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ABSTRACT

This report is concerned with the problem of detecting signals
in noise of uncertain level. The impetus for this study is found in many
areas; however, the detection of underwater sound signals in an ocean
environment provides the primary motivation. It has been found that
ocean noise parameters such as the ambient level can vary widely with-
out any apparent change in local sea conditions. The purpose of this report
is to further the theory of signal detectability for underwater acoustics
by considering the detection performance of a number of different
receiver designs operating in such an uncertain noise level environment.
The receiver designs considered range from the hypothetical
externally sensed parameter (ESP) receiver to a standard cross-
correlation type of receiver. The ESP receiver is a non-realizable receiv-
er whose performance serves as an upper bound for the detection of cer-
tain signals in noise of uncertain level. The remaining receivers may be
classed into essentially three groups. The first group consists of re-
ceivers which attempt to incorporate a priori information concerning the
uncertain noise level in their design. The (Bayes) optimum receiver and
an estimation receiver are in this class. The second group contains
receivers which attempt to achieve performance somewhat independently
of the noise level uncertainty. The clipper cross-correlation receiver is

in this category. The last group considered in this report consists of
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receivers which make little or no attempt to include a priori noise level
information in their design. The standard cross-correlation receiver is
a member of this group.

The design of the receivers investigated here is briefly consid-
ered. The optimum receiver for the detection of certain signals in noise
of uncertain level is considered from a general formulation independent of
the a priori noise level information. The primary emphasis of the report,
however, is on the analysis and determination of each receiver's detec-
tion performance under the constraint of operation in an uncertain noise
level environment. The detection performance is displayed by means of
receiver operating characteristic (ROC) curves for each receiver.

The results of this study indicate that channel variability in the
form of noise level uncertainty does not seriously affect the upper per-
formance bound attainable at low false alarm probabilities for a condition-
ally Gaussian process. In addition, for a given measure of channel vari-
ability, it is shown that performance can be greatly improved by receiver
designs which incorporate the variability in a Bayesian or estimation
sense in their design. Infact, for long averaging times the performance
of such receivers can approach the upper performance bound. On the
other end of the spectrum it is found that receivers such as the clipper
cross correlator and the standard cross correlator can suffer significant
performance loss when operating under the condition of uncertain noise

level.
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CHAPTER 1

INTRODUCTION

The purpose and major objectives of this report are outlined and
briefly discussed in this chapter. In addition, for the reader's conve-
nience, the major conclusions of the study are given in a condensed

form.

1. 1 Purpose

The purpose of this report is to provide a relatively comprehen-
sive evaluation of the effect of noise level uncertainty on detection per-
formance. The basic problem is that of detecting the presence or
absence of a signal in the presence of noise. Throughout the report the
signal to be detected is assumed to be known or specified exactly at the
receiver input. In other words, to investigate the effect of noise level
(or noise power density) uncertainty on performance, we consider only
the detection of a certain signal in noise of uncertain level.

The emphasis of the study falls naturally into two distinct areas.
The first area is the effect of noise level uncertainty on the upper per-
formance bound. When the noise level is known or certain (and the
signal is also certain), the upper performance bound is given by the
classical result for the detection of a known signal in specified noise

as given by Peterson, Birdsall, and Fox (Ref. 1). When there is



uncertainty in the noise level, however, the upper performance
bound is changed even though the signal at the receiver input may still
be certain.

Changes in the performance bound caused by uncertainty in the
noise level can be interpreted as an effect of transmission channel
variability on performance. That is, for a variable channel in which
the noise level is uncertain, the upper performance bound differs from
that of a channel for which there is no variation. In the general case,
channel variability is the combination of many factors such as signal
uncertainty, multipath transmission characteristics, noise uncertain-
ties, etc. However, in this work channel variability is considered to
be affected only by noise level uncertainty.

The second and more important area of emphasis in this report
is the effect of receiver design on detection performance for a given
amount of channel variability (caused by noise level uncertainty).

Here we investigate the performance of a number of different receiver
designs operating under the constraint of a channel whose variation is
caused by uncertainty in the noise level. The performances of the
various receivers are compared with one another and with the ultimate
performance obtainable for the given amount of channel variation. The
receiver designs considered range from the optimum receiver for the
given channel (which incorporates the channel variation in its design)

to the simple cross-correlation receiver (which makes no attempt to



incorporate the varying characteristics of the channel in its design).
The usefulness of performance comparisons for cost-
effectiveness compromises is evident. Since, in general, cost and
complexity of equipment rise rapidly as attempts are made to describe
and incorporate channel variation in receiver design, it becomes de-
sirable to have available quantitative results which indicate perfor-

mance changes as a function of receiver design.

1. 2 Motivation

The impetus for this work is found in many of the familiar
applications of the theory of signal detectability. In these applications,
which involve making the best possible decisions as to the presence or
absence of a signal in a noisy reception, there are many instances in
which parameters (such as the level) of the ambient noise process are
uncertain.

This is particularly true in problems involving the detection of
underwater sound signals in an ocean environment. For example,
experiments conducted off the coast of Miami, Florida in a joint effort
(Project MIMI, Ref. 2) by The University of Michigan and The
University of Miami have indicated a wide variation in ambient noise
levels as a function of the existing environmental conditions. This
type of result is elaborated upon and partially explained for many

different areas of the oceans by Albers in his book (Ref. 3). It is



discussed there that ambient-noise levels can vary greatly without
any apparent change in sea conditions. The variations appear to be
larger at lower frequencies, especially when man-made disturbances
are present. In addition, the standard deviation of levels at high fre-
quencies in deep water, where the Knudsen curves represent the
average, is about 4 or 5 db. The deviation is less at high sea states
than at low. The causes appear to be varied; however, sea swell does
not appear to be significant.

The Knudsen curves referred to above are the results of ex-
tensive studies of ambient noise conditions made during World War IL
In these curves the spectrum of deep water noise is plotted as a
function of sea state and frequency, and the curves are still accepted
as representative of average ambient levels at frequencies between
1 and 24 kHz. The importance of the curves in relation to receiver
design and signal processing is that they provide a significant amount

of a priori knowledge to a receiver operator at the time of receiver

use. In other words, for the appropriately designed receiver, these
curves provide the operator with in-field modifications which can be

applied at the time of use.

1. 3 Method of Approach

The method used to investigate the effect of noise level uncer-

tainty follows closely the Bayesian approach as utilized extensively in



applied statistics (Ref. 4). The assumption is made that consistent
a priori opinions concerning the nature of the signals and noise in-
volved in the detection problem are held by the receiver designer and
that, furthermore, these opinions can be expressed in terms of
.probability distributions. Thus, when we speak of uncertain noise
level or channel variability in this report, it is assumed that we can
express these quantities in terms of probability distributions. This
type of approach seems to be particularly useful considering the
discussion of the Knudsen curves since these curves already express
in a probabilistic manner uncertainty concerning the ambient noise

level of the ocean.

1.4 Organization of Material

The two primary phases of this work utilize the underlying
Bayesian approach. In Chapter 2 the basic class of a priori distri-
butions utilized to describe the noise level uncertainty and induced
channel variability is defined. This class is discussed in the light of
receiver design and is found to be a natural conjugate prior set for the
Gaussian noise process under consideration. The implications of the
result in terms of optimum receiver design with finite memory are
discussed. In addition, the various measures used to define uncer-
tainty and channel variability are discussed in this chapter.

In Chapter 3 a hypothetical receiver, the externally sensed



parameter (ESP) receiver, is defined and its operation is discussed.
The performance of this receiver is determined and is used in con-
junction with the uncertainty measure to determine the effect of channel
variability caused by noise level uncertainty on the upper performance
bound. These results represent the first objective of this work.

In Chapters 4 through 6 various receiver designs ranging from
the optimum receiver to the simple cross-correlation receiver are
considered. The performance of each of these receivers is developed
for the constraint of operation in a channel with noise level uncertainty.
In addition, some of the salient aspects of receiver operation are
considered. In Chapter 7 the performances of each of the receivers
considered in Chapters 4 through 6 are compared as a function of
channel variability, and the results are discussed in relation to the
upper performance bound. The conclusions arrived at represent the

second objective of this work.

1. 5 Conclusions

The major conclusions of this report are discussed in Chapter
7. These can be briefly summarized as follows:

(1) Channel variability in the form of noise level uncertainty
does not seriously affect the upper performance bound at low false
alarm probabilities for a conditionally Gaussian process.

(2) For a given measure of channel variability, performance



can be greatly improved by receiver designs which incorporate the
variation (in a Bayesian or estimation sense) in their design. In fact,
for long averaging times the performance of these receivers can ap-
proach the upper performance bound.

(3) The clipper cross-correlation receiver, although easy to
implement and often used, can suffer significant performance loss in
varying channels which variation is caused by noise level uncertainty.

(4) Receiver designs which make no attempt to include channel
variability in their design suffer extreme performance loss in uncer-

tain noise level channels.



CHAPTER 2

GENERAL CONSIDERATIONS

In this chapter the fundamental detection problem is discussed.
The notation utilized throughout this report is developed and the various
philosophies and methods of problem solving are considered. The
groundwork for the development and analysis which follow in the later

chapters is developed.

2.1 General Problem Statement

The general problem of signal detection is illustrated in Fig. 1.
The receiver is presented with an observation x(t) during a time

interval tO <t<T+t The observation may consist of signal and

0
noise or just noise alone and on the basis of the observation the receiver
must make a binary decision as to which of the two conditions is present.
The two conditions are mutually exclusive since we assume that the sig-
nal is either present during the entire interval or absent during the
entire interval. From a decision theory viewpoint this problem may

be viewed as requiring the receiver to decide which one of two mutu-
ally exclusive hypbtheses, signal and noise, or noise alone, occurred
during the observation interval. In this work, we assume that the

signal is added to the noise so that mathematically the detection problem

may be represented as



hypothesis SN: x(t) = s(t)+ n(t)

hypothesis N: x(t) n(t)

Thus for the given problem statement the receiver must decide which
one of the mutually exclusive hypotheses, denoted by SN or N, is

present during the observation interval.

st) K )XW

Receiver Decision

n(t)

Fig. 1 Illustration of the general detection problem

The classical solution of the detection problem involves the
specification of receiver design, the realization of receiver design,
and the evaluation of receiver performance. For the situation we have
described, two types of solutions are possible. A fixed response time
solution in which the receiver is required to make a decision as to
which hypothesis is present at a prespecified time T + tO and an un-
specified response time solution in which the time (T + tO) at which

the decision is made remains arbitrary. In general the requirement



differences for receiver designs in these two cases lie in the fact that
for the case of unspecified response time finite receiver memory con-
siderations require sequential operation of the receiver.

The basic modeling problem required to identify the situation
illustrated in Fig. 1 involves specifying in a mathematical sense the
various probability distributions associated with the signal- and-noise
processes shown in the figure. The specifications should be reason-
able approximations to the physical world and at the same time they
should allow mathematical tractability. In this work we make the fol-
lowing assumptions for the purposes of modeling the detection problem:

(1) All processes are characterized by 2WT time samples and
represented by k-dimensional vectors where k = 2WT with W the
bandwidth over which the process is defined, and T the total duration
of the observation.

(2) The signal process s(t) is specified or known completely.
Thus, the effects of uncertain noise level are studied independently of
signal uncertainties.

(3) The noise process n(t) is specified as white Gaussian noise
with uncertain level. In other words, conditional to a known level
value, the noise sémples are normal and independent. (Independence
is considered for simplicity since for a known dependence relationship
the process may be pre-whitened. ) This property is termed conditional

independence.
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(4) The approach used throughout the work adheres to the
Bayesian philosophy. In other words, the assumption is made that
consistent a priori opinions concerning the nature of the signals and
noise involved in the detection problem are held by the receiver de-
signer and that furthermore, these opinions can be expressed in terms
of probability distributions. The modification of these opinions, in the
light of evidence gained through observations or otherwise, is made
according to Bayes' Rule. [A more comprehensive discussion of the
Bayesian approach may be found in the report by Breipolil and
Koschmann (Ref. 4) and the paper by Edwards, Lindman, and Savage

(Ref. 5). |

2.2 Optimum Receiver Design

In order to consider the specification and comparison of re-
ceiver designs which are optimum in some sense, the concept of what
is meant by optimum must be included in the work. Since the signal
detection problem consists of two mutually exclusive hypotheses,
either SN or N is present during the entire observation interval, the
choosing of a particular hypothesis by the receiver results in two pos-
sible decisions, correct decisions and incorrect decisions. When the
actual input consists of signal and noise, these decisions are termed
a detection and a miss respectively. Similarly, when the actual input

consists of noise alone, there are correct and incorrect decisions.
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The situation of responding SN when noise alone is present is general-
ly termed a false alarm. The specification of optimum receiver designs
is based on the four possible condition-response pairs. Relative values
and costs may be associated with these pairs and for a particular
problem, a risk criterion or performance criterion is specified in
terms of them and the a priori probabilities. The optimum receiver is
then determined with respect to the particular criterion which has been
chosen.
In the early 1960's Birdsall (Ref. 6) utilized the methods of

statistical decision theory to generalize the proof that optimum receiv-

er design should be specified in terms of the likelihood ratio of the
input observation. In this work it was shown that for a wide class of
performance criteria, including those described above, receivers
which make decisions on the basis of the likelihood ratio of the obser-
vation result in optimum performance. In fact, the class of perfor-
mance criteria for which the likelihood ratio is optimum may generally
be thought of as that class for which correct responses are considered
"good'" and incorrect responses considered '"bad'’ as expressed in
terms of any performance goal involving the four possible decisions
discussed above.

The likelihood ratio-of the input observation x(t) is defined as

the ratio of the probability density function of the observation x(t)

under the condition that signal and noise are present, to the probability

12



density function of x(t) given that noise alone is present. This function

of the input observation x(t) may be expressed as

() = fﬁxxl SIII\I)
where f£(x) is the likelihood ratio for x(t), and f(x|[SN) and f(x|N)
are the two conditional density functions based on the occurrence of the
two possible hypotheses, SN or N, respectively. In Chapter 4 of this
report the optimum likelihood ratio receiver for the uncertain noise
level situation is considered in detail. The receiver design is given,
both for sequential and nonsequential operation, and the performance
is determined.

In general, suboptimum receiver design is determined on the
basis of cost and complexity of equipment, insufficient determination
of the detection situation, and numerous additional factors. No matter
how the design is achieved, however, we are interested in the resulting
performance so we can compare it with the performance of the optimum

receiver and with the performance of other suboptimum receivers.

2. 3 Receiver Performance Evaluation

In the binary detection problem there are two kinds of errors,
a false alarm and a miss, and there are two kinds of correct responses,

a detection and a correct rejection. A dependence exists among the

13



four probabilities associated with these responses so that all of the
information they contain may be conveyed by considering only two of
them. For example, all of the information may be conveyed by a plot
of the probability of a detection P(DET) versus the probability of a
false alarm P(FA) for all possible decision threshold settings on the
output of the receiver. A plot of these two quantities for a given re-
ceiver is termed a receiver operating characteristic (ROC) curve and
is used in this work to summarize the detection performance of
receivers.

An ROC curve is called ''normal' if it can be parameterized by
the normal probability distribution function. This means that the
probability of detection P(DET) and the probability of false alarm

P(FA) can be written as

P(DET) = ® (¢ + d%) when P(FA) = ®(¢)

b

where

1§ 2
©(k) = @172 [ exp(-5-)dw
-0
and the parameter d is called the normal detectability index.
Normal ROC curves arise whenever the natural logarithm of

the likelihood ratio is normally distributed under N and SN with

equal variances and means separated by the variance. From the above

14



it follows that an entire normal ROC curve may be characterized by the
detectability parameter d. This parameter represents the effective
signal-to-noise ratio of the process. Many more of the fundamental
properties of ROC curves have been considered in detail by Birdsall
(Ref. 7).

In general, the evaluation of the performance of a detection re-
ceiver requires the distribution of the detection statistic, or some
monotonic function of it, under both signal mixed with noise and noise
alone. These distributions are used to determine, as a function of the
threshold setting, the P(DET) and P(FA) values needed to plot the ROC
curve. For example, if the probability densities under the two hy-
potheses are those shown in Fig. 2, then for the threshold value shown,
P(DET) is given by the striped area and P(FA) is given by the cross-
hatched area. The total ROC curve is determined as a function of all
possible values of the threshold setting. In practice, the determination
of the distribution functions of the detection statistic in an analytic
form may be considerably difficult. One is usually able to specify the
functions in general, however, the evaluation of the integrals involved
frequently becomes difficult. At this point a digital computer is
usually used.

Another approach to the evaluation of receiver performance is
given by the use of digital computer simulation techniques. For this

experimental approach the given detection situation, including receiver
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Threshold

Density under
N

N

Density under
SN

Fig. 2 Probability density functions of the detection
statistic under SN and N

operations, is simulated on the digital computer and the signal and noise
and noise alone density functions are sampled. The simulation approach,
although an approximate one, has been found to provide extremely good
accuracy with the results limited only by the number of computer runs
feasible. Throughout this report receiver performance is evaluated

utilizing both the analytical and computer simulation approaches.

2.4 Noise Level Uncertainty

In this work we are applying the general theory of signal detect-
ability to the specific problem of the detection of a certain signal in
noise of uncertain level. We are trying to determine the effect of

noise level uncertainty on the ultimate performance bound, and to
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determine the effect of this uncertainty on the performance of a num-
ber of different receivers.

2.4.1 A Priori Distribution. In previous discussions it was

stated that the Bayesian approach is followed in our work. Thus, a
priori opinions concerning the uncertain noise level are expressed in
terms of probability distribution functions. Here we actually choose
to work with the reciprocal of the noise power level, and we call this
quantity the precision or precision level and denote it by the symbol
p.

The probability distribution function used to describe the varia-
tion in the precision level and used for the performance evaluation of
all of the receivers considered in the succeeding chapters is the Gamma
distribution function. The density associated with this distribution

function is given below where @ and 8 are arbitrary parameters.

gp) = [&2/TB)] p" Lexpcap), 0<p<ew (1)

A plot of the Gamma density function is given in Fig. 3.

Three important and well-founded reasons for choosing the
Gamma distribution function are the following:

(1) The Gamma distribution is a natural conjugate prior distri-
bution for the conditionally normal observations we are considering
and this result insures some mathematical tractability (Ref. 8). This

statement is verified in Chapter 4.
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1.00
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0.50

0.25

g(p)
1.00

0.75

0.50

0.25

Fig. 3 The Gamma probability density function
parameterized by a and S
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(2) The observation processing operations of the optimum re-
ceiver are not influenced by the choice of a different distribution
function since the Gamma distribution is a natural conjugate prior.
Indeed, only the manner in which the processed variables are combined
is altered by the choice of a different distribution function. This fact
is considered in detail in Chapter 4.

(3) The two parameters @ and 8 associated with the Gamma
distribution allow a wide range of uncertainty to be modeled. This is
illustrated in Fig. 3.

The mean and variance of the Gamma distribution on p can be
expressed in terms of the @ and 8 parameters. These quantities are
given by
B/ a
g/ o

2. 4. 2 Channel Variability. Throughout this report the signal

mean

(2)

11

variance

waveshape is considered as known or certain. Thus, if we define the

signal energy of the sampled signal vector as

K o
Es:Fisi (3)

then for a given value of the precision p the detectability d or effec-

tive signal-to-noise ratio (Sec. 2. 3) can be expressed as
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Since p is a random variable, d is a random variable. Using the
Gamma distribution for p we have the following density function for

the detectability or signal-to-noise ratio.
g-1
g(d) = CO d exp (—ad/ES), 0< d< w0 (5)

where

If we define

A= o Es (6)
then Eq. 5 can be written as
AB B-1
g(d) = ) d exp (-Ad), 0< d< w (7)

If we denote the expected value and the variance of d by

it

d

expected value o

d
\

variance

then from Eq. 7 these quantities are given by
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d = B/a
d, = B/’

One objective of this study is to investigate the upper perfor-
mance bound as a function of channel variability. An objective of this
type implies that one must decide upon or define a measure of this
quantity. In this report channel variability is measured by the variance
of d, dv’ for a given expected value,de. This is a reasonable method
of measurement since in essence we are measuring the spread or un-
certainty in the signal-to-noise ratio of the channel. When dV is zero,
there is no channel variability, and as dV approaches infinity, the vari-
ation in the channel (signal-to-noise ratio) also approaches infinity.

The use of dv as the channel variability measure was arrived
at after investigation of a number of other methods. For example, the
Lindley-Shannon information measure (Ref. 9) and the Fisher informa-
tion measure (Ref. 10) were considered. However, after investigation
the use of dV appeared to be the simplest and most direct measure
and appeared to provide as much information as the others for the

detection problem we are considering.

2.5 Summary

In this chapter the basic detection problem considered in this

report has been outlined and much of the notation used in the solution
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presented. In addition, the basic approach and assumptions to be used
have been discussed. Also, the distributions for the noise level and
the measure of channel variability have been given. In the succeeding

chapters the various receiver designs will be considered.
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CHAPTER 3

THE ESP RECEIVER

In this chapter the externally sensed parameter (ESP) receiver
for the case of detecting a certain signal in noise of uncertain level is
considered. The performance of the ESP receiver is determined for
this case and is used to determine the effect of channel variability

caused by noise level uncertainty on the upper performance bound.

3.1 The ESP Receiver Definition

The method used in this report to determine the effect of chan-
nel variability on the upper performance bound is to use the perfor-
mance of a hypothetical receiver termed the externally sensed para-
meter or ESP receiver for comparison purposes. The ESP receiver
is defined as a receiver that functions in a random parameter (noise
level) environment and yet, for each possible trial run, first, has
perfect or certain knowledge of the particular parameter value in
question and second, is optimum for that parameter value. In other
words, one can think of the ESP receiver as having an associated
teacher which allows it to determine the exact value of the random or
uncertain parameter in question prior to a sample run. This is in con-
trast to a realizable receiver which has only information concerning

the distribution of the random parameter prior to each sample run.
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Thus, for the uncertain noise level case, the ESP receiver knows prior
to the start of a detection trial the value of the noise level present
during the trial. Realizable receivers on the other hand are only aware
of the a priori probability of a particular noise level value occurring
during the run. The ESP receiver therefore has perfect parameter
information for the parameter in question even though the parameter is
a distributed random variable. Note that the addition of perfect para-
meter information implies that the performance of the ESP receiver is
at least as good and usually better than the performance of the optimum
Bayesian receiver for the case in question. In addition, its performance
will usually, but not always, be less than that of the optimum receiver
for the case in which the parameter is known exactly (non-distributed).
The usefulness of the ESP receiver for performance comparison
purposes is twofold. First, even though it functions with perfect para-
meter information on each trial run, its average performance is inde-
pendent of the particular uncertain parameter in question. This follows
since the parameter is still treated as a random variable with a known
a priori distribution and in the determination of average performance
it is "averaged out. " Thus, one is able to compare receivers which
have an average performance independent of any particular value of
the uncertain parameter with the appropriate ESP receiver performance.
Second, the ESP receiver performance provides an upper bound on

performance with respect to uncertainty in a particular parameter value
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such as noise level. In other words, given a distributed parameter
over which one has no control, one can do no better than to know its
value on any given trial run. This is exactly the operation of the ESP

receiver.

3.2 ESP Performance Computations

In general there are a number of methods which can be used to
determine ESP receiver performance for detecting a certain signal in
noise of uncertain level. For example, the techniques of ROC charac-
ters as developed by Birdsall (Ref. 7) can be employed or the methods
of Monte Carlo simﬁlation can be used. In addition, the direct method
using the definition of the ESP receiver can be applied. For this latter
method the performance of the ESP receiver is computed by first con-
sidering the uncertain noise level as a known quantity and then comput-
ing the conditional performance as a function of its value. This con-
ditional performance, which is optimum for each value of noise level,
is then averaged with respect to the noise level a priori distribution to
arrive at the average ESP receiver performance.

For a certain or known value of noise level the optimum receiver
X ).

%k

In terms of the notation defined in Chapter 2 this ratio can be expressed

forms the likelihood ratio of the input observation Xk = (x

as
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1 k
(ZW)_Zp/zeXp -3 >_1;(X -S)zp
(x) - —— -~ (10)
(2m)"* p eXp<—l Y X p)
1

In this expression we have assumed that the noise process is Gaussian
and that the samples are independent conditional to a known value of the

precision level p .

It we reduce Eq. 10 to its simplest form and take the logarithm

of the result, we have

k
i(X,) = <Z1 XS - 3 S)p (11)

This latter equation reduces to the following expression
(X, ) = Z, (12)

when we define

k
Zk = (Zf X8, - %Es>p (13)

Conditional to the occurrence of the noise hypothesis and a par-
ticular value of the precision p, it is easily shown that the random
variable Zk is normal (since it is the sum of independent normal

random variables) with mean -3 Esp and variance Esp‘ Conditional
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to the hypothesis signal and noise and a known value of p, one can
show that Zk is normal with mean %Esp and variance Esp.

The logarithm is a monotone function of its argument, and so
the optimum decision action of the ESP receiver is to compare the
expression given in Eq. 11 or 12 with a threshold. Thus, to determine
the probabilities of detection and false alarm for a particular value of
p, we must determine the probabilities that the logarithm of the like-
lihood ratio is greater than the given threshold conditional to the
hypothesis signal and noise, and noise alone for the known value of p.

We can express these probabilities symbolically as

DET SN
P p = P [eno(X ) > A |p, (14)

FA ESP N

where the symbol A denotes the threshold value. Substituting in

Eq. 14 we have

P p = P|Z_>Alp, (15)

*This style of "equation pair'' notation is unusual but extremely convenient
in two hypothesis work. Equation 14 should be read as

P[DET | p] pop = P[nf(X) > Al p, SN] (14 upper)

and

P[FA | p] P[fnf(X) > A | p, N] (14 lower)

ESP
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Using the results above which state that the conditional distri-

butions of Z, are normal, Eq. 15 can be expressed as

k
DET 0 _L : 2

p ’p = f (27E _p) * exp [-(v* %ESP) /ZESp] dv
FA | pop A (16)*

where we have used the appropriate mean and variance values.
To obtain the average performance of the ESP receiver Eq. 16
must be averaged with respect to the a priori distribution of the

precision p. Denoting this distribution by g(p) as in Chapter 2 we

have
DET 0 1 ) 5 7

P = [ {f (27E _p) ? exp [-(v ¥ 2E p)"/ 2E p] dv}g(p) dp
FA pUa

(17)

In Chapter 2 we discussed the fact that the simplest form for
the natural conjugate prior distribution for the precision p is given by
the Gamma distribution. If we use this form for g(p) (see Eq. 1) in
Eq. 17 and interchange the order of integration (this is permissible

since we are dealing with density functions), we obtain

*Equation 16 should be read

0 1
-3 2
P[DET | p] ESp = fA (277Esp) exp [-(v - %Esp) /2Esp] dv (16 upper)
© 1 . 9
P[FA | p] ESP = f (ZnESp) 2 exp [-(v+ gEsp) /2Esp] dv (16 lower)

A
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DET

= C1 fOO {foo E_%p -gexp [- ([v + %Esp] 2/.‘ZESp) - ap] dp} dv
(18)

where

c, = (20 % d’r(p)

Integrating Eq. 18 we obtain the following expression for the probabili-

ties of detection and false alarm of the ESP receiver for uncertain

noise level (Ref. 11):

DET 0 1
P - c, [ WwlFEe 2k (ia1+8% [y ) av
2 A B-2 Es

FA ESP (19)

where KV is the Bessel function of imaginary arguments given by

_ /21 3) P eyt 2 -
K (y) = s D) fl eV ([t T+ 1) % dt
and
(20/ E_)P _(p-1)/ 2
C, = —> (1+_8_61)
2 JT (B) s

In Chapter 2 the concept of channel variability was considered

in terms of the uncertainty or distribution function of the measure d,
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the detectability or signal-to-noise ratio. The distribution of this
quantity was found (for the certain signal case) to be expressible in

terms of the power £ and the quantity

X = a/E, (20)

If we substitute Eq. 20 in Eq. 19, then Eq. 19 can be written in a

form more applicable to our definition of channel variability.

DET 0 1 + /2
P = C3 f ]VI'B—Ze v KB-% <—§\/1_+8)L lvl) dv
FA Jrsp = (21)
where
B 1
c, = 2L (1, gy (B2
JT I (B)

Since we have defined channel variability in terms of the parameters 2
and [, we can use Eq. 21 to determine the effect of channel variability
caused by noise level uncertainty on the upper detection performance
bound.

The determination of the ROC curves for the ESP receiver
appears to be a somewhat formidable task when one first considers
Eq. 21. However, for the rather general case of integer values of §
all integrations can be performed and Eq. 21 reduces to the more con-

venient computations below.
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DET

P = Cya,y,Bexp[-(r+2)a], A>0
FA ESP g integer
(22)
where
2(-1)
C,(8,7,8) = Cg QZ (3 1y L)
=0
B-1)-L
[2(8-1)-T]! . 2(B-1)-r ,2(8-1)-r-L
2 [2(6—1)—r-%]! 4y & '
with
(B-1)-r/2 [p-1 [2(8-1)-2m] |
% = mgo (-1) m [2(-1)-2m-1]!
and
p-1
Cs = (:)25251 v = 2 T+8
[T(B)] “x

The derivation of Eq. 22 from Eq. 21 is straightforward since
for integer values of [ all integrations can be performed and Eq. 22
is obtained by simply reordering the terms in a power series. The
ESP performance curves are easily shown to be symmetric about

A = 0. This result can be used with Eq. 22 to obtain the performance

for A < 0.
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3.3 ESP Performance Comparison

In this section we wish to present the ESP curves for the uncer-
tain noise level case. The curves were obtained from Eqs. 21 and 22
using the digital computer. The purpose in presenting the curves is to
investigate the effect of noise level uncertainty on the upper perfor-
mance bound.

When there is no uncertainty in the noise level, the upper per-
formance bound is given by normal ROC curves, the result of the
problem of detecting a certain signal in certain noise (Ref. 7). This
normal ROC curve is parameterized by the existing detectability value
or the effective signal-to-noise ratio d and so it depends on a particu-
lar value of the noise level. On the other hand, the ESP performance
for the uncertain noise level case is independent of the noise level and
therefore comparison of this performance with the certain noise level
performance is difficult. The method used here, as outlined in Chapter
2, is to look at ESP performance for constant values of expected de-
tectability de as a function of the variance in the detectability dv'

In conjunction with these curves, the certain signal-certain noise level
normal ROC curves with appropriate values of d = de are displayed.

The ROC curves are given in Fig. 4. The solid curves are the
ESP performance curves and the dashed curves are the normal curves
with the appropriate value of detectability, i.e., d= de. In addition,

in Fig. 5 the various (Gamma) distributions of the detectability d
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Fig. 4 Comparison of the ROC curves for the uncertain noise level

ESP receiver and the corresponding normal ROC curves
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used for the ESP curves in Fig. 4 are given. In Fig. 4, the ESP
curves indicate that an increase in the channel variation (as measured
by dv) causes a decrease in the upper performance bound for the
‘uncertain noise level situation. Thus, for highly variable channels

in which the variability is caused by noise level uncertainty the maxi-
mum performance achievable is reduced when compared to less vari-
able channels.

By comparing the ESP and normal curves with d = de we can
obtain some idea of the total effect of channel variability on the upper
performance bound. The normal curves represent the case of dV =0,
in other words no channel variation for the given value of de' In Fig.
4 it is apparent that the ROC curves for the same value of de are
reasonably clustered about the equivalent normal ROC curve for a
wide range of dV values. This is especially true at lower values of
signal-to-noise ratio and at lower false alarm probabilities. Thus,

we have the result that channel variability in the form of noise level

uncertainty does not seriously affect the upper performance bound at

low probabilities for a conditionally Gaussian process.
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CHAPTER 4

OPTIMUM AND ESTIMATION RECEIVERS

In this chapter two receivers that incorporate channel variability
caused by noise level uncertainty in their design are considered. The
first receiver is the optimum (Bayes) receiver for the certain signal
uncertain noise level case. The second receiver is an estimation type
receiver for this same case. The design and performance of these two

receivers are considered.

4.1 The Optimum Bayes Receiver

4. 1. 1 Receiver Design. As discussed in Chapter 2 the optimum

(Bayes) receiver (OPTIMUM) for a given detection problem is a re-
ceiver which forrhs the likelihood ratio as the test statistic and then
compares this quantity with an appropriate threshold. In this section
the optimum receiver design for the certain signal uncertain noise level
case is considered. The work is largely a condensation of previous
work performed by the Author (Ref. 12), however, some new concepts
are included here.

For situations in which the noise level is uncertain each hypo-
thesis, signal and noise and noise alone, is composite. For these
double composite situations the likelihood ratio of the observation

X, = (xl,. . .xk) assumes the form
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J1(X, b, SN) g(p)dp
P
X ) = (23)
K J1(X,_Ip, N) g(p)dp

P

where g(p) is the a priori density of the random precision p. Note
that Eq. 23 is a ratio of integrals and not an integral of a ratio. This
implies that the resulting optimum receiver will have the form of two
channels or branches, each branch acting on a single hypothesis.

In this work we are considering a noise process which is con-
ditionally Gaussian as discussed in Chapter 2. Incorporating this fact

in Eq. 23 we have the following form for the likelihood ratio:

k

K/ 2 o 2
[(p/2m) / exp |- % ) (x; - s;)"p| g(p)dp
N 1
P

(24)

) - K/ 2 L8

Jo/2m™ “exp |-z ), x{p| alp)dp
P 1

In Chapter 2 we discussed the fact that the simplest form for

the natural conjugate prior distribution for the precision p is given by
Gamma distribution. It was also mentioned that the use of this type of
distribution leads to an optimum receiver which requires a finite mem-
ory when used in a time-sequential manner. We wish to validate these

two statements.
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Let us consider an a priori distribution for the precision p that

is of the form of a Gamma distribution multiplied by an arbitrary func-
tion of p, h(p), such that the product remains a valid probability density

function.

g(p) = h(p)p" le™® | 0<p< (25)

Using this form of g(p) in Eq. 24 we have

o0 r k
[ h(p) pP IR/ 2 e {- 5 ) (x, - si)“z + aJp} dp

0x) = 2 — - -
-1+k/ 2 2
[ n(p) p T/ 2 e -(%Zx1+a>p]dp
If we define the following two random variables
K 2
-1 -
Y16 7 ¢ ;(Xi 5y
and (27)

of—

Yo =

K

k
2

then we can substitute in Eq. 26 to obtain the expression below for the

likelihood ratio.
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)

0
fo h(p) pB-Hk/z exp [ - (Y, |, + ap] dp

ﬁ(xk) (28)

- o0
fo h(p) pﬁ'm{/2 exp [ - (Y,  + ap] dp

b

From Eq. 28 it is evident that Y1 K and Y2 K are the statistics
formed from the observations by the optimum receiver. This is true
independent of the actual form of g(p) resulting from the form of the

modifier h(p). The modifier h(p) only changes the manner in which

the two statistics Y1 Kk and Y2 x 2re combined to form the likelihood

ratio; it does not change or have any influence on the statistics that are

formed. From this result we have the following design procedure for

the optimum receiver: (1) compute the statistics Y and Y2 I (2)

1,k

combine Yl,k and Yz,k in the manner prescribed by Eq. 28 in con-
junction with the appropriate modifier h(p), and (3) compare the re-
sulting statistic with a predetermined threshold. A receiver diagram
indicating these operations is shown in Fig. 6. The receiver design
given in this diagram is for time-sequential operation (see below).
The decomposition of the optimum receiver into the steps of
computation, combination, and comparison has been discussed and
elaborated upon by Birdsall in conjunction with adaptive optimum re-
ceiver design (Ref. 13). Our main concern with this fact is that it

enables us to see that the simplest form for the a priori density for

the precision p is given by the Gamma distribution.
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In addition it is evident that the use of a distribution of this type
results in a receiver which requires a finite memory when used in a
time-sequential mode. This follows since the two test statistics re-

quired can be written sequentially as
and (29)

From Eq. 29 it follows that a current value of the particular test sta-
tistic can be realized from the previous value and the current observa-
tion, the result determining a sequential mode of operation. The mem-
ory requirement utilized by this sequential mode is obviously finite

since we need store only the current values of the statistics Y nd

1.k 2

)

Y2 K

)

If we use the Gamma distribution for the precision p, then

Eq. 28 becomes

0
f pB-Hk/2 exp | - (Y1 . a)p] dp
0 b

— 30
® B-1+k/ 2 50
fop exp | - (Y2,k+ a)p] dp

0, )

Performing the integrals in this latter expression we have the following
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result

B+k/ 2
2,k

) =\, == (31)

Y + a

The optimum receiver design indicated by the operations given in Eq.
31 can be realized by the operations of square law detection and cross-
correlation between the received observation and the known signal
waveshape. A sequential receiver of this type is illustrated in Fig. 7.
From this result we conclude that the optimum receiver design for un-

certain noise level includes an energy measurement (Y as well

1,k

as the usual correlation measurement (Y In a sense, one can

2, k) '
visualize the energy measurement as an estimation of the noise level
or an adaptation of the preset threshold value. These facts will be
more evident in a later section of this chapter.

One additional point should be mentioned concerning the (Bayes)
optimum receiver for uncertain noise level. In Chapter 1 we discussed
the use of such items as the Knudsen curves for providing a priori
knowledge at the time of receiver use. We can now see how this know-
ledge is incorporated in the optimum receiver design. For the case of
the receiver shown in Fig. 7, the design is based on the Gamma distri-
bution and the Knudsen curves could be used to establish appropriate

values of the parameters @ and S at the time of receiver use. For

the more general receiver illustrated in Fig. 6 the curves could be used
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not only to establish values for @ and B but also to determine any
parameters occurring in the chosen expression for h(p). The pri-
mary point is that the optimum receiver allows, even requires, the in-
clusion of a priori knowledge (no matter how diffuse) at the time of
receiver use.

4. 1. 2 Receiver Performance. To determine the performance

of the optimum receiver we must determine the probabilities of detec-
tion and false alarm for a given threshold value. Since no direct method
for doing this has been found, we begin by first considering the following

transformation:

1 K
U = £ 4 %8
s 1
(32)
k k
2 2 2
v, = 21 (x, - 8,0, )7 = }; x; - E U

For a given or fixed value of the precision p, the transformed vari-
ables Uk and Vk act very much like the mean and variance of a normal
or Gaussian sample. It is easy to show, using the results of Cramér
(Ref. 14), that for‘a given value of p, Uk and Vk are independent and

that Uk is normal while Vk is chi-square with k-1 degrees of free-

dom. Thus, in the notation of Chapter 2,
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= A1 p Vk exp | - (Uk - O) Esp/2 - Vkp/2 (33)

where

A, = [Es/zn] é/szl r<1—‘§1>

To determine the joint distribution of Uk and Vk conditional to only

the hypotheses SN and N, Eq. 33 must be averaged over the a priori

distribution of p. Using the Gamma distribution for p, Eq. 33

becomes
SN ‘12_3 1)2 |-5-x/2
ka’VklN :Asz Vk+ Uk_O) ES/2+2a
(34)
where

A, = [ES /Zw]%a’BI‘(B+ K/ 2), 2k-3)/2 r(%—l> r'(8)

Note that Uk and Vk are no longer independent. For the evaluation
procedure which follows, it becomes extremely convenient to have in-
dependent random variables. In this light we consider the following

transformation,
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1

)
|

= 2a(Vk + 20Q)

(35)
2 -1

1\2 1
K ES(Uk- 0) [Vk+ES<Uk— O) +2a]

We now use the rules of probability theory to find the distribution of Iy

-+
1l

and tk. From Egs. 34 and 35 we have

k-3 k-3

1 B+
f<rk’ tk\?) = Ayt -m) t 6T -y

2 (36)

where

-1
k-1 1 k-1

The quantity B( -, - ) is the Beta function (Ref. 15). Equation 36
gives the distribution of the two random variables Ty and tk condi-
tional to the hypotheses signal and noise and noise alone. Using the
transformations defined by Eqs. 35 and 32 one can work backward to

express these two random variables in terms of the quantities

k

k
Zx.s., and sz
{ 11 7 1

From Egs. 29 and 31 these latter quantities are the functions of the

observations which appear in the likelihood ratio; thus it follows that
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the likelihood ratio can be expressed as a function of the independent

random variables Iy and tk. The joint distribution (in reality the mar-

ginal distributions since they are independent) of Iy and tk can be
‘programmed on the digital computer along with the likelihood ratio
expressed as a function of I and tk' In this way one can determine
the distributions of the likelihood ratio conditional to signal and noise
alone using Monte Carlo techniques. From these two distributions the
ROC curves follow directly.

The interesting trick employed in the above procedure was the
method of transforming to auxiliary random variables until a set (rk
and tk) was found which was independent. The independence property
makes programming a great deal easier and, in fact, to some extent
permits a solution of the problem.

The ROC curves for the optimum receiver obtained in the manner
outlined above are not displayed in this section but rather are deferred
to Chapter 7 where the performance of all of the receivers considered
are compared. However, investigation of Eq. 36 indicates that the
performance of the optimum receiver is a function of the 2WT product
or observation time k. The curves given in Chapter 7 are for a 2WT
product of 100, i.e., k = 100, and the natural question arises as to the
performance as a function of observation time. We now wish to show

that in the limit of infinite observation time the performance of the op-

timum receiver for the case of detecting a certain signal in noise of
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uncertain level approaches the upper performance bound attainable in

the absence of noise level uncertainty. In other words, as the observa-

tion time increases, the performance of the optimum receiver approach-

es the ESP receiver performance for the uncertain noise level case.

Thus, for large averaging times the optimum receiver learns or adapts
to the actual value of noise level present and the initial uncertainty in
the noise level causes no loss in performance on a single trial.

To show the asymptotic approach of the optimum receiver per-
formance to the upper bound let us first express the likelihood ratio
given by Eq. 31 in terms of the random variables Uk and Vk' Using
Eqs. 32 and 27 we have,

T B2

0x) = |14 —= Szk (37)
ng + EESUk + a

For each value of p we now define the new random variable

Vkp - (k - 1)
Wy = (38)
J2(k - 1)

so that

%E p-EU - (B+k/ 2)
S S

kP
JEE- D) w_+ (k- 1)+ $E_pUL + ap
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This latter expression can be written as

) Esp ) ZEsUkp -(B+k/ 2)
!Z(Xk = |1+
(k - 1) (1 +_—\/'2k\/—_2_'f Wy + ES pUﬁ + ______k2f¥p1> (39)

For a given value of the precision p, we have already seen (Eq. 33)

that Uk and Vk are independent with Uk a normal random variable

and Vk a chi-square random variable with (k - 1) degrees of freedom.

The moments of the conditional distribution of Uk

k under both hypotheses SN and N as Eq. 33 indicates. On the other

are independent of

hand the results of Cramér show that the chi-square distribution with
n degrees of freedom approaches normality with mean n and variance
2n as n - o (Ref. 14). Hence, from Eq. 38 the conditional distri-
butions of Wy conditional to SN and N approach normality with unity

means and variances that are independent of k as k - .

We now return to the expression for the likelihood ratio given
by Eq. 39. As k - « the conditional distributions of Uk and W, ap-
proach normality with parameters independent of k. Thus for fixed

values from these distributions we have,

(40)

- -k/2
E p-2E U p
Q(Xk)" [1+ S ksk:l

k -
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But from Cramér we have the result that for ever

k - @ k

Using this relationship, Eq. 40 becomes

1
(ESUk -2 ES)p

Q(Xk) - e

k -

y fixed x

2

9 k/2 X
lim [1 + -X—] ~e? (41)

From the definition of U, given in Eq. 32 we can write Eq. 42 as

k

k
E(Xk) -~ exp <Ff X8 - 3 E

k-

S) p (43)

Thus, for each value of the precision p, as k - o« the likelihood ratio

approaches the value the likelihood ratio would take if p were known

a priori. Since p is a distributed parameter, th
is the average of these conditional performances.

just the ESP performance as given in Chapter 3.

e average performance
However, this is

So, for extensive ob-

servation time the optimum receiver performance approaches the ESP

receiver performance as an upper bound. This is the result we wished

to determine.
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4.2 The Estimation Receiver

4. 2.1 Receiver Design. The design of the estimation receiver

(ESTIMATE) is a two-fold process. The first step is to design the
receiver as if all parameters that occur are known or certain. The
criterion which this initial design is based on may vary somewhat;
however, the Bayesian or likelihood ratio method is a widely used one.
After this first step has been completed the second step is to determine
those parameters about which uncertainty exists. One then constructs
estimators or uses estimation techniques to determine these uncertain
parameters and the estimated values of the parameters are plugged
into the original system as if they were the correct values. This
method of receiver design is sometimes termed the "estimate-and-
plug' method for obvious reasons.

One of the fundamental problems associated with the estimate-
and-plug method is the lack of a uniform or standard method for deter-
mining the estimators. One generally tries to pick estimators which
are unbiased and provide minimum variance estimates; however, the
method for doing this is not always clear. The fundamental property
common to all estimation receivers is that they make no use of a
priori information other than the fact that parameters are uncertain.
In other words, no information provided by a priori distributions is
utilized by the estimate-and-plug type receiver. In essence these re-

ceivers operate with fixed a priori opinions concerning the state of the
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environment. In general these opinions are diffuse, perhaps even un-
realizable in the sense of a distribution function, and they do not
change during operation.

The estimation receiver considered for the certain signal, un-
certain noise level case in this report is arrived at from the optimum
Bayes' receiver considered in the previous section. In essence, the
receiver is designed by considering a nonrealizable diffuse prior dis-
tribution function for the precision p. This prior distribution function
is maintained independent of the actual prior on p. In other words,
there is no mechanism by which one modifies the estimation receiver
to account for various environmental conditions as was possible with
the optimum receiver using the Knudsen curves previously discussed.

The method used to design the estimation receiver considered
is to choose the Bayes’ optimum receiver for the completely diffuse
nonrealizable prior density on p. To obtain this density we use the

Gamma distribution in the limit as
B-1 and a-0 (44)

This limiting process yields the nonrealizable uniform distribution
over the entire range of p. If we invoke this limiting process in the
equation for the optimum Bayes' receiver, i. e., the likelihood ratio,

given in Eq. 31, we obtain
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K/ 2
Y9 k

T(X,) = ?1—; (45)
where T(Xk) denotes the test statistic of the estimation receiver.
Note that Eq. 45 does not contain any parameters relevant to the a
priori distribution of p.

A diagram illustrating an estimation receiver realizing the op-
erations given by Eq. 45 is given in Fig. 8. In the next section we
consider the performance of this receiver.

4. 2.2 Receiver Performance. The performance of the estima-

tion receiver designed in the previous section is quite easy to determine
once the initial groundwork of the evaluation procedure has been per-
formed for the optimum receiver. The procedure replaces the like-
lihood ratio ﬂ(Xk) for the optimum receiver by the estimation ratio
T(Xk) for the estimation receiver in the evaluation program. In this

manner one determines the distribution functions of T(X,) conditional

)
to the hypotheses SN and N. From these distributions the ROC curves
follow directly.

As with the optimum receiver, the ROC curves for the estima-
tion receiver are not displayed here, but are deferred to Chapter 7
where the performances of all the receivers are compared. The

curves given in Chapter 7 are for an observation time or 2WT product

of 100 as with the optimum receiver. The ROC curves for the estimation
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receiver depend on the observation time, and from the results for
the optimum receiver, in the limit of infinite observation time, the per-
formance of the estimation receiver approaches the ESP receiver per-

formance. In other words, for the case of a certain signal in noise of

uncertain level, the use of the estimation receiver results in a perfor-

mance which becomes independent of the uncertainty in the noise level

on any given trial. It is important to note, however, that for any given

observation time the performance of the estimation receiver will be

less than or equal to the performance of the optimum receiver.

4. 3 Summary

In this chapter we have considered the optimum (Bayes) receiver
and an estimation receiver for the detection of a certain signal in noise
of uncertain level. The general receiver designs consisting of two
branch receivers have been given and more detailed designs for the
case of a Gamma distributed level have also been considered for both
receivers. The performance of the receivers has been evaluated and
it has been shown that in the limit of long observation time, there is no

performance loss caused by noise level uncertainty.
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CHAPTER 5

THE CLIPPER CROSS- CORRELATOR RECEIVER

In this chapter a receiver which is often used because it is easy
to implement and because it is relatively insensitive to level changes is
considered. The design of this receiver, the clipper cross-correlator
receiver (CCCR), is considered briefly and its performance is evaluated
for the case of detecting a certain signal in noise of uncertain level. (This

is a "'stored reference' or ''replica'" type correlator. )

5.1 CCCR Design

In the previous chapter receivers which directly incorporate the
channel variability in their design were considered. The receiver con-
sidered in this section accounts for this variability in a more indirect
manner by deliberately ignoring all but the polarity of the reception.
The receiver, the clipper cross-correlator receiver (CCCR), is con-
siderably less complex than the optimum receiver and is therefore
easier to implement, especially with the level of digital technology
present today. The CCCR has been studied extensively by numerous
other authors (Ref.. 16,17, 18), however, the work presented here is
felt to be new in that, to the Author's knowledge, no one has actually
carried out an evaluation of the CCCR performance for the case of de-

tecting a certain signal in noise of uncertain level.
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The primary advantage of the CCCR is that the processing
mechanism can be digitalized and the operations carried out on either
a general or special purpose digital computer. The initial digitalizing
operation of the CCCR consists of sampling and clipping or hard
iimiting the input observation. The median of the noise is usually
chosen as a convenient clipping level since the noise is generally as-
sumed to be symmetric and the median is generally an easily deter-
mined level, such as a transducer ground. The use of the initial clip-
ping process in the CCCR destroys all of the information in the input
reception other than that of signal polarity. At this point it is evident
that the operation of this receiver is suboptimum. However, from the
clipping operation forward the processing method can be optimum for
certain types of signals, namely, those with samples of equal magni-
tude but not necessarily equal sign. This statement is verified in
Appendix A.

After the clipping operation the CCCR cross-correlates the
clipped input observation with the known signal waveshape. Since the
clipped observation contains only polarity information, only the polarity
of the reference signal is generally used for the cross-correlation
operation. This implies that the known signal waveshape is trans-
formed into a binary waveform with only zero crossing information re-
tained to perform the cross-correlation. In addition, when the clipping

is done about the median of the noise, cross-correlation may be
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implemented by simply multiplying the clipped input observation by the
binary version of the known signal waveshape. The decision statistic
is then obtained by accumulating the pulses obtained from the cross-
correlator. This operation can be performed digitally by a preset
counter as shown in the digital implementation of the CCCR illustrated
in Fig. 9. We again remark that the CCCR operations performed after
the clipping operation can be optimum for the detection of signals whose
samples have the same magnitude but not necessarily the same sign as

shown in Appendix A.

5.2 CCCR Perfoi*mance Computations

From Fig. 9 it is evident that the decision statistic used by the
CCCR is the number of polarity agreements (or disagreements) in k
observations between the clipped input observation and the binary refer-
ence signal. To determine the probabilities of detection and false
alarm for the CCCR we need to know the distribution functions of this
polarity statistic conditional to the hypotheses SN and N.

Let us denote the number of polarity agreements by the symbol
m. Using this notation the probabilities we seek are given by

DET SN

P = Plm>a (46)

FA Jccer N

where A is an arbitrary threshold value. We note that the random
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variable m is a Bernoulli random variable characterized by the bi-
nomial distribution function. Hence, conditional to a known value of

the precision p and the hypothesis SN we have

P[m "agreements' in k observations |p, SN]

- (5)laye,91™ -y o™

In this expression ql(p, s) is the probability of a polarity agreement
for a signal sample s conditional to a known value of p and hypothesis
SN. To determine the probability conditional only to SN, Eq. 47 must
be averaged over the a priori distribution of the precision p. Symbol-

ically this latter probability is given by

P[m "agreements' in k observations | SN]

_ <1r<n> Jlaye, 9] ™ [1-ay(p,9)] E"Mopip  (48)
P

To evaluate Eq. 48 for a given g(p) we must determine the form of
ql(p, s). As defined above this is the probability of polarity agreement
between the clipped observation and the binary reference signal. In
Appendix A it is shown that when the median of the noise is used as the
clipping threshold, the probabilities associated with the clipper cross-

correlation output are the same as those associated with the input
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observation x(t). Hence,
a,(p,s) = P[x(t) > 0[p,SN] (49)

The median of conditionally Gaussian noise is zero so for this

case we have

o

a4(p,s) = @ (sp®) (50)

where

X

®(x) = f

-0 & 27

exp (—X2/2) dx

and we have chosen the signal samples to all have the same magnitude

which is denoted by
S. = S i=12,...,k

The choice of equal magnitude signal samples is made for two reasons.
First, this choice greatly facilitates the resulting mathematical com-
putations and second, the resulting CCCR performance is a maximum
over the class of inputs since the CCCR is an optimum processor given
the clipped input for this case (Appendix A). Thus, the CCCR perfor-
mance which we calculate is the best attainable. The reason for the
desirability of determining the best attainable will be evident in Chapter 7.
If we substitute Eq. 50 in Eq. 48 and use the Gamma distribution

for the precision p | for g(p), then Eq. 50 can be written as
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m agreements in
P[k observations l SN]

k) e f°° i m 1 .k-m p-1

= Ty J [26p®)] T [1- 2(sp®)] © p  exp(-ap) dp
(m I'(B 0 (51)
By substituting Eq. 51 in Eq. 46 we can determine the detection proba-

bility of the CCCR.

P[DET] CCCR

m=k B ) 1 g _
= (k)Tq(T fo [®(sp?)] ™ [1- @ (sp)] *™ - pP ! exp(-ap) dp

m
m=A . (52)

To determine the probability of false alarm we need to investi-
gate the distribution of the number of polarity agreements m condi-
tional to the precision p and hypothesis N. Since m is a Bernoulli
random variable with the binomial distribution, we have

m agreements in k m k-m
P[k observations | p,N} = (m) [qz(p, s)] T [1- qz(p, s)]
(53)

In this expression qz(p, s) is the probability of a polarity agreement
for a signal sample s conditional to a known value of p and hypothesis
N. For the case iﬁ which the median of the noise is used as the clip-
ping threshold, the probabilities associated with the clipper cross-
correlator output are the same as those associated with the input

observation x(t). Hence

62



a5(p,8) = P [x(t)> 0| p,N] (54)

There is no signal present under hypothesis N and so for the median

clipped conditionally Gaussian noise we are considering
P(x(t)>01p,N] = 3 (55)
which implies that

dy(p,8) = = (56)

Substituting the result of Eq. 56 in Eq. 53 we have
m agreements in [k
P[k observations | P’ N] - (m) (

Using Eqs. 57 and 46 we determine that the false alarm probability for

(57)

the CCCR is given by

(58)

It is interesting to note that the false alarm probability for the CCCR

is independent of the distribution of the noise level. This result oc-

curred because the clipping level was set at the median of the noise and
therefore caused the probabilities associated with x(t) to be indepen-

dent of the noise level. This independence of the false alarm
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p'robability of the noise level is often considered as a reason for using
the CCCR in situations for which the noise level is uncertain.

Using Eqs. 52 and 58 we can find the performance of the CCCR
for the case of uncertain noise level (with a Gamma distribution). The
false alarm probability, Eq. 58, is particularly easy to determine while
the detection probability, Eq. 52, is a great deal more complicated.
Also, we note that the ROC curves are a function of the number of ob-
servations or observation time k.

The fact that the ROC curves for the CCCR are a function of the
observation time (for fixed signal energy) creates somewhat of a prob-
lem in terms of data display. For the optimum receiver considered
in the previous chapter, somewhat the same problem existed; however,
it was found that the performance of the optimum receiver was asymp-
totic to the ESP receiver performance. Thus since the ESP receiver
performance was already natural to display, one could display the
optimum performance for some other specified value of k (e. g., kleO’)
and have a complete picture. For the CCCR the asymptotic bound is
not the ESP performance and so one must judiciously choose the
amount and type of data to display to develop a reasonable presentation.
In this report only‘the asymptotic (i. e., k—o) ROC curves for the
CCCR are displayed. The motivation for displaying only these curves
is that they represent the optimum performance for a given set of

parameters; thus, if this performance is judged insufficient, one would
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not be interested in the performance for less averaging time.

To determine the asymptotic behavior of the CCCR we must ex-

amine Eqs. 52 and 58 for large values of k. As k becomes large the

binomial portions of these expressions approach the normal density

function with mean np and variance npq (Ref. 9). (Here the notation

n represents the number of Bernoulli trials, and p and q are the

standard binomial probabilities. ) Using the normal approximation in

Eqgs. 52 and 58 we have

where

and

0 0 2_%

-(m-km )2/ 2k02
a a

(59)

pB— 1¢% 4m ap

|-
[N

)[1- @ (sp?)] (60)

1l
S
Q
(o}
[N

2
), o, = @(sp

2
g ~ f 2(27k) 2 e-(m-k/Z) 4/k dm (61)

If for convenience we make the following substitution for the threshold A,

A = (k%§+k)/2
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and then perform the integration with respect to m in Egs. 59 and 61

we have
| B-1 ¢ - ki(zma_ L -ap
PIDET] (oo = fo Ty P 1-@ % e “dp
(62)
and
P[FA]Z ~ 1-® (¢) (63)

CCCR

For simplicity we previously assumed a constant signal wave-
shape. Using this fact Eq. 60 can be rewritten in terms of k and ES

as

© [(E_p/k)? *J{1- Esp/kﬁ]}
(64)

m, = @l(Ep/0f] o

Equation 63 indicates that for a given threshold value ¢, the false
alarm probability for large k is unaffected by further increases in k.
However, this is not true of the detection probability as given by Eq. 62.
As k -~ o, Eq. 62 indicates that the detection probability reaches an
upper bound. This bound can be determined by using the results of
Appendix B. Using L'Hospital's rule and Eq. 64 it is shown in Appendix

B that

1-d 5= a ~ 1-CI>[C—(2ESp/7T)§] (65)
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Using the result of Eq. 65 in Eq. 62 we have

0 1
P[DET]éOCCR _ fo T Pl s - (2Esp/n)5] Le™® gp )
The factor ZES/ﬂ in Eq. 66 is recognized as the 63 percent efficiency
factor which is widely quoted for the CCCR performance when all para-
meters are certain. In other words the 2/7 = 0.63 factor in front
of the signal energy ES implies that the performance of the CCCR for
the known parameter case is that of the optimum receiver at 2db less
signal energy (since the performance equations are the same except for
the 2/ 7 factor). |

To express Eq. 66 in terms of the channel variability parameters
A and B which we adopted in Chapter 2 we make the following substi-

tutions.

o

y = QEp/m)° , r = E_ /a (67)

Using this substitution, Egqs. 66 and 63 can be written as

0 2
P[DET] Zyep = 1-2 / L@/ )2 tey /(BT
CCCR 0
(68)
®(¢ - y)dy
P[FA] Goop = 1- @ () (69)
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These latter equations express the performance of the CCCR (in terms
of the equivalent threshold ¢ ) for large averaging times. The ROC
curves obtained from a computer evaluation of these equations are pre-

sented in Chapter 7 where the performances of the various processors

considered in this report are compared.
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CHAPTER 6

CORRELATION RECEIVERS

In this chapter two receivers which incorporate little or no
noise level uncertainty information in their design are considered.
The design of these receivers, termed the cross-correlator and the
likelihood cross-correlator is considered briefly and their performance
is evaluated for the case of detecting a certain signal in noise of uncer-
tain level. Some of this work has been previously published by the

Author but is included in this report for completeness (Ref. 19).

6.1 The Cross- Correlator Receiver

6. 1. 1 Receiver Design. As stated we are concerned here with

receivers that essentially ignore any uncertainty that may be present
in parameters, such as the noise level, and process the input re-
ception as if these parameters were known. By definition then the re-
ceivers considered are suboptimum for the uncertain noise level situ-
ation under consideration. We wish to consider their performance
even though they are suboptimum since this provides a useful method
for determining the tradeoffs between equipment complexity, cost, and
performance loss.

Perhaps the simplest and most natural receiver to consider is

the cross-correlation receiver (CCR) illustrated in Fig. 10. The
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decision statistic formed by this receiver is the result of cross corre-
lating between the input observation and the certain or known signal
waveform. This statistic is optimum for the case of detecting a cer-
ain signal in certain noise, and this result makes it a logical choice for
study and comparison in the uncertain noise level case. The operation
of the CCR has been considered extensively in the literature (Ref. 1)
and so our primary goal is to evaluate its performance for the uncer-
tain noise level case.

6. 1. 2 Receiver Performance. To determine the performance of

the CCR for the uncertain noise level case we must determine the
probabilities of detection and false alarm. This is most easily done
by referring to the work in Chapter 4. In Eq. 34 the joint distribution

of Uk and Vk is given where,

and

The variable Uk above is recognized as the decision statistic

formed by the CCR (except possibly for normalization). Hence, to
determine the performance of the CCR we need only determine the con-
ditional marginal distributions of Uk' These distribution functions
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can be found by integrating Eq. 34 over the range of the variable Vk'

Performing the integration we obtain

%) @) S Lo I o

where
A= Es/a (71)

It is interesting to note that the two conditional distribution functions
for Uk are independent of the number of observations k. This result
implies that the performance of the CCR is independent of the number
of observations and only depends on the noise level distribution and the
signal energy (via 3, A, and ES). The performance of the CCR is ob-
tained from Eq. 70 by integration with respect to Uk using various
threshold values A. We note that Eq. 70 is a Student-t or t-distribu-

tion function (Ref. 15). Therefore, for the CCR operating in an un-

certain noise level environment we have

jr—

]CCR = fj({;)z _1“_(_3%_3_2 [r + A(Uk- é)z]'(&%)dUk

(72)
The ROC curves obtained for the CCR from Eq. 71 are displayed with

the other receiver performance curves in Chapter 7.
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6.2 The Likelihood Cross- Correlator Receiver

6. 2. 1 Receiver Design. In the previous section the cross-

correlator receiver was considered for the case of detecting a certain
signal in noise of uncertain level. The performance of this receiver is
suboptimum for the uncertain noise situation but it represents a logical
and easily implemented receiver. A natural method to preserve the
basic correlation processing of the CCR and at the same time to im-
prove its performance is to incorporate a small amount of the noise
level uncertainty in the receiver design by forming the likelihood ratio
of the correlation variable (Uk) using this quantity as the decision sta-
tistic. The resulting receiver is termed the likelihood cross-
correlator receiver (LCCR) and is illustrated in Fig. 11. The basic
processing of this receiver is the cross-correlation of the input recep-
tion with the stored reference waveform, the difference between the
LCCR and the CCR appearing in the processing of this correlation sta-
tistic.

The method used to obtain the processing equation for Uk is to

form the likelihood ratio of this variable.

£(U) |SN)

Q(Uk) = —f@—NT (73)

From Eq. 70 we can express Eq. 73 as

73



PIOYS 8y L,

_

J9AT999J UOTIB[9JIJI0D

-SSOJID POOYI[aNI] 8y} JO uoryezijeal rerjuanbes v 11 -31g

axenbg

uors199(]

1o0jeredwo)

+

axrenbg

Keraq

ATOWB N

Teudrg

74



2(u (74)

) =
k 2
1+ )\(Uk_ 1)

Equation 74 expresses the basic processing method to obtain the im-
proved performance of the LCCR. A receiver design based on this
method is illustrated in Fig. 11.

6. 2. 2 Receiver Performance. To determine the ROC perfor-

mance curves for the LCCR we must determine the detection and false
alarm probabilities for this receiver as a function of the threshold set-
ting. If a particular threshold value is denoted by A, then these two

probabilities are given by

DET
P[FA

= PQ(U)>AISN] (75)
]LCCR [ k™= N

Using Eq. 74 we can write Eq. 75 in the form

1
1+AU§ Ptz

> a |SN (76)
- 1) - N

DET
P[ = P 5

FA]LCCR 1+ MU,

Applying algebraic manipulation to Eq. 76 we can express it as

p [DET

FA] - P[l + AUﬁ > A'A<Uk_1>2 + A" Sg] (77)
LCCR

where we have defined
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At = A V(B2)

If we complete the square on Uk in Eq. 77 and perform some additional

algebraic manipulations, we have

DET 2 2 SN
P[ ] = PYU +AY/(1-AaM]7>A/(1-A")"-1/1]
Y R S (L 1”2 o

(78)
This latter expression is equivalent to
P[’}Ef] P[Uk > A sg] (79)
LCCR

where
AT = (A= A2 C 1AL - AL A

The probability distributions of Uk conditional to SN and N were deter-
mined above and are given by Eq. 72. These distributions are in the
form of the t-distribution function with different mean values. To ob-
tain the ROC curves for the LCCR for the case of uncertain noise level
these distributions are used with Eq. 79. They are obtained by deter-
mining points from ~the distributions at various values of A" (as a
function of A ) for fixed values of A and B. The digital computer was

used to determine the points using a specially developed subroutine for

the t-distribution function. (This computer routine was also used in a
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slightly different fashion to obtain the performance of the CCR. ) The
ROC curves for the LCCR are displayed in Chapter 7 along with the

other receivers.
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CHAPTER 7

COMPARISON OF RECEIVER PERFORMANCE

In the previous chapters the design calculations and perfor-
mance computations for a number of receivers operating in an uncer-
tain noise level environment were carried out. In this chapter the
results of this work are displayed in the form of ROC curves. From
these ROC performance curves a number of conclusions are reached

concerning the detection of certain signals in noise of uncertain level.

7.1 Receiver Review

The receivers studied in this report are naturally separated
into four classes. The first class contains the single receiver termed
the ESP receiver (Chapter 3). The predominate design characteristic
of this class (or receiver) is that perfect parameter information is in-
corporated in the receiver design even though the channel in question
may be variable. In other words, for any given trial run the hypo-
thetical ESP receiver has ideal information about the value of any un-
certain parameter. The performance of this receiver is limited only
by the stochastic né,ture of the detection problem and the variability of
the uncertain parameters but not by a lack of knowledge of parameter
values on any given trial run. In terms of the uncertain parameters,

the ESP receiver performance is the upper performance bound.
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The second class of receivers considered in this report consists
of realizable receivers which attempt to include in a direct manner the
effect of parameter uncertainty in their design. The goal of the re-
ceivers in this class is to attain as great a performance as possible
for the given situation by incorporating in some manner all of the avail-
able knowledge in the receiver design. The two receivers of this class
investigated in Chapter 4 were the optimum (Bayes) receiver for the
uncertain noise level case and an estimation or an estimate-and-plug
type of receiver.

The clipper cross-correlator receiver is the only receiver in
the third class of receivers studied (Chapter 5). This class includes
receivers which attempt to incorporate the available environmental
knowledge in the receiver design and simultaneously to reduce system
cost and complexity and to increase ease of implementation. The result
is a compromise receiver which suffers some performance loss but at
reduced cost and complexity.

The last class of receivers studied is characterized by receivers
which make little or no attempt to incorporate parameter uncertainty
in their design. In a sense, these receivers are similar to the re-
ceivers in class three described above in that they are less complex
and easier to implement and have reduced performance compared to
the optimum. The receivers in this final class were presented in

Chapter 6 and are the cross-correlator receiver and the likelihood
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cross-correlator receiver.

7.2 Receiver Performance Comparison

An analysis of the performance of the various receivers studied
was described in the previous chapters. The results of the analyses
consisted (in explicit or implicit form) of expressions for the proba-
bility of detection and the probability of false alarm as a function of the
threshold for each receiver. In most cases the complexity of the
expressions required evaluation on the digital computer.

The results of evaluating the performance expressions for each
receiver studiedk appear as ROC curves in Figs. 12 through 21. The
curves are parameterized by the expected value of the detectability
(or signal-to-noise ratio) de and the variance of the detectability dv'
In addition, the probability density function of the signal-to-noise ratio
expressed in decibels corresponding to the values of de and dV is
also shown on the performance graph. This plot is included to give the
reader an intuitive grasp in terms of familiar units of the relative
amount of signal-to-noise ratio uncertainty (channel variability) repre-
sented by the performance curves. Note that the abscissa scale can be
read directly in decibels. Figure 5 shows plots of the signal-to-noise
ratio densities not in decibels. Finally, we have chosen to use the de-
tectability or signal-to-noise ratio as the uncertain parameter. The
relationship existing between this quantity and the uncertain noise level
is given in Chapter 2.
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To contrast the performance of the various receivers three
values of de were chosen as representative and are presented in the
figures. The abbreviations used in labeling the performance curves are

repeated here for convenience:

ESP -- Externally Sensed Parameter receiver
OPTIMUM -- Optimum (Bayes) receiver

ESTIMATE -- Estimation or estimate-and-plug receiver
CCCR -- Clipper Cross-Correlation Receiver

LCCR -- Likelihood Cross-Correlation Receiver

CCR -- Cross-Correlation Receiver

The performance curves for the ESP, CCR, and LCCR re-
ceivers are independent of the 2WT product (k) as discussed in the
previous chapters. The performance curves for the OPTIMUM and
ESTIMATE receivers are not independent of k as discussed in
Chapter 4. The curves presented in Figs. 12 through 21 represent
ROC curves for a value of k = 100 for these receivers. As k — o,
for long averaging times, the performances of these two receivers ap-
proach the ESP performance for the corresponding values of de and
dv' This attainment of the upper performance bound as a function of
k was shown analytically in Chapter 4. The reason for including the
curves for k = 100 is to illustrate the effect of practical averaging

times on the performances of the OPTIMUM and ESTIMATE receivers.

81



The value of 2WT or averaging time has an effect on the CCCR
similar to its effect on the OPTIMUM and ESTIMATE receivers (Chap-
ter 5). However, in the performance plots we have chosen to present
the performance for the CCCR corresponding to k =w. The CCCR
performance plots given in Figs. 12 through 21 represent the asymp-
totic performance of the CCCR for the given values of de and dv'
The reasons for presenting the CCCR performance in this manner are
detailed in Chapter 5. Basically, we wished to display the best perfor-
mance obtainable with the CCCR since its performance usually is poor
compared to the other receivers. (A more complete discussion of this
concept involves singular detection and will not be considered here.

See Ref. 20.)

7. 3 Conclusions

Investigation of the performahce curves presented in Figs. 12
through 21 yields numerous results. One interesting aspect of the re-
ceiver performance curves is that the performances of the ESP,
OPTIMUM, ESTIMATE, LCCR, and CCR receifrers are identical along
the negative diagonal. The processing operations of all of these receiv-
ers become simple correlation processing along the negative diagonal
since the threshold value is unity at this point. Thus the performance

of these receivers becomes identical. The implication is that
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uncertainty in the noise level has no effect on the performance of sym-
metric binary communication systems. This result is a consequence
of the fact that operation of this type of communication system is equiv-
| alent to operation along the negative diagonal of the ROC curves where
the performance of the receivers is the same.

The usefulness of the'performance curves for evaluating trade-
offs between equipment cost and complexity versus performance is
apparent. The use of the receivers, such as the OPTIMUM and the
ESTIMATE types, that incorporate uncertainty in their design results
in performance values that are very close to the upper bound for
reasonable averaging times and that can approach the upper perfor-
mance bound for long averaging times. These results are illustrated
in Figs. 12 through 21. The construction and implementation of the
OPTIMUM and ESTIMATE receivers are reasonably complex when
compared to the digitally implemented CCCR whose performance is
not as great. The effects on performance of a tradeoff in the direction
of the CCCR is shown by the performance curves. The performance
of the CCCR is well below that of the upper performance bound and that
of the ESTIMATE and OPTIMUM receivers.

The use of receivers which use little or no information concern-
ing the noise level uncertainty in their design can cause considerable
performance loss as the ROC curves for the CCR and LCCR indicate.

At low values of false alarm probability the performance of the CCCR
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is particularly poor. Thus, for detection situations in which the noise
level is uncertain, the use of simple correlation receivers can result
in extreme performance losses. These losses in performance are
magnified by increasing variability in the channel characteristic,

In addition, Fig. 14 indicates that for low expected signal-to-noise
ratios and relatively high channel variability caused by noise level un-
certainty the performance of the simple correlator approaches

the chance diagonal.

When the CCCR is compared to the correlation receivers (CCR
and LCCR), we see that for operation at very small false alarm proba-
bilities the performance of the CCCR is better. However, there is a
cross-over point which is a function of the process parameters at which
the correlation receivers provide an advantage. For the case of a
binary communication system where operation is along the negative
diagonal the correlation receivers yield a decided advantage in perfor-
mance.

Perhaps the primary message of the performance curves is to
illustrate the effect of neglecting to include the effect of noise level un-
certainty in receiver design when the situation warrants such consider-
ations. This fact is dramatically illustrated by a comparison of the
OPTIMUM or ESTIMATE performance curves with the CCR perfor-
mance curve in Fig. 18.

We can consider this loss in performance more quantitatively
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by comparing Figs. 15 through 18. In each of these figures the ex-

pected value of d, the signal-to-noise ratio, is 4. For each of the

figures the probability of less than a 3 db swing in the signal-to-noise ratio
(i.e., 2 =d =6)is given by

6
P(+3db) = [ g(d)dd
2

where g(d) is the appropriately chosen distribution for d. A tabula-
tion of these values is given below along with the detection probabilities
of the ESP receiver and the cross-correlator receiver (CCR) at a false

alarm probability of 0. 02.

de dV P(+3db) PESP(DET) PCCR(DET) P(F.A.)
4 2 0. 859 0.48 0.41 0. 02
4 4 0. 706 0. 47 0.33 0. 02
4 8 0. 537 0.45 0. 20 0. 02
4 16 0. 383 0. 43 0. 05 0. 02

In terms of underwater sound propagation in an ocean environ-
ment a 3db swing in the signal-to-noise ratio is rather common (Ref.
3) and yet from the tabulation above we see that for reasonable proba-
bilities of this event occurring there is a significant loss in detection

probability (for a reasonable false alarm probability of 0.02) for the
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cross-correlation receiver when compared to the upper bound proba-

bility P DET). Since with reasonable averaging times, the

ESP(
OPTIMUM and ESTIMATE receivers approach the upper bound proba-
bility, there is considerable difference between their performances and

the CCR performance in the uncertain noise level environment.

7.4 Summary

In this report the problem of detecting a certain signal in noise
of uncertain level is considered in detail. A number of different re-
ceiver designs r}anging from the hypothetical ESP receiver to a corre-
lation receiver are considered and their performances evaluated. The
major emphasis in the study has been to show the effect of noise level
uncertainty on the performance of the various receiver designs. The
results, as summarized by ROC curves, appear to be very useful in
providing a basis for making compromises between equipment cost and
complexity and average equipment performance. In particular, the
results of this study as applied to transmissions of underwater sound in
an ocean environment indicate that some procedure for acquiring noise
level should be incorporated in detection receiver designs. This need
for acquisition of the noise level arises because of the random nature

of the ocean ambient noise level discussed in Chapter 2.
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12 Comparison of receiver performance for the detection of a
certain signal in noise of uncertain level. The distribution
of the signal-to-noise ratio expressed in decibels is given.
The mean and variance of the Gamma distributed signal-to-
noise ratio are de = 1.0, dv = 0. 25.
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Fig. 19 Comparison of receiver performance for the detection of a

certain signal in noise of uncertain level.

The distribution

of the signal-to-noise ratio expressed in decibels is given.
The mean and variance of the Gamma distributed signal-to-
noise ratio are de = 8.95, d, = 4. 0.
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Fig. 20 Comparison of receiver performance for the detection of a

certain signal in noise of uncertain level. The distribution
of the signal-to-noise ratio expressed in decibels is given.

The mean and variance of the Gamma distributed signal-to-
noise ratio are de = 8. 95, dV = 8. 0.
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Fig. 21 Comparison of receiver performance for the detection of a

certain signal in noise of uncertain level. The distribution
of the signal-to-noise ratio expressed in decibels is given.
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APPENDIX A

OPTIMUM CHARACTERISTICS OF THE CCCR

In this appendix we wish to show that the operations performed
by the CCCR after the initial clipping or hard limiting operation are
optimum for the case of equal signal sample (Si) values. In addition,
we wish to investigate the operation of the CCCR in general.

In Chapter 2 we discussed the fact that optimum processing is
obtained by forming the likelihood ratio. Following the limiting opera-

tion in the CCCR the processor is presented with a vector Z_ = (z

k 1’

.,2, ) where each z, is a clipped version of the corresponding input
observation sample X, and has a value 1. Thus the optimum CCCR

processor forms the likelihood ratio of the vector Zi at this juncture.

#(Z, | SN)
M%) = Fz, 7™ (80)

Since the precision level p of the input process x(t) is uncertain,

Eq. 80 can be written as

J. 12z, | p,SN) g(p) dp
uz,) = (81)
#(2, | p, N) g(p) dp

yolt

R
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Conditional to a value of p the z components are independent since
we have chosen x(t) to be a conditionally independent process. Using

this assumption in Eq. 81 we have the following expression.

f(z, | p,SN) g(p) dp

1

T =Ry

o

(82)

0z,) =
I f(z, | p, N) g(p) dp
=1

1

o

The Zk process is discrete since it is obtained as the result of samp-

ling and hard limiting a continuous process. Hence, we may replace

the continuous pfobability density functions in Eq. 82 with discrete

probabilities to yield

k
J. 1 Pz | p,SN)gp)dp
P i=
J. 1 Pz | p,N)glp)dp
P i=1
Since each zi is a hard limited version of Xi we have
>
P(‘Zi:illp"):P(XiZAlp") (84)

where A is a threshold value. Since x(t) is a Gaussian process with

precision level p and either additive signal s(t) or no signal, we

have
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r'1-CI’[(A.—si)p%
1 SN
@[(A—s.)pi]
P(zl=i1|p, : )= {1 lé_ (85)
- & (Aap”)
N N
|2 (Aap°)

If we hard limit at the median of the Gaussian process, then A=0 and

1 - @(—sipé)
N SN
@ (-s;p°)
P(zi = +1]p, - >= < (86)

1
2

(M

where the probabilities conditional to N are independent of p.

We now consider the case for which all the si values have the

same magnitudes. We denote the magnitude of the 8 values by

s=1Is,1 , i=1,2,...,k (87)

Using the symmetry properties of the @ (-) function and the definition

given in Eq. 87, Eq. 86 for the SN condition can be written as

(5. > 0 s. <0
1 — 1
1 L
P<z. = +1| p, SN) = < @ (sp?) 1- ®(sp?)
1
1 L (88)
1-®(sp?) @ (sp?)

.
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InVestigating Eq. 88 it becomes clear that when all the S5 values have
the same magnitude one can reduce consideration to the 84 > 0 case
by multiplying the obtained z value by the correct sign of the S5
sample. This is the form of the CCCR which uses the binary reference
signal (retaining sign information only) to cross-correlate with the
(clipped) Zk signal obtained from x(t). When the S; values do not
have the same magnitude, an optimum device must retain the appropri-
ate magnitude values as indicated by Eq. 88. In this more general case
the form of the optimum processor is not as simple and is not generally
termed a clipper cross correlation receiver.

For the equal magnitude case let us define
1
q (p) = @(sp®) (89)

Using Egqs. 89 and 88 in the general form of the likelihood ratio (Eq. 83)

we have for the equal magnitude case

Uz = 4 J Lo R 1-q )] M e de (90)

since conditional to N the probabilities are independent of p. The
quantity m is the.number of +1's or polarity agreements. Expression
90 is easily shown to be a monotonic function of m and so m may be
used as the decision variable by the CCCR.

It follows from the discussion above that the simplified form of
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the CCCR | using polarity information of s(t) only | is an optimum
processor for the clipped input case where all the 8 values have the
same magnitude. When this is not the case, the optimum device must
include signal waveshape information and the simplified form of the

CCCR is a suboptimum processor for the clipped input case.
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APPENDIX B

PERFORMANCE BOUND FOR THE CCCR

In this appendix we wish to show that

¢ - k2(2ma- 1)

lim 1- 0 7 - 1-®[¢ - (2E_p/n)°] o
where
m_ = ®[(E_p/k)°] (92)
and
o = ®[(B,p/K)°] {1-@[(E p/k)*]} (93)

The function @ (-) is a probability distribution function and so it is

bounded between the values zero and unity with
®(0) = 3 (94)
For fixed values of ES and p it is clear that

lim ¢ - 3 (95)
a
k-0
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and so we need only concern ourselves with the term
1
1{‘2(2ma - 1) (96)

in Eq. 91. If we use Eq. 92 to rewrite Eq. 96, we are concerned with

lim k5{2c1>[(ESp/k)§] - 1]} (97)
K-~
or
2@[(Esp/k)§— 1] -1
lim T (98)
k—o0 k2

Using 94 we find that this latter limit is indeterminate since it is 0/ 0.
We can use L'Hospital's rule to obtain after differentiation of the
numerator and denominator in Eq. 98,

(/121 YE p)*] K7 .
A s ° ° - (/1) (E p)

k-0 4" 22

o=

(99)

which by L'Hospital's rule implies that

lim k§{2@[(Esp/k)%] - 1} (2/1r)% (Esp)% (100)

k-0

Using Eq. 95 and Eq. 100 we have the sought-after result.
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