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SUMMARY

An organization for a parallel processing computer is proposed, and its
capabilities and limitations are discussed. Simultaneous random access is
accomplished by logical circuitry which does step-by-step connection of paths
from operands to arithmetic units. Many priority problems which arise from
parallel processing are eliminated by a logical structure with processing
units as the vertices of an n-dimensional cube and interconnections between
processing units along the edges of the n-cube. The remaining priority

problems are solvable with conventional logic.
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1. INTRODUCTION

There are a number of features each programmer would like to have in a
large-scale digital computer. The desires are as numerous as the programmers
and often serve opposite purposes. Thus, one of the foremost problems in de-
veloping an improved computer organization is to recognize the fundamental
requirements of the programmer. It can be safely said that, in general, pro-
grammers desire computers to be large, fast, versatile, and easy to program.

We are presenting a machine organization for a general-purpose computer
that could be superior to existing computers for some problems and would ex-

tend the range of problems solvable on computers.

2. OBJECTIVES

Our primary objective will be to increase the amount of computation that
can be done in a given time by means of a new organization rather than faster
components. Tc this end, our organization’provides for simultaneous execu-
tion of many instructions, each by a separate processing unit. The machine's
ability to do parallel processing leads to the desire for providing unlimited
interaction among processing units, i.e., each processor not only has circuit-
ry that interprets an instruction and causes control action, but also is able
to communicate with every other processor and to operate on any data. In a
parallel computer these abilities are needed for the efficient running of

large programs and for programs well suited to parallel computation. But the



organization must also provide for a partitioning of the machine so that a
number of small programs could run simultaneously without interaction. This
is usually referred to as "interprogram protection" and would need to be un-
der program control to be completely versatile, Since processing units can
interact directly with each other there is no need for a central control.
In fact, any distinguished or superior processing unit would unreasonably
complicate programming.

The organization should allow the size of the machine to be flexible, a
variety of I-C devices to be provided, and a powerful set of operations to
be available for the benefit of the programmer., In particular, there should
be complete flexibility with respect to the number of instructions and number
of data; the only restriction being that their sum does not exceed the storage
capacity of the machine. Further, it would be convenient to the programmer
and conservative of storage if one instruction could cause an operation to be
performed at a number of locations simultaneously. For example, a single in-
struction could cause one number to be added to the contents of many memory
locations.

In addition, the hardware should be able to accept an arbitrary number
of instructions for execution at any given program step. If all instructions
can not be processed simultaneously, then the computer should process them
in groups. When all instructions for a program step have been completed, the
next program step should begin executing all instructions designated as suc-
cessors by the instructions of the immediately proceeding program step.

And finally, in the light of previous requirements, it would be unrea-



sonable to cause any computation bottleneck due to a shortage of arithmetic
units or delay while accessing data. Therefore, every memory location should
be directly accessible by an arithmetic unit. The computer, being equally
limited by computation and memory access, could employ lookahead efficiently,
thus enabling the greatest overall computation speed,

These objectives form a basis from which a very powerful computer or-
ganization can be developed. We realize, of course, that there are other
objectives which might be added or substituted to meet other criteria. Our
choice of objectives is based on the fact that a machine organization ful-
filling these objectives could substantially reduce average computation time
for some problems as compared to a computer with a single processor construct-
ed from similar components.

As might be expected, any computer fulfilling these obJjectives would re-
quire many times the number of components in existing computers. Potentially
inexpensive components and useful construcfion techniques are presented in
the last section of this report. A brief look at cost versus problem-solu-
tion time indicates such a machine would be uneconomical in the next year or
so. Yet, technological improvements that reduce the cost of logical com-
ponents without necessarily increasing their speed, plus reasonable develop-
ment of parallel programming‘techniques, could make such a machine economically

competitive in the near future.

5. ORGANIZATION

The following computer organization meets the objectives outlined above



and has some novel features for logical design and physical construction.

The computer consists of many identical modules, blocks of logical cir-
cuits, imbedded in a passive connecting network. Each module contains a ba-
sic arithmetic unit, storage for one word of data or one instruction, and some
control circuitry. There is a central timing and synchronization but no other
common memory or control units. This is sufficient to form a complete gen-
eral-purpose computer minus input-output equipment.

Our main consideration is the description of a module, of module connec-
tion, and éf program execution within this computer. Input-output devices
are to be connected directly to modules, with, at most, one per module. In
this way, arbitrarily many I-O devices can be operating simultaneously with-
out slowing dowh computation in other modules.

Since we are considering a highly parallel computer we wish to allow
arbitrarily many instructions to be executed simultaneously. Rather than
having instruction counters hold the locations of the next instructions to
be executed, an additional bit position, the execution bit, is appended to
each memory location. At the time when execution is to begin, the contents
of each memory location having an execution bit equal to 1 is executed as an
instruction., A O then replaces the 1 in the execution bit of those locations
from which instructions were Just executed. Thus an instruction specifies
its successors, if any, by setting the execution bit to 1 in the memory loca-
tions of the instructions to execute next. To avoid the priority problems of
assigning instructions to be executed to processing units, each memory loca-

tion has an instruction processor directly connected to it.



The instruction processor operates, or is active, only when the execute
bit is 1 and the execute signal is received from the central timing circuits.
The function of the instruction processor is to route operands to an arithme-
tic unit with informetion as to what operation is to be performed.

To avoid the problem of assigning arithmetic units to active instruction
processors, each memory location has its own arithmetic unit. The memory
register itself serves as the accumulator, the register that contains the
operand which is to be used and then replaced by the result of an arithmetic
operation, Thus, by using the arithmetic unit at the location where the re-
sult is to be stored, there will never be a time when an instruction pro-
cessor must wait for an arithmetic unit. An attempt by two instructions to
store information in the same location at the same time is considered a pro-
gramming error,

An additional feature of having many arithmetic units is to allow cne
instruction to specify that an operation is to take place at many locations
simultaneously. The addressing of many locations by a single instruction
is accomplished by indirect addressing.

As might be expected, in this machine the data accessing for arithmetic
operations is considerably different from conventional computers. No fetch-
ing of instructions is required, thus the data accessing circuits can be
simplified and computation speed is increased. Even with this simplifica-
tion, far too much circuitry would be required if each instruction processor
needed the ability to access every memory location directly. To cut down the

number of components and yet keep flexibility of accessing the following or-



ganization is used:

For each memory location there is a module containing the memory regis-
ter, instruction processor, arithmetic unit, and what we wiil call path-
connecting circultry, Each module has direct connection, by wire without
gates, to a few other modules. For one module, say X, to gain access to a
module not directly comnected, say Y, the destination (address of V) is gated
onto the wire that directly connects X to a module closer to Y. As soon as
a path has been completed from X to Y, X has access to the memory register
and arithmetic unit in the Y module. 1In this way every module can have ac-
cess to every other module while having a direct connection to only a few
modules,

One of the most significant factors in the design of such a machine is
the logical organization of path segments (directly connected modules). The
two extremes of path segment organization are: (1) every module connected to
just two other modules (geometrically the modules could be placed in a line
with wire connecting adjacent points on the line and the two end points), and
(2) every module connected to every other module (geometrically, k modules
would form a k-1 dimensional simplex).

Neither of these seemsacceptable for the general-purpose computer being
considered by this paper. The line of modules uses less components than any
other but relatively few accesses could be made simultaneously, e.g., several
short paths could isolate many modules from others to which access is re-
quired.

. . . n :
Let the machine under consideration have 2 modules. Now, as a compro-



mise between the number of components and expected number of simultaneous
accesses, let each module have a direct connection to n other modules. Thus
the number of direct connections is a function of the size of the machine.

For a 52,768-word machine each module would be connected to 15 other modules,
The logical organization of these connections would be to have the modules as
the vertices of a 15-dimensional cube with the edges of the cube being the
direct connections between modules. Since each module can be represented

by a unique 15-bit number, the direct connections correspond to a wire from
each module to the 15 other modules whose numbers differ in one bit position,
i.e., unit Hamming distance.

There is a physical construction whereby the wires for the direct con-
nections can be laid out in n layers for a machine with 2% modules. The
modules are laid out in a two-dimensional square array as shown below. Each
layer contains exactly one connection for each module and no connections
cross within a layer. The layers could be made by deposition or printed cir-
cuit techniques. Only n/2 masks would be required and each mask would have
211 Tines on it formed from 2n/2 repetitions of a 2%"q'line pattern, e.g.,
for a L096-module machine n = 12; thus each mask would have 2048 lines formed
from 64 copies of a 32-line pattern.

The mask, layers, and composite view of a machine with 16 modules are
given below:

There are several interesting measures of accessibility which depend on
the logical organization, First, the maximum length, in number of segments,

that any minimal path may be is n in a machine with ol modules, i.e., maxi-
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mum Hamming distance between two n-bit numbers is n. Second, the number of
different paths between two modules differing in k bits is k! i.e., all per-
mutations in the order of reducing the Hamming distance by 1 each step for k
steps., Finally.statistically the expected number of simultaneous accesses
that could be made in a 4096-module machine is over 300, assuming random stor-
age assignment of data and instructions. Of course, instructions and data
are not randomly assigned storage. Considering the timing factor on accessi-
bility that each module is directly connected to only a few others, it is

not difficult to see that clever programming could yield many more simultane-
ous accesses than the random case, while intentionally poor programming could
yield many less,

Due to the inherent limitation on parallel accessing as the number of
paths increases, it seems advisable to remove all path connections when the
access has been completed., In this way each step in the execution of a pro-
gram starts with an uncluttered machine.

Actually, by allowing the machine to have some paths still connected when
the next execution step begins, there can be a path-connecting lookahead which
could, in general, speed up computation more than no lookahead and an unclut-
tered machine. Preliminary logical design of a module indicates that clever
logical circuit design could make the average path-connecting time about the
same as the longest arithmetic operation time. Thus the average time to per-
form an operation becomes equal to the time required by the slowest operation,
but there is no accessing time required during a sequence of execution cycles.

To allow simultaneous path connecting from an active instruction to the



first operand (also arithmetic unit), to the second operand, and to the suc-
ceeding instruction, three independent path-connecting circuits are provided.

There are no index registers (relative addressing) as exist in conven-
tional computers. This is.necessary due to the unconventional scheme of ac-
cessing, In place of index registers, operations are provided sc that one
instruction can do arithemtic directly on the address part cf another instruc-
tion, i.e., the address part of every instructicn is essentially an index
register.

To further supplement addressing an indirect address can be specified.
When a path has been connected from an instruction to some module, say X,
and if the instruction specified indirect addressing, the path is extended ac-
cording to the address in the memory register of X. The address in X may al-
so be designated as indirect. Since the memory register of X is large enough
to hold several addresses, each address position is interpreted and each can
start an extension of the path into X. 1In this way one instruction with an
indirect address can refer to a memory location with several indirect addresses,
each of which can refer to other locations, etc. Thus, one instruction can
control the arithmetic units of many randomly placed mcdules simultanecusly.

A more detailed description of this machine's operation is given in the
next section which is essentially a programming manual. A more detailed des-

cription of the logic follows that section.

L, INSTRUCTION CCDE

The programming of an iterative circuit computer must be flexible enough

10



to justify having a highly parallel computer rather than a number of single-
processor computers., Since it is possible that hundreds cf instructions
could be executing simultaneously and these instructions could be using the
same data, the hardware must provide some basic synchronization of instruc-
tions., Therefore, in order to simplify programming, the computer execution
cycle proceeds as follows: a number of instructions are being executed si-
multaneously; each specifies locations of instructions to be executed next;
when all instructions have completed execution all of the "next" instructions
start executing simultaneously; and so on.

Thus the execution of individual instructions is asynchronous, but the
execution of sequences is synchronous. Even if the programmer specifies more
instructions than the machine can execute simultaneously, the hardware is set
up to process all of them in several bunches. Then, when all have been exe-

cuted, the "next" instructions are started.

INSTRUCTION FORMAT

Every instruction has the same basic format: an operation code and three
addresses.

The first address, Q, may designate the location of one operand for
arithmetic and logical operations. The result of the arithmetic and logical
operations replaces the contents of Q. With conditional transfer operations,
o may be used to specify the location of the next instruction.

The second address, B, may designate the location of the second operand
for arithmetic and logical operations, i.e.,, multiplier, divisor, etc. For

some conditional transfer instructions, B is the location tested for the con-
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dition. With shift instructions, B is the shift count rs*her than an addreses.
The third address, v, designates the locaticn of the next instruction.
For some conditional transfer operations, the ccondition determines whether
or y specifies the next instruction.
The number of btits and relative positiocus of an instruction are shown
in the following figure: (n might range from 10 to 20 depending on the num-

ber of locations, 2%, in the computer).

|
|

Operaticn Code | o address B address v address
|

A\ A J J J J/
Y Y Y~
+

n + 1 n+ 1 n + 1 n 1 n + 1 bits

Fig. 2. Instruction formst.

The word length is 5(n+l) bits. If the leftmest bit of o, B, or ¥ is 1, then
that address is indirect, The remaining n bits specify the lccation to be
used.

The three-address scheme allows flexible arithmetic and control instruc-

tions to aid psrallel programming and spatial program crganization.

EXECUTION BITS

There are three more bits at each location to control execution instruc-
tions, called e, ez, ez, The ez bit of a location is set by any instruction
referring to that location as a successor by a y =ddress, i.e., the contents
of the location where the es bit is set willi be active, or execute as an in-
struction, during the next execution cycle. The ex bit of a locaticn is set

if the contents of the location are to be inactive during the next execution
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cycle., The ez bit is set rather than the es bit depending on the operation
code.

At the beginning of each execution cycle, the e; bit is set if the ep
bit was set and the es bit was not set during the previous instruction cycle.
If both e, and es were set (by different instructions), the e; bit is not set.
Once the ej; bit is computed, both eo and eg are reset.

These three bits influence execution in the following way: once the e
bit has been determined at every location, the instructions in all these lo-
cations become active. Those instructions which successfully completed paths
for o, B, and y accesses reset their e; bit and perform their operations.
Some of these instructions will be setting es and es bits of other locations.
While operations are being performed by these instructions, the others with
e; bit set but paths not completed try again to connect their @, B, and y
paths. This process repeats itself, possibly requiring a number of attempts
for some instruction to complete its path. The execution cycle terminates
when all e; bits have been reset. At this time, the next execution cycle be-
gins with the computations of e; bits as specified by the instructions of
the preceding execution cycle setting the es and ez bits.

The hardware has been designed so that a large number of instructions
can simultaneously have their paths connected. After an instruction has
completed its operation, its paths are removed (disconnected). A priority
scheme has been developed which allows any number of paths to be forming
simultaneously, and which also guarantees that at least one path will be con-

nected on each attempt. Therefore, in the worst possible case, the time re-
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quired to execute a group of instructions activated during a given execution

cycle will never exceed the time required to execute them sequentially.

INTERPROGRAM PROTECTION

To provide isolation of instructions and data, an additional bit is re-
gquired at each memory lcocation. If this 'isclation' bit is set in some mod-
ule, the hardware will nct alicw a path to be built through the module, but
the module may still bte a path termination. The ability to be a termination
is necessgry in ocorder to allow for the resetting of the isolation bit.

To isolate a program, those locations containing instructions on data
which form a spatial boundary must have their isclation bits sets. If all
programs in the machine have their boundary isolation bits set, there will be

a barrier that prevents any program from accessing any other program.l

INDIRECY ADDRESSING

The contents of a location referred to as an indirect address are inter-
preted as shown in the figure below., There are five possible addresses and
any combination may be used. An unused address is recognized by the fact that
it is all zero., Any combination of addresses may be specified as indirect by
setting the leftmest bit of these addresses. The computer timing imposes a
limit of hO, at most, on the length of a sequence of dependent indirect ad-

dresses,

lThe isolation bit can be set or reset by the LOAD instruction with the
appropriate modification of the operation code.

1k
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Fig. 3. Location referred to by indirect address.

Through the use of indirect addressing it is possible to have one in-
struction perform its operation on the cantents of many locations simultane-
ously. This is done by having & be an indirect address. The contents of the
location that o refers to can have up to five more indirect addresses, each
of which can refer to five more, etc. Thus, a tree structure of paths is
connected from the instruction to many modules. Upon execution of the in-
struction, the operation code followed by the second operand is sent down the
tree and all the terminal modules perform the operation simultaneously.

Similarly, ¥ can specify one successor directly, or many successors,

through indirect addressing.

ARITHMETIC OPERATIONS

The four basic arithmetic operations — -addition, subtraction, multipli-
cation, and division — are available, The normal mode of full-word arith-
metic is floating point. The mantissa is shifted to make the characteristic
zero whenever no loss of accuracy occurs. In this way the programmer has the
benefits of high speed when working with integers, and full accuracy by auto-
matic scaling of non-integers. The format for full-word numbers is given be-
low., The magnitude of a number is the mantissa (binary point to right of low-

order bit) times two raised to the power of the characteristic.
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Fig. 4. Format for full-word number.

Fach number has an overflow-underflow bit which is set if at any time

I 1](2 Di(n+1)] ) Se C .

the magnitude exceeds 2 - 1Jor is less than 2

When the overflow bit is set, the remaining bits of the number are reset, made

zero, Any succeeding arithmetic operation on a number with its overflow bit
set results in another number which also has its overflow bit set. Normal
arithmetic is performed on numbers even if their overflow bits are set. Over-
flow or underflow can occur only on a full-word addition, subtraction, multi-
plication, or division. There is also a conditional transfer instruction ca-

pable of testing the overflow bit.

BYTE MODIFICATTION

To facilitate relative addressing and instruction composition, the arith-
metic operations add and subtract, as well as load, complement, and, or, ex-
clusive or, and some conditional transfer instructions can refer to any of
the five n+l bit bytes. For designating which bytes are to be operated on
there are five bits in the operation code which can be used to modify these

operations.
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00000 specifies full-word arithmetic. Fig. 2

00001 specifies the operation is to be performed on the
low-order n+l bits (a;) of the operands.

10110 specifies the operation is to be performed on the
. as, ag and ap bytes.
11111 specifies the operation is to be performed on all

five n+l bit bytes.

All bytes are assumed positive, a negative result remains in the byte as
its 1's complement. There is no carry from one byte to the next. Carry-out
of the high-order position is lost.

These partial word operations may be used directly on instructions or

indirect address words as if the locations were index registers.

TRANSFER INSTRUCTIONS

Since each instruction has a vy address to specify the location of its
successor, only conditional transfer instructions are assigned specific ope-
ration codes. There are two basic forms of conditional transfer instructions:
BRANCH and PROCEED.

The BRANCH operation tests the contents of the location specified by the
B address. If the condition (specified in the three low-order bits of the
operation code) is met, a signal is sent to the modules designated by the &
address. Otherwise, the signal is sent as usual to the modules designated by
the 7 address.

The PROCEED operation compares the contents of the locations specified

by & and B. The comparisons such as =, #, >, etc., are specified by the three

17



low-order hits of the cperation ccde, If the comparison is not true, the in-
struction is treated as if no successor were specified. Otherwise, the suc-

cessor specified by the ¢ address is treated in the normal way.

INHIBIT MODIFIZATION

The use of the word 'signaled' rather than 'transferred to' is necessary’
because in this machine meny instructions can be executing simultaneously.
It is possible for an insgtruction to specify itself as its successor for
incrementing cr ccunting purposes. Another instruction could be testing for
a desired value., When this value is reached there must be a way to stop the
instruction which is *ransferring to itself. The ability to stop an instruc-
tion from executing during the next execution cycle is called the inhibit
modificaticn. Evexry instruction has a bit in its operation code which if 1
causes the signal tc the successor to set the es bit (described on page 12).
If the inhibit modification bit is C, the signal goes to the es bit of the
successor, In either case, the effect of a signal applies only to the next
execution cycle.

Any instruction can be a local HALT instruction by having an all-zero

v address, 1.e. no successor.

INPUT-0UTPES INSTRUSTION
“he o address of the input-cutput instruction refers to a module which
is directly connected to a particular I-O device of the desired type. The
memory register of this module may contain control information for the I-0O

device. The lccation of information which is entering or leaving the com-

18



puter is specified by the B address of the I-O instruction.

Fach I-0 device has its own simple buffer between itself and the main com-
puter. For a magnetic tape unit, the buffer may be core storage which holds
several blocks of information. As long as there is information available on
reading or space available on writing, the main computer uses only a normal
length of execution cycle for an I-O operation. If the buffer is empty or
full, execution is held up until the I-O operation is completed. Backspace,
rewind, skip file, etc. are determined by the information in the location
connected to the I-0 device. These require only a normal length execution
cycle unless the queue of commands exceeds the buffer capacity, in which case
further execution in the main computer must wait.

With this type of I-0, the programmmer should give control information

as early as possible and do information I-O at the last possible moment.

OPERATION CODES

Arithmetic
1. ADD @, B, ¥ The contents of & are replaced by a+f. (Byte or full
word)
2., SUBTRACT <, B, 7 The contents of O are replaced by & - B or B - @, de-

pending on the high-order bit of the operation code
being 0 or 1 respectively. (Byte or full word)

3. MULTIPLY &, B, ¥ The contents of O are replaced by o - B. (Full
word only)
L., DIVIDE «, B, ¥ The contents of o are replaced by o/f or p/a, de-

pending on the high-order bit of the operation code
being O or 1 respectively. (Full word only)

19



Logical - Byte modification applies to 5 thru 9

5. LOAD &, B8, v The contents of O are replaced by the contents
of B.
6. AND @, B, 7 The contents of 2 are replaced by the bit

wise AND of « with B.

7. OR «, B, 7 The contents of & are replaced by the bit wise
OR of o with B.

8. EXCLUSIVE OR O, B, ¥ The contents of O are replaced by the bit wise
EXCLUSIVE OR, ring sum, of & with B.

9. COMPLEMENT <y 7 The contents of & are bit wise complemented.

Shifting - Full word only

10, SHIFT o, B, ¥ B is not an address. B is the number of bit posi-
tions the contents of o are to be shifted. The
first and second bits of the operation code being
1 and O respectively determine left or right and
end around or linear. Vacated positions on linear
shifts are filled with zeros. A shift instruction
with B = 0 is a NO OPERATION that requires 1 exe-
cution cycle and can specify a successor.

11, SCALE &, B, v The contents of & are treated as a floating point
number, The low-order n-1 bits of B are treated
as a sign and magnitude of a characteristic. B8 is
not an address. If the first bit of the operation
code is 1, then the mantissa in ¢ is shifted so as
to make the characteristic equal to B. If the first
bit of the operation code is O, then g is added to
the characteristic in & and the mantissa in O is
shifted accordingly. The second bit of the opera-
tion code being 1 or O specifies rounding or trun-
cation respectively.

Transfer

12, BRANCH if 42(5) o, B, ¥ If &{(B) is true a signal is sent to lo-
catign &, otherwise the signal is sent to
v. /%(B) may be any of the following:

a) B =0 (Byte or full word)

b) B negative

20



13,

1L,

15.

16.

17.

18,

PROCEED if X8 «a, B, v

INPUT-OUTPUT o, 8, v

SENSE PANEL o, 7

SET TISOLATION <, v

RESET ISOLATION o, ¥

ERROR MODE ¥

Other -

c) B has overflow bit set

If af,B 1s true a signal is sent to loca-
tion y, otherwise no signal is sent. (C
may be any of the following:

a) o >PB
b) a>8
c) a=8
d) a<p
e) a<pB
f) a#8

All relations above may apply to byte or
full word.

g) the fth bit of ¢ is a 1

h) the pth bit of o is a 0

If « refers to more than one location
through indirect addressing, the logical
OR of the a's will be used to test the
relation.

Full word only

o is the module which controls the I-0
device. The memory register of « contains
the command for the I-0 device while B
specifies the location into which informa-
tion is read, or out of which information
is written.

The contents of the display panel is the
address of the last module where an unre-
solvable programming error was detected.,
€.8. , trying to execute an undefined ope-
ation code., The contents of the display
panel replace the B address position of
location .

The isolation bit is set to 1 at location
. o may still be referred to by other
instructions but no access can be made
which would use a path through .

The isolation bit is reset to O.
Depending on the first two bits of the op-

eration code belng 1 or O, this instruc-
tion sets the mode of operation to:
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continue or stop executing instructions
of type 1 thru 18 and activate or inhibit
ERROR START instructions respectively.
The mode remains set until changed.

19. ERROR START ¢ If there is an error and the computer is
in ERROR START activate mode, all instruc-
tions with this operation code become ac-
tive during the next execution cycle.

This concludes the description of instructions available in the hardware
of the computer. Because many operations have bits which further qualify
them, an assembly language distinguishing the various operations would be
useful to programmers. The operations are meant to be convenient to the
general-purpose programmer. Many special instructions, symbol and list
manipulation, etc., have purposely been omitted to keep the amount of hard-
ware to a minimum. This should cause no loss of speed since special instruc-

tions can be achieved by clever programming using simultaneous application of

those instructions given above.

5. PHYSICAL AND LOGICAL DESIGN

Now comes the problem of determining how much circuitry would be re-
quired by a machine as described in the earlier sections of this report. The
most accurate way to determine the required number of components is to do a
complete logical design. Even then, the cleverness of the logical designer
and the choice of component types could affect the result by a factor of two
or three. Considering the time involved to do a detailed logical design and
considering that we are far from the cleverest logical designers available,

the following approach was taken: The part of this machine not found in con-
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ventional computers, the path-connecting circuitry, was designed in some de-
tail., The logical circuitry for arithmetic operations, timing pulse genera-
tions, ete., was not designed. Instead, thelr requirements are given with
estimates for the number of components required based on current technology.
We will first consider the somewhat conventional hardware that must be
in each module. ZEven here the logical design would not really be conventional.
Where, at most, hundreds of computers of a given type may have been built, we
are talking of building thousands of modules for a single machine, Although
a module is versatile when embedded in an I.C.C., it is far from being a com-
plete computer. Thus, due to the greater importance of economical design and
lesser requirements, a greater effort could be Justified for a fully inte-
grated, clever, logical design. A number of trial modules could be built,
tested and perfected with the goal being low costing mass-produced modules.
There are several components which could be used in the construction of
modules, For example, RTL circuits can be produced fairly inexpensively in
gquantity using low-speed, low-power transistors, The RIL circuits which are
currently being manufactured by deposition techniques have a density of about
100 transistors and 40O resistors per square inch, Circuits such as these
used in an I.C.C. have the advantage of less noise pick-up since the physi-
cal size of a module can be small and the connecting leads between modules
can be correspondingly short. A second component potentially useful for
module construction is all-magnetic logic. Again, this is not the fastest
possible logical component but it is reliable and potentially can be manufac-

tured by automated equipment., Multi-aperture cores and other types of all-
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magnetic logic require fairly close tolerances, thus careful design. More-
over, this type of design is well suited to modules which have relatively

few external connections to other modules, A final example of a potentially
inexpensive and fast component is the cryotron. Again, automated production
may be possible, and making a large number of identical modules should reduce
considerably the cost per module,

At first glance, everyone considers an I.C.C. impractical, even with
inexpensive construction, since it could have thousands of modules which seem
to be simplified versions of processing units in conventional computers. Al-
though an I.C.C. requires many times the number of components in conventional
computers, one cannot expect to get simultaneous accessing, simultaneous
arithmetic,and simultaneous instruction processing without more components.
To show that a module is far less than the processing unit in conventional
computers we will list all the circuitry that is not in a module but is in
conventional processing units.

First, there are several obvious registers that are not required in a
module. There is no sense (storage) register or address register since
there 1s no store to access., There is no instruction register or instruc-
tion counter since execution, not instructions; moves from module to module.
The one-word store in the module corresponds to a conventional accumulator,
By having numbers in the integer form with scale factors, the multiply and
divide operations can be performed in a single-length accumulator.

The next majcr block of circuitry, not within modules, is for timing.

There could be one timing unit which would make all the required sequences
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of control pulses available to all modules., By having more specific timing
sequences available than in conventional computers, the amount of logic in a
module can be greatly decreased. The central timing unit becomes correspond-
ingly larger, but the component saving in one module multiplied by the number
of modules should be far greater.

Considering that instructions are all the same basic format and are
relatively stationary, a scheme exists for having various bits in the memory
register of a module directly control gates when the module is executing an
instruction., This would eliminate most of the instruction decoding circuitry
existing in conventional machines,

There would have to be a basic adder and the arithmetic control logic
in every module. Here, a decision between serial and parallel arithmetic
would have to be made based on the differences in speed and cost.

The remaining circuitry in a module is the path-connecting logic. In
place of drivers, cores, and sense amplifiers, the path-connecting logic
closes gates in various modules, forming a path to access infcermation in oth-
er modules. To give an idea of how much circuitry is required for path con-
necting, a fairly complete logical design of this follows:

The basic segments from which paths are formed are conductors from the
periphery of one module to the periphery of another. Fig. 5a shows the top
view of an I.C.C. with the modules appearing as squares. Fig. 5b shows how
each module passes through a number of thin layers on which the path seg-
ments (the conductors) are placed (by printed circuit or deposition techniques).

The addresses @, B, and y are shown here to have completely isolated path
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structures, Correspondingly three times as much path-connecting circuitry
would be required in each module, The choice of separate layers for each
address can stem from the fact that this is well over three times as fast from
computation standpoint and yet requires less than three times the circuitry
since each layer can be specialized to its particular address bit positions.
Before describing the logical circuitry for path connecting, we will ex-
plain the function the circuitry must perform. Basically, the problem can
be stated as follows: There is a binary number in the memory register of some
module. This binary number refers to another module. The circuitry must
close gates to form a path between these two modules., The path must allow
information to flow in both directions. A path need not be a single wire;
it could be physically a bunch of wires for transmission by bytes or in
parallel, and there could be two separate circuits for transmission in each
direction. For convenience of explanation and simplification of logical cir-
cuitry, a scheme with one wire for each direction will be used. See Fig. 6.
The connections to the module labellied Py through Ps are physically n wires
(where there are 2" modules in the computer)., Information can flow in P,
out Po , in Ps out P, , and in Pg out Pg without affecting the operation of
this module., This module may initia*te paths along a wire of P , P, , and Pg
as determined by the o, B, and ¥ addresses. Other modules may access this
module by having their paths terminate in the P, , P53, or Pz lines of this
module, When this module is used as the o address of some instruction, the
operation code of the instruction enters before the B operand. The operand

code enters via some wire of P, and is placed in the arithmetic control ope-
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Fig. 5a. Top view of the I.C.C.
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Fig. 5b. Side view of the I.C.C.
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ration register.

The control of arithmetic operations in this module comes from the opera-
tion register and not from the memory register. No addresses need be sent to
the module acting as an arithmetic unit since the module containing the active
instruction is doing the required switching to set up the operand accesses.

Figure 7 shows the significant information flow when an instruction exe-
cutes. In this example, the contents of the memory register of module Y are
being added to the memory registers of modules X; and X-. The ADD instruc-
tion is in module R, and indirect addresses are in module X.

Execution proceeds as follows:

Step O This e; bit (described on page 12 of this report) is set as-
suming an activate signal was sent to module R over one of
its Ps paths. The ep and eg bits in R are reset.

Step la A path is connected from R to X. (The prime indicates that

X is an indirect address.,) Then two paths connect from X
to X; and Xo respectively.

1b A path is connected from R to Y (second operand).
lc A path is connected from R to S (next instruction).
Step 2a The es bit in module S is set. Removal of the path between

R and S begins at S.

2b The operation code from the memory register of module R is
sent to the operation registers of X; and X, via X.

Step 3 Module R controls the gating of the contents of the memory
register of Y to the path into X. Module X controls the
gating from its P; input to the two lines to X; and Xs. X3
and Xo set their gates to send the contents of their memory
registers and the incoming path from X to their adders res-
pectively.

Step La X; and Xo gate the resultant sum back to their respective
memory registers.
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Lb Removal of the paths into ¥X; and Xo is begun at X; and X, res-

pectively.
he Removal of the path from R to Y is begun at Y.
Step 5 When all paths have been removed to R, the e; bit of R is
reset.
Step 6 When all ey bits are reset the central synchronization emits

a signal to all modules which compute the new e; bits and
Step O begins again.

This completes the description of Fig. 7 involving the overall path structure.
We will now concentrate on one type of path, say & (For convenience of con-
struction, all three types of paths, &, B, and y would probably be the same
logic, or all three could be operating simultaneously in the same circuitry
if some restrictions were placed on programming.)

The decision procedure for connecting a path that must be performed in
each module requires two pieces of information. FEach module must know its
own binary representation as an address, called 'HERE.' (This can be wired
into the layers shown in Fig. 1. thus allowing all modules to be identical
and interchangeable.) Also, each module must know which of its accessible n
path segments are busy. (This we will call the 'BUSY' register.)

The n bit address of the termination of a path can come from n+5 places,
i.e., n from the n path segments connected to this module plus 5 from the 5
byte pogitions of the memory register. For instructions, only the three low-
order bytes are addresses which could initiate paths but an indirect address
can cause all 5 bytes to initiate paths.

Suppose an n bit address has reached a module., This is the address of the

termination .of a path. By taking the bit-wise exclusive or of this n bit
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address with the n bit representation 'HERE', those positions of the result
which are 1 denote the possible path segments which can serve as extensions
for the path. This is just a reduction of 1 in the Hamming distance since
each neighbor of a module differs from it in exactly one bit position. We
will establish the convention that the lowest 1 bit resulting from the ex-
clusive or will be tried first as an extension of the path. It may be that
the desired segment is already being used by another path, in which case

the BUSY register has a 1 in that position., To eliminate busy segments from
potentially useful segments, the complement of BUSY is anded to the result of
the previous exclusive or. This result is retained in a 'GOING' register.

To connect from the n possible incoming path segments to the n possible
outgoing segments an n X n switching matrix is used. Five more inputs are ap- '
pended to the switching matrix to allow for path initiation, and a diagonal
pair of wires allow for path termination at a module.

The operations of path connecting are staggered such that all modules
with an even number of 1's in their addresses, 'HERE', extend (or remove)
their paths one segment during alternate times with modules having an odd num-
ber of 1's in their addresses. In this way, priority problems are avoided
which involve two adjacent modules trying to connect to thelir common segment.
It is poseible to have two modules connect a path to the same module at the
same time and have the same destination for both paths. This priority decision
is made by the circuitry just prior to setting the gates of the switching ma-
trix. The circuit for this two-dimensional priority selector is shown in

Fig. 9. The composite of the logic just described is shown in Fig. 8. The
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one-directional segments are shown as By, Bz, Ba, ..., B, grouped under the

P, designation. The one-directional outputs are grouped under the Po desig-
nation. TFor a path to pass through a module two inputs will be connected to
two outputs with reversed subscripts, thus forming a piece of a two-directional
path.

If a path cannot be extended due to complete blockage by other paths, a
NO-GO signal is sent back towards the origination of the path. Upon receipt
of a NO-GO signal, a module selects the next (higher order) potentially use-
ful segment from the 'GO' register.

To further explain the logic involved, an example of the progression of
a path connection is given in Fig. 10. Here we have a machine with n equal
to 4, Only 8 Qf the 16 total modules are shown and only the values of 'HERE',
'DESTINATION', 'BUSY' and 'GO' are shown in boxes. The path-segment connec-
tions B;, Bz, Bz, By each correspond to a pair P; and Pp shown in Fig. 8.

We will concern ourselves with the path originating at module 0001 with
the destination 1010. We assume two other paths, indicated by ..... and
----, are already present, The path connecting proceeds in two phases.

During phase A, the modules with an odd number of 1's in their address per-
form the logic to compute the contents of their 'GO' registers, and the modules
with an even number of 1's in their address transmit the ‘destination' over
the path segment specified by the lowest 1 bit in their 'GO' registers. Dur-
ing phase B, the roles of the two sets of modules are reversed. To get the
phasing started there is no transmission between modules on the first step

and no logic on the last step of path connecting. Thus we have for Fig. 8:
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Step 1A

Step 1B

Step 2A

Step 2B

Step 3A

Step 3B

The module OO0L is initiating a path and therefore computes
the contents of its GO register.

(HERE & DESTINATTION)A ~ (BUSY) ,+ GO.
is (COOL @ 1010) A ~ (0000) = 1011

Other modules could simultaneously be initiating or extend-
ing paths but for simplicity of explanation only one path 1s
being considered.

The lowest 1 in the GO register of 000l determines which seg-
ment will become a part of the path. This segment connects to
moedule 0000 which is one step closer to the destination than
OGOl

The BJSY bit for the B; segment is set in both 00Ol and 0000.
The destination is sent along the segment <:> to 0000.

The GO register of module 0000 is set to (0000 & 1010)A\ ~
(0111) = 1000. The second and third BUSY bits had been pre-
viously set when the path coming in Bz and going out Bs was
built.

The lowest 1 in the GO resister of 0000 specifies that the
By segment, <:> is to become a part of the path.

The Uth BUSY bit is set in 0000 and 1000 and the destination
is sent from 0000 to 1000C.

the GO register of module 1000 is set to (1000 & 1010)A ~
(1010) = 0000.

Since the GO register is all zero a NO-GO signal is sent back
along(} The 4th BUSY bits in 1000 and 0000 are reset.

Upon receipt of the NO-GO signal the module 0000 sets the low-
est 1 in its GO register to zero. (In this case making it
all zero.)

Since the GO register is all zero a NO-GO signal is sent back
along <:> . The first BUSY bits of 0000 and 000l are set to
Zero.

Upon receipt of the NO-GO signal, 000l sets the lowest 1 in
its GO register to zero.

The lowest 1 in the GO register of 000l is now in position 2,

thus a segment{3)is added to the path. The 2nd BUSY bits are
set in 0001 and 0011 and the destination is sent from 0001l to
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O011.

The GO register of 0011 is set to (OOLl & 1OLOA ~ (0010)

1001,

Step LA The segment <:> is added.

The GO register of 0010 is set to (pPOLO & 1010A ~ (1011)

0000.
Step 4B A NO-GO signal is sent back along <:>

The lowest GO bit is set to O in 0011.

Step S5A The segment (:) 1s added.
The GO register of 1011 is set to (1011 & lOlO)A ~ (lOOO) =
0001,

Step 5B The segment is added.

The termination is detected since (1010 & 1010) = 0000.
Execution using this path can now take place.

The logic and transmission properties could be designed to perform one

phase per basic clock time. Thus the example given above would require 10

basic clock times to complete the path. Lookahead could be accomplished by

having paths connecting by successors while the arithmetic operations of the

predecessors are being performed., It seems that the average path-connecting

time will require about the same time as an average arithmetic operation.

6. CONCLUSION

The basic question of the economics of an I.C.C. is:

How much is fast

computation worth? We have yet to hear a concrete answer to this question,

and indeed there will probably never be a simple answer.

The consensus seems

to be that a computer twice as fast in every respect is not worth twice the
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cost, To determine how much speed is worth, the reliability, type of problem,
qualifications of the programmers and numerous other factors must be consider-
ed. For a computer such as being described here, thereis one further factor
to consider. That is: How parallel is highly parallel? There are examples
of problems that could be done on this machine in l/lOOO the time required by
a conventional computer built from the same components. There are other
examples where this machine could barely cut the computation time in half.

We have no accurate measure of the average parallelism possible in this ma-
chine. Based on our experience in considering a few problems, we estimate
that on the average between 10 and 100 instructions could be executing simul-
taneously on a medium-sized computer. This is to be contrasted with our ed-
ucated guess of a cost 10 to 100 times that of a conventional machine.

A medium-sized I.C.C. is certainly within engineering feasibility.
Perhaps the first machine of this type should be designed for a user with
much computaticon suitable for parallel processing, i1.e., on problems invol-
ving matrices, solving systems of equations, inverting matrices, finding
eigenvalues; or in other specific problems such as solving boundary value
differential equations by the relaxation method. In these and some other
problems, hundreds of calculations could be made simultaneously. By specifi-
cally choosing the command structure and size of the machine for a few speci-
fic problems, an economically competitive computer could be built today.

The rather powerful machine described in detail in this report is
tailored to a need not yet fully developed. Until some good programmers and

numerical analysts have such a machine in their hands, it is difficult to pre-

39



dict how much potential a computer of this type will have., We are optimistic
that the iterative circuit computer organization is one of the methods that

will enable computers to do much more computation in a given time,
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APPENDIX A

HARDWARE REQUIREMENTS FOR MACHINE AS DESCRIBED

The path-connecting logic and registers require the following hardware

in each module:

Quantity Bits of Storage Logical Elements Description
n+5 n 'G0' storage memory
1 5(n+l) +4 storage 'BUSY' storage
1 n
3(n+5) n input logic &, @&, NOR logic
n2 switching logic Switching matrix*
n{ n+>5) one stage priority  priority circuit

For a 4096-module machine n would be 12. The number of bits of storage would
be (204 + 69 + 12) L096 = 1,167,360. (This is a few less than the number of
storage bits in conventional memory of 32k 36-bit words). There would also
need to be about another 1.6 million simple logical elements.

We estimate approximately 400 logical elements for the arithmetic unit
in addition to 26 bits of storage for the operation control register.

Another 100 logical elements would be needed for miscellaneous module
control. These would be for computing execution bits, signaling successors,
and routing operands to the appropriate paths, etc.

Assuming the central timing and synchronization to be less than 10% of
the machine, the total number of storage bits and logical elements would be

less than five million.

* For serial two-way transmission, multiply by the number of bits to be sent
in parallel,
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TOCATION

* %k k% X Xk X

SET1'(1)...SET1'(N)
SET1' (N+1)
E(1)...E(N)
LA'(1)...LA'(N)
1(1,1)...L(1,N)
I(N,1)...L(N,N)
B'(1)...B'(N)

Q'(1)...q"(N)

U(1,1)...0(1,N)
U(N,1)...U(N,N)
F(1)...F(N)
M(1,1)...M(1,N)
M(N,1)...M(N,N)
ct(1)...c' (W)
T(1)...T(N)
vi(1)...v' (W)

APPENDIX B

MATRIX INVERSION PROGRAM FOR AN I.C.C.

INSTRUCTION OPERATTON

PROCEED=

INDADR
INDADR

IOAD

INDADR
IOAD

.00

INDADR
INDADR

ETC
DIVIDE

DIVIDE
MULTIPLY
TDADR
IOAD

INDADR
ETC

= =

THE NXN MATRIX IN THE 'A' REGION IS
INVERTED BY A GAUSS-JORDAN METHOD.
THE INVERTED MATRIX REPLACES THE
ORIGINAI CONTENTS OF THE 'A' REGION

0,0,SET1' (1)

FIRST EXECUTION STEP OF A THREE-EXECUTION
STEP IOOP THAT WILL BE PERFORMED N TIMES.

LA'(1),E(1),Q' (%) ... LAY(N) ,B(N) ,Q'(N)
EXIT

AKK,A(1,1),F(1)...AKK,A(N,N) , F(N)

I(1,1)...L(N,2),...,L(1,N)...L(N,N)
B'(1),A(1,1),M(1,1)...B'(1),A(1,N),M(N,1)
B'(N) ,A(N,1),M(1,N)...B"(N),A(N,N),MN,N)
AT(1,1)...AT(1,N),...,AT(N,1)...AT(N,N)

u(1,2)...0(1,N),,U0(I,1) ... U(I,I-1) ,U(I,I+1) ...
u(1,N),,U(N,1)...U(N,N-1)
A(1,1),A(1,1)...A(1,N),A(2,1),T(1)

A(N,1) ,A(N,N) . ..A(N,N) , A(N,N) ,T(N)

SECOND EXECUTION STEP

A(1,1),AKK, (1) ... A(N,N) , AKK, a()
c'(1),A(1,1),8(1,1)...C"(N),A(1,N),5(1,N)
c'(1),A(N,1),8(N,1)...C' (W), A(N,N),S(N,N)
AT(1,1)...AT(N,1),...,AT(1,N) ... AT(N,N)
v'(1),ZERO,Y(1)...V'(N),ZERO,Y(N)

A2,1) .. A(N,1),,A(L,T).. . A(T-1,T) ,A(T+1,T)...
A(N,T),,A(1,N)...A(N-1,N)
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INSTRUCTION

A R
LOCATTON OPERATION ADDRESSES o,B,y
*
*
* THIRD EXECUTION STEP
*
a(1)...a(w) DIVIDE A(1,1) ,AKK,SETL'(1+1)...A(N,N), AKK,SET1' (N+1)
*
s(1,1)...s8(1,N) SUBTRACT A(1,1),AT(1,1)...A(N,1),AT(N,1)
S(N,1)...8(N,N) ... A(N,1),AT(N,1)...A(N,N),AT(N,N)
*
* ON THE ITH PASS THROUGH THE LOOP
* THE ITH ROW OF SUBTRACT INSTRUCTIONS
* IS INHIBITED.
*
Y(1)...Y(N) INHIBIT -y =52'(1) . ..=y=,Z"(N)
*
Z'(1)...2'(N) INDADR s(1,1)...8(1,N),...,8(N,1)...8(N,N)
*
* END OF COMPUTATION LOOP
*
* STORAGE ASSIGNMENT
*
AC1,1)...A(L,N) DATA
A(N,1)...A(N,N) ven
*
AT(1,1)...AT(1,N) TMPSTR
AT(N,1)...AT(N,N) .
*
AKK TMPSTR
*
ZERO DEC 0
*
END
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To illustrate the Gauss-Jordan method the following ALGOL program is given.

procedure INVERT (N,A); value N; integer N; real array A;

comment The N by N matrix in the A region is inverted by a Gauss-Jordan
method. The inverted matrix replaces the original contents
of the A region;

begin integer I,J,K; real AKK,AIK;

for K:=0 step 1 until N do begin

AKK:=A[K,K]; A[K,K]:=1.;

for  J:=0 step 1 until N do A[X,J]:=A[K,J]/AKK;

—————

for I:=0 step 1 until N do begin

if  I#K then begin
ATK:=A[T,K]; A[1,K]:=0.;

for J:=0 step 1 until N do

Al1,5]:=Al1,J]-ATIK X A[K,J];
end skip reduction of the Kth row;
end Kth column finished and matrix to left reduced;

it

end all N columns finished;

p—

EXIT: end INVERT

A few additional comments should enable the inmterested reader to under-

stand the details of the I.C.C. program.

First, the sequence of instructions which form the "loop™ are:

ENTRY B(1)>F(1)+G(1) —(EIL' (2)}— B(2)+F(2)> ... ~F(n)~

(W) —(SETL' (N+1) }— EXIT. Thus, the number of execution steps is 3N+l.
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Next, the instructions are the 3-address type described in Part L. The
first address is one operand and the location of the result; the second ad-
dress is the second operand; and the third address is the next instruction
to be executed. The last address being omitted implies it is not used, while
a "—" implies an intermediate address is not used. An address with a prime,
', is indirect. Indirect address words may refer to more than one other
word indirectly, thus enabling one instruction address to refer to many loca-
tions.

Further, the "*" at the front of a line implies that the line is a com-
ment.

Finally, the ... notation has the usual meaning: +to generate all inter-

mediate subscripts.
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