r̂1r̂2 0 0 r̂1r̂3 0 r̂1r̂2 r̂1r̂3 r̂22 r̂2r̂3 r̂2r̂3 r̂23 0 0 0
0 0 r̂21 0 0 r̂1r̂2 0 0 r̂1r̂3 0 r̂1r̂2 0 r̂22 0 r̂2r̂3 r̂1r̂3 r̂2r̂3 r̂23

2
4

3
5 (26)

and

K

�
h
K2

11 K
2
12 K

2
13 K

2
21 K

2
22 K

2
23 K

2
31 K

2
32 K

2
33 K

3
111 K

3
121 K

3
131 K

3
211 K

3
221 K

3
231 K

3
311 K

3
321 K

3
331 K

3
122 K

3
132 K

3
222 K

3
232 K

3
322 K

3
332 K

3
133 K

3
233 K

3
333

i
T

(27)

Note for a general sail the force requires 19 parameters and themoment requires 27. For sails with symmetries the number of force andmoment
parameters are reduced.

B. Least-Squares Estimation

For estimating the GSM tensor coefficients, a least-squares cost function is employed with the assumption of N measurements taken at
different sun-relative attitudes. A covariance matrix Pcc, associated with the measurements y, is given by

Pcc � E��yj � �yj��yj � �yj�T � (28)

where E� � is the expected value operator. Ideally

Pcc �
�2! 0 0

0 �2! 0

0 0 �2!

2
4

3
5 (29)

which is the covariance matrix for uncorrelated measurements with variance �2!. Note that the yj vectors are either normalized force or moment
measurements, depending on the application.

The least-squares cost function is defined as the square of the error between the measurements and the values due to estimated coefficients.
Hence it is given by

V � 1

2

XN
j�1
�yj �Ajx�TP�1cc �yj �Ajx� (30)

where yj are the normalized vectormeasurements obtained at an attitude corresponding to r̂j,Aj is the correspondingmatrix toAF�r̂j� orAM�r̂j�,
and x is J orK. The solution is found by minimizing the error with respect to the GSM tensor coefficients as outlined in [7].

Define the information matrix as

�xx �
XN
j�1

AT
j P
�1
ccAj (31)

If the information matrix is nonsingular, then a unique estimate can be found. For the force tensor coefficientsAj 2 R3	19, thusAT
jAj has at

best rank 3 for an individual measurement. Hence, at least sevenmeasurements are necessary for a unique solution to be feasible. For themoment
tensor coefficientsAj 2 R3	27, meaning that at least ninemeasurements are needed for a unique solution. Note that r̂jmust span a rich enough set
of values for�xx to be nonsingular. In particular, for themoment equations if r̂i � 0, r̂i � r̂3 for i� 1, 2, or r̂1 � r̂2 over all measurements, we do
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not get a full rank. A trivial example is if the attitude never changes or
only switches between a limited set of attitudes. Thus, to ensure a
robust solution requires that a full set of attitudes be sampled.

The covariance matrix of the estimates is Pxx ���1xx . Then, the
solution of the estimation problem is given by [7]

x � Pxx
XN
j�1

AT
j P
�1
cc yj (32)

Defining the data vector Z as

Z �
XN
j�1

AT
j P
�1
cc yj (33)

the solution of x can be expressed as

x � PxxZ (34)

Note that the predicted normalized force andmoment at an attitude
r̂ can then be written in the form

y �A�r̂�PxxZ (35)

where the matrix A�r̂� is a function of the attitude and y is the
predicted force or moment.

C. Parameter Estimation Uncertainty

Uncertainties in the tensor coefficients translate into force or
moment uncertainties. The mapping from tensor coefficients
uncertainties into normalized vector uncertainties is given by

�y �A�r̂��x (36)

The covariance of the estimates is obtained by

Pyy � E��y�yT � �A�r̂�E��x�xT �AT�r̂� (37)

which is just

Pyy �A�r̂�PxxAT�r̂� (38)

wherePxx is the covariance of the estimatedGSM tensor coefficients,
and equals ��1xx . Pxx allows us to place bounds on the errors of the
force and moment estimation. Thus, the force and moment
covariance at a given attitude are

PFF �AF�r̂�PJJAT
F�r̂� (39)

PMM �AM�r̂�PKKAT
M�r̂� (40)

respectively.
The results obtained from the least-squares estimation are identical

to the results obtained from a best-linear estimation or maximum-
likelihood method for the case of normally distributed observations
[7].

IV. Numerical Linear Estimation

Because of the lack of actual navigation data, we define a sail of
square planform with fixed general surface and compute forces and
moments. The surface of the sail is a sinusoid shape sail with no
symmetries. Its exact geometry and computed tensor coefficients are
given in the Appendix.

A. Force Estimation

The results from the estimation are dependent on how the
sampling of the measurements is performed as is shown in the
following test cases and can be seen from Eqs. (31) and (34) asA is
dependent on the attitude when data are collected. In Figs. 1–4, the
covariance of each force tensor coefficient is shown as well as the
correlation between them. Four cases with 70 measurements each,
but with different measurement sampling attitudes, were used for
estimating the tensor coefficients and to compare their respective
covariance and correlations as shown in Figs. 1–4. Case I has
measurements running along the two diagonals 45 deg from the x and
y body-fixed axes. Case II has measurements taken along the x and y
body-fixed axes. Case III forms a 4-loop curve in the x–y plane,while
Case IV forms a spiral. In practice, the sail would be reoriented to
these different attitudes during a characterization phase and the
accelerations and moments measured using onboard IMUs (inertial
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Fig. 1 Attitude, covariance, and correlation, case I.
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measuring units). The projected sail attitude is a plot of the y
component versus the x component of r̂ on the sail x–y plane. The
correlations of a given tensor coefficient with itself are suppressed
from the plots because by definition they are unity. From these
figures it can be seen that case III has the lowest covariance and
correlation.

Figure 5 shows the force covariance for each of the four cases as
obtained from Eq. (38). Cases I and II have similar force covariance
along all axes. Cases I, II, and IV perform similarly along the x axis.
Along the z-axis case III performs better at high sun-sail angles �.

All the cases have very similar results for the estimated force and
comparable errors, showing that the estimation process converges
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upon the correct values. Figure 6 shows representative results of the
actual normalized force of the sinusoid sail and the estimated
normalized force as well as their respective error.

B. Moment Estimation

The moment covariance and correlation were computed for
measurements as in cases III and IV. Case I has measurements when
r̂1 or r̂2 are zero and case II has measurements when r̂1 � r̂2. Both
situations make AM rank deficient and �MM singular and were not
used in the estimation.

The moment coefficients were estimated and the moment results
for cases III and IVwere comparedwith the actualmoment generated
by the sinusoid sail. The moment coefficients covariance and
correlations for these cases are shown in Figs. 7–10. Case III has a

better performance in the covariance and correlation of its estimated
parameters. Both cases III and IV replicate the sail moment with
comparable errors as shown in the representative in Fig. 11. This
estimation was performed with 70 data measurements.

One last case was carried out by performing a uniform data
sampling across all the sail possible attitudes. The samplingwas done
with 8100 data measurements. The moment covariance shrinks to
zero. The estimation was successful in recovering the moment
generated by the sail with small deviations from the actual values and
slight improvements over the previous two cases.

V. Conclusions

In this paper amethodology for estimating the forces andmoments
acting on a sail of arbitrary shape is presented based on the
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Fig. 4 Attitude, covariance, and correlation, case IV.
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generalized sail model. The estimation is based on a least-squares
algorithm. The accuracy of the estimation was dependent on the sail
attitude relative to the sun when the measurement sampling was
taken. The moment estimation is more sensitive to the data sampling
and the attitudes to be avoided were discussed.

A nonsymmetric sinusoid sail shape was used to simulate force
and moment data. Forces and moments were estimated based on
these data. Four different cases of data samplings were used to
estimate the forces. All four cases recovered the force from the
sinusoid sail with small errors. The moment tensor coefficients were
also estimated using a least-squares algorithm.

The estimation of both the force and moment included the optical
parameters in the definition of the tensor coefficients, which made it
possible to estimate their combination. Because the tensor
coefficients and optical parameters appear as a product there is no
need to estimate them separately.

Appendix: General Sail Shape

In this Appendix we define a general, square, nonsymmetric sail.
This sail geometry is used to generate force and moment data needed
for the estimation of the GSM coefficients. To generate the sail shape

a surface of the form is used:

z� 1 �
�
1� cos

�
�x

l

�
� ax cos

�
fx�x

l

�
� bx sin

�
2�x

l

���
1

� cos

�
�y

l

�
� ay cos

�
fy�y

l

�
� by sin

�
2�y

l

��
(A1)

where l is the length of one side of the sail, a and b are the amplitude
of deformations along the x and y axes, and f is the frequency. a, b,
and f allows one to change the sail shape easily, choosing values of
l� 100 m, ax � ay � 0:2, bx � by � 0, and fx � fy � 5. The sail
shape for the values is shown in Fig. 12. Note that this is an arbitrary,
but generally nonsymmetric shape, used for example purposes only.

This shape can be modified by assigning values to bx and by. The
force andmoment tensor coefficientswere computed for this shape to
be used in numerical experiments.
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Fig. 7 Case III, moment coefficients covariance.
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Fig. 9 Case IV, moment coefficients covariance.
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Fig. 11 Representative moment estimation results.

Fig. 12 Sinusoid sail shape.
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Fig. 10 Case IV, moment coefficients correlation.
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