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Vibrations of Skew Cantilever Plates

R. W. CraassEN*

Pacific Missile Range, Point Mugu, Calif.

REFERENCES 1 and 2 describe the results of calculations
of frequencies and nodal lines of vibrating rectangular
cantilever plates. These calculations have been extended
to vibrating skew cantilever plates. An IBM Fortran pro-
gram is available. The plate is assumed to be vibrating
transversely, in a single harmonic. Figure 1 gives the
geometry of the plate.

In Refs. 1 and 2, the solution was obtained by a Fourier-
sine-series method. Here, it. was found convenient to use
the Rayleigh-Ritz method. The mathematical development
is the same as that of Ref. 3. The result of applying the
Rayleigh-Ritz method is an infinite, real, symmetric matrix,
for which the eigenvalues and eigenvectors are to be calcu-
lated. In the calculations the matrix is truncated in the
usual fashion to successive finite-order matrices, and the
limits of the eigenvalues and eigenvectors are evaluated
numerically. The method used for calculating the eigen-
values and eigenvectors of the finite matrices is developed
in Ref. 4.

In order to obtain any degree of accuracy in caleculating
the eigenvectors, and therefore the nodal lines, it has been
found absolutely essential that the same finite-order matrix
be used as was used for the eigenvalues. In fact, it is de-
sirable to calculate the eigenvalues to several more signifi-
cant figures than the number required for the nodal lines.
This is in direct contrast to the Fourier-series method de-
seribed in Refs. 1 and 2, where an estimated limit for the
frequencies was used in calculating the nodal lines.

References 1 and 2 deseribe the variations of the fre-
quencies and the nodal lines as functions of the ratio of sides
a/b for a rectangular plate. Thus, the different harmonies
were thought of as “frequency curves.” It is now possible
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Fig. 1 Geometry of the plate
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to consider the frequencies and nodal lines as functions of two
independent variables, a/b and 6. Instead of referring to

“frequency curves,” it is now possible to refer to “frequency
sheets.”

- References 1 and 2 referred to ‘‘transition points,” points
at which the frequency curves should have crossed each other
but actually refused to do so, markedly changing their curva-
ture instead. It is now possible to state the existence of
“transition curves,” curves along which the frequency sheets
refuse to cross each other but instead markedly change their
curvature. However, along different segments of a transi-
tion curve a wide variation is possible in the distance between
two frequency sheets. In fact, the sheets can actually touch
(become tangent to) each other at isolated points.

As in Refs. 1 and 2, the nodal lnes rotate about one or
several points as the frequency sheets change their curvature.
Reference 5 gives a detailed description of the mathematical
development and the results, as well as the Fortran program
used in calculating the eigenvalues and eigenvectors.
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An Example of Boundary Layer

Formation

L. M. Hocking*
University of Michigan, Ann Arbor; Mich.

MAJOR difficulty in the teaching of fluid dynamies is

the lack of a simple exact solution of the Navier-Stokes
equations in which both the viscous and inertial forces are
active. Viscous foreces only are involved in Poiseuille and
Couette flows, and consequently the velocity fields are inde-
pendent of the Reynolds number. There are two exact
solutions that depend on viscous and inertial forces, namely
the von K4rmgn flow produced by a rotating disk and the
Jeffrey-Hamel flow in a converging or diverging channel.
Interesting as these solutions are, they suffer from the dis-
advantage of requiring the solution of nonlinear differential
equations, and the velocity fields cannot be expressed in
simple terms. Tor teaching purposes, a solution is required
which can be expressed in simple functions, is exact, and in-
volves a balance between viscous and inertial forces, so that
the dependence on the Reynolds number can be exhibited
and the formation of a boundary layer as the Reynolds num-
ber increases demonstrated. It also would be helpful if a
class of solutions rather than a single solution were known,
to provide examples for the student to find for himself. It
does not seem to be recognized widely that a class of solu-
tions satisfying these requirements exists, a particular case
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Fig.1 The circulation for various )\, showing the presence
of a boundary layer for large [A|

having been discussed by Preston.! The purpose of this note
is simply to bring this class of solutions to the attention of
those engaged in the teaching of fluid dynamics.

The fluid is incompressible and is bounded by two long
cylinders of radii ¢ and b, rotating with angular velocities
Q; and Q.. The walls of the cylinders are porous, and fluid
is emitted by one cylinder and absorbed by the other at
equal rates. The motion depends on only one space coordi-
nate, the radial distance r, and there are two velocity com-
ponents, u radial and v transverse. The reason for the exist-
ence of a simple, exact solution is that the radial velocity
is unaffected by the transverse velocity; but the reverse is
not true, which provides the required interaction between
viscous and inertial forces. The equations of motion and
continuity are

udﬁ_fz_%p__,_V(d?u_l_d_“_li) (1)

dr r dr dr rdr 12
(d/dr)(ru) = 0 3)
These equations have a solution
u = m/r 4)
V = (4/r) + Brl+> (5)

where m is the strength of the source in the inner cylinder
(negative if the inner cylinder is absorbing fluid), and A =
m/v; |\| is the Reynolds number of the radial motion. If
A = —2, the expression for v becomes

v ="(4/r) + (B/n)logr (6)

The boundary conditions are v = Qe onr = a, and» = Qb on
r = b; these determine the coefficients 4 and B to be

a2 (b — Q) Qb2 — Qa?
A=y g B=im—gn O
and for the exceptional case A = —2,
4= Qalogh — Lboga b — et ®)
N logh — loga "~ logh — loga

The circulation rv has a typical behavior as indicated in
Fig. 1, from which the formation of a boundary layer as the
Reynolds number increases may be seen. For large Reynolds
numbers, the circulation remains constant as it is convected
across the region between the cylinders until it reaches the
cylinder that is absorbing fluid, where viscous forces produce
a sudden change in the value determined by the boundary

! Preston, J. H., “The steady circulatory flow about a circular
cylinder with uniformly distributed suction at the surface,”
Aeronaut. Quart. 1,319-338 (1950).
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. condition. The division of the flow into a potential flow

region and a boundary layer thus is demonstrated clearly.
Other solutions of a similar type which the reader (or his
students) will easily obtain are provided by introducing a
pressure gradient around the annulus with the cylinders at
rest (low in a curved channel), or by making the cylinders
move at different rates parallel to their axes, or by introducing
a pressure gradient in this direction. These four types can all
be superimposed. Limiting cases when the outer cylinder
tends to infinity, or the inner one shrinks to zero, provide
some interesting results.! Another set of limiting cases is
provided by keeping the difference in the radii fixed and let-
ting the radii tend to infinity so that flow between parallel
walls is obtained. All these solutions provide useful material
for classroom discussion, but their common feature is the
change in velocity profile to a boundary layer type as the
Reynolds number increases, which the author feels is im-
portant to be able to demonstrate in a simple manner.

Long Circular-Cylindrical Shells
Subjected to Circumferential, Radial
Line Loads

K. T.Sunpara Rasa Ivencar®* anp C. V. YoGaNANDAT
Indian Institute of Science, Bangalore, India

N Ref. 1, expressions for stresses and displacements of a

long cirecular-cylindrical shell subjected to a uniform, ex-
ternal, circumferential, radial line load are derived by using
complex Fourier transform of Love’s stress function ¢ for
an axisymmetrical problem, a technique used by Tranter and
Craggs.? In this note the solution is derived by a direct
procedure similar to the solution given for a solid circular
cylinder in the recent handbook edited by Flugge.?

Governing Equations

It is required to find a stress function ¢ to satisfy the equa-
tion
o2 10 0% \?
(a—;z—i—?‘a;—i-a—zz)(ﬁ—o (1

for the cylinder shown in Fig. 1, with the additional condi-
tions along the internal boundary C;

fcidu=0 fcidv=0 fcidw=0 )

The stresses and displacements are given by
o = (0/02)[pv? — (% arH) ]9

7 = (0/0r)[(1 — »)V* — (0%/02%) ]9

ap = (0/02)[pV* — (1/r)(0/0r)1¢ 3)
o = (3/92)[(2 — »)V* — (0%/027)]¢

u = [(1 +»)/E]20 — »)V* — (2°/02) ¢

w = [—(1 + »)/E](d*¢/drde)

The boundary conditions are, when
r=1b 7. = 0and o, = 0 4
and when
r=a 7 = 0 and o, = —f(2)

where f(z) is the applied loading on the outer boundary, as-
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