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ABSTRACT

The behavior of homogeneous materials subjected to repeated impinge-
ments of liquid droplets is investigated. Based on fatigue theorems, a
model is presented for describing both the incubation period n, (i.e., the
time elapsed before the mass loss of the material becomes appreciable),
and the mass loss past the incubation period m. The parameters are es-
tablished which govern the length of the incubation period and the sub-
sequent mass loss rate, and simple algebraic expressions are developed

relating n, and m to the properties of the impinging droplets and the

i

material., The limits of applicability of the model are also established.
The results obtained are compared to available experimental data.

Reasonable agreement is found between the present results and the data,

indicating that the model developed can be used to estimate the incuba-

tion period and the mass loss of the material.
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NOMENCLATURE™
a,-a, constants (dimensionless)
A area (ftz)
b constant defined by Eq. (19), (dimensionless)
bl constant in Eq. (16), (dimensionless)
b2 knee in the fatigue curve (see Fig. 4)
C speed of sound (ft/sec)
d diameter of the droplet (ft)
E modulus of elasticity (1bf/ft2)
f number of stress cycles, (see Eq. 9)
F force (1bf)
1 rain intensity (ft/sec)
m mass eroded per unit area (1bm/ft2)
m* dimensionless mass loss defined by Eq. (40)
n number of drops impinging per unit area (number/ftz)
n* number of drops impinging per site, (see Eq. (22),
dimensionless)
n: characteristic life (dimensionless)
N fatigue life (see Fig. 4), (dimensionless)
P probability defined by Eq. (27), (dimensionless)
P stress (1bf/ft2)
q drop density (number/ft3)
r distance (ft)
+

In this 1ist the units are indicated in the English Engineering System
(ft, sec, lbm and 1bf). However, any consistant set of units may be
used in the equations.
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parameter defined by Eq. (21), (1bf/ft2)
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SECTION I
INTRODUCTION

Aircraft components such as radomes, leading edge surfaces, heli-
copter blades, and various structural members may experience heavy damage
when subjected to repeated impingements of rain droplets. Liquid droplets
may also cause significant damage to steam turbine blades. Owing to
the severity of the problem numerous investigations have been concerned
with the effects of liquid impingement on surfaces. Excellent reviews
summarizing previous experimental and analytical work have been given,
among others, by Eisenberg (Reference 13), Engel (Reference 15), Heymann
(References 32 and 33), Heymann and Arcella (Reference 35) and Wahl
(Reference 65). Many of the recent studies dealing with the problem are
also described in the Proceedings of the First, Second and Third Rain
Erosion Conferences (References 23-25).

The majority of previous studies on the subject of rain erosion have
been experimental in nature, with the bulk of prior research concentrating
on the measurement of an erosion parameter (e.g. total weight loss) of
a sample subjected to specific conditions. Such empirical studies pro-
vide information on the behavior of a given material under a given con-
dition, but fail to describe material behavior beyond the range of the
experiments in which they were obtained. Recently, attempts have been
made to derive analytical or semi-empirical formulae which describe the
dependence of material damage on selected operating variables, éuch as
impact velocity and droplet size (References 29, 32, 33, 35, 53 and 58).
Although these studies shed light on some of the mechanisms which con-
tribute to material damage, a satisfactory method has not yet been devised
which is capable of correlating the existing data and generalizing the

-1~
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results obtained from a few experiments. The objective of this investi-
gation is to develop a model which is consistent with experimental obser-
vations and which predicts quantitatively "erosion' of materials under
previously untested conditions. It is evident, that such a model is
needed for the selection of the proper materials and for the design of
appropriate structures and components subject to severe liquid impinge-
ment.

The model proposed here is aimed at describing a) the "incubation
period", i.e. the time elapsed before the mass loss of the material be-
comes appreciable, and b) the degradation of the material past the in-
cubation period as manifested by its mass loss. The existence of an
incubation period suggests that the damage produced in the material is
the consequence of cumulative fatigue damage produced by the repeated
impacts of the droplets. Therefore, the present model is based on
fatigue concepts. The role of fatigue in rain erosion has been recog-
nized in the past (References 9, 48, 49, 57 and 63), and attempts have
been made to describe the material damage in terms of fatigue para-
meters (References 32, 33 and 51). However, expressions for the incuba-
tion period and for the subsequent material loss have not yet been de-

rived.
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SECTION II
THE PROBLEM
The problem investigated is the following. Spherical liquid drop-
lets of constant diameter d impinge repeatedly upon a semi-infinite,
homogeneous material (Fig. 1). The angle of incidence of the droplets
8, and the velocity of impact V are taken to be constant. The spatial
distribution of the droplets is considered to be wniform. Thus, the

number of droplets impinging on unit area in time t is
n = (V cosb)q t (1)

where q is the number of droplets per unit volume. Rain, falling with
constant terminal velocity Vt’ is usually characterized by a parameter I

called "intensity', which is related to q by the expression

*

6 _ I
3 (2)

th

In Eq. (2) I has the units of length/time. Values for Vt may be obtained

q =

from charts (Reference 27), or may be calculated from the empirical re-

lationship (Reference 1)

V. = 965 - 1030 e“6d (cm/sec) (3)

t

where d is in cm. Equations (1) and (2) may be combined to yield

n=g_(_v._99_5.9_).£t (4)

3
th

*
Any consistent set of units may be used in Eq. (2). Customarily, I

is expressed in in/hr, V¢ in ft/sec and d in mm., For these units

q ¥ 1250 L (number/cu ft)
\Y d3
t
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The impingement rate is assumed to be sufficiently low so that all
the effects produced by the impact of one droplet diminish before the
impact of the next droplet. This assumption is justified since, in prac-
tice, the time between subsequent impingements at a point is of the order
of 10“2 sec, while the stresses produced in the material become negligible
in about 10“6 sec (Reference 33).

The pressure within the droplet varies both with position and with
time. For simplicity, the pressure will be taken to be constant, its
value being given by the water hammer pressure (Reference 34)

p.C_Vecosb

p.C
L4 LL

psCs
where p is the density, and C the speed of sound. The subscripts L and

s refer to the liquid and the solid, respectively. In terms of the modulus

of elasticity ES
C.= \E_/p (6)

Although more accurate representation of the pressure is possible (Refer-
ence 34), the accuracies afforded by the use of Eq. (5) will suffice in
the present analysis. Thus, the force imparted to the surface by each
droplet is
2
Td
F=P——
P (7)
The forces, created by the repeated droplet impacts, damage the material
as manifested by the formation of pits and cracks on the surface, and by

weight loss of the material. Experimental evidence indicates that under

~-5-
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a wide range of conditions the weight loss W varies with time t as shown,
schematically, in Fig. 2a. For some period of time, referred to as in-
cubation period, the weight loss is insignificant. Between the end of

the incubation period t, and a time denoted by tf the weight loss varies

i
nearly linearly with time. After te the relationship between W and t
becomes more complex. Here, we will be concerned only with the behavior
of the material up to time tee In most practical situations the useful-
ness of the material does not extend beyond tf.

It is advantageous to replace the total weight loss of the sample
by the mass loss per unit area m, and the time by the number of droplets
impinging upon unit area n. In terms of the parameters m and n, sche-
matic representation of the data is given in Fig. 2b. It is now assumed

that the data can be approximated by two straight lines as shown in

Fig., 2b, i.e.
m=0 0 <n (8a)
m=a (n-n,), n; <n <ng (8b)

Thus, the material loss m produced by a certain number of impacts n,

can be calculated once the incubation period n, and the rate of subse-
quent mass loss (as characterized by the slope a) are known. Therefore,
the problem at hand is to determine the parameters ni, a, and N, the
latter being the upper limit of validity of Eq. (8b).

It is noted here that the above model is valid only if there is an
incubation period. It has been observed experimentally that under some
conditions even one impact will result in appreciable damage, a situa-
tion in which t, 0. Problems of this type will be discussed in Sec-

i
tion VII.
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SECTION III
INCUBATION PERIOD n,

It has been recognized that fatigue plays an important role in the
erosion process (References 9, 32, 33, 48, 49, 51, 57 and 63), parti-
cularly in the "early'" stages of the process, corresponding to the in-
cubation period. Therefore, it is expected that fatigue theorems estab-
lished for the torsion and bending of bars might be applied, at least
qualitatively, to materials subjected to repeated liquid impingement.
The failures of bars undergoing repeated torsion or bending have been

found to follow Miner's rule (Reference 50), which is expressed by the

following equation

h.5h E
NN

= a 9

where fl, f2....fk represent the number of cycles the specimen is sub-
jected to specified overstress levels 9y Tgeeeslps and Nl’ NZ""Nk
represent the life (in cycles) at these overstress levels, as given by
the fatigue (o vs N) curve. al is a constant which in torsion and bending
tests generally varies between 0.6 and 2.2,

Let us now consider one element at point B on the surface of the
material as shown in Fig. 3. Each droplet impinging on the surface will
create a stress at point B. Assuming that the force created by the

droplet at its point of impact is a "point force', the stress at point B

due to any one droplet is (Reference 64)
o(r) = ——5— (10)

where Vg is the Poisson ratio. Every droplet which falls at a radius r

-8~
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produces the same stress at point B. Therefore, the number of cycles
for which the material at point B is subjected to a given stress between
0 and 0 + do is equal to the number of impacts on a dr wide annulus
located at r (Fig. 3). During the incubation period the total number of

impacts on the annulus is

f(r) = ny2nrdr (11)
Therefore, fl’ f2"’fk in Eq. (9) are replaced by f(rl). f(rz)...f(rk),i.e.,
f(r,) f(r,) f(r,)
i o SPPR L, (12)
1 2 k

Since r varies continuously from zero to infinity, Eqs. (11-12) mav be

written as

- ninrdr
j A e (13)
0
Using Eq. (10), rdr can be expressed in terms of o
F(1-2v)
rdr = - Lo s do (14)
x - 2
20

Equations (13) and (14), together with Eq. (7) yield

do = a, (15)

g 42 2
_II ni[P i (1 2\)5)_/21 ]
o N
u
The lower and upper limits of the integrals have been changed to the
ultimate tensile strength ou and the endurance limit Or respectively.
In order to perform the integration the fatigue life N must be known as

a function of 0. For most materials the fatigue curve between 9 and Oy

may be approximated by (Fig. 4)

N = b.o? (16)

-10-
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where b and bl are constants. Equation (16) must satisfy the conditions

N=1 for o= Gu (17a)

by for o= ¢ (17b)

N = 10 1

b
In Eq. (17b),10 2 corresponds to the "knee' in the fatigue curve (Fig. 4).

Equations (16) and (17) yield

o b
N= (D) (18)
b
2
b 5 —— (19)
Gu
log;o (57

I

Substituting Eq. (18) into Eq. (15) and integrating we obtain

b-1 b-1
nd? % 1
—n, P(1-2y) = a (20)
4 1 s b 1
2(b-1)o
u
Introducing the definitions
i 20u(b—l) N Zcu(b—l)
S = = (21)
Op bt 1-2v
(1-2v ) [1-z2) ] s
u
x _ md2
ny S, (22)
equation (20) becomes
n¥=a S (23)

Defining by '"site" the surface area equal to the cross sectional area
of one droplet, the number of sites per area A is A/(ndZ/A). Since n,

*
is the number of impacts per unit area, ny is the total number of impacts

*
per "site". The minimum value of n, is unity.

i
-12-



AFML~TR-72-106

The parameter S characterizes the '"strength' of the material. Thus,
the number of impacts per sight needed to initiate damage is proportional
to the ratio of the 'strength' of the material S to the stress P produced
by the impinging droplets. Such a dependence of n: on S and P is rea-
sonable, since the length of the incubation period is expected to increase
with increasing S and with decreasing P. However, in view of the fact
that Eq. (23) is based on the fatigue properties of materials in pure
forsion and bending, one cannot expect a linear relationship to hold
between n: and S/P. In order to extend the range of applicability of
Eq. (23), while retaining its major feature (namely the functional de-

*
pendence of n, on S/P) we write

* g 82
n, = a, (@ (24)

where both a, and a, are as yet undetermined constants. Since the
form of the above functional relationship between n: and S/P is arbit-
rary, its validity must be evaluated by plotting experimentally ob-
served values of n: versus S/P. The relationship will prove to be
correct if on a log-log scale such a plot results in a straight line.
The‘equation éf this line would provide the constants a, and a,.

The n: and S/P values deduced from all the available experimental
data are shown in Fig, 5. The symbols used in this figure and the cor-
responding experimental conditions are identified in Table I. It must
be pointed out that only those data could be included in Fig. 5 for

> B

which not only ni but also the material properties (cu, Oy» b2, v s

s
%) were available. It is seen from Fig. 5 that all the data can be

correlated by a straight line. The equation of this line, obtained by

-13-



107

L BRI EAAE

o
N
L] l'l'l’"

T T TrrYyYY

103

o
N
T v v'vvll

10

L] L ll"'l

®
CY
(2]

©

' | .Llnl  — lluul

1

Lll“ul

1

11 11153

| 10 102

S/P

10°

Figure 5. Incubation Period Versus S/P.

Defined in Table I.

-14-

Solid Line:

104

Symbols for Data
Best Fit to Data.



AFML-TR-72-106

a least square fit of the data, is
* -
ny = 3.7x107" (s/2)°"7 (25)

The excellent correlation in Fig. 5 lends support to the validity of
the model.
As was discussed in Section II, the present model is valid only when

the incubation time is greater than zero. This condition is met when

*
>

ny

1 or, according to Eq. 25, when S/P>4.0. Thus, an incubation period

exists if

n,>1
1 (26)

S/P>4.0
The foregoing analysis (Eq. 25) can be applied only when the above condi-
tions are satisfied. When S/P is equal to or less than 4.0 damage will
occur even upon one impact per site (Section VII). This is most likely
to occur at high impact velocities in which case P is high (since P~V)

and S/P is 1low.

-15-
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SECTION IV
RATE OF MASS REMOVAL

Beyond the incubation period, erosion of the surface of the material
(as expressed in terms of mass loss) proceeds at a nearly constant rate as shown
in Fig., 2b. In order to calculate this erosion rate,an analogy is drawn
again between the behavior of the material upon which liquid droplets
impinge, and the behavior of specimens subjected to torsion or bending
fatigue tests. Experimental observations show that in the latter case
the specimens do not all fail at once at some "minimum life', but their
failure is scattered around a ''characteristic life'. For specimens in
torsion and bending tests the probability that failure will occur between
minimum life n, and any arbitrary longer life n may be estimated from
the Weibull distribution (Reference 67)

n-n, B

p=1-exp [~(—) ] (27)
a

where n, is the characteristic life corresponding to the 63.2 percent
failure point and B is a constant (Weibull slope). For (n-ni)/na<< 1
Eq. (27) may be approximated by

n-n, B
p¥( ) (28)

Na

The probability p can also be taken as the number of specimens that fail
between n, and n. If the material undergoing erosion due to liquid im-
pingements is considered to be made up of many small '"parts'", then the

amount of material eroded (mass loss) is proportional to p, i.e.

8 * % 8
m n-ni n -ni
pd- 23 ) = 3y =) (29)
S a a

-16-
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In Eq. (29) m was nondimensionalized with respect to psdin order to
render the proportionality constant a3 dimensionless. Equation (8b) is

now rewritten in dimensionless form

*

) (30)

ELa_ o
Sa=
S g psd3/4

*
(n -n

Equating Eqs. (29) and (30) we obtain

) (31)

According to Eq. (31) the mass loss rate o depends on the total number
of impacts n. However, our model postulates a constant mass loss rate
(i.e. a is independent of n, see Fig. 2b), at least when n; n<nf. This
requirement. can be met by setting B = 1. Such a value for 8 is not um-
reasonable under high frequency loading (Reference 63). The character-

is related to the minimum life n;. This relationship may

istic life n, i

be expréssed suitably as

ag

* * 1
n, = an, (32)

where a, and ag are constants. Introducing the dimensionless mass loss

rate

o E._:17;_ (33)
mp d7/4

equations (31-33), together with the assumption B =1 yield

* 1
o = a (34)
3 % 36
(ni)

The new constant ag was introduced in place of Bas.

-17-
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The validity of Eq. (34) can be assessed (and the constants ay and

%
a, can be determined) by plotting experimentally obtained values of q

6
versus (llnz). According to Eq. (34), on a log-log scale such a plot
should result in a straight line. All the available experimental data
are presented in such a manner in Fig. 6. As can be seen the data

follows reasonably closely a straight line of the equation

. L 0.7
o =0.023 (%) (35)

4

indicating that the arguments leading to Eq. (35) were reasonable. The
somewhat larger scatter of this data as compared to the data on the n:
vs S/P curve is due to the facts that a)ni can be estimated more accu-
rately from the available data than the slope of ¢, and b) all available
data have a rather wide margin of error, but the value of n, is less
séhsitive to these errors than the value of g.

Instead of plotting a* versus 1/n: as was done in Fig. 6, o
could have been correlated directly with the parameter S/P by using the
relationship between n: and S/P given in Eq. (25). However, if a* were
plotted versus S/P then in this figure only those data could be included
for which the material properties needed for calculating S were known.
By plotting a* against l/n: the use of these properties could be avoided;

*
an advantage because for many of the data only n, were known but not the

material properties.

-18-
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The relationship between the time rate of mass loss (dm/3t) and the
impact velocity V can now be established. For a rain of constant dia-
meter and intensity impinging upon a given material, a may be expressed

as

3 0
1 07 L4

[0.023&) 1 ~p* ~v (36)
oy

Noting, that an/3t = Vq cosf (see Eq. 1), we may write

w(%d3 % TP d

— = —-§%-= qucosevaVNV5 (37)

This result is consistent with the experimental observation that the
time rate of mass loss varies approximately with the 5th power of the

impact velocity.

-20~
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SECTION V
TOTAL MASS LOSS

In Figures 5 and 6 only those data could be included for which the
variation of the mass (or weight loss) with time was known. There are
numerous déta available where such complete information is unavailable,
but where the mass loss is given at one instant of time. A comparison
of the present model with the latter 'single point" results would be
desirable, since agreement with such "single" data points would lend
confidence to the validity of the model. To facilitate such a comparison

Eq. (8b) is rewritten in dimensionless form

n =g (n"-ny) (38)
or
* * %*
'S; =n-n, (39)

where the dimensionless mass loss is defined as

* m
" Fpd (40)

According to our model, expressed by Eq. (39), all data should corre-
late on a m*/a* versus (n*—n:) plot. Such correlation is presented in
Fig, 7. This figure includes all existing data known to us in which
droplets impinge continuously on a homogeneous material (see Table I).
The results of experiments in which a jet impinges upon the surface
(Reference§ 5, 6, 36 and 37) were not included in this figure. As can
be seen, the agreement between data and the theoretical line given by
Eq. (39) is quite reasonable, particularly in view of the large errors
inherent in most of the experimental data.

-21-
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SECTION VI
UPPER LIMIT OF APPLICABILITY OF MODEL

As was stated in Section II, the model proposed is valid only as
long as the mass loss varies linearly either with time t or with the
number of impacts n. Consequently, the upper limit of t ( or n) must
be established beyond which the present model cannot be applied. An
estimate of this limit n. was made by observing that for many of the
data given in Figs. 5, 6, and 7 the number of impacts n was as high as 3ni.
Up to this boiﬁfftﬁé'data obtained at higher values of n did not show any
systematic dé@iéiionifrom the data obtained at lower n values. It was con-

clhded,therefofé;tﬁéirthe model is valid at least up to nf=3ni, i.e.

<3n (41)

Rg €50y

or, in dimensionless form

s 3n* (42)

n i

*
f
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SECTION VII
NO INCUBATION PERIOD
The model discussed thus far can be applied only if there is an

incubation period or, as shown previously, if

*
ni > 1
S/P >4 26)

The domain in which the above conditions are satisfied will be referred
to as Region I, as illustrated in Fig. 8. The domain corresponding to
zero incubation period will be referred to as Region II. One would wish
also to extend the model developed for Region I to Region II. To ac-
complish this, data of the form shown in Fig. 9 would be needed, i.e.
the mass loss would have to be measured as a function of time (or number
of impacts) for different materials of known properties. Unfortunately,
to date such data have not yet been obtained. Therefore, one can only
hypothesize that the data in Region II have the general trend shown in
Fig. 9, If this trend is correct then, similarly to Region I, the data
may be approximated by two straight lines (Fig. 9). Accordingly, the

mass loss may be written as

% * * *
mo=m,+ap (0= 1) (43)

* *
where m_ . is the mass loss caused by one impact per sight, and aqy is

II
the rate of mass loss beyond n* = 1. Intuitively, one might argue that

* *
both Wy and ary should be directly proportional to the force of the

impact (i.e. the pressure P), and inversely proportional to the 'strength"
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MASS LOSS, m*

Region I
S/P<4

Region I
S/P >4

NUMBER OF IMPACTS PER SIGHT, n*

Figure 8. Limits of Region I.
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0 Data
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S/P>4

NUMBER OF IMPACTS PER SIGHT, n*

Figure 9. Schematic of Experimental Results in Region 11,
and Description of Model.
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* *
of the material S. Thus, m,.and a

I 11 2re expected to be of the form
a
x S 8
mp =2 @ (44)
a
x g 10
%1 = 3 @)

The validity of Eqs. (43)-(44), and the constants as=a g could be assessed
only by comparing these expressions to data, similarly as was done for

the model in Region I. However, such comparisons will have to await

the measurements of the appropriate data.
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SECTION VIII
SUMMARY
In this report a model has been developed which can be used to es-
timate the incubation time and the mass loss of homogeneous materials
subjected to repeated impingements of liquid droplets. The following

results were obtained

a) Incubation Period

5.7
p,C
20 (b-1)(1 + LCL)
* =4 v Ps"s
n, = 3.7x10 (no. of impacts) (45)
(1-2 \JS) ( QLCLVcos 8) site
or
5.7
C
-4 20u(b'-l) 1+ :LCL) no. of impacts
_ 4,.71x10 ] ¢ ) (46)
n, = 2 unit area
d (1-2\)5) ( QLCLVcosﬁ)
or
5.7
B p.C N
| enas D
_ 4.71x10 S S (time) 7
2
qVcos6d (1-2 vs) ( pLCLVcose)
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b) Rate of Mass Loss

4
x (1-2 vs) QLCLVcose
o = 5.75
PO
Zou(b-l)(l + 5 C )
s S
or
4
3 (l—zvs)gLCchose mass loss
a= 4.51p d (————)
s pLCL impact
20u(b—1)(1 + 5 C )
s's

c) Total Mass Loss

* X x %
m =a (n - ni)

or

(mass loss)

m= a(n-ni) mit area

(48)

(49)

(50)

(51)

Equations (46), (49) and (51) yield the mass loss per unit area in time t

4
(1-2v ) p C, Vcos®H
m= 4.51 psd3 s’ AL T (q t Vcos8)
LL
Zou(b-l)(l + 5 C )
s's
pLCL 5.7 -~
4 Zgu(b-l)(l + 5 C )
_ 4.71x10 s's >
d2 (1‘2Vs)(QLCLVcose)
J

-29-

(52)



AFML-TR-72-106

The foregoing results are subject only to the following two constraints
a) incubation time must be greater than zero (ti>0)’ a require-

ment satisfied by the condition

pLCL

pscs)
> 4,0 (53)

(1—2vs)((iCLVcos6)

20u(b~l)(1 +

a~117,)

b) total time elapsed must be less than three times the incubation

period, i.e.

<
t 3 ti
n <3 n, (54)
n* <3 nf
i

or

517
p. C
Zou(b—l)(l + pLCL)
3 (Vcos8)It <1 11x10~3 s's (55)
2 3 )
th (1—2vs)(ciCLVcose) 1

A tentative model has also been suggested for those problems where
constraint (a) (Eq. 53) is not satisfied (see Section VII). Owing to

lack of data the validity of this model could not yet be assessed.
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TABLE I

DESCRIPTION OF DATA AND SYMBOLS USED

IN FIGURES 5, 6 and 7.

[ Velocit Diameter
Symbol Material ocity of Drop Author
(ft/sec)
(mm)
JAN Perspex 730 1.9 Fyall et al
(1957)
A 1180 1.9 Schmitt et al
—_ (1970)
A 1395 2.0 King (1965)
V | Alkathane 2 585-730 1.9 Fyall et al
(1957)
V¥ | q.5.-4 730 1.9 Fyall et al
Polyethylene (1957)
‘7 Polyphenylene 535-3720 1.9 Schmitt et al
Oxide {(1970)
‘;7 Cast Urethane 730 1.8 Morris et al
‘ B (1972)
VW | Polypropylene 980-1470 1.2 King (1967)
P | Tefion 1180 1.9 Schmitt (1970)
O Aluminum Alloy, 730 1.9 Fyall et al
D.T.D. 423B (1957)
. 1160-0 1120 1.8 Morris & Wahl
Aluminum (1970)
O 1145-H19 1120-2240 1.8 Morris & Wahl
Aluminum (1970)
O 2024-T6 1120-2240 1.8 Morris & Wahl
Aluminum (1970)
(D 5052-0 1120 1.8 Morris & Wahl
Aluminum (1970)
e 6061-T6 1120-2240 1.8 Morris & Wahl
Aluminum (1970)
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Velocity

Diameter

Symbol Material (ft /sec) of Drop Author
(mm)
7075-T6 1120-2240 1.8 Morris & Wahl
® Aluminum (1870)
1120 Morris et al
(1972)
@ Aluminum 820-980 1.2 King (1967)
(Pure)
CED Aluminum 1650-1420 1.2 Rieger (1965)
@ Aluminum 1340 1.2 Hoff et al
Alloys (1969)
[:] Magnesium Alloy 730 1.9 Fyall et al
<::> Copper Alloy 585-730 1.9 Fyall et al
B.S. 1433 (1957)
’ Copper 1120 1.8 Morris & Wahl
(Electrolytic) (1970)
[] Nickel 1000 0.866 Engel et al
(1971)
‘ 1120 1.8 Morris et al
- (1972)
E Cobalt-Chromium 1020 0.66 Baker et al
Alloys (1966)
Iron 1000 0.866 Engel et al
(1971)
Pﬁ Steels 1020 0.66 Baker et al
(1967)
E 1455 0.64 Herbert (1965)
{
E 1120 1.8 Morris et al
(1972)
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Velocit Diameter
Symbol Material city of Drop Author
(ft/sec)
(mm)
0 Titanium Alloys 1020 0.66 Baker et al
(1967)
<) 1120 1.8 Morris et al
(1972)
0 1340 1.2 Hoff et al
(1965)
O Tantalum 1000 0.866 Engel et al
(1971)
<a;> Udimet 700 1000 0.866 Engel et al
(1971)
e Magnesia Ceramic 1340 1.2 Hoff (1965)
O Zirconia 1340 1.2 Hoff (1965)
@ Alumina Ceramic 1340 1.2 Hoff (1965)
EE; Spinell 1340 1.2 Hoff (1965)
@ Glass 1340 1.2 Hoff (1965)
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APPENDIX: LITERATURE SURVEY

In this section a brief summary is given of the existing analytical
and experimental investigations on the response of homogeneous materials
subjected to the repeated impingement of liquid droplets. For zonven-
ience, the available information is divided into groups as shown in
Table A-I. The present summary will follow the pattern of this table.
It is emphasized that only homogeneous materials are included here.

Composite and laminated materials are not discussed.

A-I. REVIEWS

One of the earliest reviews dealing with the subject of rain ero-
sion of materials was given by Engel in 1953 (Reference 15). A con-
siderable amount of work has been done in the years following this re-
view. Excellent summaries of the later work are given by Eisenberg
(Reference 13), Heymann (References 32,33), Heymann and Arcella (Refer-
ence 35) and Wahl (Reference 65).

It is noted that many of the results of the latest investigations
were reported at the First, Second and Third rain erosion conferences
(References 23-25). Coﬁprehensive articles dealing with the subject
may also be found in two special publications of the American Society

for Testing and Materials (References 11 and 21).

A-II. EXPERIMENTAL INVESTIGATIONS

By far the largest number of investigations utilized experimental
techniques to determine the behavior of materials subjected to liquid
impingement. A comprehensive summary of the materials tested and the

ranges of parameters covered in past experiments are given in Table A-II.
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As can be seen from Tables A-I and A-II the experiments can be
categorized as 1) single impact studies, 2) in-flight tests, 3) whirling

arm tests, 4) rocket sled tests, and 5) jet experiments.

A-TI-1. Single Impact Studies

The response of materials subjected to the impact of a single drop-
let was studied by Engel (Reference 17), Fyall (Reference 28) and Bowden
and Brunton (Reference 7). It is difficult to apply these results to
problems where multiple impingement occurs, the latter being the situation

which is encountered commonly in practice.

A-II-2, 1In-Flight Tests

In-flight tests, in which the speciman is mounted on or forms part
of an airplane flying through rainstorms are expensive and provide only
limited control of the experimental conditions. For these reasons,
only a few such tests have been conducted most notably by the United
States Air Force (Reference 47) and by Cornell Aeronautical Laboratory

(Reference 55).

A-T1I-3, Whirling Arm Tests

In the whirling arm experiments the model is placed on an arm ro-
tating in a simulated tain fall. This technique has been employed
successfully to study behavior of materials both in the United States and
abroad. In the United States, whirling arm experiments have been per-
formed by Schmitt (Reference 60), Morris and Wahl (Reference 53) and
Engel and Almo (Reference 20); in England by Baker and his coworkers
(References 2 and 3), by King (References 44 and 45) and by Fyall, King

and Strain (Reference 26). In Germany such experiments have been per-
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formed at Dornier Systems (References 31,32,38,39,40,41,46,56). The whirling
arm technique is advantageous in that it provides reasonably good control
over the experimental parameters of interest. However, the impact velo-

cities that can be achieved are limited. The maximum Mach number at-

tained thus far with this type of apparatus is 2.2,

A-11-4, Rocket Sled Tests

Impact velocities of up to 4292 ft/sec (Mach Number~4.0) may be
achieved in rocket sled tests., In this type of experiment the specimens
are fastened on a sled propelled by a rocket and moving through an arti-
ficial rain field. Rocket sled tests for homogeneous materials have
been conducted at Holloman Air Force Base, New Mexico, by Schmitt and

his coworkers (References 58,59,60,61), and by Engel (Reference 19).

A-TI-5. Jet Experiments

Continuous jets of liquids have also been used to simulate the im-
pingement of droplets on surfaces. This is generally achieved by mounting
the test specimen on a wheel rotating with its axis parallel to the jet.
Such experiments have been performed by Beckwith and Marriott (Refer-

ences 5 and 6), Hobbs (Reference 36) and Hobbs and Brunton (Reference 37).

A-TIT. ANALYTICAL INVESTIGATIONS

The damage incurred by materials subjected to liquid impingement
depends upon the force imparted by the droplet to the material and on
the material properties.

The simplest expression for the pressure at the liquid-solid inter-
face is obtained by assuming that the pressure is equal to the water

hammer pressure caused by the impingement of an infinitely long liquid
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cylinder on a rigid solid. Formulae for the pressure, including the
elastic behavior of materials,were developed by Engel (References 14 and
15) and by Heymann (Reference 34). The dependence of the pressure on
time and position was considered by Huang (Reference 42).

Experimental evidence indicates that, in addition to the normal
stress (i.e. the pressure discussed above), shear stresses are also pre-
sent between the liquid and the solid. An estimate of the magnitude of
these stresses was made by Beal, Lapp and Wahl (Reference 4), who showed
that, in most cases, the magnitude of the shear stress is negligible.

The foregoing studies provide only the stresses (normal and tangen-
tial) at the surface. However, the prime interest is not in these
stresses but in the behavior of materials, as expressed in terms of some
convenient "erosion'" parameter, such as the mass loss, incubation time
etc. It has been observed that under many conditions the mass loss is
related to the fatigue properties of the materials. Based on this infor-
mation Heymann (Reference 32) and Thiruvengadam, Rudy and Ganasekaran
(Reference 63)established qualitative relationships between the mass loss
rate and time. Using fatigue concepts Mok (Reference 51) derived an
integral eqﬁation which, under specific conditions, can be solved num-
erically to relate the incubation time to the maximum erosion rate.

Owing to the large number of parameters a complete analytical solu-
tion to the problem has not yet been achieved. Attempts have been made
to establish empirical and semi-empirical relationships between the
various parameters describing the problem. One of the first of these
attempts was made by Engel (Reference 16) who used dimensional analysis

to find the dimensionless groups which govern the depth of pit formation.
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Parametric studies, aimed at correlating data, were also done by prac-
tically every investigator who performed experiments (see Table A-II).
One of the most comprehensive correlations of existing data was given

by Heymann (Reference 33).
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