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There is a point of interest concerning the shock growth as 
e —• 0. The relation between shock radius and blast energy E is 
given by 

,l /(3+i) 
rs = const. ( —rr— I tk (16) 

where 

V P C J , ( Y ) / 

(17) 

Using Eq. (10), a straightforward but somewhat lengthy calcula­
tion yields 

h(y) = 
1 - <E(2 In 2 - 1) + Q(e2) 

(3 +i)2(.f + i) 
(18) 

Hence, rs = 0(e 1 / ( 3 + ; ) ) , which means that the shock speed 
tends to zero as e -> 0. Thus, one has the paradoxical case of a 
strong shock which does not expand. In view of the analogy 
between the blast wave and steady hypersonic flow, it is of in­
terest to see what this implies. In this analogy, x = Ucot and 
one can show that 

d) " L414-^(T)J \d) 
(19) 

d denotes the leading-edge thickness or body diameter and CD 
the nose-drag coefficient. 

The range of validity R of the analogy is limited below by the 
small-shock-angle condition (tan2 a < l/A, where A ^$> 1) 
and above by the strong-shock assumption. Using Eqs. (18) 
and (19), the range is found to be 

AC el/(l+j) < (x/d) < C(MJMs*)^+j)^1+j)
 eV(i+i) (20) 

where 

C = (2Cz))1 /(1+^/(3 +j) (21) 

and Ms* is the shock Mach number below which the shock can 
no longer be regarded as strong. 

Therefore, R gets closer to the nose as e decreases and is 
0 ( e

1 / ( l + j ) ^ which means that the analogy fails completely in the 
limit e — 0. Moreover, there is another reason that the analogy 
fails. The flow field can be divided into two regions: in one 
region the streamlines have crossed the shock at points where 
a is not small, in the other, at points where a is small. Using 
Eq. (13) the thickness of the shock layer Sf in which the blast-
wave analogy is valid is found to be 

const. [2/(1 +j)]e + 0(e2) (22) 

Hence, this thickness tends to zero as 
for j — 0 as for j = 1. 

1 and is twice as large 
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MR. BROCHER, in the above note, appears to credit me in my 
previous note1 with more than I had intended. The sole 

purpose of this note was to demonstrate that to derive a Newton­
ian solution in the explosion case, it was necessary to retain the 
first-order term in the exponent of Eq. (13) as is confirmed by the 

exact solution. Physically, this means that the process is re­
quired to be isentropic and not isothermal as Newtonian ap­
proach would suggest. The order of the approximation was not 
given in the note since, as Mr. Brocher demonstrates, the com­
plete uniformly valid solution is more complicated. The terms 
neglected become significant, however, only in the region (r0/fs) 
of order e"1^2. Although it is undoubtedly true that the com­
plete uniform behavior is given by retaining the complete form of 
the exponent in Eq. (12), it is difficult to see why the Newtonian 
theor}^ would "demand" this. 

I would also like to apologize to readers for an inexcusable error 
in my note which requires that e should read 2e in all equations 
except the exponent of Eq. (12). The following typographical 
errors should also be corrected: 
Eqs. (6) and (7): 

left-hand side should read p/pm 

Sentence following Eq. (7): 
insert factor pm before parentheses 

Eq. (9): 
change p/ps to read p/ps 

Eq. (10a): 
change p^ to read poo 
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THE PURPOSE OF THIS NOTE is to point out a qualitative 

similarity between the effect of a pressure gradient on the 
boundary-layer velocity profile u( Y) shape, and the effect of a 
homogeneous chemical reaction-rate term on the shapes of the 
corresponding thermodynamic-state profiles [fractional atom 
concentration OLA{ Y) and temperature distribution T( Y)]. 
Consider the following boundary-layer equations governing a 
dissociated binary-mixture flow in the immediate vicinit}^ of a 
mass-transfer-free surface Y = Q(u = v = 0): 

( i ) 

Momentum 

J>Y \ dY/_ F = 0 

Atomic-Specie Mass 

a 
_6Y \SC dY _ F = 0 

= -

dpe 

~ dX 

m 
Energy 

[H dY JY = 0 
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WA 

r /<^yi _ I~M 
r W / JF=O U 77 (CPA 

7 = 0 

7 = 0 

da A dT 

(2) 

dY dYjy^O 

where Sc is the Schmidt number, WA the net rate of atomic mass 
production by chemical reaction, and the subscripts A, M refer 
to atomic and molecular species, respectively. Now, Eq. (1) 
illustrates the well-known fact that an unfavorable pressure 
gradient (dpe/dx > 0) tends to cause an inflection point [(d2u -4-
dF2)(0) > 0] in u(Y) at some Y > 0. The net atomic-reaction 
rate at the wall plays a similar role in Eq. (2) regarding the 
shape of the atomic-specie profile. Recombination-dominated 
chemical nonequilibrium (WA < 0) in the gas near the wall acts 
like the unfavorable pressure gradient in the momentum equa­
tion, in that it tends to cause an inflection point in «A( Y) at 
some Y > 0. This chemical-reaction effect holds true for either 
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a catalytic [CKA(O) = 0] or noncatalytic [(daA/dY)(0) = 0] wall. 
While the values of CKA(0) and (daA/dY)(0) are determined by the 
degree of catalytic activity on the wall surface and the integrated 
effect of the gaseous-reaction rates across the entire boundary 
layer, the value of (d2aA/dY2)(0) is directly influenced by the 
gaseous-reaction rates in the vicinity of the wall. Furthermore, 
since WA/P ^ £e

2( 77300 ) w _ 2 for dissociation-recombination in 
air1, 2 the tendency of (daA/dY) to increase with Y for recom­
bination-dominated reactions will be greater as the local pressure 
increases (being a maximum at the stagnation point), and will 
be most prominant at a given pressure for a recombination-rate 
temperature-dependence law that assumes o> > 2 for Tw > 300°K. 

The effect of the reaction-rate term on the temperature profile 
near the wall (Eq. 3) is opposite to the effect on OLA{ Y)\ an inflec­
tion point in T( Y) will appear in the presence of dissociation-
dominated chemical nonequilibrium in the gas adjacent to the 
wall. This qualitative analogy with a pressure-gradient effect 
proves useful in the interpretation of the effects of dissociation-
recombination reactions on the thermodynamic-state profile 
behavior in the boundary layer. 
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FIG . 1. Dimensionless total-pressure distribution in vortex. 
Comparison of Eq. (5) with experimental values. 
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INTRODUCTION 

To DETERMINE THE PATTERN and intensity of a trailing vortex 
behind a wing or any other fairing body, the whole velocity 

field1 or the angular velocity of the vortex field2 has to be meas­
ured. These methods require much time. Therefore, they 
have no practical value in the verification of assumptions and 
theories based on the necessary simplifications of actual complex 
phenomena. The ideas set out below have been found very 
useful in overcoming this difficulty. 

PRINCIPLE OF THE METHOD 

As shown in reference 2, a "core" is formed in the center of 
the potential vortex flow in a real fluid. From a mathematical 
viewpoint, this can be simulated by assuming the existence of a 
vortex sheet on the vortex core surface in the ideal fluid. Ac­
cording to reference 3, it can be said that the fluid inside the core 
behaves like a solid body rotating at a constant angular velocity 
while the fluid outside the vortex core has the characteristics of 
the ideal fluid. Thus the velocities, inside and outside the 
vortex core, can be expressed as 

Vc = (r/27rfo2>, Vi = (Y/2irr) (1) 

Assuming that the fluid in the vortex core is a rigid body, the 
equilibrium equation for the element of the core can be easily 
expressed. The tangent stress need not be taken into account 
because there is no relative radial motion of fluid inside the core. 
Considering the fact that velocities on the core surface should 
be equal, the static pressure in the core will be as follows: 

p = Po + (Pco2/2)f2 

The total pressure will be 

Pv(r) = P + ( P / 2 ) ( P + A ! ) 

(2) 

(3) 

By substituting Eq. (2) into Eq. (3), the following result is 
obtained: 

pp(r) = ( P F 2 / 2 ) + PrW + p0 (4) 

The distribution of total pressure along the radius can be 
verified by measurements. For this purpose, the following 
nondimensional term has been found practical: 

iPv(r) P(0)]/App = (r/r0)> (5) 

I t will be seen in Fig. 1 that, for practical purposes, the experi­
mental data and the plot of term (5) are more or less identical. 


