Letters to the Editor Related to New Topics

Catatonia during Deep Brain Stimulator Implantation Complicated by Intracranial Hemorrhage

Catatonia is a syndrome of motor dysregulation characterized by fluctuating stupor, mutism, negativism, catalepsy, automatic obedience, and stereotypy. Other motor signs include gegenhalten, mitgehen, waxy flexibility, echophenomena, and ambitendency. The diagnosis requires two to four features.

The pathophysiology of catatonia remains unclear but may involve dysfunction of frontotemporal and motor regulatory brain areas. Catatonia is most closely associated with mood disorders but also results from medications (e.g., dopamine blockers and serotonergic agents), metabolic derangement, seizures, or focal structural brain lesions. We present a patient with Parkinson’s disease (PD) who developed catatonia during deep brain stimulation (DBS) surgery complicated by intracranial hemorrhage.

The patient was a 60-year-old right-handed woman with levodopa-responsive PD for 12 years. Prior to surgery, she was taking levodopa 800 mg, entacapone 800 mg, and ropinrole 8 mg daily but experienced debilitating motor fluctuations, abrupt “off” periods, and dyskinesias, despite adjustments to her medication regimen. She had a history of nonmelancholic depression treated with citalopram 20 mg daily. During presurgical evaluation, she had no dementia on neuropsychological testing or evidence of an active mood disorder. Off-on Unified Parkinson’s Disease Rating Scale (UPDRS) testing demonstrated at least a 32% improvement to her standard morning levodopa dose. She was deemed an appropriate DBS candidate and underwent surgical placement of DBS electrodes into each subthalamalic nucleus using microelectrode recordings. The surgery was conducted in the off medication state, over 12 hours after her last dose of PD medication. Mild hypertension during the procedure was controlled with low doses of metoprolol.

Before DBS electrode placement, the patient spoke only when asked questions or to complain of intermittent left arm pain. During right electrode placement, she gradually developed dystonic flexion posturing of the left arm and intermittent flexion of the right arm and left leg. When asked questions or given commands, she was mute. She had gegenhalten in both arms and eyelids upon passive manipulation. She had no motor weakness. Other catatonic features included a protruding grimace (schnauzkrampf), bilateral grasp reflexes, and mitgehen in the right arm.

Differential considerations included a worsening of her parkinsonian “off” state versus catatonia. Lorazepam 2 mg was given intravenously. Her Bush-Francis catatonia rating scale score was 24 prior to the injection and decreased to 10 after 4 min. Rigidity decreased and her grimace and mitgehen disappeared. She spoke a few words softly and followed simple commands. These symptoms remained unchanged as the left DBS electrode was placed.

Postoperative noncontrast head CT (see Fig. 1) revealed an acute intraparenchymal hematoma in the right frontal lobe measuring 7.0 cm by 2.8 cm. There was a small amount of associated extra-axial blood. There was mild adjacent mass effect with effacement of the cerebral sulci and frontal horn of the right lateral ventricle with subfalcine herniation and associated mild midline shift to the left.

She was transferred to neurosurgical intensive care where her Bush-Francis score 4 hours after surgery was 28. Her features of stupor, rigidity, negativism, grimacing, and mitgehen had returned. She was managed supportively for 10 days without change in her examination. A trial of high dose lorazepam or electroconvulsive therapy (ECT) was not pursued. She was then transferred to a subacute care facility closer to home where her subsequent course is unknown.

We know of no other cases of catatonia associated with DBS surgery or treatment. In the intraoperative setting, the main differential consideration was whether her exam represented a worsening of her parkinsonian “off” state. Her rigidity and paucity of spontaneous movements were consistent with this diagnosis. However, the mutism, negativism, gegenhalten, and grimacing were inconsistent with previous “off” examinations. The positive lorazepam challenge supported the diagnosis of catatonia.

We cannot infer a specific mechanism for the development of catatonia in our patient. Although the frontal lobe hemorrhage is an obvious etiologic candidate, there may have been contributions from multiple factors, including the direct surgical manipulations of basal ganglia regions and the patient’s demographic predisposition to catatonia. Despite her history of PD and mood disorder, she had never been catatonic prior to surgery.

FIG. 1. Postoperative three dimensionally reconstructed image (left) and noncontrast head CT (right). [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Potential conflict of interest: Nothing to report.

Published online 10 March 2010 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/mds.23041
to DBS surgery. There are a number of reports of catatonia secondary to infarct or hemorrhage. Gelenberg reported a case of catatonia following bilateral surgical lesions of the globus pallidus to relieve symptoms of PD.5 Catatonia has also been reported following surgical removal of lesions near the pallidum, hypothalamus, and cerebellum.7 As the field of DBS grows to include treating mood disorders—the leading cause of catatonia—the teams caring for patients should be familiar with this increasingly recognized syndrome and consider including formal assessments for catatonia part of routine care.

M. Justin Coffey, MD*
Department of Psychiatry
University of Michigan,
Ann Arbor, Michigan, USA
*E-mail: mjcoffey@med.umich.edu

Kelvin L. Chou, MD
Department of Neurology
University of Michigan
Ann Arbor, Michigan, USA

Parag G. Patil, MD, PhD
Department of Neurosurgery
University of Michigan
Ann Arbor, Michigan, USA

References

Sleep Apnea Associated With Floppy Epiglottis in Adult-Onset Alexander Disease: A Case report

Alexander disease is a rare leukoencephalopathy, caused by dominant mutations in the gene encoding glial fibrillary acidic protein (GFAP). A recent study reported that patients with adult-onset Alexander disease might develop sleep-disordered breathing (SDB), a condition characterized by repeated episodes of apnea and hypopnea during sleep. Although the mechanism of airway obstruction in this disease has not been clarified. Here we report a patient with adult-onset Alexander disease presenting with SDB associated with floppy epiglottis.

A 40-year-old man with a 10 year history of slowly progressive ataxic gait was admitted to our hospital because of nocturnal inspiratory stridor. He was diagnosed having adult-onset Alexander disease on the basis of DNA analysis of the GFAP gene, which revealed a heterozygous substitution of T for C at nucleotide 302, leading to conversion of Leu 101 to Pro, as reported previously. Examination on admission revealed that his height, weight, and body mass index were 169.5 cm, 69.5 kg, and 24.2, respectively. Neurological examination revealed truncal and limb ataxia, dysphagia, dysarthria, spastic weakness, palatal myoclonus, urinary incontinence, and mild cognitive impairment. His only medication was urapidil (30 mg daily) for his neurogenic bladder.

The patient also presented with inspiratory stridor during sleep. His Epworth sleepiness score (ESS) was nine (<10: normal). Polysomnography, performed according to the recommendations of the American Academy of Sleep Medicine (AASM) Task Force in 1999,4 revealed severe SDB (apnea index, 67.0/h; apnea–hypopnea index, 67.1/h; maximal apnea duration, 67 s; and arousal index, 34.3/h). Of the 479 apneic episodes, 53.0% were obstructive, 37.8% were mixed, and 9.2% were central. Although the saturation during the awake status was 96 to 97%, oxygen desaturation was severe (%sleep time with SpO2 below 90%, 58.6%; mean oxygen saturation, 89.0%; and minimal oxygen saturation, 75%). His desaturation was observed regardless of the sleep stage, although oxygen saturation was comparatively lower during non-REM stages (SpO2 = 85%) than during REM stage (SpO2 = 89%). Frequency of rapid eye movement (REM) sleep were normal (%stage REM = 21%), and latency of REM sleep were slightly short for his age (REM latency = 66 minutes).

Fiberoptic laryngoscopy during wakefulness revealed no apparent sites of upper airway obstruction, but under propofol-induced anesthesia it revealed that the epiglottis was sucked into the glottis during inspiration (Fig. 1). To determine whether continuous positive airway pressure (CPAP) treatment can improve SDB associated with floppy epiglottis, we examined the effect of the treatment on airway obstruction and oxygen saturation. We found that positive pressure >6 cm H2O exacerbated upper airway obstruction by further promoting the downward displacement of the epiglottis into the laryngeal inlet. In addition, CPAP treatment >10 cm H2O worsened oxygen desaturation from 94 to 86%. We decided to abandon treatment using CPAP or noninvasive positive pressure ventilation (NPPV), because there was a possibility that positive pressure ventilation might cause worsening of upper airway obstruction. Instead, we proposed treating the patient’s SDB with tracheostomy; however, he did not choose tracheostomy but wanted to continue rehabilitation for his dysphagia.

In this report, we present several novel findings in the patient with SDB and adult-onset Alexander disease. First, patients with this disease can develop inspiratory stridor and obstructive sleep apnea associated with floppy epiglottis. Floppy epiglottis is a condition in which the epiglottis is sucked into the glottis during inspiration and is a common cause of laryngeal stridor in infants, which is caused

Potential conflict of interest: Nothing to report.

Published online 29 March 2010 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/mds.23042

Movement Disorders, Vol. 25, No. 8, 2010
by a congenital abnormality in laryngeal cartilage. Although floppy epiglottis of adult onset is a very rare condition, it has been reported in patients after a head injury or a cerebrovascular accident. We recently reported that patients with multiple system atrophy develop floppy epiglottis, which causes inspiratory nocturnal stridor and obstructive sleep apnea. Because it has been speculated that floppy epiglottis is caused by the loss of laryngeal motor tone associated with the degeneration of the nucleus ambiguus, floppy epiglottis in the present patient might be related to brainstem lesions associated with Alexander disease.

Second, this study reported that patients with adult-onset Alexander disease can develop sleep apnea of central origin, though central apnea was not frequent (9.2%). Future studies should be performed to investigate whether adult-onset Alexander disease can develop central apnea, because patients with this disease have prominent atrophy of the lower brainstem, where the respiratory center is located. When patients with adult-onset Alexander disease develop SDB, it is important to determine the mechanism of sleep apnea.

Finally, we show that CPAP treatment can exacerbate floppy epiglottis-associated SDB. In addition, a recent study showed that CPAP treatment exacerbated the airway patency of congenital floppy epiglottis. It is important to note that CPAP treatment can exacerbate SDB in patients with floppy epiglottis.

Acknowledgments: This study was supported in part by a grant from the Research Committee for Ataxic isease, the Ministry of Health, Labor and Welfare, Japan.

Financial Disclosures: The authors report no financial disclosure.

Author Roles: Conception and design; Shimohata T, Nishizawa M. Data acquisition or analysis; Ishikawa M, Ishihara T, Nakayama H, Tomita M. Drafting; Ishikawa M, Shimohata T. Editing; Shimohata T. Revising; Nishizawa M.

Masanori Ishikawa, MD
Takayoshi Shimohata, MD
Tomohiko Ishihara, MD
Department of Neurology
Brain Research Institute
Niigata University
Niigata, Japan

Hideaki Nakayama, MD
Division of Respiratory Medicine
Niigata University Graduate School of Medical and Dental Sciences
Niigata, Japan

Masahiko Tomita, MD
Department of Otolaryngology
Niigata University Graduate School of Medical and Dental Sciences
Niigata, Japan

Masatoyo Nishizawa, MD*
Department of Neurology
Brain Research Institute
Niigata University
Niigata, Japan

*E-mail: nishi@bri.niigata-u.ac.jp

References
Propriospinal Myoclonus Due to Cord Compression in the Absence of Myelopathy

A 43-year-old woman presented with a 3 year history of involuntary rapid flexion of the trunk and proximal legs, inconsistently preceded by a sensation of tightness in the posterior thigh muscles. These myoclonic jerks could only be suppressed for a few seconds and they could be triggered by sensory stimulation (such as rubbing her back). The movements were exacerbated by prolonged standing and by flexion or rotation of her neck. She worked in a bakery, where negative myoclonus (asterixis) of the legs would cause her to stumble while carrying trays of baked goods. For one year before the onset of myoclonus, she had been experiencing a burning discomfort in both thighs after prolonged sitting. These symptoms were ameliorated by ropinirole 2 mg QHS, but this was discontinued as the myoclonus became the predominant source of disability. Myoclonus did not improve with valproic acid, clonazepam, or levetiracetam despite slow titration to doses sufficient to cause side effects. There was initial exacerbation of the myoclonus for the first 2 weeks. The myoclonus gradually improved over the ensuing 2 months, and virtually resolved once the cervical collar was removed (see Video Segment 2). Less than once per day, a single jerk does still occur. The patient experienced benefit for persistent restless legs symptoms after having resumed ropinirole.

DISCUSSION

Propriospinal myoclonus involves a shock-like flexion of the trunk or proximal extremities due to caudal and rostral conduction along propriospinal pathways from a spinal cord generator site. The movements can be triggered by external stimulation, such as tapping of biceps or patellar tendons, but not by startle. Various premonitory sensations were reported by 6 of 10 subjects in a recent case series of propriospinal myoclonus.

Electromyography can be useful to support a diagnosis of propriospinal myoclonus and might have been helpful in our case. We were able to exclude psychogenic myoclonus or myoclonic tics by demonstrating the absence of event-related cortical potentials during EEG. A spinal cord origin was implicated by the asymmetric reflexes and MRI findings.

Resolution of spinal segmental myoclonus or propriospinal myoclonus after surgery for associated radiculopathy has been previously reported. We suggest that radiculopathy or, as in our patient, compression or vascular embarrassment of motor tracts in the spinal cord, can lead to myoclonus by disrupting afferent signals originating distal to propriospinal pathways. Disruption of this afferent information would be expected to disrupt inhibitory motor loops. Our case demonstrates that propriospinal myoclonus can be caused by compressive spinal cord lesions even in the absence of other signs of myelopathy and can be relieved by decompressive surgery.

LEDGES TO THE VIDEO

Segment 1. Patient had stimulus-sensitive axial and appendicular myoclonus while seated, and asterixis of proximal lower extremities with weight bearing.

Financial Disclosures: Dr. Shprecher has received salary support from Ruth Kirchenstein educational grant by the National Institutes of Health, and he also received honoraria from Teva Pharmaceuticals. Dr. Kurlan received research support from Boehringer Ingelheim.

Author Roles: Shprecher was involved in Conception, Organization, Execution of Research project; Acquisition, Orga-
nization, Review and Interpretation of Data; and Writing of the first draft of Manuscript. Silberstein was involved in Acquisition, Organization, Review and Interpretation of Data. Kurlan was involved in Review and Interpretation of Data, Review and Critique of Manuscript.

David Shprecher, DO*
Department of Neurology
University of Rochester
Rochester, New York, USA
*E-mail: David.Shprecher@hsc.utah.edu

Howard Silberstein, MD
Department of Neurosurgery
University of Rochester
Rochester, New York, USA

Roger Kurlan, MD
Department of Neurology
University of Rochester
Rochester, New York, USA

References

Chorea in Adults Following Pulmonary Endarterectomy

Pulmonary endarterectomy (PEA) is performed in patients with chronic thromboembolic pulmonary hypertension with surgically accessible thrombi. In our hospital, 5 patients developed chorea in the post operative phase. We have previously reported on the occurrence of chorea following PEA with deep hypothermia and circulatory arrest in a smaller patient population. The aim of this article is to present the patient’s videos and to discuss the probable pathogenesis of chorea in adults.

Five out of 106 consecutive adult patients who underwent PEA in our hospital developed chorea. Nine patients died during or shortly after surgery without having regained consciousness and were excluded from the analysis. PEA was performed as previously reported.

The records of all patients were assessed for surgical characteristics. The data of patients with chorea (n = 5; 3 women; age 45.5 ± SD 12.3 years) were compared with the data of patients without chorea (n = 92; 57 women; 54.7 ± 13.9 years) using Mann-Whitney U test.

In chorea patients, the total circulation arrest time was longer (63 minutes ± 9 vs. 44 minutes ± 17; P < 0.01), and they were rewarmed quicker (0.18°C/minutes ± 0.03 vs. 0.14°C/minutes ± 0.02; P < 0.0001; see Fig. 1) as compared to nonchorea patients. Mean bypass time was longer in chorea patients as compared to nonchorea patients (137 minutes

FIG. 1. C-Spine MRI shows C5 to 6 posterior disc bulge with minimal narrowing of the spinal canal.
626 vs. 110 minutes; \(P < 0.05 \). Moreover, the chorea patients were offered higher absolute temperatures (37.8°C ± 0.5 vs. 36.9°C ± 0.7; \(P = 0.002 \)) during rewarming. There was no difference between patients who developed chorea and those without chorea regarding age, gender, total time on pump, speed of cooling, highest temperature reached, and reperfusion time. All chorea patients underwent formal neuropsychological testing and when possible MRI of the brain (Table 1). The choreatic movements started 3 to 7 days after surgery and gradually faded.

Chorea is well known in children\(^4,5\) and seems to be associated with prolonged time on pump, duration of circulatory arrest time, deep hypothermia, and hypoxia.\(^6,8\) The course of chorea in children appears similar to what we have observed; chorea starting 3 to 7 days postoperatively, gradually fading, and disappearing in the following weeks to months.\(^9,11\)

Deep hypothermic circulatory arrest impairs the recovery of both cerebral blood flow (CBF) and cerebral metabolism proportional to the duration of the arrest.\(^12,14\) In an animal model, however, rapid rewarming after hypothermia during cardiopulmonary bypass surgery causes an increase in the cerebral metabolic rate for oxygen that is temporarily unmatched by CBF.\(^15\) The slower recovery of CBF—as compared to metabolism—may be explained by the following phenomena: cerebral micro vessels have an initial contractile response to acute increase in temperature;\(^16\) hypothermic cerebral micro vessels are less responsive to vasodilatory stimuli; and the production of brain vasodilatory substances is determined by brain temperature rather than cerebral metabolism.\(^18\) We hypothesize that the chorea in our patients might be a sequela of brain lesions caused by a mismatch between CBF and brain metabolism induced by faster rewarming. In addition, the longer circulation arrests might have aggravated slower recovery of CBF.

Diffusion weighted imaging in patient D showed bilateral lesions of the globus pallidus. In children with postpump chorea, neuropathological abnormalities involving the external globus pallidus and the pallidosubthalamic pathway have been reported.\(^19,20\) The globus pallidus and striatum are susceptible for hypoxemia, probably due to differential cellular responses to deprivation of energy substrates and sustained activation of glutamate receptors.\(^21\)

In conclusion, chorea in adults following deep hypothermia with cardiac arrest appears to be related to lengthy circulation arrest and faster rewarming. Although initially the chorea may be incapacitating, the course is rather benign. Clinicians should avoid quick rewarming following hypothermia and if possible shorten the circulation arrest period.
TABLE 1. Results of neuropsychological testing and brain imaging of the patients with chorea

<table>
<thead>
<tr>
<th>Neuropsychological testing</th>
<th>Brain imaging</th>
<th>Choreatic Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Day 12; Disinhibition and mild slowness in retrieval of verbal information, no attention deficit</td>
<td>Day 6; MRI showing no abnormalities</td>
<td>She felt as if intoxicated 2 days after PEA and chorea slowly developed. 3 days after PEA she developed generalized chorea with severe dystonia and oculogyric crises (video), hardly noticeable at rest. She could not perform tasks and had difficulty with speaking. The involuntary movements gradually disappeared 4 weeks later. Seven years after PEA, she has no complaints.</td>
</tr>
<tr>
<td>B Day 11; Short-term memory impairment, impaired allocation of attention, instability of emotion, and mood disturbances</td>
<td>Day 11; MRI difficult to interpret due to movement artifacts, but no gross abnormalities</td>
<td>She had severe incapacitating generalized chorea with dystonia and oculogyric crises 24 hours after PEA, which was almost absent at rest (video). She could not sit without help. The involuntary movements gradually diminished over the following two months. Six years later she continues to have minor choreatic movements when tired or stressed. She experiences no limitations.</td>
</tr>
<tr>
<td>C Day 3; she scored 22 out of 30 on the Mini Mental State Exam, missing 4 points on serial subtraction of 7. No formal neuropsychological examination performed.</td>
<td>Not performed</td>
<td>She displayed dysarthria, ataxia, and mild generalized chorea 3 days after PEA. Next day, the ataxia and chorea were gone. Dysarthria and emotional instability gradually improved over the following days. One week later, she had no neurological symptoms and signs. Seven years later she has no complaints.</td>
</tr>
<tr>
<td>D Day 6; Mental slowness, mild word finding difficulties, and disinhibition</td>
<td>Day 8 and day 12; MRI showed bilateral hyperintense lesions of the globus pallidus on diffusion weighted imaging Day 15: IBZM-SPECT scan showed decreased postsynaptic D2-receptor binding</td>
<td>He displayed chorea, dystonia, and oculogyric crises 2 days after PEA. The severe involuntary movements were treated with 5mg haloperidol 3dd1, resulting in gradual fading of the involuntary movements 1 week later. He showed mild generalized chorea till his death three years later, due to a colon carcinoma.</td>
</tr>
<tr>
<td>E Day 7; Disinhibition and a dysexecutive syndrome with encoding deficit, divided attention impairment and planning problems.</td>
<td>Day 14; MRI multiple small hyperintense white matter lesions on Flair</td>
<td>He gradually developed chorea 3 days after PEA, which subsided 10 days later. He claimed a lot of attention and was vocally-disinhibited. In 3 weeks time, the behavioural side effects gradually disappeared. He did not display any eye movement abnormalities. 2 years later he has no complaints.</td>
</tr>
</tbody>
</table>

LEGENDS TO THE VIDEO

Transient Chorea Following PEA

Segment 1. The first segment shows patient A 5 days and 15 days after surgery. Five days after surgery, she has a delayed initiation of voluntary actions. When asked a question, there is a delay in answering. When asked to look in a particular direction, there is delayed saccade initiation, and she breaks fixation by blinking (oculomotor apraxia). At the same time, she has chorea-ballism, dystonia, and motor impersistence. In the video, she is asked to take a hand, but she is unable to initiate the movement. She confirms this when asked about it. There is no weakness. Fifteen days after surgery, the chorea has disappeared, though she still seems fidgety.

Segment 2. The second segment shows patient B 4 days, 7 days, 14 days, and 2 months after surgery. Four days after surgery, she has a delayed initiation of voluntary actions. When asked to lift her arms she is unable to initiate the maneuvers. The patient has chorea-ballism, dystonia, and motor impersistence. The video-parts regarding day 7, day 14, and 2 months after surgery show the gradual decline of the chorea.

Author Roles: Surie was involved in conception, organization, and execution of the research project; design and execution of statistical analysis; writing of the first draft of the manuscript. Tijssen was involved in conception of the research project; review and critique of statistical analysis; review and critique of the manuscript. Biervliet was involved in execution of research project; review and critique of statistical analysis; review and critique of the manuscript. De Beaumont was involved in execution of research project; review and critique of statistical analysis; review and critique of the manuscript. Kloek was involved in execution of research project; review and critique of statistical analysis; review and critique of the manuscript. Rutten was involved in execution of research project; review and critique of statistical analysis; review and critique of the manuscript. Bresser was involved in conception and organization of research project; review and critique of statistical analysis; review and critique of the manuscript. De Bie was involved in conception and organization of research project; design, review and critique of statistical analysis; writing of the first draft, review and critique of the manuscript.

Sulaiman Surie, MD
Department of Pulmonology
Academic Medical Center, University of Amsterdam
Amsterdam, The Netherlands
References

as the initial or principal symptom, whereas two of them (6.7%) developed cerebellar signs in late stages of the disease. This is similar to the frequency in other series. As in the majority of autopsy series of PSP,2,3 the cerebellar dentate nucleus showed considerable involvement, which was more severe in RS than in PSP-P cases,3,6,7 whereas in six cases (20%) it was spared. Tau deposits in Purkinje cells were seen in only the two brains from RS cases that had developed late cerebellar signs. As in most Western clinico-pathologic PSP series, no case of “unclassified PSP” with cerebellar involvement was observed in our series, which may, at least in part, be related to ethnic and genetic reasons.

Kurt Jellinger, MD*
Institute of Clinical Neurobiology
Vienna, Austria
*E-mail: kurt.jellinger@univie.ac.at

References

Shoulder Pain in Parkinson’s Disease:
A Case-Control Study

Although pain symptoms related to Parkinson’s disease (PD) are described in the literature, an increased risk of shoulder pain in PD compared with a control population has not been established. This study was designed to better define the association between PD and shoulder pain controlling for potential confounders. We hypothesized that shoulder pain is more prevalent in PD patients compared with controls.

A cross-sectional and retrospective study was conducted with PD subjects and normal controls. Subjects were diagnosed with idiopathic PD on the basis of Gelb criteria and the Hoehn and Yahr scale was determined by a movement disorder specialist.1,5 We recruited consecutive patients being seen for routine care in our Movement Disorder clinic, and spouses served as controls. Subjects were asked whether they had shoulder pain, to characterize shoulder pain, if present, and to answer questions related to PD onset, symptoms, medication use, and history of prior injury. Subjects also completed a visual analog scale to assess the severity of pain. Descriptive statistics were used for demographic information. The data was analyzed using multivariate logistic regression, with pain as the outcome variable; and age, gender, Hoehn and Yahr, and history of previous injury as model covariates with statistical significance at $P = 0.05$. The institutional review board approved this study and all subjects signed informed consent.

A total of 25 PD patients and 25 controls were recruited. The average age (mean ± standard deviation) of the cases was 65.3 ± 12.3 and of controls was 64.6 ± 11.9. Forty-eight percent of cases were male and 56% of controls were male. Average Hoehn and Yahr stage of cases was 2.2 (standard deviation of ±0.61). In the PD group, 80% of subjects had pain compared with 40% in the control group. Most of the PD patients described the shoulder pain as dull and aching, with 80% of them experiencing pain in both shoulders, compared with 20% in controls. The pain rating scale in the PD cases ranged from 4/10 to 10/10, when the pain was at its worst. The multivariate regression (Table 1) showed that PD patients have six times the odds of having shoulder pain compared with those without PD. When adjusted for age, gender, and prior injury, PD patients have 21 times the odds of having shoulder pain compared with those without PD. There were no PD cases reporting prior shoulder injury whereas this confounder occurred in many of the controls. There was no association between Hoehn and Yahr stage and presence of pain. In the PD group, 40% reported that PD treatment improved the shoulder pain, 40% reported it was not effective, and 20% were uncertain. The PD treatments reported to help were dopaminergic medications, including carbidopa/levodopa, pramipexole, ropinirole; and deep brain stimulation surgery.

There are several potential explanations for the strong association between shoulder pain and PD. Prior injury has been hypothesized to be related to shoulder pain in PD, but, none of our PD subjects reported previous shoulder injury compared with 70% of the controls. Muscle cramps and tightness occurs in most PD patients5 and the increase in shoulder pain may be related to the rigidity seen in PD. However, in this study the majority of PD subjects suffered from bilateral shoulder pain, despite asymmetry of rigidity on exam. Finally, controls may not have been representative of the general population.

Studies have shown that 30–40% of PD patients complain of pain,3,5 which is consistent with our results. A recent study found that PD patients have a lower heat pain threshold compared with controls, with the authors hypothesizing that basal ganglia abnormalities may alter pain coding.6 Additionally, PET scans have shown that striatal D2 receptors are involved in central pain pathways and that a decrease in D2 receptors results in an increase in pain perception.7 These studies may suggest that pain in PD is related to the underlying pathophysiology of PD rather than motor signs. We did
not specifically examine whether shoulder pain preceded the original diagnosis of PD and whether shoulder immobility may be a very early potential sign of incipient PD. With the search for preclinical features for neuroprotection and the interest in the overlap between motor and nonmotor features of PD, a detailed study to better define this association in regards to shoulder pain may lead to practical application of these results.

Financial Disclosure: D.H. receives funding from NS052487, AG02040, the Anthony Krause Foundation, and the National Fragile X Foundation. M.M. has no financial disclosures.

Acknowledgments: American Academy of Neurology summer student research scholarship (M.B.G.), NS 052487 (D.A.H.).

TABLE 1. Analysis of shoulder pain adjusted for age, gender, and previous injury

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cases % (n)</th>
<th>Control % (n)</th>
<th>OR</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoulder pain</td>
<td>80 (20)</td>
<td>40 (10)</td>
<td>6.00</td>
<td>1.69–21.6</td>
<td>0.006</td>
</tr>
<tr>
<td>Adjusted for age and gender</td>
<td>60 (15)</td>
<td>20 (5)</td>
<td>6.00</td>
<td>1.69–21.3</td>
<td>0.006</td>
</tr>
<tr>
<td>Adjusted for previous injury</td>
<td>0 (0)</td>
<td>70 (19)</td>
<td>2.63</td>
<td>4.25–110</td>
<td>0.0002</td>
</tr>
</tbody>
</table>

OR, odds ratio.

Is It a Tic?—Twenty Seconds to Make a Diagnosis

Tics are often classified as a movement disorder. However, their movement kinematics are indistinguishable from normal movements.1 Also, tics are sometimes preceded by premotor potentials typically present before self-paced voluntary movements2 albeit this is not always the case.3 Thus, rather than abnormal movements, tics may be better defined as fluctuating “prewired bits of behavior” misplaced in both context and time.4 This implies that it may be difficult to identify a tic in isolation but easier on the basis of its occurrence in time. Therefore, either short (3 seconds) or longer (20 seconds) video clips showing tics of Gilles de la Tourette (GTS) patients or clips showing spontaneous movements of healthy controls were presented to GTS experts with the instruction to decide whether presented movements were tics or not.

Videos of 12 GTS patients (11 men, mean age: 43.1 ± 12.2 years) assessed by MO and MMR were available. GTS was diagnosed according to DSM-IV-TR criteria.5 Twelve age and sex matched healthy controls (11 men, mean age: 39 ± 13.3 years) were also filmed. Participants gave informed written consent granting permission for the videos to be used for research purposes.

Video clips were cut from video recordings taken according to the GTS Rush Video protocol6 from GTS patients and a standardized video recording from healthy controls with the instruction to wait and to behave normally. Twenty-four tic videos and 24 video sequences from healthy controls showing a spontaneous movement lasting no more than 3 seconds were created from head and shoulder view segments (Table 1).

Another 48 video sequences (24 clips showing GTS patients and 24 clips showing healthy controls) with a duration of 20 seconds were cut from the same video material. Two-blinded GTS experts were asked to review the clips and decide whether the movements were tics or spontaneous movements. First, the 3 second and, after an interval of at least 1 week, the 20-second sequences (with the experts unaware of the 3-second clip rating results) were reviewed.

Frequency of movements in 3-second clips did not differ between groups in any category (Binomial-Tests). In 20-second clips, patients’ tic videos showed significantly more tics [mean of 17 (SD 9.4)] than healthy control videos spontaneous movements [mean of 6 (SD 3.4); df = 1, Z = 2.309, P < 0.001; Kolmogorov-Smirnov test; Table 1]. Also, patients’

References

Potential conflict of interest: None.

Published online 29 March 2010 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/mds.23053
movements and aid the diagnosis of a tic disorder. Video clips can capture the nature of tics as "excess" normal allowing to correctly identify tics. We conclude that longer healthy controls. This difference, i.e., the "too much" of eos GTS patients moved significantly more frequently than

"tics are probably best described as movements becoming abnormal in time because they deviate from the movement repertoire considered "normal." Some tics involved certain anatomical regions/muscles more frequently than spontaneous movements, e.g., mouth and whole head tics, but these differences alone do not suffice to explain why diagnostic certainty and inter-rater agreement was so high after only 20 seconds. On 20-second videos GTS patients moved significantly more frequently than healthy controls. This difference, i.e., the "too much" of something normal, was probably the most distinctive element allowing to correctly identify tics. We conclude that longer video clips can capture the nature of tics as "excess" normal movements and aid the diagnosis of a tic disorder.

Acknowledgments: This work was supported by the Deutsche Forschungsgemeinschaft, DFG (grant number MU1692/2-1 to AM, MO and SCHN592/1-1 to AS) and by the University of Hamburg (grant number F168-1 to GT).

Authors Roles: Jennifer Paszek was involved in organization and execution of research project; design and execution of statistical analysis; writing of the first draft of manuscript. Bettina Pollok was involved in execution of statistical analysis; review and critique of manuscript. Katja Biermann-Ruben was involved in review and critique of manuscript. Kirsten Müller-Vahl was involved in execution of research project; review and critique of manuscript. Veit Roessner was involved in execution of research project; review and critique of manuscript. Götz Thomalla was involved in review and critique of manuscript; data acquisition. Michael Orth was involved in review and critique of manuscript; data acquisition. Alfons Schnitzler was involved in concept of research project; review and critique of statistical analysis; review and critique of manuscript. Alexander Münchau was involved in concept of research project; review and critique of statistical analysis; writing of the first draft and review and critique of manuscript.

Financial Disclosure: Jennifer Paszek, Bettina Pollok, Katja Biermann-Ruben, Götz Thomalla, Michael Orth: none. Kirsten Müller-Vahl: Grants—Bristol Myers Squibb, Contracts: Lundbeck, Boehringer Ingelheim. Veit Roessner: Honorary for lectures from Lilly Pharma. Mary M. Robertson: Advisory boards—Tourette Syndrome Associations/Foundations: UK, Canada, Italy, Ireland; Honorary—Jansen Cilag; Royalties—Books published—Blackwells Science, Oxford University Press, Jessica Kingsley. Alfons Schnitzler: Declares funding by research grants from the DFG, BMBF, Helmholtz Society, and Volkswagen Foundation. He served, unrelated to the current project, on scientific advisory boards of Pitie Salpétrière, Novartis, UCB, and Cephalon. He received, unrelated to the current project, honoraria for lectures from Boehringer Ingelheim, Novartis, UCB and TEVA. Alexander Münchau: Commercial research support—Grants by Pharm Allergan, Ipsen, Merz Pharmaceuticals. Honoraria for lectures from Pharm Allergan, Ipsen. Support from a nonprofit foundation or society—Dystonia Medical Research Foundation (USA), Tourette Society (Germany), N.E.MO Charity supporting the research of pediatric movement disorders. Academic research support not attributed in the manuscript—Deutsche Forschungsgemeinschaft (MU1692/2–1). Prof. Münchau is employed at the University Hospital Medical Centre Hamburg Eppendorf (public health service).

Jennifer Paszek
Bettina Pollok, PhD
Katja Biermann-Ruben, PhD
Institute of Clinical Neuroscience and Medical Psychology
Heinrich-Heine University Düsseldorf, Germany
Department of Neurology
Movement Disorders and Neurmodulation University Hospital Düsseldorf, Germany

Kirsten Müller-Vahl, MD
Clinic of Psychiatry, Socialpsychiatry and Psychotherapy
Hannover Medical School Hannover, Germany

<table>
<thead>
<tr>
<th>Most obvious movements/tics</th>
<th>3-second clips Controls</th>
<th>3-second clips GTS</th>
<th>20-second clips Controls</th>
<th>20-second clips GTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eyes</td>
<td>6 (25)</td>
<td>6 (25)</td>
<td>108 (77)</td>
<td>114 (28)</td>
</tr>
<tr>
<td>Eyebrow</td>
<td>3 (13)</td>
<td>4 (17)</td>
<td>1 (0.5)</td>
<td>48 (11)</td>
</tr>
<tr>
<td>Nose</td>
<td>2 (8)</td>
<td>2 (8)</td>
<td>3 (2)</td>
<td>27 (6)</td>
</tr>
<tr>
<td>Mouth</td>
<td>8 (33)</td>
<td>10 (42)</td>
<td>15 (11)</td>
<td>103 (25)**</td>
</tr>
<tr>
<td>Jaw</td>
<td>–</td>
<td>–</td>
<td>12 (8.5)</td>
<td>77 (18)*</td>
</tr>
<tr>
<td>Whole head</td>
<td>5 (21)</td>
<td>2 (8)</td>
<td>2 (1)</td>
<td>27 (6)</td>
</tr>
<tr>
<td>Shoulder</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>141 411**</td>
</tr>
<tr>
<td>Sum</td>
<td>24</td>
<td>24</td>
<td>141</td>
<td>141</td>
</tr>
</tbody>
</table>

Numbers are absolute values (% in brackets) of movements/tics shown on respective video clips.

*p < 0.05; **p < 0.01 (differences in the frequency of movements occurring in the respective category for 20-second clips).
Veit Roessner, MD
Department of Child and Adolescent Psychiatry
University Hospital Dresden
Dresden, Germany

Götz Thomalla, MD
Department of Neurology
University Hospital Medical Centre
Hamburg-Eppendorf, Hamburg, Germany

Mary M. Robertson, MD, DSc(Med), FRCP(UK), FRCPCH, FRCPsych
Institute of Neurology, University College St. Georges Hospital and Medical School
London, United Kingdom

Michael Orth, MD, PhD
Department of Neurology
University Hospital Ulm
Ulm, Germany

Alfons Schnitzler, MD
Institute of Clinical Neuroscience and Medical Psychology
Heinrich-Heine University
Düsseldorf, Germany

Department of Neurology, Movement Disorders and Neuromodulation
University Hospital Düsseldorf
Düsseldorf, Germany

Alexander Münchau, MD*
Department of Neurology
University Hospital Medical Centre
Hamburg-Eppendorf, Hamburg, Germany

*E-mail: muenchau@uke.de

References

1. Flanagan JR, Jakobson LS, Munhall KG. Anticipatory grip adjustments are observed in both goal-directed movements and movement tics in an individual with Tourette’s syndrome. Exp Brain Res 1999;128:69–75.

