THE UNIVERSITY OF MICHTIGAN

Memorandum 31

DEFAULTS AND BLOCK STRUCTURE IN THE MAD/I LANGUAGE

Allen Springer

CONCOMP: Research in Conversational Use of Computers
ORA Project 07449
F.H. Westervelt, Director

supported by:
DEPARTMENT OF DEFENSE

ADVANCED RESEARCH PROJECTS AGENCY
WASHINGTON, D.C.

CONTRACT NO. DA-49-083 OSA-3050

ARPA ORDER NO. 716

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

July 1970

ACKNOWLEDGMENTS

The author would like to acknowledge the support
of the CONCOMP Project; IBM, who sent the author on an
IBM Resident Study Program; and especially his co-workers
on the MAD/I compiler, Bruce Bolas, Ronald Srodawa,
Charles Engle, David Mills, Fred Swartz; and the MAD/I

coordinators, Profs. Bernard Galler and Bruce Arden.

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS. . . + & &« « ¢ o o o o o « o o o Jiii

l.

Introduction . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ e ¢ o e o o o 1.
Defaults in MAD/I. . . « « ¢« v « « « « « o« « « 3
Block Structure in MAD/I « . . 6

The Organization of the Compiler 13
The Block Structure Algorithm. 17
Conditional Declaration Handling in MAD/I. . . 25
Some Implementation Details. 27

ConcluSion « « o ¢ v o o o o o o o o o « 2 « . 32

1. INTRODUCTION

This paper describes the default and block struc-
ture mechanisms of MAD/I, a PL/I-like language, and the
interaction of these mechanisms with the three types of
MAD/I declarations: explicit declarations, default dec-
larations, and conditional declarations. MAD/I allows
the programmer extraordinary control over the default
assignment of data types to variables, and also allows
the programmer more than usual control over the scope
of variable names in block structure. The interaction
of these two facilities can make the handling of declar-
ation information a difficult problem. This paper out-
lines an algorithm in which this information is processed
"on the fly" in the first pass of the compiler over the
source program, and then the symbol table is processed
to assign defaults and allocate storage. A simple second
pass over a transformed version of the source text re-
solves the scope and interpretation of variable names.

MAD/I is a computer language under development at
the University of Michigan Computing Center, sponsored
by the CONCOMP Project. It can be thought of as a re-
mote descendant of 7090 MAD and ALGOL 60, with PL/I being
a not-too-distant relative. However, MAD/I and its com-
piler have soﬁe unusual features that aid language modifi-

cation and extendibility, although these features are

beyond the scope of this paper. Except for block struc-
ture scope facilities and the default setting facilities,
then, MAD/I‘may be regarded\as simply another‘representa—
tive of the class of procedural languages which includes
ALGOL 60 and PL/T.

Briefly, MAD/I has blocks, as in PL/I and ALGOL 60.
Like PL/I (but unlike ALGOL 60), declarations may occur
anywhere within a block, and are not required for all
variables in the program. If some attributes of a vari-
able are not declared then they are given "default"
values. Such attributes include storage class (e.g.,
static, based, etc.) and data'type. The facilities for
specifying the defaults are very different from those
of PL/I, and are a generalization of those of 7090 MAD.
The scope of a variable is determined in much the ‘same
spirit as in ALGOL 60 and PL/I, but the programmer has
more control over the specification of scope, including
the scope of variables which are not declared. This
makes determining scope and determining defaults a com-

plicated problemn.

2. DEFAULTS IN MAD/I

The default assignment of data types is done in
a very systematic and general manner. At any point
within the program there is defined a current default
data type. This default data type may be declared by
the programmer on a block basis. A special symbol,
'DEFAULT', is used to carry the default information,
and is treated like a variable when in the context of
declarations, but otherwise it is not written by the
programmer.

The default data type is given to any variable for
which no data type has been explicitly declared. For

some data types one can declare a "sub-data-type," such
as the component data type of an array, the data type
- of the result returned from a subroutine, or the data
type of a component of a structure. If such a "sub-
‘data-type" is not specified then it is given the de-
fault data type. For example, assume that the default
has been declared as follows:

'DECLARE' 'DEFAULT' 'INTEGER'

Then assume the following declaration:

'DECLARE' A 'FIXEDARRAY' (4,4) 'FLOATING',
B 'FIXEDARRAY' (4,4);

The mode of both A and B is 'FIXEDARRAY', with dimen-
sion 4 x 4. The component data tYpe of A was explicitly

declared to be 'FLOATING'. Since the component data

type of B is not explicitly declared, it is taken to

be the default, 'INTEGER'. If some other variable that
belonged to that block were referenced in the block but
no declaration made about its data type then it would
also be assigned 'INTEGER' data type.

There are other cases where default actions occur
in MAD/I. They will be mentioned briefly here although
they are not involved in the rest of this paper. The
dimension information given in the above example is
specified in a declaration "suffix." If such a suffix
is omitted for declarations where they are normally ex-
pected, then a default set of information is assumed
for the missing information. For example, in the case
of an item of 'CHARACTER' mode, the suffix specifies
how many characters the variable has. If the suffix
is omitted, the number of characters is assumed to be
one. If the dimension information were omitted above,
a warning message would be issued, and an array which
has one dimension and one component would result. The
lexical class of constants specifies an implicit data
type which they are assigned, unless a declaration is
explicitly written which specifies some other data
type. As an example, the constant 5 will be assigned
'INTEGER' data type (32 bits long on the IBM 360),
whereas 5@ ('INTEGERSHORT') produces a constant 16-bit

integer.

These two types of default operations are presently
not controllable any further by the programmer. For
suffixes the default is associated with the mode in-
volved. For constants the default is associated with
the lexical class of the symbol. It would be possible
to have these defaults also controllable by the pro-
grammer by adding special declarations to the language,
but this has not yet been done.

The default data type in the outermost block is
'FLOATING' unless it is explicitly declared to be some-
thing else. For any other block the default is the same
as for the next outer block unless it was explicitly
declared in the inner block. If a default mode is de-
clared, but not completely, then the remainder of the
default is taken from the default of the next outer
block. This is done in exactly the same manner in
which defaults are applied to a variable whose "sub-
data-type" may not have been declared. As an example,
assume that in the outer block the default is 'BOOLEAN'.
Assume that the default is then declared as follows in
the inner block: 'DECLARE' 'DEFAULT' 'FIXEDARRAY' (10);
Thus the component of the inner block's default is not
explicitiy specified. It will be made the data type of
the default of the next outer block, 'BOOLEAN'. Gener-
ally the default propagates inward from the next outer
block, in a manner similar to the propagation of scope

of variables.

3. BLOCK STRUCTURE IN MAD/I

There are three concepts embodied in block struc-
ture as it is traditionally specified in ALGOL 60 and
similar languages. Typically the block is denoted by
a beginning keyword and an ending keyword. In ALGOL
a block has three functions: (1) to specify scope of
variables, (2) to specify the dynamic nature of stor-
age allocation for certain classes of variables, and
(3) to group statements. In PL/I the grouping effect
can also be obtained with a DO statement as well as
with a BEGIN statement. In MAD/I the 'BEGIN' statement
is used for simple grouping of statements, and the other
two facilities are specified by 'BLOCK' or ‘PROCEDURE'’,
corresponding to BEGIN and PROCEDURE in PL/I. Thus
MAD/I has facilities similar to those of PL/I, although
with different names.

The scope in which a variable is known is determined
rather simply in ALGOL. If a variable is declared in a
given block, that variable's name represents a differ-
ent variable from one of the same name in the next outer
block. If a variable is used in an inner block but not
declared there, then it is the same variable as one of
the same name in the next outer block. Finally, in
ALGOL 60 all variables must be explicitly or implicitly
declared in the outermost block in which they are to

be known.

In MAD/I the "naming" or scope rules are similac
to those of ALGOL 60, but there are additional rules
allowing the programmer more control over the "naming"
facility. In MAD/I the user does not have to declare
a variable at all; therefore he needs conventions in
order to know in which block an undeclared variable
belongs. 1In PL/I the rule apparently is that a de-
clared variable belongs to the outermost block in which
it is declared. If it is not declared, then it belongs
to the outermost block.

Let us motivate the additional rules for assigning
defaults to symbols. By writing a large block and
specifying the default within thaf block, the user can
avoid writing a large number of individual declarations
for variables in that block. But if the block is an
inner one, then, following the PL/I rule, variables
that are not declared in that block would belong to the
next outer block and would not be affected by the de-
fault. What is desired, in some cases, is that unless
otherwise specified, any variable used in a block is
declared in that block implicitly. 1In other cases we
would want to have the PL/I rule. Thus we have modi-
fied the scope rules for MAD/T as follows:

(1) If no default is declared for a block then

the only symbols that belong to that block

(2)

(3)

are those that are declared in the block.
If a default is declared in a block, but
'NEW' has not been declared for that de-
fault symbol, then symbols that have not
been declared in the block are treated as
if they were referenced in the next outer
block.

If default was declared for the block and
'NEW' was also declared for the default,
then, unless otherwise specified (by rules
below), all symbols referenced in the block

are implicitly declared in the block.

Note that under these rules a block with default

declared 'NEW' would not be able to access any vari-

ables outside that block. Therefore, we have devised

additional rules, which apply irrespective of any de-

fault declarations or 'NEW' declarations currently in

effect:

(1)

(2)

(3)

If a symbol is declared 'NOTNEW' in a given
block, then it is treated as if it were refer-
enced in the next outer block.

If a symbol is adeclared 'GLOBAL', then it

is treated as if it were declared 'NOTNEW'

in that block and each surrounding block.

If there is no next outer block as stated

10

in (1) and (2) above, then the variable be-
longs to the outermost block.

Although MAD/I has not yet been used extensively,
most of these rules have proved useful and have elimin-
ated much writing of declarations in some cases. Typi-
cally, the scope rules of block structure are used to
allow the writing Qf relatively independent sections
of program which are to be part of the same compilation.
The block structure allows the user to write the sec-
tions without worrying that two variables in different
sections may accidentally have the same name. In ALGOL
the variables in the two blocks would be declared in
their own blocks, and those that are intended to be
common would be declared in the next outer block. 1In
MAD/I the programmer has the freedom of not declaring
all variables in such blocks; instead he declares
'NEW' 'DEFAULT' in each independently written block.
Then all variables referenced in each block belong to
that block unless declared 'NOTNEW'. This combination
of rules gives the user the advantages of both the
block structure and the default declaration facility.

In the left-hand column below are several blocks
representing the skeleton of a complete MAD/I program.
All references are indicated by occurrences of variable
names. All declarations are indicated. The right-

hand column contains comments about items to the left.

11

'PROCEDURE' MAIN;

<o A ...

'BLOCK'

cee A ...

'DECLARE' B;

'DECLARE' C;
'NOTNEW' C:

'BLOCK'
'DECLARE' 'DEFAULT' ' INTEGER;

.o A ...

'DECLARE' (;

'END';

'BLOCK'

'DECLARE' 'DEFAULT' 'NEW'
'CHARACTER' (256) ;

...A...

'DECLARE' B
'DECLARE' D

'FLOATING';

'END’ ;
'DECLARE'

'"NOTNEW' 'BOOLEAN' ;

Block 1 begins. Main is im-

plicitly declared 'ENTRYPOINT'

mode.

This variable A is not de-
clared,so it belongs to the
outermost block and has de-
fault mode of 'FLOATING'.
The beginning of block 2.
This block has no default
declared for it.

This is the same A as in
block 1.

B is new to this block, and
will have the default mode,
'PLOATING'.

Despite the declaration, C
is not new to block 2, but
belongs to block 1, and has
default mode.

Block 3 begins.

There is a new default for
this block, but 'DEFAULT'
has not been declared 'NEW'.
Since it is only referenced
here, this A is the same as
in block 1 and 2.

Since it is not declared in
this block, B is the same as
in block 2.

C is new to this
has default mode
The end of block 3.

The beginning of block 4.
This block does have its de-
fault declared 'NEW'.

As a result, this A is a
new variable even though it
is only referenced in the
block; it has the default
mode of 'CHARACTER' (256).

B is new to this block.

D is the only variable
referenced in this block
which does not belong to the
block. It belongs to the
next outer block.

The end of block 4.

This is the same D as in
block 4. D belongs in this
block instead of the next

block and
of

'INTEGER'.

12

outer one because of this
declaration.

'END' End of block 2.

LY

'"END' End of block 1.

~e

In this example have two distinct As, two distinct Bs,
and two distinct Cs. Of course this example looks
rather complicated, because no other program details
are supplied to make it look more natural, and because
it attempts to illustrate many rules with one example.
It is interesting to point out, for procedures in
MAD/I, that entry points to a procedure fall inside the
'"PROCEDURE' ... 'END' brackets, and are implicitly de-
clared to be 'ENTRYPOINT' mode. According to the strict
rules specified above, these entry points would be "new"
variables in the block and thus not known outside the
block, definitely an undesirable situation! Thus there
is also an implicit 'NOTNEW' declaration on each entry

point specified in the prefix of a 'PROCEDURE' statement.

4. THE ORGANIZATION OF THE COMPILER

This section discusses the organization of the
compiler so that the algorithm given in the next sec-
tion will be seen in the proper context. The compiler

makes two passes over the source program, in which it

collects all declaration information, parses the source
text, resolves all default information for symbols refer-

enced by the programmer, and straightens out all block

structure information. Between the two passes there
is a symbol-table-processing phase.

The first pass does most of the work. Briefly,
it parses the input character stream into "symbols,"
parses the program in symbol form, and expands the
parsed symbols into "n-tuples" of the form of an oper-
ator followed by zero or more operands. The n-tuples
become a new representation of the source program.

For example, A:=B+C might be transformed into

+,%T1,B,C;
:=,%T2,A,%T1;

where the percent symbols are user-generated temporary sym-
bols. The algorithm described below assigns data types

to the symbols A, B, and C (but not to the temporary
symbols). Also, if several variables named A are de-
clared, the algorithm will determine which variable

named A is represented by any given instance of the

Symbol A.

13

14

The major problem encountered in scanning the
input text is that after a symbol has been found which
could represent a variable, nothing more may be known
about it until the end of the block is encountered.

This is because declarations about a variable, if there
are any at all, may occur anywhere in the block. By

the end of the block it is possible to determine Whether
a given symbol referenced in the block represents a
variable belonging to the block. To solve this problem,
we need to know (1) what, if anything, has been explicitly
declared about the symbol, and (2) whether a 'DEFAULT'
has been declared 'NEW' for the block. A second problem
is that attributes cannot be completely assigned for

any variable until all the attributes of the default

for that block are known. But the attributes of the
default cannot always be known until they are known for
the default of the next outer block. Thus, since the
last statement of the program might be the declaration
of the default of the outermost block, the whole pro-
gram has to be scanned before defaults can be applied

to the variables.

Let us examine in more detail what happens to a
specific symbol during the processing of the program.
When a symbol which can represent a variable is first
encountered, all that can be done is to save its name

and note that it was referenced in the block currently

15

being scanned. We cannot know whether it represents

a variable belonging to that block until the end of the
block has been found. Furthermore, we cannot know
whether it belongs to that block even if a declaration
occurs for it, since a subsequent 'NOTNEW' or 'GLOBAL'
declaration might occur for it in that block. More
particularly, we cannot know whether it represents

the same variable or a different variable from the sym-
bol of the same name found in the next outer block.
Note that if we are to produce n-tuples while parsing
the input text, we must represent a variable in the
n-tuple by a pointer to the symbol for that variable,
at the very least. We cannot include which block it
belongs to, however, since that is not known yet.
Therefore we must either (1) assume which block it
belongs to, and correct that assumption later if it

is incorrect, or (2) not bother to assume which block
it belongs to, and correct the n-tuples some way later.
No matter what is done initially, however, the n-tuples
must somehow be corrected later. The method of doing
so, of course, depends upon how the symbol is repre-
sented in that n-tuple. 1In the first implementation

of MAD/I we have chosen to have the representation of
the symbol in the n-tuple always point to the same
"main symbol table" entry for that symbol. Then, in

the second pass, the n-tuple is made to point to some

16

other symbol table entry, if necessary.

Let us assume that something was declared about A
in an outer block and then something else was declared
about A in the next inner block. If A is subsequently
declared 'NOTNEW' in the inner block, then the two de-
clarations must refer to the same variable. If the
'NOTNEW' does not occur, then the declarations refer
to two different variables. In the present implementa-
tion of MAD/I,the symbol table entries carry the de-
claration information. We thus need a way of keeping
separated the information of the two declarations about
A until it can be determined definitely whether they
should be separated or not. (Note that it is not ille-
gal to have several declarations about the same variable
in MAD/I. Requiring all information about a variable
to be made in the same declaration statement might sim-
plify some of the declaration-processing problems but

it would lessen the convenience to the user.)

5. THE BLOCK STRUCTURE ALGORITHM

Several routines can be called upon to perform
various functions when the compiler is scanning the
descriptors before and during parsing. The algorithm
will describe these routines and the circumstances
under which they are called. A particular symbol can
have associated with it several variables whose names
are the same, but at most one variable per block. The
job of this algorithm is to determine to which blocks
such variables belong, and then to map the symbols in
the n-tuples which result from the parse into the proper
variables for that point in the program.

At any point during the scan of the input descriptors,
a symbol can be in one of four states with respect to a
block: "unreferenced," "referenced," "declared," and
"not new." For the declared state there is a variable
associated with that block. This is not true for the
other three states except when the block is the outer-
most block. The outermost block is a special case, of
course, since it is not surrounded by another block. 1In
the outermost block a variable must be in one of the
first three states; i.e., it cannot be in the "not new"
state.

Note that in PL/I-like languages, a symbol like IF

can represent either a variable or a statement keyword,

17

18

depending upon context, and the dilemma must be resolved
before this algorithm will work. In MAD/I this is not a
problem, since keywords and variables are represented by
distinct lexical classes. Subsequently we will assume
that this problem has been solved for any given language,
and we are considering only symbols which represent vari-
ables.

A "referenced" symbol in a block is one which has
been encountered in that block but for which no declara-
tions of any type have occurred, including 'NOTNEW' and
'"GLOBAL'. A symbol is termed "declared" when it has
been declared in the block but not declared 'NOTNEW' or
'GLOBAL'. A variable is created for it which is a
carrier of mode and other declared information. A sym-
bol in a "not new" state has been declared 'NOTNEW' or
'GLOBAL' in that block, and its status with respect to
that block cannot be further altered. A symbol cannot
have "not new" status with respect to the outermost
block since that status indicates that it is a symbol
which belongs to a block surrounding the one under con-
sideration, and which cannot be declared to belong to
that block.

When tue beginning of a wvlock is encountered a
routine called BEGINBLOCK is called which pushes down
the status of all symbols of the current (old) block,

if any, and sets the status of all variables to

19

"unreferenced." Further processing of the new block
may then proceed.

When a symbol is encountered in a block it is
passed to a routine called SETREF. If the symbol is
in "unreferenced" status ‘it is set to "referenced" status
for that block, otherwise nothing is done.

When a symbol is declared in a block, except for
a declaration of 'NOTNEW' or 'GLOBAL', it is passed to
the SETDECL routine. If the symbol is "declared" in
the block nothing is done. If the symbol is "unrefer-
enced" or "referenced" in the block, then a variable
is created for that block with the name of the symbol,
and the symbol is set to "declared" status. Note that
declaration information is always applied to the first
variable encountered for the symbol when the search is
made outward from the current block to surrounding
blocks. Thus the declaration information, if any, which
is associated with the declared symbol is to be applied
only after SETDECL has been called. If the symbol is in
"not new" status, a search is made outward, successively
through surrounding blocks until the symbol is found in
other than "not new" status. Then the symbol is treated
with respect to that block in the same manner as an
"unreferenced," "referenced," or "declared" symbol would
be for the current block. The variable that results from

the SETDECL operation is the one to which the original

20

declaration information was assigned.

When a symbol is declared 'NOTNEW' in a block it

is passed to a routine called SETNOTNEW. At this point,

one of three situations will occur:

1.

If the symbol is already "not new" or if the
symbol is 'DEFAULT', or if the current block
is the outermost block, nothing is done.

If the symbol is "unreferenced" or "referenced"
it is set "not new" in the current block. A
search is then made outward through the con-
taining blocks and the status of the symbol is
determined for each block, until the symbol

is found in other thén "not new" status. If
that status is "unreferenced" then it is set
to "referenced."

If the symbol was in "declared" status when
SETNOTNEW was called then it is set to "not
new" status in the current block. A search

is made outward through all the surrounding
blocks until the symbol is found in other

than "not new" status. If that status was
"unreferenced" or "referenced" it is changed
to "declared" status, and the variable of the
the symbol for the current block is used as
the variable for the symbol in the outer block

where the search ended. If the search ended

21

on a variable with a "declared" status then

we have an interesting situation of two vari-
ables in existence which should be replaced

by a single variable for the outer block.

These variables will have to be "merged."

Any declarations declared on the inner vari-
able must be copied over to the outer variable,
with appropriate error comments if conflicts
are discovered. In the case of MAD/I a vari-
able may be declared only once with mode infor-
mation; an attempt to do so more than once
causes an immediate error comment, except in
the case where the two variables are being
merged into one, as above, due to the 'NOTNEW'
declaration. If modes were declared for each
of the variables before they were merged the
conflict will not cause an error comment until

the 'NOTNEW' declaration is encountered.

When a symbol is declared 'GLOBAL', SETNOTNEW is

called for that symbol for the current block and for

each surrounding block. Hence, SETNOTNEW has a block

as one of its arguments.

The actions of the above-described routines deter-

mine, as closely as possible, the status of symbols

within a block by the time the end of that block is

22

reached. The end of the block triggers a call on the
routine ENDBLOCK which will complete the determination
of the status of all symbols which have variables in
the block. In the outermost block, the action is sim-
ple: the symbols referenced in the block are made into
variables with "declared" status. If it is not the
outermost block, then the symbols "referenced" in the
block are treated in one of two ways:

(1) If 'DEFAULT' is declared for the block, in-
cluding the attribute 'NEW', then all the
"referenced" symbols are made "declared"
symbols for the block, and variables are
created for each such symbol.

(2) If 'DEFAULT' was not declared 'NEW' in the
block, the status of "referenced" symbols
is checked against the next outer block,
since these symbols belong there.

If a symbol is "unreferenced" in the next outer
block, it is set to "referenced." After one of these
two actions is done, we are finished with the inner
block, and the status of all symbols is "popped" back
to that of the next outer block.

When a program has been completely scanned, each
variable will have been assigned to its appropriate
block. It is then possible to go through the blocks

from the outermost to the innermost to supply default

23

information for those variables. It is also possible

to go through the parsed form of the program, replacing
each occurrence of a symbol with the appropriate variable
for that block. This process is called the "remap" phase
in the current MAD/I compiler. There is no restriction
on whether remapping or default assignment is done first
as far as the algorithm is concerned. The method of de-
fault assignment on a block and variable basis was de-
scribed in Section 2. The method of remapping is de-
scribed below in fairly general terms.

Many "tricks" could be used for implementing the
described routines, for the method of representing sym-
bols and variables, for remapping and for default assign-
ment, but thése tricks all depend upon the representation
of descriptors, the method of parsing, the sort of de-
clarations to be stored and the method of storing, etc.
These details, in turn, depend on the language and the
particular compiler implementation. In the case of MAD/I,
as the present implementation of the compiler and language
evolved, it almost always increased rather, than decreased,
in complexity, and hence it is presently difficult to
debug.

The remap phase assumes that the beginning and end
of each block are easily spotted in the parsed form, and
that there is an easy way to search through the parsed

form such that the beginning and end of each block are

24

encountered in the same order as in the scan to produce
calls on BEGINBLOCK and ENDBLOCK, and such that the
symbols previously encountered within a given block are
again encountered in that same block. Assume that if

we have a symbol representing a variable then we can
easily find a place to look for the current variable
representing that symbol. Let us assume that there is

a field within the symbol which can point to the vari-
able. Also assume that there is a similar field asso-
ciated with each variable of each block, and that the
field initially points to itself. At the beginning of
each block, for each variable belonging to that block,
exchange the symbol field with the variable field. At
that point, the symbol points to the current variable.
At the end of the block perform the same exchange. As
we progress through the parsed program the symbols wjill
effectively be pushed and popped properly so that when-
ever a symbol is encountered we can replace it with the
variable it represents at that point. This is a workable
alternative to the one of keeping a pushdown stack for
each symbol, the current variable being at the top of
the stack. Both of these approaches assume that remapping
would be more expensive if we simply searched the blocks
outward from the current block until a variable of the

right name is found.

6. CONDITIONAL DECLARATION HANDLING IN MAD/I

A conditional declaration is one which is applied
when a variable appears in a certain context, unless
that variable has had an explicit declaration which
would conflict. There are a number of such declara-
tions in PL/I. In MAD/I there is presently only one.

If the "." operator has been used on a variable (the
function call operator), then there is a conditional
declaration applied to the variable. The declaration
says that if no mode or storage class information has
been declared about the variable, then it is to be taken
as an 'EXTERNAL' 'ENTRYPOINT', which returns a value of
default moue when called. Tnus it is the name of an ex-
ternally compiled subroutine. Notice that the explicit
declarations are applied first, then conditional declara-
tions, if any, and finally default declarations. This is
also the usual order in PL/I.

Conditional declarations are handled somewhat differ-
ently from other declarations because of the convention
that a conditional declaration does not imply that a
variable has been declared "new" to a block. Conditional
declarations have no influence in determining what block
the variable resides in. This is contrary to the effects
of all other declarations. Therefore the previously de-

scribed algorithms do not work for conditional declarations.

25

26

Such declarations are easily handled, however, in the
following manner:

When a conditional declaration is discovered, it
is saved in some way on a list associated with the cur-
rent block, as is the symbol to which it will condition-
ally apply. After the end of the block is encountered
and it is closed out (so that the variables that belong
to the block are known), the list of conditional declar-
ations is searched. For each symbol on the list there
is either an associated variable that now belongs to
the block, or else there is not. If there is such a
variable, then the conditional declaration belongs with
it. Otherwise, the symbol and conditional declaration

are put on the list for the next outer block.

7. SOME IMPLEMENTATION DETAILS

This section discusses some details of the imple-
mentation of the block structure algorithm in the pre-
sent version of the MAD/I compiler.

In the MAD/I compiler, symbols and variables have
the same form. The symbols themselves are used as vari-
ables for the outermost block, thus economizing storage.
Associated with any block are three lists, one each for
symbols which are "referenced," "declared," and "not new."
In addition, in each symbol there is a two-bit field
which specifies which of the four states the symbol is
in. Each block points to the next outer block, thus
facilitating popping back to or searching to the next
outer block. At any given time the symbol carries the
current information declared about the current variable
associated with that symbol. Any previously specified
variable associated with that symbol in an outer block
has its information pushed down in some fashion. Thus
the symbols which are declared in a block must have
their contents appropriately popped at the end of each
block. In any case, as long as a call is made on SETDECL
before applying the declaration information, the declara-
tion information associated with a symbol can be stored
with the symbol itself, and it is not necessary to

search for an associated wvariable at that time. This

27

28

is carried out according to how pushing and popping
are done; however, such details are outside the scope of
this paper.

However, the method of copying attribute information
from default symbols is relevant. Associated with each
mode are two routines, each having two arguments, a
"from" variable and a "to" variable. The intention is
to copy information from one to the other under certain
circumstances. One routine is used when the "to" vari-
able has no mode information, in which case the infor-
mation is copied to it from the other symbol (which may
be the default symbol or a subtype of the default symbol).
The other routine is used to copy mode information when
the "to" symbol already has mode information. In that
case the "from" symbol may be used to copy information
to a subtype of the "to" symbol which does not have mode

information. Needless to say, the routines are recursive.

Another routine, let us call it COPYATRS, selects one
of the two routines just described and decides which
mode to use. The routines are also used to set informa-
tion (associated with a mode) which was not explicitly
declared, such as length or dimension information.

The action of COPYATRS is described here, with two
arguments, FROM and TO.

l. If TO has a mode, then select the "to" routine

for that mode and pass to it FROM and TO as its

arguments. Exit upon return of control from the

29

"to" routine.

2. If TO has no mode set, then select the "from"
routine associated with the mode of the FROM
symbol. Exit upon return from the "from" rou-
tine. Note that there will always be a mode
on the FROM symbol (if everything is properly
debugged) .

Consider the "from" routine for an array mode, and
call the routine FROMARRAY. This routine is called when
its TO symbol has no mode, and thus the job of FROMARRAY
is to copy the FROM symbol information to the TO symbol.
Therefore it will copy the array mode, the dimension
information, and any other mode-associated information
to the TO symbol. It will create a symbol-like construct
associated with the TO symbol which is to carry mode in-
formation for the component mode of TO. Let us denote
the carrier by component-of-TO; there is a similar
carrier for component-of-FROM. Then a call on COPYATRS
(component-of-FROM, component-of-TO) is made to copy
the component information. It will always work out
that the data type information for the FROM symbol will
be complete.

Consider the "to" routine for an array mode, and
call the routine TOARRAY. This routine is called when
the TO symbol already has a mode, and that mode is array
mode. The job of TOARRAY is to set any remaining unde-

clared information about the TO symbol. For example, if

30

suffix (i.e. dimension), information was omitted from
the array declaration, then default information would
be set for it. (In MAD/I such information is associated
with the mode and not taken from a default which can be
declared about arrays. There is no way presently in
MAD/I to say that the default dimensions of an array
are to be 3 x 3, for example. 1In principle this would
be possible, however.) Next the TO symbol is examined
to see if it has a component mode carrier, and if not,
it is attached to the TO symbol. Whether or not the
carrier was there before, a call is made on COPYATRS
(FROM, component-of-TO). This will cause defaults to
be set on the component-of-TO symbol, if needed.
Obviously, if the modes involved had no components,
then the associated "from" and "to" routines would be
simpler. The "from" and "to" routines may do other jobs
also, such as returning length and alignment information
to their caller. Thus the initial caller of COPYATRS
would call it with a symbol to be allocated, as the TO
symbol, and the 'DEFAULT' symbol as the FROM symbol. It
would get ini return the length and alignment of the TO
symbol. Notice that the COPYATRS routine is also used
to set the information on the default symbol itself.
When starting allocation of variables in a block, first
COPYATRS is called with FROM being the default of the

next outer block (which has already been taken care of),

31

and TO being the default of the current block. For
the outermost block there is no next outer block, so

a special FROM symbol is used which has the "default
default," i.e., the default mode which is used if none

is declared in the outermost block.

8. CONCLUSION

Everything described in this paper has been success-
fully implemented in a compiler for the MAD/I language
which runs on an IBM/360 model 67 under the University
of Michigan timesharing system, MTS. For various reasons
which are not relevant here it is a very large compiler.
Since the system provides very large virtual memory for
execution (about four million bytes), the compiler is
written to take advantage of a large virtual memory.
MAD/I was also written mostly in an experimental compiler
implementation "macro" language, which allows easy modi-
fication of the compiler, even at run time, for those
who know the incredible intricacies of the compiler.
These factors, of course, have influenced the implemen-
tation of tue block structure and default facilities.
Nevertheless, it is felt that what we have learned about
these facilities may be useful to compiler implementers
whose design requirements impose very different con-

straints on their compilers.

32

33
UNCLASSIFIED

Security Classification

DOCUMENT CONTRCL DATA-R& D

i Security cwsiﬁcgﬂon of title, body 0! wostract end indexiar onotation musr be erivers. wohan e overall reporr is classified)
1. ORIGINATING ACTIVITY (Corporate author) 2a. REPORXRT SECURITY CLASSIFICATION
Unclassified
THE UNIVERSITY OF MICHIGAN e
v o
CONCOMP PROJECT

3. REPORT TITLE

DEFAULTS AND BLOCK STRUCTURE IN THE MAD/I LANGUAGE

&, DESCRIPTIVE NOTES (Type of report and inciusive dates)
Memorandum 31

5. AUTHORI(S) (First name, middle initial, last name)

Allen Springer

6. REPORT DATE 7a. TOT AL NO. OF PAGES 176, NO. OF REFS
July 1970 32 i 0

8a. CONTRACT OR GRANT NO. - Sa. ORIGINATOR'S REPORYT NUMBER(S)
DA~-49-083 0OSA-3050 - Memorandum 31

b, PRQJECT NO.

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned

C. this report)

d,

10. DISTRIBUTION STATEMENT

Qualified requesters may obtain copies of this report from DDC.

11 SUPBLEMENTARY NOTES 2. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency

{13. AesTRACT

This paper describes the default and block structure mechanisms
of MAD/I, a PL/I-like language, and the interaction of these
mechanisms with the three types of MAD/I declarations: explicit
declarations, default declarations, and conditional declarations.
MAD/I allows the programmer extraordinary control over the de-
fault assignment of data types to variables, and also allows the
programmer more than usual control over the scope of variable
names in block structure. The interaction of these two facili-
ties can make the handling of declaration information a difficult
problem. This paper outlines an algorithm in which this informa-
tion is processed "on the fly" in the first pass of the compiler
over the source program, and then the symbol table is processed
to assign defaults and allocate storage. A simple second pass
over a transformed version of the source text resolves the scope
and interpretation of variable names.

DD]-F&R\:‘531473 UNCLASSIFIED

Security Classification

Unclassified

ecurity Classification

34

1a, LINK A LINK B LINK C
KEY WORDS ROLE wT | ROLE wT "ROLE wT
MAD/I
PL/I1
defaults
declarations
block structure
Unclassified

Secuyrity ’Elassificati on

