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and as a discontinuity i n / ' has already been excluded 

(dM/dMo)* = 0 

This relation, first obtained by Liepmann and B^son, 4 is 
satisfied by the experimental results typified in Fig. 2. I t is 
here derived without the necessity of identifying MQ with jkf2, 
which leads to the incorrect variation of Fig. 1. 
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THE APPLICATION of the principle of almost-free-molecule 
flow, which is essentially a form of first-order Knudsen 

iteration of rarefied-gas dynamics, has shown some very en­
couraging results.1, 2 The effusion of rarefied gases through an 
orifice into a vacuum is a very instructive problem for the pur­
pose of studying the basic nature of rarefied-flow phenomena. 
The object of the present analysis is to provide a microscopic 
description of the flow parameters pertaining to the steady 
effusion from an orifice, the diameter (D) of which is of the same 
order or smaller than the mean free path (X) of the reservoir gas. 
A thin diaphragm {t/D < < 1) which has a small circular orifice 
separates a large high-pressure {pi) reservoir from the low-pres­
sure {p2) region. The pressure ratio will be assumed large enough 
(pi/p2 > 103) to permit neglect of the back flow from the low-
pressure side. This condition distinguishes the present problem 
from the pitot-pressure problem of reference 1. 

Consider first the case of free-molecule effusion, where X > > D 
and molecules move through the orifice essentially independent 
of each other. The deviations of the resulting molecular dis­
tribution from its equilibrium state will be negligibly small and 
promptly wiped out by the intermolecular collisions, which always 
tend to set up and preserve the equilibrium state. The loss of 
molecules through the orifice, however, develops a trace of mass 
motion toward the orifice due to absence of those collisions that 
the lost molecules would have made with the ambient molecules 
on their return from the wall. This trace of orifice-bound mass 
motion grows in prominence as \/D decreases. The principle 
of almost-free-molecule flow is applied here to calculate the 
molecular flux of the mass motion within the reservoir as a result 
of intermolecular collisions or their absence. The following 
physical model is devised for this purpose. 

Imagine the orifice were closed with an imaginary disc of diam­
eter D as the orifice; then equilibrium (Maxwellian) distribution 
of molecules in the reservoir would be restored through scattering 
of reflected molecules, from the imaginary disc, with the ambient 
molecules. I t is postulated that the net molecular flux toward 
the orifice, inhibited by the scattering action of the imaginary 
reflected molecules, is equal to the difference between the true 

f This investigation was part of a broad upper-air research program 
supported by the USAF Cambridge Research Center under contract No. 
AF19(604)-5477 with the University of Michigan. 

** Now with Aerodynamic Research Group, Missile and Space Division. 
Douglas Aircraft Co., Santa Monica. Calif. 

FIG . 2. Functions Fi {\/D) and F2{\/D). 

effusion flux through the orifice and its calculated value based 
on free-molecule hypothesis. I t is assumed that this molecular 
flux, due to absence of scattering, amounts to only a small frac­
tion of the corresponding free-molecule effusion flux. This im­
plies that the present theory is valid only when D is not much 
larger than X, so that the single-collision analysis used here is 
acceptable. The rate of collisions {Nid) between the molecular 
rays incident on, and reflected from the imaginary disc is calcu­
lated for rigid spheres on the basis of classical kinetic theory 
The cross section of the spheres is taken from the experimental 
determination of the mean free path. I t is assumed that every 
collision throws the incident molecule out of the impinging 
stream on the disc. This assumption can be justified only when 
X is not very small compared to D. We assume that the molecules 
inside the "closed" reservoir are now in thermod3mamic equi­
librium with Maxwellian distribution. To determine the net 
contribution, through intermolecular collisions, of the hypo­
thetical reflected molecules, we need to calculate the molecular 
flux {Ndd), originated from the diaphragm surrounding the 
orifice, that is thrown into the incident ray through their collisions 
with the reflected molecules from the disc. These molecules 
(Ndd) would otherwise not impinge on the orifice area. Thus, 
the net impingement inhibition for the imaginary reflection ray 
is equal to {Nid — Ndd). 

Let Nd be reflected molecular flux from the disc, which is equal 
to irD2nc/16 where n = molecular density, c = mean thermal 
velocity; E{E = 0.92/X for air) the average collision expectancy 
per unit distance traveled by a single molecule moving through 
molecules under equilibrium (Maxwellian) distribution.2 
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Referring to the coordinate system shown in Fig. 1, we obtain 

Nid E r2ir r2ir rn/2 r° /2 r* 
~AT~

 = 7 1 I d(Po \ dy0 I d0Q I dPo I 
Nd 4 T T 2 J 0 J Q JQ J Q J Q 

p0r0 sin 0O cosz - 2 r 0 / X 

ko2 + PO2 + 2r0 PO sin 0O cos (y0 — 0o)] 3/2 
d/'0 (1) 

Let p and </> be the polar coordinates of an area element of the diaphragm outside the orifice area; r the distance from the point r0 to this 
elemental area; 6, the angle between r and the normal to this elemental area (see Fig. 1). We obtain 

ma E r2ir r2?r r2ir r*/2 r°° r D / 2 r°° pws in ^cos3^-2ro/x 
Nd J

» 2TT /»27r / » 2 T T f*ir/2 (*<x> (*D/2 /» a 

^00 I dyQ I d<£ I d0o I dp I dp0 I 
0 JO JO JO J D/2 JO J o 

rQ*r6 
dr0 (2) 

After the exponential functions in the integrands are approxi­
mated with appropriate parabolic representations (these approxi­
mations remain close when D is not much larger than X), we ob­
tain from Eqs. (1) and (2) 

Nid/Nd ~ 0.153 (D/\) F,(\/D) (3) 

Ndd/Nd ~ 0.019 (D/\) F2(\/D) (4) 

where Fi(\/D) and Fz(\/D) are given in Fig. 2. 
From the hypothesis that the intermolecular-eollision effect 

on the effusion rate is equal to the molecular flux inhibited from 
hitting the orifice area when closed—namely (Nid — Ndd), we 
have 

N/NF = 1 + [(Nid - Ndd)/NF] (5) 

where NF is the free-molecule effusion rate through the orifice 
(note that Nd = NF as a first approximation). A graph of 
N/NF as a function of \/D is shown in Fig. 3, in which are also 
shown the experimental results3 which were taken with pi/p2 > 
103. I t is felt that with refined analysis—-e.g., taking into account 
the contribution to the impinging flux from molecules, emerging 
from collisions (Nid), that are deflected toward the orifice area, 
the validity of the theory can be extended to lower values of \/D. 
The present analysis appears fruitful in illustrating the functional 
dependency of the effusion-flow rate on the intermolecular 
collisions. 
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An Equivalence Principle 
for Water-Exit and -Entry Problems! 
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THERE EXISTS an extensive body of literature concerned with 
the impact forces exerted on a body entering water, a review 

of which was recently made by Szebehely,1 while a smaller, but 
growing, number of analyses deals with problems of water exit.2-6 

However, it does not seem to have been recognized in these pre­
vious studies that, outside of viscous effects, there is a definite 
equivalence between problems of water-exit and -entry (provided 
that there is no cavitation). 

t Based on a portion of reference 8 in which the principle was demon­
strated for slender bodies. The author is indebted to Dr. W. R. Sears for 
suggesting the problem and supervising the research, and also to Dr. S. 
H. Lam, for pointing out that the existence of the principle does not depend 
on the slenderness of the body. 

* Formerly, Graduate Student. Now Associate Research Scientist at 
THERM, Inc., Advanced Research Division, Ithaca, N.Y. 
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To simplify the demonstration of this equivalence principle, 
we shall consider the vertical exit or entry of a symmetric body 
in uniform axial motion, as shown in Fig. 1. The concept is 
readily generalized to other situations, as will be noted below. 

As usual, we assume the flow to be incompressible and irrota-
tional. We ma}^, therefore, work in terms of a potential <p, whose 
gradient is the fluid velocity and which satisfies Laplace's equa­
tion by continuit}^: 

v v = o (l) 
An integration of the Eulerian equations of motion yields Ber­
noulli's equation, which in the space-fixed coordinates (xr, y', t') 
defined in Fig. 1 is 

b<p/W + ( 1 / 2 ) ( V ^ + (P - PS)/P + gy' = 0 (2) 

where p denotes the pressure, g the acceleration due to gravity, 
and the constant of integration has been evaluated on the water 
surface, y' = ys', far from the body creating the motion. 

Neglecting the density of the air above the surface relative 
to that of the water below, we require that the pressure on the 
surface, ps, be a constant. Thus, from Eq. (2) 

gy*' = - [eW5*' + ( l / 2 ) ( V ^ ] y = V (3) 

I t is somewhat more convenient to work in the dimensionless 
body-fixed coordinate system (x, y, Z) defined in Fig. 1 and re­
lated to (x', y', t') by 

x = x'/L, y = Z - y'/L, Z = ±Ut/L, 
6(x, y, Z) = <p(x', y', t')/UL (4) 

Where a double sign is indicated, the upper sign refers to the 
exit problem and the lower to the entry situation. The free-
surface boundary condition, Eq. (3), now transforms to 

gy.'/U2 = -[±D4>/Dt + (V2)(V0)*]y = z _ y s V i . (5) 

where D( )/Dt denotes d( )/by + b( ) /5Z. 
The boundary condition of no flow through the body may be 

written 

d&/dx 
dX(y)/dy = =h 

. U =b dd>/dy_ x=X(y) 
(6) 

Now taking note of the homogeneity of Laplace's equation, 
Eq. (1), and the way in which the signs change in the boundary 


