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constants (dimensionless)

constant defined by Eq. (34) (dimensionless)

knee in the fatigue curve

speed of sound (or equivalent wave speed) (ft/sec)
diameter of the droplet (ft)

Young's modulus (1bf/ft2)

longitudinal Young's modulus (1bf/ft2)

transverse Young's modulus (lbf/ftz)

number of stress cycles (Eq. 7)

force (1bf)

shear modulus (lbf/ftz)

longitudinal shear modulus (1bf/ft2)

transverse shear modulus (1bf/ft2)

thickness of coat (ft)

rain intensity (ft/sec)

number of stress wave reflections in the coating re-
quired for the stress at coat-substrate interface to

reach a value of 63.3 percent of o_ (dimensionless)

total number of stress wave reflections in the coating
(dimensionless)

average number of stress wave reflections in the coating
(dimensionless)

mass eroded per unit area (1bm/ft2)

dimensionless mass loss defined by Eq. (56)

number of drops impinging per unit area (number/ftz)
number of drops impinging per site, see Eq.(37)

fatigue life, see Eq.(33)(dimensionless)
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P stress (1bf/ft%)

q drop density (number/ft3)

r distance (ft)

S parameter defined by Eq. (36) (1bf/ft2)

t time (sec)

tL the duration of impact (sec)

v velocity of impact (ft/sec)

Vt terminal velocity of a rain droplet (ft/sec)

Vf volume fraction of fibers in composite materials
(dimensionless)

Vm volume fraction of matrix in composite materials
(dimensionless)

W weight loss due to erosion (1bf)

Y4 dynamic impedance (lbm/ftz—sec)

Greek Letters

o rate of mass loss (lbm/impact)

a* dimensionless rate of mass loss (see Eq. 52)

) the angle between axis and fiber's orientation (radians)
v Poisson's ratio (dimensionless)

V1o longitudinal Poisson's ratio (dimensionless)

Voq transverse Poisson's ratio (dimensionless)

My cos¢ (see Eq. 20) (dimensionless)

My sin¢ (see Eq. 20) (dimensionless)

) density (lbm/ft3)

9 angle of impact (radians)

o stress (1bf/ft2)

ab mean stress at the liquid-coating interface after kL

numbers of stress wave reflections (lbf/ftz)
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SECTION I

INTRODUCTION

Non metallic components constitute an ever increasing portion of
modern high speed aircraft, owing to their favorable performance char-
acteristics, including high strength to weight ratio, good magnetic
and optical properties etc. Unfortunately, such components are sus-
ceptible to heavy damage when subjected to repeated impingements of
liquid droplets. In order to utilize the full potential of non metallic
components, the damage caused to them by rain erosion must be under-
stood.

The behavior of homogeneous materials (both metallic and non met-
allic) was investigated extensively experimentally (References 1-9)
and analytically (References 3-5, 10-14), and the available results des-
cribe well the response of such materials to liquid impingement. How-
ever, the rain erosion behavior of fiber reinforced composites has not
yet been evaluated fully. Most of the previous studies on reinforced
composites are experimental in nature (References 15-20). These stu-
dies provide information on the behavior of a given material under a
given condition, but fail to describe material behavior beyond the
range of the experiments in which they were obtained. Therefore, the
objective of this investigation is to develop analytical expressions
which are consistent with experimental observations and which predict
quantitatively the "erosion" of fiber reinforced materials under pre-
viously untested conditions. The model presented here describes a) the
“"incubation period" i.e. the time elapsed before the mass loss becomes

appreciable and b) the mass loss past the incubation period.

-]



The model used in this study is based on fatigue concepts and is
designed along the lines developed previously for homogeneous mater-
ials (References 13, 14). Here, the model is applied to both coated
and uncoated fiber reinforced composites. Study of uncoated compos-
ites is important for the general understanding of the rain erosion
behavior of such materials. The analysis of coated composites, how-
ever, is of greater practical significance, since most uncoated com-
posites have relatively poor resistance to erosion and must be coated

for erosion protection.



SECTION II

THE PROBLEM

The problem investigated is the following. Spherical liquid drop-
lets of constant diameter d impinge repeatedly upon a semiinfinite
material (Figure 1). Two cases are considered: 1) the material is a
fiber reinforced composite composed of unidirectional filaments em-
bedded in a matrix. The material is taken to be semiinfinite normal to
the plane of the surface (x direction, Figure 1). 2) The material is
a fiber reinforced composite as described in point (1), but is covered
by a homogeneous coating of thickness h. In the analysis it is assumed
that (a) the composites are macroscopically homogeneous, (b) the fiber
filaments are randomly distributed, (c) there is no fiber contiguity,
(d) locally both the matrix and the filament are homogeneous and isotro-
pic, (e) the filaments are parallel to the surface, and (f) there is a
perfect bond between the matrix and the filaments and, in case of coated
composites, between the coating and the substrate (i.e. at the inter-
faces the stresses and the displacements are continuous). The rein-
forced composite, the coating, and the droplets are characterized by
the properties shown in Figure (1).

The angle of incidence of the droplets 6, and the velocity of
impact V are taken to be constant. The spatial distribution of the
droplets is considered to be uniform. The number of droplets impinging

on unit area in time t may be written as (Reference 13)

0= 6 (Vcosh)I "

T 3
th

(1)
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where I is the rain intensity and Vt the terminal velocity of the drop-

let. The impingement rate is assumed to be sufficiently low so that all
the effects produced by the impact of one droplet diminish before the

impact of the next droplet (References 4, 13).

The pressure at the liquid-solid interface is taken to be constant

and is approximated by the water hammer pressure (Reference 4)

pLCLV cos®
P= (2)
p.C
LL 4
C
ps s

where p and C are the density and the speed of sound. The subscript

L and s refer to the liquid and solid respectively.

For a homogeneous material Pq and CS are the density and speed of

sound of the material. For a fiber reinforced composite fq and CS may

be expressed as

Pg = PVt o Vo (3)

c, = [Ezzlos] : (%)

where the subscripts f and m refer to the filament and the matrix, re-

spectively. V is the volume fraction. Eyy 1is the equivalent Young's

modulus in the direction normal to the fibers (see equation 16, Sec-

tion III).

For the purposes of the present analysis equations (2,3,4) represent

the pressure with sufficient accuracy. The duration of this pressure

is approximated by

L C ©)



The forces, created by the impingements of the droplets, damage the
material. This damage manifests itself in different ways, as cracks and
pits, and by weight loss of the material. Here, we consider the weight
loss to represent material damage, because this parameter was found to
describe well the erosion behavior of homogeneous materials (Reference
13). Our model attempts, therefore, to describe the weight loss of the
material as a function of time (Figure 2a). However, following the ar-
guments pfesented in References (13, 14) we replace the total weight
loss by mass loss per unit area m, and the time by the number of drop-
lets impinging per unit area n (Figure 2b). The data is then approxi-
mated by two straight lines, as shown in Fig. 2b. Accordingly, the

mass loss is given by the expressions

m=0 0 <n (6a)

=]
|

= a(n—ni) n; < <n (6b)

In equations (6a, 6b) n, is the incubation period, a period during
which the mass loss is insignificant,a is the rate of mass loss sub-
sequent to the incubation period, and ne is the 1imit beyond which the
data deviates from the straight line relationship ( in most practical
situations the usefulness of the material does not extend beyond nf).
Hence, the mass loss- and the erosion damage - can be evaluated, once
the parameters n,, a and ne are known. Therefore, the problem is to

determine these parameters.
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SECTION III

INCUBATION PERIOD OF UNCOATED FIBER REINFORCED COMPOSITES

In their previous investigations of coated and uncoated homogeneous
materials Springer and his coworkers (References 13, 14) found that the
incubation period can be established by applying fatigue theorems to
the rain erosion problem. This approach is followed here, and in the
following, fatigue concepts are used to determine the incubation period
for fiber reinforced composites.

The starting point of the analysis is Miner's rule, which states
that the failure of bars undergoing repeated torsion or bending obeys

the expression (Reference 21)

fl fz f
4+ L 41=a (7
N N 1

1 2 q

where fl’ f2"'fq represent the number of cycles the specimen is sub-
jected to specified overstress levels 01> Tooee oq, and Nl’ Nz...Nq
represent the life (in cycles) at these overstress levels, as given by
the fatigue (0e versus N) curve. a, is a constant .

Let us now consider a point on the surface of the material as shown
in Figure 3. Each droplet impinging on the surface creates a stress
at point B. This stress may be approximated by
F{1-2

2n r

()] (8)

<

{

o(r,¢) =

N

Note that o is a function of both the distance of the point of impact
r, and the orientation of the direction of the impact with respect to
the direction of the fibers ¢. The force is taken to be a point force,

i.e.



F=—P 9)

where P is the water hammer pressure given by equation (2). v is the
Poisson ratio for the composite in the ¢ direction (see Figure 3) (Ref-
erence 24)

Vg M 1 1 202

- ( + ) uiu,] (10)
E11 £)1 By Gy 172

v = E[

E is Young's modulus of the composite in the ¢ direction (Reference 24)

uA 2 ua

1 1 2 2 2
R R el e T (1)

11 23 11 22

and G is the shear modulus of the composite in the ¢ direction (Refer-
ence 24)

1 W2vy,, 1
oty *g e
12 11 22 23

2 2
o)

Q-
"

(12)

In the longitudinal direction (i.e. in the direction parallel to the
filaments) the Young's and shear moduli and the Poisson ratio may be

written as (References 22, 23, 24).

E11 = Efvf + Eme (13)

. ) (Gf+Gm) Gme + 2 GmeVf (14)
12 (Gf+Gm)Vm + 2 vaf

v12 = vaf + vmvm (15)



In the transverse direction (i.e. normal to the filaments) the moduli are

oo o2
4T )G,

22 - = =2
(X+G23)Z—Y
. e 2Vfo(Xﬁ+Gm) + 2VmeGm + Vme(Gf+Gm) (17
23 m 2Vme(Xﬁ+Gm) + 2VmeGm +V X (G.AC)
mm f m
E
22
v =y, 22 (18)
21 12 E11

Variables subscripted by f or m refer to properties of the pure
filament and the pure matrix, respectively. Vf and Vm are the volume
fractions of the filament and the matrix, so that the total volume of the

composite is

Vo=V 4V =1 (19)
13 and u, are defined as

u, = cos¢ (20a)

U, = sing (20b)

In equation (16) X, Y and Z are defined as

Xm(xf+Gm)Vm + Xf(Xm+Gm)Vf

X = (21)
(XHC IV + (X#4G )V,

— Yf“Ym

Y = Vfo + VmYm + (ig:i;) (X#fof-vmxm) (22)

- Yf—Ym ?

Z = 2Vf(l-—" )X + zvm(l—"m)xm + (Xf"xm) (X—vfxf-vmxm) (23)

-10-



where

Ef m
X, = - (24)
f,m 2(l+vf’m)(l va,m)
Y. = —fmfm (25)
f,m 2(1+vf ’m) (1—2vf ,m)

During the incubation period the total number of impacts on an rdrd¢ ele-

ment located at r is (Figure 3)

f(r,$) = n,r drdé (26)

i

Accordingly, we write Miner's rule (equation 7) in the form

f(r,¢) f(r,.%) f(r_,9)
y 1.2+ N2 + ...:-l-—“ﬁi-—= a, @27
1 2 q

Since r varies continuously from zero to infinity and ¢ from zero to

27, equation (27) may be written as

e 2T n rdédr
f f ——=a, (28)
(o] (o]

Equation (8) may be rearranged in the form

rdr = -?1:— ~(-2 V) 4o (29)
20

Substituting equation (29) into equation (28), and using the rela-

tionship given by equation (9) we obtain

ol
i [P‘!Td . l (1 2\))] d¢d
20 (30)

The lower and upper limits of the first integral have been changed to

the ultimate tensile strength and the endurance limit of the material,

-11-
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respectively. We shall assume that failure first occurs in the matrix,

! '
and approximate 9, and 9y by

o E
0, =% & (31)
m m
! E
O’I = GI —I—i_ (32)
m m

where E is given by equation (11). The integrations in equation (30)
may be performed once the fatigue life N is known as a function of
the stress o. Following the recommendation presented in References

13, 14, N is expressed as

o& b
N = (5~9 (33)
where
b
2
bz ———5— (34)
u
10g10(;j9

I b
b, is a constant, such that 10 2 corresponds to the 'knee" in the fati-

gue curve. Substituting equation (33) into equation (30) and inte-

grating we obtain

2 E 2v
md 1 m 3 1 1 m 1 12
a, = n P - [t ) o (5 - )
1 4 i"4(b-1) 9 4 Ell E22 4 5 3 E11
Avlzn 1+2v12 1 1.1
R T S S Z] (35)
11 11 22 21
Introducing the definitions
/
-1)0
e W W T . IO S 2 DA OPL.
Se g "Gt e Y1 G- E )
m 11 22 23 11 11
1+2v -1
Ei1  Exp G)3



ot = T (37)

v yaation (35) becomes

S
i %417p (38)

It is noted now that equation (38) is similar to the expression obtained
in reference (13) for homogeneous materials. As in the case of homo-
geneous materials, S represents the "strength' of the material, while

P is the stress produced at the surface. Naturally, the expression

for S for reinforced composites (equation 36) is different from the
value of S for homogeneous materials (reference 13). However, as one
would expect, in the limits a) when there is only one constituent pre-

sent, i.e. when

<
i

(o

<
]

o £ 1 or Vf =0 _Vm =1 (39)

E =E G =G v =V G,,=6G6,,=6G_ =6 (40)

equation (36) reduces to the same form as was obtained previously (re-
ference 13) for homogeneous materials.

The foregoing analysis is based on fatigue properties of bars in
pure torsion and bending. Consequently, a linear relationship cannot
hold between n* and S/P. Therefore, similarly to the procedure used for

i

homogeneous materials we write

* a2

Y (g’ (41)

14~



where a; and a, are constants. For homogeneous materials these constants
were evaluated by Springer, Yang and Larsen, and were found to be

a = 7.11\:10-6 and a, = 5.7 (reference 14). The same values of these
constants will be used here, i.e.

5.7

* -6 8.
n, = 7.1x10 (P) (42)

The use of the above constants ensures that in the limits given by
equations (39) and (40) the foregoing expression yields the result
appropriate for a homogeneous material. In other words, equation (42)
together with equation (36) may be applied for all volume fractions of
the filament from Vf =0 (Vm=l) to Vf =1 (Vm=0). The only limi-
tation on the result is that the incubation period must be greater than
zero. The conditions necessary for this limit are further discussed in
Section VII.

The validity of the model was evaluated by comparing the above
analytical results to experimental data. This comparison, shown in
Figure 4 includes all existing data known to us for which the relevant
material properties were available. The material properties used in
the calculations are listed in Table I.

As can be seen from Figure 4 there is very good agreement between
the present result and the data. This lends further confidence to the

rain erosion model based on fatigue concepts.

~15-
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SECTION 1V

INCUBATION PERIOD FOR COATED FIBER REINFORCED COMPOSITES

The incubation period for a homogeneous coating on a homogeneous

substrate was found by Springer, Yang and Larsen to be (reference 14)

5.7
* _ -6.S 1
ny 7.1x10 [6 TFE (o] ] (43)
o sc
where
- k.
k = kg [1 - exp(—-E;?] (44)
and
s¢ s "¢ ¢ L “c
1+ Zc/zs
k — ~ (46a)
e 1+ ZL/ZS
C
- 4
kL = ¢, B (46b)
1 !
+ + - - =
g=7P -.}.«.isi.c__ [ - P wLC ! exp( kei (47)
o 1 - wschc sc 1 + wsc FL
()
e
and Z is the impedance of the material
Z = pC (48)
Note that in the absence of the coating the incubation period is
. 5.7
ar = 7.1x078 & (49)
i P

where P denotes the impact stress at the surface. Thus, the factor
[1+ E—lwscl ]”1 represents the damping effect of the coating.

-17-



It is noted, however, that the results, given by equations (43-49),
are valid even when the substrate is a fiber reinforced composite mat-
erial, provided the fibers are randomly distributed and the composite
can be taken to be quasihomogeneous. In this case the impedance of the
substrate can be approximated by Zg=pgCg where
E t

_ i 22 3
Ce = [Es/ps]2~ [pfvf + mem

(50)

The incubation period can thus be calculated from equation (43), together
with equation (36). The calculated values of the incubation period are
compared to available experimental data in Figure 5. The material prop-
erties used in the calculations are listed in Table I. Again good

agreement is evident between the calculated results and the data.
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SECTION V

RATE OF MASS REMOVAL

The rate of mass removal for a homogeneous material was calculated
by Springer and Baxi (13) and for a homogeneous material covered by a
homogeneous coating by Springer, Yang and Larsen (14). For both of
these cases the mass removal rate was found to be
0.7

o = 0.023 & (51)

n,
1

*
where a 1is defined as
o = ee————- (52)

The agruments leading to the above results could be repeated, without
any modification, for fiber reinforced composite materials. Since the
analyses for homogeneous materials are presented in detail in refer-
ences (13, 14) they will not be reproduced here., It suffices to say
that the above result is applicable to fiber reinforced composite
materials (both with and without coating) as well as to homogeneous
materials. Naturally, the appropriate equation must be used in eval-
uating n:. For a fiber reinforced composite material nI must be cal-
culated from equation (42). For a fiber reinforced composite
material covered with a single layer of homogeneous coating, n: is to
be determined from equation (43).

In equation (52) p is the density of the material undergoing ero-

sion. Thus, for an uncoated fiber reinforced composite material p is

given by equation (3). In the case of a coated material p is the den~

sity of the coating.
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The rates of mass removal, calculated from equation (51) together
with equation (42) (for uncoated reinforced composite) and equation

(43) (for coated composites) are shown in Figures 6 and 7. In these

figures the available experimental data are also given. The agreement

is again good between the analytical results obtained from the present

model, and the data.
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SECTION VI

TOTAL MASS LOSS
The total mass loss was given by equation (6b) as
m = a(n—ni) (53)

This equation is rewritten now in dimensionless form

AL (n*-n:) (54)
or
*
E; = n*—nz (55)
o

=0_
n = od (56)

When there is no coating present p is the density of the composite
as given by equation (3). When the reinforced composite is coated by
a homogeneous material p is the density of the coating.

Equation (55) is valid for both coated or uncoated materials. In
calculating the mass loss rate from this equation, the correct forms
of n; must be used. For an uncoated fiber reinforced composite mat-
erial nz is given by equation (42). For a fiber reinforced composite
covered by a homogeneous coating n: is given by equation (43).

Using equation (55) all the available data can be correlated on a

*

* * .
m*/o” versus n -n, plot. Such correlations are presented on Figures 8

24



and 9. In Figure 8 the analytical results are compared to the data for
the case of uncoated composites. In Figure 9 a similar comparison is
given for coated composites. The material properties used in obtaining
these figures are listed in Table I. The agreement between the data
and the theoretical line is very good, in fact remarkable in view of
the unavoidable errors inherent in many of the measurements. It must
be emphasized, that the theoretical lines in Figures 8 and 9 are direct
results of the calculations, and are in no way ''matched" to the data

shown in these figures.
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SECTION VII

LIMITS OF APPLICABILITY OF MODEL

The results presented in the foregoing sections are valid when the
following two conditions are satisfied: (1) there is a finite incuba-
tion period and (2) the mass loss varies linearly with the number of
impacts n (i.e. with time t). The first of these conditions is met

when the following inequality is satisfied
n, >1 (57)

For a fiber reinforced composite without coating this condition may also

be expressed as (see equation 42)
%_> 8 (58)

For a fiber reinforced composite covered with a homogeneous coating

a finite incubation period exists if (see equation 43)

S 1
= — > 8 59
P 1HK vl (59)

Equations (57, 58, 59) provide the lower limit of the applicability of
the model. The upper limit beyond which the present model cannot be

applied is determined by the second condition given above. This limit
was estimated by observing that up to about n = 3ni the data do not de-

viate significantly from the model. This condition may be expressed as

n < 3n, (60)
For an uncoated fiber reinforced composite this condition is satisfied

when

* *
n" < 3ni (61)
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For coated composites the upper 1limit of the applicability of the
model is given by the combination of equations (2,49) and (59). The

result is

* *
n < 3ni (62)

It must be emphasized that conditions (57) and (60) are the only

constraints imposed on the model. No further restrictions are placed on

either the material or the impact velocity.
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SECTION VIII

SUMMARY

In the following tables a summary of the equations is presented.
The following tables are included in this summary
Table I. Definition of Parameters
Table II. Equations Describing Rain Erosion of Fiber Reinforced
Composite Materials
Table III. Equations Describing Rain Erosion of Fiber Reinforced

Composite Materials Covered with a Homogeneous Coating.

-30-



D d Z 23171s0odwo) JO UOTIODIAF(C ISI2ASUBRI]
ur 2ouepadwy OTweufq 3IudTeAINDY
Hma\wwmu mo 231sodwo) JO uoTIVAAIQ
Z/1 asiaAsuel] uy po3adg 9aeM judTeaInby
2,14 mmu NNm Ham ﬁam
A S 7 7 ¢
T +1 a
1T
NNm (49N 12,
a
E>E> + w>m> (49N
ours uN:
2,1, % _ tla Ty Iy ¢so>  =In
HN z ¢ T - T +731 ) Yo+ 1 ] 9
1- 0+ 1 :°30N
[44 11 £C 1T
[ mlm + Nnﬁxﬁ g. ﬁov + 3 1) q (¢ @an31y 99s)
I- c: [N ag y n uor3Io911q ¢ 92Ul ufl sIuelISUO) DTISETH
w>wq + E>Ea Sg Tetaa3ey @31sodwo) Jo AIfsudq
si@23jdweled JO UOTITUTISQ 1 9Tqel

-31-



s_
2/ 7 +1 A
uly .
P Oy A
2
2+ 'z 1
3,1, h
2_ 8
Z+ Z
5 _ s 2
2-°2 St
5 5 (y1 ®@ou2a93ea) 1391doag
| 49"m$ -1 Aq 3oeduy 1233e 3urjro) 3yl Uur
[ -)dxe - 1] A o
Ax 1 = TI0913J9Y 9AEBM SS2I31§ JO Jaqumy
2 ua 0 (Y ssawdTY3l)
2 z 8ur3eo) jo aduepaduy O1weuig
I939ue 321dox
1,1, 1, (r TP) 391doaqg

pInb1T 9yl jo @ouepadmy Oywmeulq

(panur3juocd) 1 21qel

-32-



-33-

soopb
Spuooas —.Mm!n_ ||N|m.v|®|.||l>|| .wu
S XGQ0"*
LG cuoa S0°6
eaIE 3JTUN p

Is35edur jo xaqumu HIMH [4 1

S c|oa X 60°6 u
LS

Tu
m *
SSO9TUOTSUSWEP vlwu oloa X 1°f potaag
L°S uofiIeqnoug
(z33/3491)

s, ,"1 d

2/ 7 + 1
Nuu\unH A I 1932weaed
9S0° A Z §89119
1 w
33/3qt :HNQ _Ha + U ) L+ Ca L:m muwv L Allmwm +||lH 4 7 m: S
i

z 1 1 M1 * ulla Ty LR T T4 g oy 1239weaRg
I- y3is8uaaag

sTeyisleq o3rsodwo) padiojuray I2qTJ JO UOFSOIF UTEBY SUTQTIADS2A suofjenby 11 ¥[qelL



p

voie 3jfun A S s _ .
S50 ssew Ale mmmﬂmmm4w - (es09p3b)  [—3].P 99°0L u
L*S
w
»
ssaTuoTsuawWIp Aﬂc - *cv *5 SS0]
¥ Ssely TeIol
3oedur S s .
SSOT sseuw TIMH mv 99°0L ©
¥
ssaTuoIsSuaWIp .!W_ 26 TeAOwd Y

Y

sseR Jo 2iey

(penurijuod) 11 2Tqel

-34-



% pesooAb

- [4 T
spuodas =) X .
E) XG0 °*
[c Pg g 0TX<0'6
o
gaie Jpun A wv 2 Ty
hoeduy jo xaqunu Da XG0 *
3 (¢ OS5 o 015076
T
o5 O
S§S9TUOFSUSWP 5= g-0TXT"L potraad
L°s S uor3legNO UL
o °o
°s 97,08 °,,1 -
33341 [— o oqa+ LS - q) u“ n-1 2/2 +Aa 1932weIRyg
mmwvaxmia h+ T h+ T 9802 A°'Z §S913S
om
oS )
A3/3a1 [Py z + 1 (Cae-D) .
(1-9) o% yasuaaag
Sur3leo) snosusl3owOy B YITA Paidao) 93Fsodmo) PadIOJUTIY I19qT4 JO UOTSOAH ufEy SUFYFIOSSU suoryendy °“III wnnmml

-35-



04 P

]

edle JTun z Z S > . -
§S0] ssew ( MMV 5 0TX50°6 - (9s00A3b)  (9y) ¢P 99704
LS -
w
£
SsSaTuoTsuUdWIP Auc _ «cv ° 8507
¥ SSEl] TB3IO]L
3deduy °s 2
SS07 ssew (o) P d9°0L 0
vy -
° x®
SS3TUOTSUDWEP mdwv 6 TeAowd Yy

ssey Jo 93eY

(penuy3uod) III °Tqel

-36-



APPENDIX

In this appendix, the following tables are included

Table A-I. Material Properties Used in the Calculations for Fiber
Reinforced Composites

Table A-II. Material Properties Used in the Calculations for
Coating Materials

Table A-III. Dynamic Properties of Composite Materials

Table A-IV. Description of Data and Symbols Used in Figures 4,6,8

Table A-V. Description of Data and Symbols Used in Figure 5,7,9
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