
794 AIAA JOURNAL VOL. 1, NO. 4

Lift of Slender Delta Wings According to
Newtonian Theory

ARTHUR F. MESSITER*
California Institute of Technology, Pasadena, Calif.

An approximate system of equations is derived to describe the inviscid flow past a flat slender
wing at angle of attack, in the limit y —»• 1 and Mm sin a -> °°. The aspect ratio is required to
approach zero at the same rate as the Mach angle in the flow behind the shock wave. Only a
single parameter appears in the resulting equations, and a similarity law therefore can be
written expressing a correction to the Newtonian normal-force coefficient. For the delta wing,
a correlation of experimental data according to the similarity law is shown, and the first terms
of the solution are derived under the assumption that the similarity parameter is small (ver-
tex angle much smaller than Mach angle).
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Nomenclature

speed of sound
constant defined by Eqs. (1.14) and (1.16)
nondimensional maximum semispan (Fig. 1)

pitching-moment and normal-force coefficients de-
fined by Eqs. (2.2) and (2.5)

function defined by Eqs. (2.3) and (2.4)
function defined by Eqs. (2.6) and (2.7)
unit vectors in x,y,z directions
Mach number of undisturbed stream
VS/\VS\
nondimensional perturbations in pressure defined

by Eqs. (1.18) and (1.23)
pressure
velocity vector
planform shape (Fig. 1)
shock-wave shape
magnitude of undisturbed velocity = | q^ |
velocity components in x,y,z directions
nondimensional velocity perturbations defined by

Eq. (1.18)
nondimensional velocity perturbations defined by

Eq. (1.23)
x coordinate of wing centroid, center of pressure
nondimensional rectangular coordinates (Fig. 1)
distorted coordinates defined by Eq. (1.17)
conical variables defined by Eq. (1.22)
angle of attack
ratio of specific heats

coordinate defined by Eq. (3.2)
sweepback angle
density

Subscripts
b = value at the wing surface
s = value immediately behind the shock wave
oo = value in the undisturbed flow

Introduction

THE flow past a body placed in a uniform stream, is called
hypersonic if two conditions are met : 1) the Mach number
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of the undisturbed flow is large compared to 1; and 2) changes
in pressure and density occur which are of the same order as,
or larger than, the undisturbed values. The Newtonian ap-
proximation used here involves the additional restrictions
that the gas be perfect (this assumption is not essential)
and inviscid, and that there occur very large changes in pres-
sure and density. That is, the shock wave in front of the
body is assumed to be "strong" in the sense that the Mach
number normal to the shock is large and both the pressure
and density of a fluid element increase greatly as the ele-
ment crosses the shock. Over some portion of the body the
shock will be very close to the surface. A detailed discussion
of the approximation and its history is given by Hayes and
Probstein.1

The Newtonian theory has been used in Refs. 2 and 3 in
studying the hypersonic flow over lifting wings, subject to
certain assumptions about the aspect ratio. In Ref. 2 it is
implied that the aspect ratio is of order 1 in terms of the small
parameters, and in Ref. 3 the aspect ratio is required to be
extremely small. The related problem of conical flow over a
body with sharp leading edges is discussed in Ref. 4, with the
implicit assumption that the span and chord are of about the.
same size. For a lifting wing, an interesting intermediate
case arises when the aspect ratio is of the same order of mag-
nitude as the Mach angle in the flow behind the shock wave,
i.e., when the effect of a flow disturbance is felt over a region
having lateral extent of the same order as the wing span. If
the wing has triangular planform, this case is expected to in-
clude two classes of flow patterns: one corresponding to
a flow with the shock wave attached all along the leading
edges, and the other corresponding to a shock attached only
at the vertex.

The assumptions of Newtonian theory, together with the
stated requirement of small aspect ratio, are used in the next
section to derive an approximate analytical description of the
hypersonic flow over a slender lifting wing. In the limit, the
flow between the shock wave and the wing surface is identical
with the flow behind a plane shock wave inclined to the
stream at an angle equal to the wing angle of attack. The
approximate equations describe the perturbations to this
flow and, in principle, can be solved to give a correction to
the pressure at the wing surface. On the expansion side of
the wing, the pressure is somewhat smaller than Pm and is
taken equal to zero. A correction to the Newtonian normal-
force coefficient CN = 2 sin2a. is expressed in terms of a func-
tion that depends on the single parameter 0 = 6/€1/2 tana.
The resulting similarity law (2.4), first reported in Ref. 5, is
used to correlate available experimental data for the lift of
delta wings. These data give a tentative justification for the
use of the theory.

For the delta wins;, the general solution to the approximate
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differential equations is obtained easily by a transformation
to characteristic coordinates. The boundary condition and
shock relations then can be satisfied only if a complicated
functional equation can be solved. A series expansion of the
solution to this equation is assumed for 12 —»- 0, and the first
two terms are derived. Integration then gives the initial
terms of an expansion for 0 -> 0 of the function F(0), which
appears in the similarity law. This result is discussed in the
last section.

Approximation

The coordinate system (Fig. 1) is chosen so that the wing,
assumed flat, lies in the plane y = 0. The planform is
described by — bs(x) <z< bs(x) and 0 < x < 1, where s'(x) ^
0 and s(l) = 1. If the wing is at an angle of attack a, as
shown, a shock wave (not shown) exists below the wing. Pro-
vided that a is not close to ?r/2, the shock is attached to the
wing at the vertex and perhaps along part or all of the lead-
ing edges, depending on the geometry of the planform and on
the values of the parameters. The region of interest is the
high-pressure region bounded by the shock wave, the wing
surface, and the surfaces z = ±bs(x) and x = 1. It is typical
of the Newtonian approximation that the pressure on the
lower surface depends only on the flow field in this region.
On the upper surface, the pressure will be neglected entirely.

For steady flow of an ideal gas, the continuity, momentum,
and entropy equations may be written in the form

divpq = 0
q-Vq + (l/p)VP = 0

q-V(P/V) = 0
(1.1)

In terms of rectangular coordinates x,y,z and corresponding
velocity components #,i?,w, Eqs. (1.1) become

= 0

UUX + VUy + WUz + (l/p)Px = 0

UV* + VVy + WV-Z +• (l/p)Py = 0

+ VWy + WWz + (l/p)Pz = 0

l + v[Py - (yP/p)Py] +
w[P-z- (7P/p)p5]

At the surface B(x,y,z) = 0 of any solid body, it is required
that the normal component of velocity vanish; that is, q- V#
= 0, where q is evaluated at B = 0. For the wing as shown
in Fig. 1, this relation becomes

zJ(x,0,z) = 0 (1.3)
for -bs(x) <z < bs(x)y 0 < x < 1.

The solution in the high-pressure region is joined to the
uniform flow upstream according to a set of jump conditions
imposed at the shock wave:

[p(q-n)] = 0
(P + p(q-n)2] = 0

= 0
(1.4)

[q X n]

where the square brackets denote the change in the en-
closed quantity across the shock. The vector n is the unit
vector normal to the shock wave, taken to be positive when
directed away from the wing (i.e., "outward")- The first
three of Eqs. (1.4) are scalar equations and are the usual jump
conditions for mass, momentum, and stagnation enthalpy
across a normal shock; the last is a vector equation expressing
continuity of the tangential velocity.

If the shock shape is defined by

S(x,y,z) = 0 = y - ys(x,z)
then the normal is

(1.5)

-y^i + j -
n = _

Ivsl

Fig. 1 Wing geometry

where i, j, k are unit vectors in the x,y,z directions. Let the
subscripts oo and $ denote, respectively, the uniform-flow
conditions upstream of the shock wave and the conditions
immediately downstream of the shock. The speed at which
the shock wave moves into the undisturbed fluid is c = — qro • n,
where the minus sign appears because of the choice of direc-
tion for n. The first three of Eqs. (1.4) can be solved for
qs • n, Ps, and ps in terms of c:

1 -
7 + 1

s - Pec

PcoC2
(1.6)

where qs = q(x,ys,z) = u,i + vsj + iD,k, etc. The norma1

velocities c and qs-n are expressed in terms of the shock shape

Tjs% cosa + sina

(1.7)

(1
Resolution of the last of Eqs. (1.4) into x,y,z components
gives

0 = (~vsys-z — ws — Uyg. sina)i +
(u*ys-z — Wsijs^ — Uys- cos«)j +

(us + vsys. — U cosa + Uys- sina)k (1.8)

which is equivalent to two scalar equations, corresponding to
two components of the tangential velocity. The system
(1.6) plus (1.8) is thus sufficient to allow solution for us, vs,
ws, P8, ps in terms of the (unknown) shock shape ys.

The Newtonian approximation implies that the shock wave
must be close to the wing surface and that each of the quan-
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Fig. 2 Comparison of theory and experiment for delta
wings, 7 = 1.4
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tities ys., ys., and pm/ps should be small compared to 1. It
follows from (1.6) and (1.7) that (7 - 1) and (Mm

2 su^a)"1

are to be assumed small. That is, the approximation is ex-
pected to describe correctly the limit of the exact solution for
7 -> 1 and Mm sina ->- oo .

Since the shock wave lies close to the (flat) wing surface,
the conditions immediately behind the shock are approxi-
mately the conditions behind a plane oblique shock inclined
at an angle a to the uniform stream. Since the entropy of a
fluid element remains constant after it has crossed the shock
wave, and since the element undergoes only finite accelera-
tions, the same conditions prevail throughout the thin layer
between the shock wave and the wing surface. Hence one
expects, throughout the region of interest,

edge, a uniform-flow solution can be found. The shock wave
is plane, of the form

q/U ->• i cosa
P/pmU2 -> sin2a

e(p/Pco) -* 1
(1-9)

where e is defined by

* = [(T - l)/(7 + 1)] + [2/(7 + I)^2sin2a] (1.10)
One tries to find the first corrections to these limiting values

by taking an appropriate limit of the differential equations
and boundary conditions and then studying the resulting
approximate system of equations. First the limit procedure
must be stated carefully in terms of the nondimensional
parameters 7, Mm, a, and b. Then one can determine the
behavior in the limit of (q/17) — i cosa, (P/p^U2) — sin2«,
and (P/POO) — 1, each of which approaches zero in some man-
ner. This second step amounts to determining the form of
the first terms in the appropriate asymptotic expansions of
these quantities.

As in various other solutions based on the Newtonian ap-
proximation, the limit procedure for 7 -* 1 and M„ sina ->• °o
will be defined such that

(7 — sin2a = const (1.11)
Uniform validity is expected for all but small values of this
parameter; in particular, no fundamental change in the flow
occurs if MO, becomes arbitrarily large. It will be seen that
no special simplification arises from a restriction to small de-
flections, and so also choose

a = const (1.12)
One should probably anticipate a nonuniformity for a -> 7r/2,
since then the assumed limiting value of q may no longer be
larger than the perturbations.

The Mach angle in the flow behind the shock wave is
approximately e1/2 tana and therefore tends to zero in the
limit. For the delta wing, one expects that the region of
nonuniform flow downstream of the vertex will have angular
extent 0(e1/2). If the aspect ratio is held fixed, then in the
limit this region coincides with the plane 2 = 0, and discon-
tinuities at z = 0 occur in some of the flow variables.2 On
the other hand, if b -+• 0 sufficiently fast (very slender wing),
changes in the x direction become negligible, and the solution
is given approximately by two-dimensional flow in transverse
planes.3 One might guess that the most interesting special
case between these two is the case for which the aspect ratio
tends to zero in such a manner that the vertex angle and the
Mach angle are of the same order. Therefore let b —> 0 in
such a manner that a parameter 12 remains fixed:

12 = 6/e1/2 tana = const (1.13)
For a triangular planform, one might expect that the shock
wave may be either attached or detached along the leading
edges, depending on the value of 12.

A related solution that can serve as a useful guide is the
approximate solution for high-speed flow past an infinite-
span yawed wing at an angle of attack.6 If the parameters
are such that the shock wave is attached along the leading

's(x,z) = A(x — z tanA) (1.14)
where A is the sweepback angle (tanA corresponds to 1/6 for
the delta wing), and the constant A may depend on 7, Mm,
a, and A. With the approximations ys., ys~, pm/ps <<c 1, the
shock relations (1.6) and (1.8) become

us/U = cosa — ys. sina + . . .
vs/U = 2/s- cosa — ys-2 sin a: — e sina + . . .

ws/U = -ys- sina + . . . (1.15)
(Ps — Poo)/POO U2 = sin2a — e sin2a + 2^5jE sina cosa —

ys-2 sin2a + . . .
pjps = e + (l/MJ sin2a){ -2ys. cota + ys-2} + . . .

where the orders of magnitude of ys. = A and ys-2 = A2 tan2A
are yet to be determined. In the Newtonian limit, 7 -> 1
and Mro sina -> oo } and the shock relation for vs becomes

vs/U = 0 = A cosa — (A tanA)2 sina — e sina + . . .

where vs has been set equal to zero because the flow is uni-
form and satisfies the boundary condition (1.3). The solu-
tion for A is

A/c tana = (l/2e tan2a tan2A) X
{1 ± (1 - 4e tan2a tan2A)1/2} + . . . (1.16a)

The result differs from that of Ref. 6 only because of the
different coordinate system used. If tana and tanA are
both held fixed as e ->• 0, the lower sign leads to the ("weak-
shock^) solution anticipated for two-dimensional flow:

A = e tana + . . .

If a is held fixed but A increases, the square root becomes
imaginary when tanA = 0(e~1/2); the vanishing of the square
root is interpreted as a sufficient condition for shock detach-
ment. Also, if tanA = 0(e~1/2), then ys. and ys-2 are each
0(e), and it follows that b = 0(e1/2) is the particular choice
for the slender-wing problem which requires that all terms
in (1.15) be retained. Thus the limit corresponding to 12
= const represents a distinguished case mathematically as
well as physically. Replacing tanA by 1/6 and rewriting
the solution for A,

A/e tana = (12/2) [12 - (122 - 4)1/2] + . . . (1.16b)

The condition for detachment is 12 •= 2, and the sign of the
square root is chosen so that the solution approaches the
two-dimensional value as 12 -* oo. Once A is known, ys(x,z)
is known, and u,wf,p can be found from Eqs. (1.15).

The results for the swept wing will be used to suggest the
asymptotic behavior of the flow over a slender wing. For a
delta wing in the limit e -> 0, with a and 12 fixed, and 12 > 2,
the yawed-wing solution might be expected to describe the
flow in some neighborhood of the leading edge. Although
one could make careful arguments about orders of magni-
tude, for a more general slender planform and for arbitrary
12, it is more convenient to assume that the orders will re-
main the same as found in the foregoing. Once a set of ap-
proximate equations has been obtained, one should try to
show that these equations describe a mathematical problem
for which a solution exists and is in some sense physically
meaningful.

The (nondimensional) chord of the wing has been taken
equal to 1, the semispan 6 is proportional to e1/2 tana (since
12 is held fixed), and the distance ys to the shock wave varies
as e tana. The proper length scales for the x, y, and z direc-
tions therefore are taken to be 1, e tana, and e1/2 tan a,
respectively. That is, if a point in the flow field between
the shock wave and the wing surface is to keep the same
relative position in the limit, the coordinates y and z should
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tend to zero in such a way that

y* = y/€ tana
2* = £/ei/2 tana

(1.17)

are held fixed. The asymptotic representations therefore
should be expressed in terms of these variables. The de-
pendence on a shown in (1.17) and in the representations
(1.18) below is not essential for deriving the approximate
equations but is a convenience that leads to an especially
useful form of these equations. Taking the yawed-wing
solution as a guide, one expects that the following representa-
tions will describe the first corrections to the limiting values
given by (1.9):

u(x,y,z)/U = cosa + €(sm2a/cosa)u*(x,y*,z*) + . • •

V(x,y,z)/U = e sina v*(x,y*,z*)

w(x,y,z)/U = e1/2 sma w*(x,y*,z*)

[P(x,y,z) - sin2<x + e sin2o: p*(x,y*z*) + . . .

Pc*/p(x,y,z) = e — e2[l + p*(x,y*,z*)] —
[(y - l)/2]e[2u*(x,y*,z*) + w**(x,y*,z*)] + . . .

ys(x,z) = e tana y*(XjZ*) + . . . (1.18f)

The correction to the density can be expressed in terms of the
other perturbations, since one integral of the equations is
known before any approximation is introduced: the stagna-
tion enthalpy is constant everywhere. A nonuniformity for
a —> 7T/2 is apparent in the representation for u.

The basic assumption is that the representations (1.18),
which show explicitly the dependence on the small parameter
e, are uniformly valid throughout the region of interest be-
tween the wing surface and the shock wave. That is, one
assumes, for example, that if (7 — l)Mm

2 sin2a, a, and 12
are held fixed, then

lim I
e-*0 (

P(x,y,z) - Poo - pmU2 sin2c

exists uniformly for 0 ^ x $ 1,0 ^ y ^ y8, and — bs(x) ^
z ^ bs(x)j except near the vertex of a pointed wing. The
possibility of discontinuities may have to be investigated.

Since the variables on the left side of (1.18) depend on the
four nondimensional parameters 7, M^, a, and 6, and the
dependence on e is shown explicitly, it is implied that the
starred variables defined by (1.18) may depend on three pa-
rameters that are held fixed as e -> 0, say, on (7 — l)M"co2 sin2a,
ot, and 12. But substitution of the assumed representations
into the exact differential equations, shock-wave rela-
tions, and boundary condition shows that only the single
parameter 12 remains in the approximate formulation of the
problem. Taking the limit of the exact equations so as to
retain only the lowest-order terms in e, one finds

dv* dw

du* , . dw* , * c)i£*T— + v* ̂ —: + w* -^-2 =* *oz*

dw*

dv^

dw*
W

(1.19)

Ws* = -dy*/dz* (1.20)

ps* = 2 (by* fox) - (dys*/dz*y2 - I
v*(x,Q,z*) = 0 0 < x < 1 -Qs(x) < z* < Qs(x)

(1.21)

where ps* = p(x,ys*,z*), etc. Since 12 is the only parameter
appearing in these equations (in the boundary condition),
the starred variables depend only on the coordinates x,y*,z*
and on 12. This result is used in the next section to derive
certain similarity laws.

The equations show several features that are typical of the
Newtonian approximation. For flows approximated in this
manner, the pressure variation is related primarily to shock-
wave curvature and centrifugal forces, rather than to accelera-
tions along a streamline. In the present case the curvature
of the shock wave and of the streamlines is assumed vanish-
ingly small because the wing is flat and the shock wave lies
close to the wing surface; hence the pressure is nearly con-
stant. Also, the magnitude of the velocity vector remains
nearly constant along streamlines; that is, the momentum
equations in the x and z* directions are statements that the
perturbations u* and w* are constant for each fluid element.
The variation in pressure enters the differential equations
only in relation to the small inclination of the velocity vector
to the surface, i.e., in the momentum equation for the y*
direction. The absence of a term ux* in the continuity
equation is typical, since | q is nearly constant along stream-
lines, but the equation appears in the incompressible form
only because the wing is flat and the density nearly constant.

The approximation also is typical in that the pressure can
be found by direct integration, once the other variables are
known. In principle, one first solves the continuity and z*
momentum equations for v* and w*. The equation for u*
also could be solved, but the result is not needed unless one
should want to calculate higher approximations; the equa-
tions for u* will be omitted in the following.

If the planform is triangular, then s(x) = x, and the sys-
tem (1.19), (1.20), and (1.21) possesses conical symmetry.
Define new variables

y = y*/x
z = z*/x

The flow perturbations will be expressed by

v*(x,y*,z*; Q) = v(y,z;Q)
w*(x,y*,z*; Q) = w(y,a/fl)
p*(x,y*,z*; Q) = <p(y,z; 0)

and the shock shape will be defined by

Transformation of the differential equations gives

Vy + Wg = 0

(v - y)vy + (w - z)v, = -py
(v — y)wy + (w — z)wz = 0

subject to the boundary condition

0(0,s;Q) = 0

for — 12 < z < 12. The shock relations become

v, = y* — zys
f — ys'2 — I

ws = —y8'
ps = 2ys - 2zys' - ys'* - 1

(1.22)

(1.23)

(1.24)

(1.25)

(1.26)

Solution of the system (1.24), (1.25), and (1.26) is studied
below, following the discussion of similarity laws.
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Similarity Laws

It was assumed that each of the flow variables has an
asymptotic expansion uniformly valid in a certain region as
c -> 0 with (7 — l)7kfoo2 sin2a, a, and 12 held constant. Since
the approximate differential Eqs. (1.19), shock-wave rela-
tions (1.20), and boundary condition (1.21) involve only the
parameter 12, these equations possess a similarity property
that allows the number of parameters to be reduced to one.
That is,

p*[x,y* (2.1)

etc.
Similarity laws can be written for each of the flow quanti-

ties and for integrated quantities such as the normal-force
coefficient CAT. If the pressure on the upper surface of the
wing is neglected, then

/.'•
/M /*b
I dx I

Jf> J - bs(Z)
dz

(2.2)

= 2 sin2a

/•I fQs
I dx I

JO J -
p*(x$,z*;V)dz*

+ . . (2.3)

Since the ratio of integrals depends only on the shape of the
planform and on 12, one may write (2.3) as an approximate
similarity law for wings of geometrically similar planforms:

CAT - 2 sin2a - (2/TMo,,2) (2.4)

The rule (2.4) states that, if one knows the normal force on
a slender wing flying at high Mach number for a particular set
of values of 7, Mmj a, and 6, then one can calculate the force
on a second wing that has a planform geometrically similar
to that of the first, for a different set of values of 7, M„, a,
and 6, provided that the value of the parameter 12 remains
unchanged. In other words, the calculation of CN(y,Mm,
QJ,&) for a family of wings having geometrically similar plan-
forms, say for wings having a triangular planform, requires
only the knowledge of a single function F(12).

A similarity law also can be derived for the pitching mo-
ment. In coefficient form, the moment about the z axis is

CM =
r

Jo -&«(*)

'ys(x)

~bs(x)
dz

(2.5)

4- € sin2o:-t- cs ina
x dx

r$
I

J "
p*(x,Q,z*;Q)dz*

f l -tew
I dx I dz*

Jo J -Qa(aO

The similarity law is

CM ~ [2sin2o:
e snra (2.7)

where xc is the x coordinate of the centroid of the planform,
and (7(12) is defined by the ratio of integrals in the second
term of (2.6). The distance from the wing vertex to the
center of pressure is

[2 sin2o;
2 sin2a +

Neglecting higher-order terms,

+ e

xcp-xc =

(2.8)

(2.9)

(2.10)
The planform for a delta wing is defined by s(x) = x, and

the approximate flow field is described in terms of conical
coordinates by the system of equations (1.24), (1.25), and
(1.26). The pressure perturbation p(0,z;Q) at the wing sur-
face is a function of a single variable, and the definition of

i becomes

(2.11)

Since the flow field is conical both in the exact theory and
in the approximate theory,

and, from (2.10),

0(0) =

(2.12)

(2.13)

The first terms in an expansion of (2.11) for small values of
12 are found in the following section to be

4(-l + Iog2) - 8121ogl2 +

212 <{ (37r + 6) Iog2 - ( TT + 10 + — } -

f0 (2n
. . . (2.14)

It has not yet been possible to extend this result to larger
values of 12.

A tentative verification of the theory is shown by a set of
experimental results for delta wings correlated according to
(2.4) and plotted in Fig. 2. The data have been selected
from Refs. 8-12, subject to the requirements that e and'6
be small and that the change in local incidence due to wing-
thickness be negligible. The correlation is shown for values
of the parameters in the ranges 0.2 < e < 0.4, 0.1 < 6 < 0.6,
and 0.2 < 12 < 2.0. Other measurements reported in these
references, but omitted from Fig. 2, either show the same
trends as the data selected or else correspond to values of
thickness ratio, of e, or of b which seem obviously too large.

The points in Fig. 2 do appear to be grouped around a single
curve, but the amount of scatter might at first seem rather
large. However, the quantity plotted is the left-hand side
of Eq. (2.4), which measures only a small part of the total
normal force, and errors therefore appear considerably magni-
fied. Error estimates given in the references, together with
observed scatter in the data, suggest that the maximum
error in the measured value of CN may be as large as 0.02.
If Mm sin« = 3.0 and e = 0.26, the corresponding error in
F(12) is 0.66 for a = 20° and 0.15 for a = 45°, significant
fractions of the total scatter in Fig. 2. However, it is not
clear that limitations in experimental accuracy can account
for all of the scatter. It also is not obvious what values of
e and b should be considered small. A conclusive demonstra-
tion of the accuracy and range of validity of the similarity
law would require a set of tests conducted over wider ranges
of the parameters than were chosen in the quoted references.

A numerical solution obtained from Eq. (3.23) also is shown
in Fig. 2. The curve starts out somewhat above the experi-
mental points and could be carried only as far as about 12 =
0.5, because the accuracy of the procedure used appeared
to become poorer for increasing 12. The analytical result for
small 12 agrees exactly with the numerical result for 12 -> 0,
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at 12 = 0.005, the difference is less than 0.5%. But the
first terms in the series obviously are not sufficient for values
of 12 greater than about 0.02. At 12 = 0 there is a discon-
tinuity (discussed at the end of the next section) between
these solutions and the solution of Ref. 3.

At the other end of the curve, for 12 ->• oo, One would guess
that the measurements should approach the two-dimensional
value ^(12) = 1. As indicated in the references, the shock
wave is detached from the leading edges for all of the points
shown, and it is therefore not possible to check the behavior
for 12 —*• oo. Data for somewhat larger values of b suggest
that 7^(12) probably would increase to a maximum value
greater than 1 and then decrease, perhaps sharply, to the
limiting two-dimensional value.

Although additional theoretical and experimental work is
needed, the results quoted are at least sufficient to indicate the
possibility of useful semiempirical formulas for predicting
CN for delta wings. The largest contribution to CN is the
Newtonian term 2 sin2**, and the data plotted in Fig. 1 there-
fore represent a relative correction approximately equal to
icF(fl). For Mm sin« = 3.0, e = 0.26, and |F(12)| ^ 1,
the correction can be as large as 13%, and for an uncertainty
in ^(12) of ±0.4, the error in prediction of total lift would be
within about 5%. It therefore might be useful even to make
as crude an estimate as F(£l) = — 1 + 12 for 0 ^ 1 2 ^ 2 ,
and F(12) = 1 for 12 ^ 2. Given an accurate expression
for F(£l), one also might consider including three further
empirical corrections. For 1 < M^ sina < 2, the largest
error could be corrected by including a rough estimate of
the pressure on the expansion surface of the wing as a function
of .Mo, sina. For larger aspect ratios, the data given in the
references suggest that the similarity parameter should be
redefined with b replaced by b/(l +• 62)1/2, so that 12 is the
ratio of the sine of the vertex half-angle to (approximately)
the sine of the Mach angle. Thickness effects might be in-
cluded in an empirical way by assuming the validity of a super-
position procedure whereby the Newtonian term 2 sin2a is
replaced by an integral over the surface of 2 sin20, where 9
is the exact local angle of incidence. None of these possible
modifications appear to have a sound theoretical basis, but
each appears to provide a correction in the proper direction
and therefore might find useful application in extending the
range of validity.

The apparent accuracy of Newtonian theory in this applica-
tion should not be unexpected, since the theory has been used
successfully in similar problems of flows past flat-faced
bodies,3-7 which also involve small perturbations from a
uniform pressure field. But it should be emphasized that
a more thorough verification would require a set of experi-
mental measurements for high Mach number and low aspect
ratio over a wide range of values of the parameter 12. In
addition to checking values of CNy it would be desirable to
correlate quantities related to the details of the flow field—
for example, shock-wave shape and pressure distribution
over the surface.

Solution for the Delta Wing

The approximate equations describing the flow over a
delta wing are given by (1.24), (1.25), and (1.26). By first
transforming to a set of characteristic coordinates, one easily
can find the general solution of the differential equations.
If the shock relations and boundary condition also can be
satisfied, one then can solve explicitly for the perturbations
in velocity and pressure and also evaluate the function F(ti)
in Eq. (2.4). It actually has been possible to find only the
first few terms of an expansion of the solution for small 12.

Characteristic surfaces of the complete equations for in-
viscid three-dimensional flow are the Mach surfaces and slip
surfaces, across which certain discontinuities may exist.
The characteristics in the present approximation for conical
flow are given by curves rj(y,z) = const which satisfy

riv rjz 0
Drj 0 r)y

0 Drj 0
= 0

where Dry denotes the approximate expression for the deriva-
tive of r? along a streamline:

Drj == (v - y)rjy + (w - z)yf

Simplification of the determinant gives the condition

iJDji = 0 (3.1b)
The vanishing of the second factor corresponds to a set of
characteristics that are the projections (along rays through
the wing vertex) of streamlines on a plane x = const. These
curves also are characteristics of the complete equations for
conical flow. The second family of characteristics are the
lines z — const. Characteristics of a similar nature are
found in Refs. 3 and 7 and do not seem to represent any simple
limit of the characteristics of the complete equations. The
significant new feature is the absence of an elliptic region in
the flow field.

The differential equations will be rewritten in terms of
characteristic coordinates f and z, where f is a coordinate
identifying the projected streamlines and therefore must
satisfy .

(V ~ (3.2a)

The choice of coordinates is made specific by the additional
condition

{(y.,z) = z (3.2b)
For any streamline, f is the value of the spanwise coordi-
nate at the intersection of the streamline with the shock wave.
The shock wave therefore is represented by the straight line
z = f, but the curve, say z = Zb(£), representing the wing
surface is unknown. The mapping (y,z) -> (z,f) is one-to-
one, except that the centerline f = z — 0 maps into the
origin in the transformed plane.

The flow perturbations expressed as functions of the new
variables will be denoted by the same symbols as before; that
is, p(yyz) —>• p(£,z)j etc. Partial derivatives of $(yyz) and
of the inverse y(£yz) are related according to

(3.3)

The differential Eqs. (1.24) therefore become

«>r + w*yt - %2/« = °
(w - z)v,yt = -pt

wz = 0

y* = (v — y)/(w - z)
If one interprets ps = p(f ,f) = p(zyz)y etc., the shock rela-
tions (1.26) remain unchanged. At the wing surface, two
conditions must be imposed:

(3.4)

(3.5)
(3.6)

and from (3.2), the transformation (yyz) -> (f ,z) is described
by

(3.7)

._., _ _ _ _ _-_-_ rela-
wing surface, two

= 0 (3.8)

= 0 (3.9)

The general solution of Eqs. (3.4-3.7) now can be found
(and also has been obtained for an arbitrary planform).
First, Eq. (3.6) gives

w(f,z) = w(?) (3.10)

where w(£) is to be determined later from the shock relations
and boundary conditions. The result (3.10) says that the
side wash remains constant along the projected streamlines.
Next (3.4) and (3.7) can be solved simultaneously. Differ-
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entiation of (3.7) with respect to f allows elimination of
t>(f,2), and one obtains a second-order equation for y(£,z):

The solution contains two more unknown functions and can
be expressed in the form

- f
Jf

since 2 = f at the shock wave. Then (3.7) gives

t>(f,*) = y.(*) - fJr
- z][w(z) - z]f'(z) (3.12)

and the pressure is found from (3.5) by direct integration.
The shock relations are sufficient to eliminate all but one

of the unknown functions from the general solution. Substi-
tution of (3.10) and (3.12) into (1.26) gives

"(f) = -y.'(f) (3.13)
/xn = I/MO - ri2 (3.i4)

The solution for v(f ,2) simplifies to

-z]X

—ITTo - W(z) - -7T——I (3-15>W(Z) — 2J

and the pressure can be expressed by
p(f,z) = -1 + 2y.(z) + 2zw(z) - w\z) +

At the wing surface z = 2&(f), the boundary conditions
will be rewritten as follows:
0 =

- M*

(3.17)

and

- *(tt]{/;
(3.18)

By comparing (3.17) and (3.18), one finds two possibilities:
either

or

= 0

(3.19a)

(3.19b)
Equation (3J9a) states that a projected streamline f . =
const may terminate at a point on the wing surface where
z = w(f). The alternative (3.19b) says that f may remain
constant over a portion of the surface.

If the shock wave is detached from the leading edge, the
appropriate boundary condition is (3.19a), for 0 ^ 2&(f) ^ 12.
The flow viewed in the y,z plane resembles a two-dimensional
flow in that plane, except that not all the fluid spills over the
edges. A typical sketch of the curves f = const, for 0 < 12 <
2, is shown in Fig. 3. In the xfy,z coordinate system, the
angle between a streamline and the x axis is approximately

the ratio of velocities w/U cosa. Since'it?* is constant for a
fluid particle, each streamline is approximately a straight
line and becomes relatively closer to a ray z = xw(£) as x
increases. Hence the streamlines can be expected to termi-
nate in the yyz plane at a point where z = w(f).

If 12 is sufficiently large, the shock wave is attached, and a
region of uniform flow might be expected in some neighbor-
hood of the leading edge. A fluid element crossing the shock
at the leading edge has f = 12 and would remain on the sur-
face as it moves away from the edge. The condition (3.19b)
then would describe a uniform-flow region. The equations
perhaps can be studied more easily for this case if the wing
surface is defined by a curve f = f&(z) rather than z =
2&(f). But a difficulty arises in matching the uniform-flow
solution to the nonuniform flow over the inboard region;
the matching is not yet understood.

When the shock is detached, Eqs. (3.17) and (3.19a) can
be combined to give a complicated functional equation for

-f«/f

(3.20)

In this equation, f defines a (projected) streamline in terms
of the spanwise coordinate at its intersection with the shock.
Then w(£) is the sidewash on this streamline and, according
to the boundary condition, also is the spanwise co-
ordinate z Sit the intersection of the streamline and
the wing surface. The function w[w(?)], or w(z), is the side-
wash on another streamline, the one that intersects the shock
at a point having spanwise coordinate z. Each of these
variables is identified in Fig. 3.

Equation (3.20) is valid for 0 ^ w(f) = z ^ 0. There-
fore, f varies between 0 and its value on the streamline
which intersects the leading edge. Corresponding to the
singularity in the transformation (y,z) -*• (£,2), Eq. (3.20)
has a singularity at f = w(f) = 0. A different sort of
singularity occurs at z = 0. To show this, differentiate
(3.20):

KD - n2 •
(3.21)

The function w'[w(£)] = w'[zb(£)] represents the shock-wave
curvature at the point z = 2&. When w[w(f)] — w(£) —*• 1,
w'[w(D] -> °°, and a singularity in shock-wave curvature
occurs which resembles the singularity for two-dimensional
flow past a flat plate normal to the stream3 or axisymmetric
flow past a circular disk.7 As in these other problems, the
singular point is expected to occur at the characteristic curve
normal to the surface which passes through the edge, i.e., at
z = 3&(f) ~ w(f) = 12. Hence the boundary conditions to
be included with (3.21) are

w(G) = 0

W(Q) 12

(3.22a)

(3.22b)

The condition (3.22a) is satisfied by a one-parameter family of
solutions to (3.21); the desired solution is the one that also
satisfies (3.22b).

Equations (3.21) and (3.22) represent one possible formula-
tion of the problem that must be solved in order to find the
flow field over a delta wing when the shock is detached.
Although this form is the more easily derived and inter-
preted, a solution for 12 -^ 0 can be obtained more con-
veniently if one inverts the function w(f). The resulting
formulation is

z'(w)z'[z(w)]
[z[z(w)} - z(w)

1
[z(w) —

= 0

- 1 (3.23a)

(3.23b)
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2(1 + 0) - 12 (3.23c)
where w(z) = w[w(£)] has been replaced by w, w(£) by z(w),
and £ by z[z(w)]. A Taylor's expansion about w = 1 of the
boundary condition (3.23c) gives a power series in 12. As-
sume that the solution also may be represented as a power
series in 12 which is valid asymptotically for £ 2 — ^ 0 :

z(w) = (3.24)

Also assume that the shock wave ya(z) is analytic at z = 0.
It follows from symmetry that z(w) is represented for small
w by a series of odd powers of w and hence that

Then
Zz(w) = biw + &2W3 + . . .

z[z(w)] =

(3.25)

Substituting the assumed expansions in (3.23),

For 12 — »- 0, the largest terms give

zi(w) = 2w/(l + w2)
ai = 2

and the next terms can be shown to give

S [ w / ( l + + w tan"1™)
= 7T - 4

(3.26)

(3.27)

(3.28)

The pressure pb at the wing surface is found by setting
z = z&(f) = w(f) m (3.16) and then rewriting the result as a
function of w :

— Z(Wi)\2 z'(wi)dwi

(3.29)

The first integral in (3.29) represents the shock- wave shape
and is found by using the boundary condition (3.9) in the
solution (3.11) for y(£,z). Expanding for small 12 as in the
foregoing, one finds
y, = -212 Iog212 + 12{log(l + w2) +

[2/(l + ^2)] - 4} + . . . (3.30)
The pressure becomes

= ~ [(1 log(l (3.31)

Terms of order 12 log 12 and 12 also have been calculated.
Then, from (2.11),

4(-l + Iog2) - 8121ogl2

+ 212 i (37T + 6)log2 - (TT + 10 + ~

WING SURFACE

SHOCK WAVE

Fig. 3 Projected streamlines described by Eq. (3.20)

The result (3.32) agrees very well with a numerical solu-
tion of (3.23) in the limit 12 -> 0 (see Fig. 2). Equation (3.32)
is accurate only for extremely small 12 and so is useful pri-
marily in helping to demonstrate the existence of a meaning-
ful solution to the approximate equations. In Ref. 3 another
solution was obtained, based on the Newtonian approximation
and on the further assumption that changes in the chord wise
direction could be neglected. One expects this solution to
be correct in the limit e — > 0 if also 6 — ^ 0 sufficiently fast,
and therefore if 12 -^ 0 sufficiently fast. The result for the
integral of the surface pressure is expressed in the present
notation by F(0) ~ —1.80 and does not agree with lim

-1.228 - 812 logfl - 17.1712 + . . . (3.32)

calculated from (3.32). It is believed that in the Newtonian
approximation still another mathematical special case exists,
corresponding to a limit such that b/e is held fixed as e — > 0.
Although this additional case may have little physical signif-
icance, it must be considered in order to complete the ap-
proximate mathematical description of the problem. In
Ref. 3 it was found that very close to the surface the pres-
sure gradient along the surface must appear in the approxi-
mate equations. For b = 0(e), the equations valid near the
shock wave are the same as in Ref. 3, but at the surface both
the pressure gradient and changes in the chordwise direction
must be taken into account. The derivation of Ref. 3 there-
fore assumes b/e — >• 0. Although (3.32) and the result of
Ref. 3 do not match each other, it is expected that each
would match the solution corresponding to b = 0(e).f

The theoretical results therefore are believed to be under-
stood for small values of 12, and a tentative check with ex-
periment has been obtained for values corresponding to a
detached shock. It has not yet been possible to find a solu-
tion when the shock wave is attached. The difficulty,
possibly related to the problem discussed in Ref. 4, arises
in joining the solutions for a uniform flow (assumed near
the leading edge) and a nonuniform flow. Also, it is not clear
what sort of flow patterns will be predicted by the approxi-
mate theory when the shock wave detaches from the leading
edges.
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Performance Evaluation of a Magnetically Spun d.c.
Arc Operating in Nitrogen

D. R. BOLDMAN*

NASA Lewis Research Center, Cleveland, Ohio

The results of an experimental investigation of a concentric cylinder-type electrode con-
figuration incorporating a magnetic field indicated that the arc potential difference in nitro-
gen was essentially independent of the pressure in the range of 1 to 7 atm except for a specific
range of operating conditions in which a 26% increase in arc potential difference was ob-
tained. Highest efficiencies were achieved during the high potential operating mode. The
independent effect of the electromagnetic force on the arc is not conclusive; however, experi-
ments in which the magnetic field strength was varied over a moderate range indicated the
importance of optimizing this effect from the standpoint of both chamber efficiency and arc
stability. Photographs of the arc reveal some of the effects of varying the magnetic field
strength. The arc chamber efficiency was influenced also by the flow injection mode. An in-
crease in efficiency was obtained when the flow opposed or was normal to the direction of the
Lorentz force.

Introduction

AEROSPACE applications of the electric arc have intro-
duced a number of new problem areas associated with

the development of efficient, high-power arc chambers. One
method, currently employed, to improve the performance
of the high-power arc chamber consists of using electromag-
netic forces to spin the arc at very high angular speeds.
Such forces can be either self-induced1 or applied by inde-
pendent means as in Ref. 2 and the work to be described
herein.

Electrode Design and Limitations

Thoriated-Tungsten Cathode

There are several advantages peculiar to this type of
cathode. The arc becomes attached firmly to the pointed
tip, as shown in Fig. 1, so that one end is fixed in space, thus
providing good control of the longitudinal position of the arc.
Clean operation (contamination rates less than 0.1% by
weight) for periods of several hours is possible if the cathode
current limit is not exceeded.

A pointed tip has an advantage over the blunt tip from the
standpoint of ease in starting; however, a blunt tip can con-
duct a higher current. The current limit of a 0.75-in.-diam
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1963.
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pointed thoriated-tungsten cathode is approximately 1000
amp in nitrogen at pressures of 0.5 to 5 atm. The current
limit for a 0.75-in.-diam flat-tipped cathode is about 1200 amp
under the same conditions; however, increasing the diameter
of the flat tip to 1 in. permits operation at about 1500 amp
with little contamination. A 0.75-in.-diam pointed tip can
be employed in argon environments at current levels exceed-
ing 5000 amp. Since the cathodes are current-limited, higher
power levels can be achieved by either using multiple cath-
odes3. 4 or combining several units with a common plenum.5

Water-Cooled Copper Anode

The anode consists of a water-cooled (coolant flow velocity
of 16 fps at 60 psi gage) copper cylinder wound with a field
coil (Fig. 1). Maximum magnetic flux densities of about
2.0 kgauss have been used. The anode has been subjected
to several hours of operation at currents as high as 2100 amp
(using multiple cathodes) in nitrogen at a pressure of 2 atm.
In argon the anode has operated for several minutes at a
current of 5200 amp and a pressure of 0.5 atm. The maxi-
mum power input in both nitrogen and argon environments
is about 500 kw for the forementioned coolant flow and
magnetic flux density.

Performance

Evaluation Procedure

In the performance evaluation, four variables were con-
trolled independently, namely: 1) the arc power input,


