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Introduction

Preconditioning, in the numerical solution of PDEs,
is the attempt to accelerate convergence to the steady
state by removing sources of stiffness from the nu-
merical procedure. Stiffness is due to different kinds
of error being removed at different rates; it can be
construed as a large spread in the eigenvalues of the
iteration operator. Some kinds of preconditioning are
applied at the level of the discrete algebraic problem;
the one that we are concerned with here comes at an
earlier stage of the analysis, where we select the par-
ticular transient equation that the code will model. In
particular, we may aim for the transient solution to
follow a path that does not mimic the true physical
transients. The simplest example, which was intro-
duced in the 1960s, is ‘local timestepping’. The time
derivative in the PDE is multiplied by a scalar factor
that depends on both the discrete grid and the cur-
rent solution, in such a way that the local value of
the Courant number is kept roughly constant. Differ-
ent parts of the solution are then marched at different
rates, and the local rate of adjustment is made as fast
as possible. This simple idea can save orders of magni-
tude in computing time, and quickly became standard
practice.

However, it is not guaranteed that all aspects of
the solution will converge equally fast. The process
of convergence is twofold. Solution errors are propa-
gated to the boundaries (where they must be expelled
by effective boundary conditions) and they are also
damped out. Propagation to the boundary takes place
at different speeds for different types of error, and can
follow any of the wave paths that are present in the
physics (acoustic, convective, etc.) If these wavespeeds
are very different, there will be error modes that take
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many more iterations than others to reach the bound-
ary. The idea of local preconditioning is to multiply
the time derivative in the PDE, not just by a scalar,
but by a matrix, such that we equalize, as much as
possible, not just the local Courant numbers based on
the fastest waves, but the Courant numbers based on
any type of wave. Ideally, all error components that
propagate as waves should reach the boundary simul-
taneously. This particular form of preconditioning can
be achieved by analysis at the PDE level, and is the
form considered here. Other forms of preconditioning
are important, but those that seek to improve the ways
in which errors are damped usually must deal more di-
rectly with discrete aspects of the computation, such
as the grid aspect ratio and the precise discretization
employed.

Because local preconditioning of a system with m
unknowns involves m? — 1 degrees of freedom (a free
matrix, up to a scaling factor), blind search for an
optimum is confusing and unproductive, but a general
theory has yet to emerge. Successful preconditioners
have evolved along largely empirical lines. A few facts
are known. For example, if the natural system is

u; + Au, + Buy =0, (1)

with A, B symmetric matrices, and the preconditioned
system is

u; + P[Au, + Bu,] =0, (2)

then replacing P with its transpose PT gives the same
set of modified wavespeeds. However, it does not lead
to a method with the same convergence rate, and this
shows that wavespeeds (or, equivalently, domains of
dependence) are not the only significant properties
of a preconditioner. Darmofal! has drawn attention
to the importance of the modified eigenvectors. A
known constraint on P is that it be positive, in or-
der that the modified IBVP be stable under the same
set of boundary conditions as the natural IBVP. A
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well-known byproduct of local preconditioning is that
discretizations errors can be much reduced, especially
for almost incompressible flows.24:6

Here, we develop a systematic procedure that as-
signs a unique preconditioner to any given set of first-
order PDEs in two dimensions. The preconditioner
that is produced is positive and yields a probably
optimal set of wavespeeds. Applied to the Euler equa-
tions it is the preconditioner of Van Leer, Lee and
Roe (VLLR).? The payoff for developing a systematic
procedure should be the possibility of applying local
preconditioning to more complicated systems of equa-
tions, such as those of magnetohydrodynamics, and in
this paper we give the first analysis of such a precon-
ditioner. Actually, for the equations of ideal magneto-
hydrodynamics the preconditioner that is obtained is
rather complicated, and perhaps too complicated to be
useful in practice, and for that reason we restrict our-
selves in this paper to the case of aligned flow, in which
the magnetic field is aligned with the streamlines. This
is enough to show that a very large reduction of stiff-
ness is possible. It is likely that the general case can
be simplified, because, for the Euler equations, pre-
conditioners much simpler than VLLR are known to
be very useful.”8

The idea behind the construction is to decompose
the unknowns into either the Riemann invariants, in
the hyperbolic case, or, in the elliptic case, pairs of
variables satisfying Cauchy-Riemann-like systems. We
may speak of an elliptic-hyperbolic splitting of the
system. In another paper presented at this meeting,
Nishikawa and Van Leer demonstrate that this same
splitting allows effective multigrid strategies to be ap-
plied separately to each component, achieving true
textbook convergence in a very natural way for the
Euler equations.? The next section will describe the
splitting strategy from a perspective that is perhaps
simpler than previous accounts. Then, in Section 3,
we explain our strategy using the Euler equations as
an illustrative example. In Section 4, we apply it to
the MHD equations, and show that the stiffness due
to disparate propagation speeds is greatly reduced.

The present paper gives a relatively informal out-
line of the procedure. A more detailed and rigorous
presentation is being prepared.

Complex characteristic equations
Consider the steady form of (1),(2),

Au; +Bu, =0. (3)

Multiply this from the left by a vector £ that solves
the generalized left eigenvalue problem

which is a characteristic (scalar) equation holding
along the line dy/dx = A. Tt asserts that along that
line

LAdu =¢Bdu/A=0

In the linear case, with A, B constant matrices, we can
also write
d(£Au) = d(£Bu) =0

and the scalar quantity R = £Au = £Bu/ )\ is called
a Riemann invariant, constant along the characteris-
tics. Note that A, B play interchangable roles in the
analysis unless it happens that A = 0.

If the steady problem is purely hyperbolic, with m
variables, there will be m such Riemann invariants.
Collectively they provide an alternative description
of the flow. However, the number of characteristic
equations may be fewer than m. This happens if the
determinant equation

det(B — AA) = 0 (6)

has fewer than m real roots. In that case, some of the
roots will be complex conjugate, and the characteristic
equation (5) will read

(ER + ZEI)A(U;D + ()‘R + i)\])uy) =0 (7)

The real and imaginary parts of this equation form
a pair of equations describing the behaviour of the
real and imaginary parts of the Riemann invariant.
Specifically, if we write the Riemann invariant as R =
Rp + iR, we obtain

(RR)s + Ar(RR)y — Ar(Rr)y = 0 (8)
(Rr)z + Ar(Rr)y + A1(RRr)y = 0 9)

which is easily verified to be an elliptic system. As an
example, in supersonic inviscid flow, the characteristic
equations can be written, in natural coordinates s,n
respectively along and normal to the streamlines, as

[VM> = 1p, + pn] + 7%[%42 — 10, +6,] =0
(10)

where either sign may be taken for the radical. For
subsonic Mach numbers, the square root is imaginary,
and the real and imaginary parts of the characteristic
equation form the elliptic system.

(M? —V)ps + pg°0, = 0 (11)
pg*0s +p, = 0 (12)

It is still true that the Riemann invariants provide

£B—-XA) =0. 4
( )=0 ) an alternative way to describe the flow, but it is no
This gives longer true, even in the linear case, that each flow
variable behaves independently. Some of them are now
£A(u, + Auy) =0, (5) coupled in pairs, but each pair behaves independently
2 oF 10
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of any other variable. The solution space of u can
be partitioned into one-dimensional subspaces corre-
sponding to the hyperbolic parts, and two-dimensional
subspaces corresponding to the elliptic parts. For
linear problems, the subspaces communicate only at
boundaries.

Numerical applications of this idea are various. In
fluctuation-splitting schemes the different components
of the residual can be distributed differently, using
upwind-biased strategies for the hyperbolic compo-
nents and central strategies for the elliptic compo-
nents; this results in improved accuracy, especially
at low speeds. In a multigrid scheme, the different
components of the fine-grid residual can be restricted
onto different coarse grids, using full coarsening for the
elliptic components and semi-coarsening in an appro-
priate direction for the hyperbolic components. In the
present paper, each component of the residual is al-
lowed to evolve independently in time, such that all
components evolve at rates that are as nearly equal
as possible. The preconditioner that results from this
approach is of the form

P= Z arly by (13)
k

with each £ defined as above, and with k£ running
over the set of characteristic equations. The factors
ay, are scalar factors controlling how fast each error
component will propagate. If the {a} are properly
chosen, this preconditioner yields the optimum domain
of dependence for any given set of two-dimensional
first-order equations.

Euler Preconditioning Revisited

We consider only the linear problem, because non-
linear problems will be handled numerically by a local
linearization. We choose variables

u = (p/po, u/ao,v/ao,dp/(poag) — dp/po)’,

which are perturbations of a flow parallel to the z-axis
with density pg and sound speed ag, at a Mach number
M. The governing equations are of the form (1) with

1

M
; (14)
0

Sooo

M
1
0
0

0

0

X (15)

0

coococ oRoo

[evl e B e Bien
S o O

B:ao

The Natural Domain of Influence

The domain of influence of a point disturbance at
the origin is obtained by finding all possible plane

Fig. 1

Wave diagrams for the Euler equations.
Left: Supersonic , Right: Subsonic

wave solutions satisfying u = f(x cos0+y sin 8 —\(0)t)
where A() is found from

det(A cosf + Bsinf — A\(6)I) = 0. (16)

Then the envelope of the wavefronts x cos 8+ sin §—
A(0)t = 0 contains the domain of influence. For the
Euler equations it is well known that this gives, in
the plane (z/t,y/t) a circle of radius M centered at
z/t = 1,y/t = 0 (the Mach cone), together with two
points at z/t = 1,y/t = 0 (the streamline). This can
be obtained in another way by first setting the fluid
speed to zero (M = 0), which gives a circular domain
centered at the origin, and then offsetting the origin
by (—M,0). The point, on the boundary of the do-
main of influence, that lies farthest from the origin
gives the fastest speed with which an error mode may
travel. The point that lies nearest gives the slowest
such speed. The ratio k£ of these extreme distances
gives a kind of condition number. For the Euler equa-
tions this is

_ 1+ M
~ min(M, |M - 1))

3 oF 10
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Characteristic Equations and Reduced Equations

The characteristic equations are, in the steady hy-
perbolic case,

+0du; + Mdus =

duy + Mdus =

dU4 =

0 on dy/dz=1/8 (17)
0 on dy/dr=0, (18)
0 on dy/dz=0 (19)

where 8 = v/ M? — 1. These can be produced from the
original system through multiplication by £; where £
is in the left nullspace of

MM =X 1 0

B A =M 0 0

B - AA = 1 0 MM 0

0 0 0 -\ M
(20)
Thus,

4 = (M,—].,ﬂ,()) on dy/d:c: 1//8 (21)
4 = (Ma_]-a_ﬂao) on dy/d‘x: _1//6 (22)
£3=(0,1,0,0) on dy/dz=0 (23)
£, =1(0,0,0,1) on dy/dz=0 (24)

(For the moment, the magnitudes of these vectors do
not matter)

A less usual way of writing the characteristic equa-
tions is to form a product such as

(€5 €,)(Au, +Bu,) =0 (25)

Because we have multiplied by the matrix £Z£k , rather
than by the vector £, this is now still a system of four
equations, although a highly degenerate one. We will
call it the reduced equation. Defining Aj = tkTEkA
and B, = E{lkB, and taking k = 1 as an example, we
have

MpB2 0 M2B8 0
_ | - 0 -MB 0

Al - /@3 0 Mﬁ2 0 ’ (26)
. 0 0 0 0
[ M3 0 M? 0
_ -3 0 =M 0

Bl - /82 0 Mﬁ 0 . (27)
0O 0 0 O

On examination, we find four multiples (one of them
a zero multiple) of the scalar characteristic equation.
The wavespeeds u(f) supported by

u; + Alllw + Bllly =0 (28)
satisfy

w3 (u—2M 32 cos§ — 2M Bsin6),

The envelope of these waves is the origin (counted
three times) and the single ray

z/t=2MpB>,  y/t=2Mp
meaning that this set of equations propagates one set
of errors along that ray and leaves all other errors un-
touched. The speed with which those errors propagate
is 2/ M23% + M23% = 2M?8.

A general explanation in terms of linear algebra is
that because we have A€y A = £;,B = £,(AA~1)B =
£, A(A"'B), then (£, A) is a left eigenvector of A~1B.
Also, because A, B are symmetric, we have )\kAKZ =
B/}, so that £; is a right eigenvector of A~'B. It
follows that the two sets of vectors {£xA} and {£]}
are orthogonal, and therefore both A, and By, when
multiplying u, or u,, project them into the subspace
spanned by Zz. The equation

uy + Ayu, +Bruy, =0 (29)

only updates the part of the solution lying in that sub-
space. If we replace (29) with

u; + ap[Aru, + Bruy] =0 (30)

we still expel only a single error mode from the domain,
but we move it faster by a factor a;. We can now see
that a preconditioner of the form (13) will move each
error mode independently (because they are orthogo-
nal) and that the propagation rates can be adjusted,
and made equal.

The supersonic preconditioner

Define the potential part of the solution to be the
part carried by the acoustic waves £; » and the convec-
tive part to be the entropy and enthalpy disturbances
carried by the streamwise characteristics £3 4. The po-
tential part of the preconditioner is

2M2?2 —2M 0 O
—2M 2 0 0
Py = £4] +£50; =ay 0 0 28 0
0 0 0 0
(31)
and the advective part is
00 0O
01 00
P, = £30) + L8] =a, 00 0 0 (32)
00 01

With ag = a. = 1, the potential part of the error prop-
agates with speed 2M 20 (see above) and the advective
part with speed M. To make these equal, we need to
take

a_¢_1

e, 203 (33)

4 oF 10
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Fig. 2 Wave diagrams for the preconditioned Eu-
ler equations. Left: Supersonic , Right: Subsonic

If we take a, = 1,04 = 1/(2M3) we arrive at the
preconditioner of Van Leer, Lee and Roe, in the su-
personic case;

M/ -1/B 0 0
Pyrrr = _t/ﬂ 1/(M06) 1 ﬂ/OM 8 (34)
0 0 0 1

The rays along which the errors propagate are now
z/t = B,y/t = 1, (see Fig 2) and the condition num-
ber is now unity. In fact, if any given set of equations
of the form 1 is purely hyperbolic, the condition num-
ber can be made equal to unity, because all of the
propagation speeds can be controlled independently
(of course, in the purely hyperbolic case, we should
not be preconditioning at all, but marching in space!).

The subsonic preconditioner

The potential part of the solution now lies in the
subspace spanned by the real and imaginary parts of
£y 2;

Lr =(M,-1,0,0) £r =(0,0,5%,0) (35)

which evaluates to

2M?  —2M 0 0
—2M 2 0 0

Py = 0 0 2(1—M? 0 (37)
0 0 0 0

This is identical with the supersonic case except for
the (3,3) element, which has changed sign to remain
positive. We can form Ay = P3zA and By = PyB;-

[ —2MpB2 0 0 0
_ 232 0 0 0
Ao = 0 0 2Mp2 0 (38)
0 0 0 0
0 0 2M%2 0
0 0 —-2M 0
By = 26«2 0 0 (39)
0 0 0 0
The wavespeeds supported by the system
uy + ag[Asu, + Byuy] =0 (40)
are now given by
1 (0) = 4aZ M?B2(1 — M? cos” 6) (41)

and they correspond to a domain of influence bounded
by the ellipse

.712 y2

12075 T 12 g T

1 (42)

The fact that the ellipse is centred on the origin, rather
than on the point (M,0) representing the advection
speed, has always seemed very odd from a physical
perspective. It becomes understandable when we real-
ize that this part of the solution has been completely
decoupled from the advected part.

The fastest propagation in this part of the solution is
now perpendicular to the the flow, with speed 2M g,
and the slowest is parallel to the flow, with speed
MpB2. The ratio of these two speeds is 1/8. which
is the condition number for the potential part of the
flow. Because the evolution of the potential part has
been reduced to a 2 x 2 system it is feasible to in-
vestigate whether any further preconditioning would
reduce the condition number. It turns out that this is
not possible, and that in fact for any two-dimensional
problem the elliptic preconditioner is given by (36).
We may exercise the only remaining degree of free-
dom by choosing that the fastest signals in the po-
tential and advective errors are equal; in that case
2ayM By = a.M. By taking ap = 1/(264),a. = 1
we obtain the subsonic version of the VLLR precondi-
tioner;

2
where 32 = 1 — M2. The potential part of the precon- MM//% * 1_/24 / f *1 8 8
ditioner is the =] * *
itioner i n Pyvrrr 0 0 8. 0 (43)
Py = Lply, + £10] (36) 0 0 0 1
5 oF 10
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and the condition number of the Euler equations is
improved in the subsonic case to 1/8,

More generally, if any of the characteristic equations
are complex, there is a 2x 2 subsystem whose condition
number cannot be made equal to unity. The condition
number of the total system cannot be reduced below
that of the most badly conditioned subsystem.

Two-dimensional ideal MHD

The equations governing linearized two-dimensional
magnetohydrodynamics (MHD) are of the form (1)
with variables

(p u v by by dp dp)T
u= » Ty T ) ’ - )
poa% ag ag +/PoAo +/PoGo Poag Po

(44)
and
M 1 0 0 0 0
1 M 0 0 —bsina O
A= 0 0 M 0 bcosa O
10 0 0 M 0 0
0 —bsina bcosa O M 0
0 0 0 0 0 M
(45)
0 0 1 0 0 0
0 0 0 —bsina 0 O
B = 1 0 0 bcosa 0 0
“ | 0 —bsina bcosa 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
(46)
where b = /b2 +b7 and a is the angle made by

the magnetic field vector with the flow direction.
Analysing even this linear system leads to very com-
plex algebra, and we present here only the results for
the special case of aligned flow, where the flow direc-
tion and magnetic field direction are parallel (a = 0).
This simplifies the algebra considerably, but still seems
to include all of the relevent physical regimes.

Domain of influence

We begin by considering a point disturbance in a
stationary fluid; we take M = 0, and with no loss of
generality at this stage, a = 0. The wavespeeds satisfy

p*(O)[1* (8) = (1 +b*)u (8) + b* cos” 6] (47)

The four roots of the quartic factor are magnetoa-
coustic waves. The two nonpropagating roots are
the entropy wave, and a nonphysical wave that would
transport the divergence of the magnetic field if such
a divergence were present in the data. In this two-
dimensional model there are no Alfén waves. They

15 2 25 3
it it

Fig. 3 Wave Diagram.
M =15and b=0.9

Fig. 4 Wave Diagram.
M =0.95 and b =0.9

Fig. 5

Wave Diagram.
M =08 and b=0.9

Fig. 6 Wave Diagram.
M =03 and b=10.9

should not complicate the preconditioning because
they are always hyperbolic.

It is worth making the simple observation that A has
the functional form

A= Vb fn((b+ 1/b),6) (48)

It will turn out that the condition number also has
a simple functional form, and this will allow a more
economical representation of our results.

Finding the envelope of the magnetoacoustic waves
is a tricky piece of algebra, but the result is given
in many MHD texts. The envelope has three parts.
There is an oval whose major axis is vertical, with
speed v1+ b2 and whose minor (horizontal) axis is
max(1,b). This is the envelope of the fast magnetoa-
coustic waves. There are two cuspoid shapes, extend-
ing between b/+/1 + b? and min(1, b) on the horizontal
axis.

If the velocity of the fluid is (u,v) the diagram
should be offset by that vector relative to the origin.
Alternatively, we can keep the diagram fixed, and put
a ‘virtual origin’ at (—u,—v). At this stage we still
have freedom to put v # 0, meaning that we are in
cordinates oriented with the magnetic field, and the
flow is not aligned. To find steady waves, we attempt
to draw tangents to the envelope from the virtual ori-
gin. There are three cases to consider.

1. The virtual origin is outside the oval. Two tan-
gents can be drawn to the oval, and one tangent
to each cuspoid. The magnetoacoustic part of the
flow is completely hyperbolic. (See Figure 3)

6 OF 10

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2002-2956



200

180

160

140

120

100

Condition Number

0 I L )
0 0.5 1 15

Mach Number
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Fig. 8 Original MHD. B, =0.3

2. The virtual origin is inside the oval, but outside
both cuspoids. No tangent can be drawn to the
oval, but one tangent can still be drawn to each
cuspoid. The magnetoacoustic part of the flow is
mixed. (See Figures 4 and 6)

3. The virtual origin is inside one cuspoid. Three
tangents can now be drawn to the cuspoid, an-
other tangent to the other, and the magnetoacous-
tic part of the flow is again completely hyperbolic.
(See Figure 5)

The condition number is the ratio between the largest
and smallest distances from the virtual origin of any
points on the envelope. This is almost impossible to
determine analytically, but can be found numerically.
We have done so for the special case of aligned flow
where the virtual origin is at z/t = —M,y/t = 0. We
need to remember that the actual origin is also a prop-
agation path (for advected disturbances) and include it
with the envelope. The condition number is singular
in four cases, when M = 0,b/v/1+ b%,min(b,1) and
max(b, 1), these being the four conditions for which
the virtual origin crosses the envelope. No new singu-
larities are introduced by having the flow non-aligned,
because if the virtual origin lies off the horizontal axis,

Condition Number
=
8

80
col]
i
201
o ‘ ‘ ‘
0 05 1.0 15
Mach Number
Fig. 9 Original MHD. B, =0.5
200
180
160
140
5
S 120
=}
z
s
§
8 80
col
a0
20
o ‘ ‘ ‘
0 05 1 15
Mach Number
Fig. 10 Original MHD. B, =0.7.
200
180
160
140
g
=}
£ 120
=3
z
& 10
%
=4
8 80
6ol
40
201
o ‘ ‘ ‘
0 05 1 15

Mach Number

Fig. 11 Original MHD. B, = 0.9.

there are no new crossings. In fact, the singularities
introduced by crossing the cuspoids may disappear.
The condition number for aligned flow is plotted, as a
function of M, for various values of B, in Figures 7-11.
As a result of the functional form for A noted earlier,
it can be shown that k¥ depends only on the parame-
ters M/+v/b, (b+ 1/b) , and accordingly we present our
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results only for the cases b < 1.0

g

o2

Fig. 12 Regions of hyp/ell for the magnetoacoustic
waves. E: Elliptic, H: Hyperbolic. Borders are the
lines M =1 and M = b, and the curve M = b/\/l + b2.

Preconditioning the MHD equations

Again, we restrict attention to aligned flow. The
first step is to identify the steady waves, and there are
always at least four. The entropy and divergence waves
propagate with speed M and their left eigenvectors are

5 = (0,0,0,0,0,1)
{p = (07070707 170)

on dy/dx=0 (49)
on dy/dr=0 (50)

The two slow waves propagate with speeds M and
their left eigenvectors are

—b 1
Ls+ = , 1,0, ,0,0] on dy/dx=0
s <\/1+b2 V1+b2 ) v/

-b 1
Ls- = ,—1,0, ,0,0) on dy/dz=0
s (\/1+b2 V1+ b2 ) Z

The steady fast waves, if they exist, have slopes given
by

M2(1 + b2) _ b2

Y= ar—nor -

(51)

Figure 12 shows, in an (M, b) plane, when these waves
exist, so that the flow is purely hyperbolic, and when
they are imaginary, so that the flow is partly elliptic.
If they do exist, the left eigenvectors can be found as

M=1.5

Wave Di-
precondi-

Fig. 13 Wave Di- Fig. 14
agram after precondi- agram after

tioning. M = 1.5 and tioning. M = 0.95 and
b=0.9 b=0.9
’/// 01
s = 0.3
Fig. 15 Wave Di- Fig. 16 Wave Di-

agram after precondi-
tioning. M = 0.8 and
b=09

agram after precondi-
tioning. M = 0.3 and
b=0.9

The fastest propagation speeds in every subsytem will
be equal under the choices

_ 1 M1+ v?)
S Dy (53)
1 VAP =D =)
LR e (e B

The preconditioner in the elliptic regions is given by

P! = (Tlp+L5lp +agiliilsr +ag- L Lg-
+ap(££+ep+ + e;—EF—) (55)
where
M2\/(M?% = 1)(M? — b2
V( )( ) (56)

W - )M+ b2) — 2R
After some algebra, we can write
P =P, +ayPy (57)

where with the notation K = M?2(1 + b?) — b?

2 2 ) )
6 = (o100, 57, 200) e i g wegg
S SMPA4R) 0 B 000
i it i _ 0 0 0 0 0 0
The hyperbolic preconditioner is P, = o S 0 00
h T T T T K K K
PP = fplp+Lplp +as(fg—Ls— — Lgils+) 0 0 0 0 10
+ap(Cpslps + LhLp-) (52) |0 0 0 0 0 1]
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Fig. 17 Preconditioned MHD. B, = 0.1

201

181
161
14
z
£ l2r
(]
o
a4
I
c0 0.‘5 ‘1 1.‘5
Mach Number
Fig. 18 Preconditioned MHD. B, = (.3
and
[ M?2 —-M 0 53%b 0 07
M1 0o -2t o o
234 A?g*b
P2 = 0 8 2 A IB ﬂ9b2 M 0
b3z %0 oy 0 0
0 o0 X g XER o
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with
M2 —1)(M? - b?
W YOO T

(M2 - 1)K

in the hyperbolic case or

_ a2 /O 1) )

(M2~ 1)K/ (59)

az

in the elliptic case *.
The condition number for the preconditioned equa-
tions is easy to find. If A2 > 0 the system is purely

*(M?2 —1)(M? —b?) is always positive in the hyperbolic case;
it can be negative in the elliptic case but then K is also negative,
and therefore a2 is real. See Figure 12.
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Fig. 19 Preconditioned MHD. B; = 0.5
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Fig. 20 Preconditioned MHD. B; =0.7.
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Fig. 21 Preconditioned MHD. B; = (0.9.

hyperbolic and the condition number is unity. Other-
wise the condition number is

k= /max(-)?,—X?) (60)
where —\? can be written, from (51), in the form

M2 1
M2 (p4 1)
_A2 = ?le(b +Mb2) 1 (61)
1+ 5 =% (b+3)

9 oF 10

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2002-2956



This is plotted on Figs 17-21 (Wave diagrams are also
given in Figs 13-16 to be compared with Figs 3-6). The
condition number is considerably reduced everywhere.
There are still singularities, but they are much weaker
(note the considerable difference in vertical scales),
and the singularity at the origin has been eliminated.
This makes it probable that we can obtain fast solu-
tions to flows that are slow compared with both the
acoustic and Alfénic speeds. By analogy with the Eu-
ler equations we may expect that these solutions will
be accurate also. We expect also that preconditioning
the full MHD equations can be done with a matrix as
simple as (57) by an appropriate low-speed approxi-
mation, and the work is currently underway.

A cknowledgement

This work was supported by a grant from the Air
Force Office of Scientific Research.

References

ID. Darmofal, P. Schmid, The Importance of Eigenvectors
for Local Preconditioning of the Euelr Equations, AIAA paper
95-1655, June 1995.

2H. Guillard, C. Voizat, On the behaviour of upwind
schemes in the low Mach number limit, Compters and Fluids,
28, 1999.

3H. Nishikawa, B. van Leer, Optimal Multigrid convergence
by elliptic/hyperbolic splitting AIAA paper 02-2951

4H. Nishikawa, M. Rad, P. L, Roe, A third-order fluctuation-
splitting scheme that preserves potential flow, AIAA paper 01-
2595, 15th CFD Conference, Anaheim, CA, 2001,

5B. van Leer, W-T.Lee, P.L. Roe, Characteristic time-
stepping, or, local preconditioning of the Euler equations, ATAA
paper 91-1552, ATAA 10th Computational Fluid Dynamics Con-
ference, Hawaii, 1991.

6M. Rad, A residual distribution approach to the Euler
equations that preserves potential flow. Ph.D. Thesis, Aerospace
Engineering, University of Michigan, 2001.

"E. Turkel, Preconditioning methods for solving the in-
compressible and low-speed compressible equations, J. Comut.
Phys., 72, 1987.

8J. M. Weiss, W.A. Smith, Preconditioning applied to vari-
able and constant density flows, ATAA J., 33, 1995.

10 oF 10

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2002-2956



