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Discussion
Roderick J. Little*f

The National Children’s Study is a massive and important undertaking, and | appreciate the opportunity to discuss this varied set of
articles on statistical aspects of the study. My own connection with the NCS was as a member of the Federal Advisory Committee
during the formative years, where the basic design of the study was debated. As the only statistician on the committee, | was a
strong supporter of a national probability sample design, rather than the ‘medical center model’, which was the default position
for some proponents of the study. | liked to cite Sir Maurice Kendall, Director of the World Fertility Survey [1], a large study
that conducted national probability sample surveys on human fertility in over 40 developing countries in the 1970s. Sir Maurice
argued that probability sampling was essential because it was the only scientific way to select the sample. The economist Robert
Michael was also a strong advocate of probability sampling on the Federal Advisory Committee of the NCS, and | recommend
his articulate discussion of the issues with Colm O’Muircheartaigh [2].

The question of randomization arises in medical studies both for selection of a sample and for treatment allocation. In clinical
trials the focus is on random treatment allocation, with the sample usually being one of convenience. In the NCS the selection is
random, and the assignment of treatments or causal agents is not. Randomization in treatment allocation is a tool for protecting
internal validity, helping to ensure that estimates of causal effects are valid for the sample at hand. Randomization in selection
is a tool for protecting external validity, meaning that estimates based on the sample can be applied to the target population of
interest. When the goals of a study are primarily descriptive (as with the World Fertility Survey), external validity is paramount.
When the goals of a study are primarily to discover and disentangle causal effects (as with the NCS), internal validity is job
1—good external validity is no help if internal validity is compromised.

Other major practical issues were involved—coverage, what is measured and where, attrition rates—but | saw the central
debate between household probability sampling and medical center models for the NCS as a tussle between how to balance
internal and external validity. Nobody was opposed to the idea of probability sampling; the argument was primarily that it
would unnecessarily divert resources needed to ensure internal validity, by careful measurement of causal factors, outcomes, and
confounders. The latter is particularly important here since the NCS is an observational study, so internal validity is not protected
by randomized assignment of the causal agents.

The key to the interplay between internal and external validity is effect modification, that is, interactions between causal agents
and baseline characteristics. If causal effects are the same for everyone, or the god(s) of fate randomly distribute effect sizes
over the population, then selection of a random sample is unnecessary. In practice, however, effects of causal agents always vary
depending on subject characteristics Z, observed or unobserved. In other words, effect modification is close to universal. Given
this, the average causal effect can be greatly distorted if the distribution of Z differs markedly for the sample and the target
population; random selection limits this difference to sampling error.

This role of randomized selection for valid causal inference is underlined by Ellenberg, who provides a useful concrete example
where the utility of a treatment is distorted by studies directed at a highly selected sample. Let me reiterate Ellenberg’s example
in more abstract language. The treatment (phenobarbital or diazepam) has a potential benefit, the avoidance of future febrile
seizures, and a potential drawback, potential negative effects on cognitive function. Let Y be an outcome that weighs these two
outcomes in some rational way, with higher values for better outcomes. For example, Y =1 if there is no future seizure and no
adverse effect on cognition, Y= 0 if there is a future seizure and adverse effects on cognition, and 0<Y <1 if there are future
seizures with no adverse effect on cognition, or no future seizures with adverse effects on cognition. Following Rubin [3, 4] and
others, define the causal effect of the treatment for an individual as the difference D in Y if that individual was assigned the
treatment and if that individual was assigned the control. The distribution of D depends on a baseline factor Z in the target
population—one such factor is the propensity for future seizures, since if the treatment is effective in preventing seizures, the
expected value of D will tend to be high when the propensity for seizures is high, and low if the propensity is low, other things
being equal. It is clear that the average treatment effect could be positive if the sample is concentrated on individuals with high
propensities for seizure, such as might arise in a sample recruited from medical centers, but negative in the general population,
where the distribution of propensities of seizure is lower. Biased selection of the sample thus distorts the estimated average
treatment effect in the target population, to the extent that even the sign might be wrong.
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One is tempted to view the central role of effect modification in this argument as limiting the priority given to random
sampling, because (a) effect modifiers are a form of interaction, and most of the emphasis in medical research is on main
effects; (b) often studies have very limited power to detect interactions, and they may be omitted from models on grounds of
parsimony—indeed the search for effect modifiers is frowned on as data mining; and (c) interactions with unmeasured variables
are off the radar screen altogether. However, the fact that effect modification is often not well measured does not mean that
it is not important. With some reflection, it is clear that the causal effects studied in the NCS are all subject to modification by
baseline factors, to a greater or lesser degree. Given this, and the fact that the method of sample selection pervades all of the
NCS study aims, the need to aim for a random sample becomes clear (at least to this observer).

As Montaquilla et al. note, most of the analysis of NCS data will be model-based, to deal with confounding factors and
repeated measures. | am a strong believer in randomization for selection, even though | am a Bayesian and think that survey
analysis should be model rather than design-based [5, 6]. Some Bayesians are lukewarm about randomization, because it is not
the source of the inference. The importance of randomization in model-based inference was clarified formally by Rubin [7],
who formulated joint models for the selection of the sample, the allocation of treatments, and outcome measures, and clarified
that randomization ensures that the selection and allocation processes are ignorable. For non-randomized forms of selection or
allocation, the ignorability is an assumption, and often a questionable one at that. Non-ignorable models can be formulated, but
they inevitably involve subjective elements and should be avoided if at all possible.

There was an impressive effort to involve scientists with diverse interests in children’s health to develop hypotheses for the
study; this very democratic approach had the advantage of minimizing serious gaps and creating buy-in for the considerable
expenditures involved. On the other hand, the scientists involved all had an interest in advancing their research priorities, and it
is easier to say ‘yes’ than ‘no’ to any particular topic. As a result, the NCS is extremely inclusive and broad, and faced with serious
issues with respondent burden. My own sense was that the planning process might have spent more time on what needs to be
measured, rather than on specific hypotheses, since the latter presumably evolve over time and are subject to the make-up of
the individuals in the study groups and the ‘hot topics’ of the day.

| now make some brief comments on the other articles in this set. The Montagqilla et al. article provides a clear description of
the sample design, and issues involved, particularly the formidable challenge of recruiting women prior to delivery. The general
parameters of the multi-stage cluster design seem appropriate, and a lot of thought has gone into the devilish details. The
decision to adopt an equal probability design deserves some comment. Broadly speaking | agree that equal probability makes
sense in a broad study like this with multiple objectives, since oversampling for one question leads to inefficiencies for others.
The avoidance of sampling weights is a useful simplification, although weights still arise in the context of adjustments for unit
nonresponse or post-stratification. My one reservation about the clustered equal-probability design is whether it might miss some
areas with high levels of environmental pollutants, which we might like to have in the sample. Thus, reserving some modest
fraction of the sample for ‘interesting’ areas seems worth serious consideration; defining ‘interesting’ is an ‘interesting’ problem.

One minor comment is that | disagree with their statement that ‘sampling weights are not used in model-based analysis’. My
own view is that sampling weights are important for robust modeling, although more as covariates than for weighting the data.
For more discussion of the role of weights in model-based survey inference, see [5].

The work reported by Strauss et al. on designed missing data strategies is most welcome, given the wide range of information
being collected and high associated respondent burden. One way to reduce burden would be conceive of a rather limited
core set of measurements for the entire sample, and then include modules that are applied to smaller subsamples, yielding a
matrix sampling design [8]. Such a design is used to reduce burden in the National Assessment of Educational Progress [9].
Another example of a study employing a designed missing data strategy, more similar to that discussed by Strauss et al., is the
Aging, Demographics, and Memory Study [10], a supplement to the Health and Retirement Study (HRS) that conducts in-person
clinical assessments for dementia on selected HRS respondents in order to gather information on their cognitive status. A simple
questionnaire measure of cognitive impairment is included in another component of the HRS, the Study of Assets and Health
Dynamics Among the Oldest Old [11]. The result is a brief measure of cognitive impairment for the full sample, and a detailed
assessment of cognitive assessment for a subsample. The detailed measure can be predicted for the cases not in the subsample,
with gains in efficiency. Multiple imputation [8, 12] provides a convenient methodology for analyzing the data. These ideas clearly
have applications to the NCS, as the authors’ simulations demonstrate. | look forward to further refinement of these methods as
the NCS develops.
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