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In a typical shotgun proteomics experiment, a significant number of high-quality MS/MS

spectra remain ‘‘unassigned.’’ The main focus of this work is to improve our understanding

of various sources of unassigned high-quality spectra. To achieve this, we designed an

iterative computational approach for more efficient interrogation of MS/MS data. The

method involves multiple stages of database searching with different search parameters,

spectral library searching, blind searching for modified peptides, and genomic database

searching. The method is applied to a large publicly available shotgun proteomic data set.
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A typical shotgun proteomic experiment involves generation

of thousands of tandem mass spectra. The development of

computational tools has made automatic identification of

peptides from these spectra a routine approach. Continuous

efforts are made to improve the sensitivity and specificity of

peptide identification methods, and methods to estimate the

error rates in the resulting data sets [1, 2]. However, despite

improvements in MS instrumentation and peptide identifi-

cation algorithms, a significant number of MS/MS spectra

in any large-scale study remain ‘‘unassigned’’ (i.e. no high

confidence peptide identification) [3]. A significant fraction

of these spectra are of high quality, as measured using

various spectral features [4–6], and additional studies are

necessary to gain a better understanding of their nature and

significance.

Peptides are most often identified from MS/MS spectra

using sequence database searching, either in a direct fash-

ion [7–9] or with the aid of sequence tags [10–12]. High-

quality spectra may remain unidentified in a typical data

analysis pipeline due to several reasons: inaccurate charge

state or precursor ion m/z measurement, constrained data-

base search parameters (e.g. search for tryptic peptides only),

the presence of chemical modifications or PTMs, and

incompleteness of the searched protein sequence database

[3, 13, 14]. The last two categories, peptides containing

PTMs and novel peptides, are particularly interesting. Such

peptides can be identified using de novo sequencing, error-

tolerant (or ‘‘blind’’) database search [15], and by searching

against genomic databases such as translated EST databases

[16, 17]. However, these methods are not commonly applied

as primary peptide identification methods because they are

more time consuming and error prone than conventional

database searching.

This study extends our previous analysis of the unas-

signed high-quality spectra [3]. We implement and

apply a more comprehensive and efficient computational

strategy based on iterative analysis of MS/MS data

using a combination of several existing computational

tools. The analysis, outlined in Fig. 1, involves the use of

spectral library searching [18, 19], blind searching for PTM

analysis, and genomic database searching. The iterative

nature in which these different approaches are applied to

data allows increasing the number of assigned MS/MS

spectra without a substantial increase in the computational

time.
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The method is applied to a large publicly available data

set of MS/MS spectra from the Human T leukemic cells

[20]. Briefly, the whole-cell lysates (WCL) were separated by

one-dimensional gel electrophoresis and the gel lanes were

cut into 18 gel slices. The proteins contained in the gel slices

were digested with trypsin, and the peptides were extracted

and analyzed by LC-MS/MS using an LTQ ion trap mass

spectrometer. The data set contains 14 replicate analyses of

the WCL, which was used here as the primary data set.

Additional analysis was performed using two subcellular

fractions: the plasma membrane and the lipid raft.

The protein sequence databases used in this work

included the Human International Protein Index (IPI)

database v3.32 containing 67 575 entries [21], the NCBI non-

redundant (NR) Human database containing 383 745 entries

(downloaded on 02/15/2008), and the translated genomic

database, compiled from multiple sources and compressed

for computational efficiency as described in [17] (down-

loaded on 01/02/2008 from ftp://ftp.umiacs.umd.edu/pub/

nedwards/PepSeqDB).

In the initial analysis, the spectra were searched with X!

TANDEM/k-score [22] against the Human IPI database

described above appended with an equal number of reversed

protein sequences as decoys [21]. The search parameters

were as follows: parent ion mass tolerance window of �2.0

to 2.0 Da, 0.8 Da monoisotopic fragment ion mass tolerance,

tryptic peptides only. Two variable modifications were

considered: methionine oxidation and N-terminal acetyla-

tion. The refinement mode was not used. PeptideProphet

[23] was then used to calculate the probability for each of the

spectrum assignments. The spectra with QualScore [3]

spectral quality score (SQS) above 1.0 were considered high-

quality spectra. The spectra with PeptideProphet probability

below 0.1 and SQS score above 1.0 were considered unas-

signed high-quality spectra. These spectra, representing

approximately 10% of the full MS/MS data set, were the

main focus of this work. We also note that among the

unassigned spectra of lower quality, which were not further

interrogated here, many are likely to represent valid

peptides. Peptides that fall into the non-mobile proton

model category, or contain extra liable bonds, are known to

fragment poorly in conventional MS strategies [24], and

their analysis requires the use of more sophisticated peptide

fragmentation models [25, 26] than what is implemented in

most currently available database search tools.

Unassigned high-quality spectra were reanalyzed using

several additional steps: X! TANDEM database searching

against the subset database containing sequences

of proteins identified with high ProteinProphet probabili-

ties (greater than or equal to 0.9) [27] in the initial

search (to identify additional tryptic peptides by searching

against a smaller database compared to the original search,

as well as semi-tryptic peptides, and peptides with inaccu-

rately measured precursor ion mass [3], see step i below);
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Figure 1. Overview of the

iterative peptide identification

strategy. Proteins are digested

into peptides, and peptides are

sequenced using MS/MS.

Acquired spectra are analyzed

using conventional database

searching. Peptide identifica-

tions are processed using

PeptideProphet and Protein-

Prophet. A spectral quality

assessment tool is used to

select unassigned high-quality

spectra. These spectra are

reanalyzed using X! TANDEM

and InsPecT (normal and blind

mode) against the subset

protein database, and using

SpectraST spectral library

search tool. The remaining

unassigned spectra are sear-

ched against the translated

genomic database to identify

novel peptides and peptide

polymorphisms.
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blind InsPecT searching (extensive PTM analysis to

identify the most common modifications, step ii); normal

InsPecT with an extended set of modifications (for better

identification of most frequent modifications discovered

using the blind search, step iii); spectral library searching

using SpectraST [18] (more sensitive scoring method,

as compared to conventional database searching, for

assigning MS/MS spectra produced by previously identified

peptides [28, 29], step iv); genomic database searching

(for identification of peptides not present in the protein

sequence database used in the initial search and in steps

i–iv, see step v). These steps are described below in more

detail (see Fig. 1):

(i) X! TANDEM search (without refinement), subset

database, larger (than initial search) parent ion mass

tolerance of 4.0 Da, allowing semi-tryptic peptides. The

same modifications were considered as in the initial

search, i.e. methionine oxidation and N-terminal

acetylation.

(ii) InsPecT blind mode search, subset database, 2.5 Da

parent ion mass tolerance, and allowing tryptic

peptides only. In the blind mode, InsPecT attempts to

identify peptides with unexpected PTMs or chemical

modifications by allowing unrestricted (any mass shift)

modification of any one residue in the peptide

sequence.

(iii) InsPecT normal mode, subset database, 2.5 Da parent

ion mass tolerance, and allowing semi-tryptic peptides.

The most frequent modifications based on the InsPecT

blind mode analysis (step ii) were specified as variable

modifications (see below).

(iv) SpectraST search with default settings against a

spectral library generated by combining the NIST

Human MS/MS library (v. 2006-12-13) and the experi-

ment-specific library generated from the spectra

identified in the initial X! TANDEM search [30].

(v) The high-quality spectra that remained unassigned

after steps i–iv above were searched against the

translated Human genomic database with X! TANDEM

(3.0 Da parent ion mass tolerance, tryptic peptide only,

without refinement) and InsPecT (2.5 Da parent ion

mass tolerance, tryptic peptides only) for novel peptide

identifications. Only methionine oxidation was allowed

as a variable modification in both searches.

To estimate the false discovery rate (FDR) [1] at each step

in the process, an equal number of decoy protein sequences

(reversed sequences) were appended to the searched data-

base. In the case of the translated genomic database search,

due to its large size, the number of appended decoy

sequences was a fourth of the database size. A non-para-

metric probability mixture model [31] was applied to X!

TANDEM and InsPecT genomic database search results.

This model does not require that the target and decoy

database to be of equal size. The filtering thresholds were

selected to achieve the FDR of less than 0.05. It should be

noted that the validity of the FDR estimates in the case of

iterative database searches has yet to be carefully investi-

gated. However, because the focus of this study is on

exploring general trends and understanding the sources of

unassigned high-quality spectra, the results presented below

should not be significantly affected by the details of FDR

analysis and data filtering performed at each step.

The distributions of SQS for all of the spectra, and

separately for assigned and unassigned spectra (after the

initial search), were analyzed (Fig. 2A). The quality score of

1.0 was found to separate assigned and unassigned spectra

fairly well. Of all spectra in the data set, over 65% were
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Figure 2. Prevalence and categories of unassigned high-quality

spectra. (A) The distribution of spectral quality scores plotted for

all spectra (solid line), and separately for unassigned (dash dot

line) and assigned (short dash) spectra after the initial database

search. (B) The ratio of spectra assigned to peptides of different

types (‘‘percent total’’ refers to the proportion of spectra

assigned to peptides of different type among the total number of

initially unassigned spectra) during reanalysis, plotted as a

function of the spectral quality score. The category ‘‘tryptic,

subset db’’ refers to spectra corresponding to unmodified tryptic

peptides that were identified due to reduced search space. The

category ‘‘tryptic, spectral lib’’ refers to spectra corresponding to

unmodified tryptic peptides identified using spectral library

searching, and it includes some spectra that were also identified

by other methods. WCL fraction data.
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unassigned low-quality spectra (SQSo1, probability below

0.1), and close to 10% of spectra were of high quality

(SQS41) and unassigned. A significant proportion of these

unassigned high-quality spectra (more than 30%) could be

assigned at one of the reanalysis steps described above.

Figure 2B shows the distribution of spectra as a function of

SQS identified at steps i–iv of the reanalysis pipeline and

grouped into different categories. Several trends are appar-

ent. The ratio of spectrum assignments (fraction of assigned

spectra among all initially unassigned spectra) obtained via
spectrum library searching decreases with increasing SQS

scores. This indicates that spectral library searching is most

advantageous (for gaining additional identifications) when

applied to spectra of lower quality. Thus, in those applica-

tions where the primary goal is to increase the number of

spectral assignments, spectral library searching should be

applied on the entire data set, i.e. without spectral quality

filtering. It was also found that a significant number of

spectra were due to semi-tryptic peptides (more than 5% of

the total number of assigned spectra, including peptides

identified in the initial search). The other two main cate-

gories were modified tryptic peptides and tryptic peptides

with incorrectly measured parent ion m/z value. A small

number of tryptic peptides were identified due to reduced

database size (subset database). These peptides were masked

in the original search by other peptides (‘‘distraction effect’’

[32]).

The initial search included two modifications only:

methionine oxidation and N-terminal acetylation (or carba-

mylation, as it cannot be distinguished from acetylation in

low mass accuracy data sets). A much larger space of PTMs

and chemical modifications was explored using the blind

mode of InsPecT, which allows any mass shift on any one

residue in the peptide sequence. The blind search revealed a

large number of frequent modifications (the most frequent

ones are listed in Fig. 3). However, we also found that while

the blind mode of InsPecT was successful at identifying the

most frequent types of modifications in this data set, it was

not as sensitive at detecting any particular type of modifi-

cation as the normal mode InsPecT with that modification

explicitly specified in the input file as a variable modifica-

tion. Furthermore, blind mode InsPecT had a difficulty with

localizing the site of the modification (e.g. in the case of

phosphorylation, in some instances the 180 Da shift was

placed on a residue other than S, T, or Y). Due to these

concerns, and acknowledging the difficulty of accurate FDR

control in the case of blind searches, we have not counted

spectral assignments identified by the blind InsPecT search

only. Instead, the blind mode was used for identifying the

most frequent modifications in the data set, which was

followed by the normal InsPecT search allowing these most

frequent modifications only (see Fig. 1).

A more detailed analysis of modified peptides revealed

several interesting trends. The higher the protein abun-

dance (measured using spectral counts [1]), the more likely

it was to observe a modified peptide from that protein

(Fig. 3A), in agreement with previous observations [3, 14].

The rate of modifications across different samples was

investigated as well. Figure 3B shows the distribution
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Figure 3. Additional analysis of peptide categories. (A) The ratio

of proteins (among proteins of similar abundance as measured

using spectral counts) containing at least one modified peptide

of a particular type (WCL fraction data). Shown are methionine

oxidation (116), N-terminal acetylation/carbamylation (142),

and pyroglutamic acid formation from N-terminal glutamic acid

(�17.0). (B) Most frequent modifications and their normalized

frequencies in WCL, plasma membrane (PM), and raft fractions.

(C) Novel peptides (according to NCBI NR database) identified by

the genomic database search and categorized by edit distance

(WCL, plasma membrane, and raft fractions).
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of the most frequent modifications in WCL, as well as in

plasma membrane and raft fractions. While the overall

trend is the same (e.g. oxidation was the most common

modification), there are noticeable differences, likely

reflecting variations in sample handling. It is also apparent

that the dominant majority of identified modifications are

chemical modifications likely due to sample handling, and

not biologically relevant modifications.

Many high-quality spectra (more than 50% of all initially

unassigned high-quality spectra) remained unassigned after

all reanalysis steps involving searches against protein

sequence databases. A small fraction (o10%) of these still

unassigned spectra were identified by performing X!

TANDEM and InsPecT searches against the translated

genomic database, followed by a non-parametric target-

decoy based FDR control [31] to achieve less than 5% FDR.

The peptides found by genomic database searching were

mapped to protein sequences in the NCBI NR database. For

each peptide, the edit distance was computed between the

peptide and its closest match (smallest edit distance) in

the NCBI NR databases. Edit distance is defined here as the

number of amino acid differences between the two peptides.

Peptides with non-zero edit distance were referred to as

‘‘novel’’ peptides. Figure 3C shows the distribution of novel

peptides in terms of the edit distance. While many of the

novel peptides differed from the best matching NCBI NR

peptide by edit distance of 1 (putative single nucleotide

polymorphisms, SNPs), a substantial proportion had high

edit distances (putative novel splice variants). A more

detailed analysis was then performed by searching the

sequences of novel peptides against the human dbSNP

database [33]. Results show that only about 5% of peptide

polymorphisms found in this data set corresponded to

known SNPs in dbSNP. Furthermore, a number of possible

alternative splice variants were discovered from alignment

of novel peptides against the gene models in UCSC genome

browser by BLAT [34]. As a part of this technical report,

however, no attempt was made to further validate any of the

specific identifications.

Efficiency of the computational analysis is an important

practical consideration. All work was done on a Linux server

with a 2.2 GHz CPU and 16 GB of memory. An average

mzXML file took 1 h (per CPU) for the initial search using X!

TANDEM. The blind InsPecT search was performed against

the subset database (a fraction of the original database size),

and the searches against the genomic database were

manageable due to the database compression [17]. Limiting

the reanalysis to unassigned high-quality spectra only was

also important since these spectra represented a small

fraction of the original data set. The time to build and search

the spectral library was not significant compared to various

sequence database search steps. Overall, the reanalysis of

spectra took less than 1 h (per CPU/mzXML file) for X!

TANDEM, InsPecT (normal mode) and SpectraST searches

combined, less than 2 h for InsPecT blind mode, and 2–3 h

for EST database search. The movement of data and inte-

gration of different search results was carried out using

several in-house developed programs.

The iterative database search strategy described here is

flexible, and different combinations of methods for reana-

lysis of unassigned high-quality spectra can be applied. It is

worth noting, however, that despite all efforts, a substantial

fraction of the high-quality spectra in the data set used in

this work remain unassigned. The success rate of peptide

identification can be further improved by using a combi-

nation of different search engines (in addition to X!

TANDEM and InsPecT used here) [35, 36], as well as by

implementing more accurate peptide fragmentation models

[37]. It has been suggested that a significant number of

unidentified spectra are chimera spectra resulting from co-

fragmentation of two or more different peptides [25, 32, 38].

Additional work is necessary to develop methods to analyze

MS/MS data allowing for the possibility of chimera spectra,

as well as to get a better understanding of the practical

importance of identifying such spectra for increasing the

total number of identified peptides and proteins. Other

computational strategies not relying on database searching

may also be required for further improving the sensitivity of

peptide identifications, e.g. de novo sequencing [39, 40]. It

should also be noted that given continuous improvements

in MS instrumentation, the strategy presented here will

need to be revised in the future. For example, in the case of

MS/MS spectra generated on high mass accuracy instru-

ments, substantial improvements can be achieved via more

accurate determination of the precursor ion charge state and

m/z [41].

The iterative approach utilized in this work could be of

general interest beyond the primary focus of this technical

brief on understanding the sources of unassigned high-

quality spectra. First, it can be used to more effectively

search for novel peptides (SNPs, novel splice variants) as

way to improve genome annotation [42, 43]. Second, the

method can assist in obtaining a more complete picture of

how the rates of various modifications (post-translational

and chemical), as well as numbers of semi-tryptic peptides

and peptides with missed cleavages, vary from sample to

sample and change as a function of experimental or sample

handling conditions. Such an analysis is particularly

important in the context of targeted proteomic studies using

multiple reaction monitoring assays, where accurate peptide

quantification requires normalization to account for peptide

modifications and changes in the efficiency of trypsin

digestion [44]. Finally, one may envision that iterative/

multistep data analysis strategies will play a more promi-

nent role in future proteomic studies. We note, however,

that routine application of iterative strategies such as the

one utilized in this work, especially in a high-throughput

environment, will require further substantial work on the

development of statistical FDR estimation methods applic-

able to a wide range of peptide identification approaches,

including subset database searching, blind PTM analysis,

and genomic searches.
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