THE UNIVERSITY OF MICHIGAN INDUSTRY PROGRAM OF THE COLLEGE OF ENGINEERING

THE EFFECT OF CHANGES IN CATALYST COMPOSITION ON THE HYDROGEN-DEUTERIUM EXCHANGE REACTION ON COBALT FERRITE

Robert G. Squires

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University of Michigan Department of Chemical and Metallurgical Engineering 1962

October, 1962

IP-587

ACKNOWLEDGEMENTS

The author wishes to express his appreciation to the members of his committee for their guidance during the course of this work. Special thanks are due to Professor G. Parravano, who suggested the topic for this research and served as chairman, for his numerous helpful suggestions and criticisms. The author would also like to give special thanks to Professor J. J. Martin for his encouragement given throughout the author's studies, and to Professor D. R. Mason for arousing the author's interest in the application of semiconductor theory to catalysis.

The author is indebted to the Standard Oil Company of California and to the National Science Foundation for their financial aid through the award of fellowships for four years.

To the laboratory and shop personnel of the Department of Chemical and Metallurgical Engineering the author expresses his thanks. In particular, Mr. F. B. Drogosz deserves the author's thanks for his assistance in solving some of the analytical problems presented by this work.

Finally, the author would like to thank his wife for her constant encouragement and for the typing of both the rough and final drafts of this manuscript. The drafting of the figures by Mr. T. F. Beals and the printing of this manuscript by the Industry Program of the College of Engineering are also very much appreciated.

TABLE OF CONTENTS

					Page
ACKNOWLEI	OGEME	NTS.			ii
LIST OF T	TABLE	s			v
LIST OF E	FIGUR	ES			vi
LIST OF A	APPEN	DICE	ls		ix
ABSTRACT.			0 0 0 0 1		х
I.	INT	RODU	CTIOI	V	1
	А. В.			and and Scope of Research	1 3
		l.	The	Electron Theory of Catalysis	4
			a. b. c. d. e.	Development of Theory	4 6 6 8 9
		2.	Coba	alt Ferrite	10
			a. b. c.	Preparation Phase Behavior Semiconducting Properties	10 10 11
II.	THE	ORY.			12
	A. B.			ducting Properties of Cobalt Ferriteect of Chemisorption on Thermoelectric	12
	C.	Pro	perti	lesect of Changes in Fermi Level on Adsorption	24
	D.	and	Cata	alytic Activity nation of Activation Energy and Pre-	28
		exp	onent	tial Factor	34
		1. 2.		vation Energyexponential Factor	35 37
	E.	Iso	topic	e Analysis by the Mass Spectrometer	38
III.	EXP	ERIM	ENTAI	APPARATUS AND TECHNIQUES	42
	Α.	Kin	etic	Experiments	42

TABLE OF CONTENTS CONT'D

				Page
		1. 2. 3. 4.	Catalyst Preparation and Analysis Apparatus Experimental Procedures Analytical Methods	42 43 50 51
	В.	The	rmoelectric Power Studies	53
		1. 2. 3.	Catalyst Preparation and Analysis	53 54 61
	C.	Exp	erimental Program	62
IV.	EXP	ERIM	ENTAL RESULTS	64
	Α.	Hyd	rogen-Deuterium Exchange Studies	64
		l. 2.	Ferrite Catalyst Characterization Exchange Runs	64 69
	В.	The	Effect of Chemisorption on Thermoelectric Power.	77
		l. 2.	Cobalt Ferrite Characterization Thermoelectric Power Measurements During Chemi-	77
			sorption of Hydrogen and Oxygen Gases	81
٧.	DIS	CUSS	ION OF RESULTS	88
	А. В.		alyst Power Changes During Chemisorption	88 91
		1. 2. 3.	High Temperature Runs	91 95 95
	C. D.		etic Studies posed Reaction Mechanism	96 96
		1. 2.	Thermoelectric Power Studies During Chemisorption Hydrogen-Denterium Exchange Data	98 99
VI.	CON	CLUS	IONS	102
APPENDICE	s			104
BIBLIOGRA	PHY.			122
NOMENCLAT	URE.			128

LIST OF TABLES

Table		Page
I	Constants Needed to Describe the Semiconducting Properties of Co_{3x} $\text{Fe}_{x}^{0}_{4}$	23
II	Ions From a Mixture of the Hydrogens in Which H is More Abundant Than D	39
III	Comparison of Standard Deviations of X-Ray Analyses of the Four Catalyst Samples	66
IV	Summary of Activation Energy and Pre-exponential Factors For Hydrogen-Deuterium Exchange Experiments	76
V	Activation Energies and Pre-exponential Factors For Runs Using Mixed Sintered Catalysts	77
VI	Variation of EMF at △T ≅ 0 For Different Gas Atmospheres	82
VII	Thermoelectric Power Change During the Adsorption of Hydrogen and Oxygen	87
VIII	Preliminary Runs at Constant Temperature (Run 72) and Constant Flow Rate (Run 74)	105
IX	Mixed P- and N-Type Catalyst Runs	105
X	High Temperature Runs	106
XI	Low Temperature Runs	107
XII	Adsorption Runs	108
XIII	Co _{0.96} Fe _{2.04} O ₄ X-Ray Diffraction Pattern Calculation	1 1 8
XIV	X-Ray Flourescent Data for Catalyst Samples	119
XV	X-Ray Flourescent Data for Mixtures With Known Fe/Co Ratios	119
IVX	Analyses of Fe ₂ O ₃ and CoCO ₃	120

LIST OF FIGURES

Figure		Page
1	Energy Level Scheme for Cobalt Ferrite	15
2	Schematic Survey of the Seebeck Effect of a Number of Compounds as a Function of Hole Concentration, n, Extrapolated to the Intersection Points with the Abscissa	22
3	Cross Section of Compressed Powder Sample	27
4	Temperature Distribution in Idealized Spherical Particles	27
5	Energy Picture for Adsorption	29
6	Kinetic Study Apparatus	30
7	Typical Data Plot	35
8	Kinetic Study Apparatus	1+1+
9	Mixing Tank Details	47
10	Reaction Vessel Details	49
11	Thermoelectric Power Apparatus	55
12	Thermoelectric Power Cell Details	57
13	Thermoelectric Power Apparatus: Sample Holder and Internal Wiring Details	58
14	Thermoelectric Power Apparatus, Wiring Diagram	60
15	Catalyst Composition Calibration Curve for X-Ray Flourescent Spectrometer Data	65
16	Thermoelectric Power of Cobalt Ferrite as a Function of Composition	67
17	Resistivity of Cobalt Ferrite as a Function of Composition	67
18	Photomicrograph (11.5x) of the Crushed Pellet Catalyst Particles	69

LIST OF FIGURES CONT'D

Figure		Page
19	The Effect of Changes in Flow Rate in Percent Conversion at Constant Temperature	71
20	Percent Conversion as a Function of Temperature at Constant Flow Rate	72
21	A Typical Hydrogen-Deuterium Exchange Run	73
22	Activation Energy as a Function of Catalyst Composition	74
23	Pre-exponential Factor as a Function of Catalyst Composition	74
24	Compensation Effect Between Activation Energy, E, and Pre-exponential Factor, Loko	75
25	Surface Area of Ferrite Powder as a Function of Firing Time	78
26	Photomicrograph (60x) of Sintered Ferrite Powder Agglomerates	79
27	Electron Photomicrograph (11000x) of Separated Particles.	80
28	Electron Photomicrograph (1600x) of Separated Ferrite Particles	81
29	Particle Size Distribution for Separated Ferrite Particles	81
30	Variation of EMF of Ferrite Pellet with △ T Across the Pellet	83
31	Variation of Thermoelectric Power with Time in Helium, Hydrogen, and Oxygen Atmospheres; Temperature = 250°C	84
32	Variation of Thermoelectric Power with Time in Helium and Hydrogen Atmospheres; Temperature = 150°C	85
33	Variation of Thermoelectric Power with Time in Helium, Hydrogen and Oxygen Atmospheres; Temperature = 88°C	86

LIST OF FIGURES CONT'D

Figure		Page
34	Run Number 155a, Variation of Thermoelectric Power with Time in Oxygen and Hydrogen Atmospheres	94
35	Comparison of X-Ray Diffraction Patterns and True Bulk Densities of Ferrite Materials Used in Exchange Studies and Thermoelectric Power Studies	117

LIST OF APPENDICES

Appendix		P a ge
I	Experimental Data	104
	A. Raw Data and Calculated Per Cent Conversions for Hydrogen-Deuterium Exchange Runs	105
	Adsorption Runs	108
II	Sample Calculations	112
III	Comparison of Ferrite Materials Used in Exchange Studies and Thermoelectric Power Studies	116
IV	X-Ray Flourescent Spectrometer Analyses Data	119
v	Chemical Analyses of Raw Materials	120
VI	Energy of Formation of CoFe ₂ O ₁ ,	121

ABSTRACT

The catalytic activity of the hydrogen-deuterium exchange reaction on cobalt ferrite catalysts and the change in thermoelectric power of the ferrite during the adsorption of hydrogen and oxygen were investigated as functions of the catalyst composition. The relationships between the semiconducting and catalytic properties of cobalt ferrite were analyzed in the light of recent developments in the electron theory of catalysis.

The hydrogen-deuterium exchange reaction was investigated on ferrite catalysts, $\text{Co}_{3-x}\text{Fe}_x\text{O}_4$, with four different compositions: two n-type catalysts with x > 2, $\text{Co}_{0.93}\text{Fe}_{2.07}\text{O}_4$ and $\text{Co}_{0.98}\text{Fe}_{2.02}\text{O}_4$; and two p-type catalysts with x < 2, $\text{Co}_{1.03}\text{Fe}_{1.97}\text{O}_4$ and $\text{Co}_{1.07}\text{Fe}_{1.93}\text{O}_4$. The study was made using a flow reactor at approximately 75°C, 1 atmosphere pressure. Analyses of the gas samples were made by means of a mass spectrometer. The activation energy increased from 19 Kcal/mole to 24 Kcal/mole and the pre-exponential factor increased from 10^{30} to 10^{37} as the composition progressed from x < 2.0 to x > 2.0.

The change of thermoelectric power of compressed powder ferrite pellets during the adsorption of hydrogen and oxygen was investigated in the temperature range 88° -250°C on two samples of cobalt ferrite, one n-type (${\rm Co_{0.96}Fe_{2.04}O_{4}}$) and one p-type (${\rm Co_{1.09}Fe_{1.91}O_{4}}$). At temperatures above 120°C hydrogen was adsorbed on the cobalt ferrite as an electron donor, and oxygen was adsorbed

as an acceptor. No change in thermoelectric power was observed during the adsorption of hydrogen or oxygen in the lower temperature (88°C) runs, indicating that little electron transfer occurs between the adsorbed molecules and the catalyst surface in this temperature range.

It is concluded that the hydrogen-deuterium exchange reaction on cobalt ferrite occurs in two stages: (1) The first stage is an activation stage, in which the catalytic activity increases with time. This step might be associated with the reduction of oxygen on the surface of the ferrite, and the corresponding formation of OH and OD groups. (2) In the second stage the exchange reaction occurs with constant activity. In this step, it seems likely that exchange occurs between hydrogen and deuterium, and the OD and OH groups formed in stage (1).

This study has furnished data which indicates that the change in thermoelectric power of particulate systems due to gas chemisorption may be used to gain an insight into the electron exchange at the catalyst surface.

I. INTRODUCTION

A. Background and Scope of Research

The main objective of this research was to investigate and analyze in the light of recent developments in the electron theory of catalysis, the relationship between the semiconducting and catalytic properties of a semiconducting oxide catalyst. More specifically, the catalytic activity of a cobalt ferrite catalyst for the hydrogendeuterium exchange reaction and the change in thermoelectric power of the ferrite during adsorption of hydrogen gas were investigated as a function of catalyst composition.

Cobalt ferrite, $\text{Co}_{3-x}\text{Fe}_{1x}\text{O}_{1}$, was chosen for the following reasons:

- 1) In the composition range 1.9< x <2.1, single phase spinels are formed with a metal to oxygen ratio of 3:4. The concentration of lattice vacancies is small enough to be neglected in the theoretical considerations,
- 2) Numerous previous workers in the literature have investigated oxide catalysts which are single carrier semiconductors. The catalyst, in these cases, was always p-type or n-type and only the carrier concentrations could be changed by doping with small concentrations of foreign elements. When Fe is added to CoFe_2O_4 , it enters the crystal structure as Fe^{II} , which acts as an electron donor and causes the ferrite to become an n-type semiconductor. When Co is added to CoFe_2O_4 , it enters the crystal structure as Co^{III} , which acts as an acceptor, causing the ferrite to become a

p-type semiconductor. The opportunity is therefore afforded to study a reaction on an oxide catalyst having a single chemical substrate with either electrons (n-type catalyst) or holes (p-type catalyst) in excess. Furthermore, no foreign impurities need be added to the ferrite.

3) The bulk thermoelectric properties of polycrystaline sintered cobalt ferrite have been reported by Jonker (45). As the catalyst composition increases from 1.9 to 2.1 Jonker observed a resistivity change from 10⁷ to 10² ohm-cm and a thermoelectric power change from +800 to -600 μ v/°C. If a relationship does exist between the electrical properties and the catalytic properties of the ferrite, one might expect a corresponding change in catalytic activity in this composition range.

The hydrogen deuterium exchange reaction was chosen since it was relatively simple and preliminary studies indicated that it proceeded at a conveniently low temperature. Due to the experimental difficulties involved in obtaining meaningful conductivity data in high impedance particulate systems, the thermoelectric power was chosen as the semiconducting property to be measured so that an insight could be gained into the nature of the electron transfer process taking place between the adsorbed gas molecules and the catalyst surface. Since the cobalt ferrite is a narrow band, or localized level semiconductor, no appreciable Hall effect, photoconductivity, or carrier injection effect would be expected. These effects, which are often used in studying the

electrical properties of semiconducting materials, were, therefore, not investigated.

The simultaneous measurement of thermoelectric power and catalytic activity was originally proposed. Experimental difficulties soon demonstrated that this approach was impractical.

Therefore, the kinetic and thermoelectric properties of cobalt ferrite were investigated independently.

Some effort was devoted to considering possible reaction mechanisms. A possible reaction mechanism is proposed which is consistent with the data in this study and with other work in the literature.

Several runs were also made on mechanically mixed nand p-type catalysts and on sintered n- and p-type catalysts to
qualitatively determine if the formation of p-n junctions would
affect the catalytic activity of the ferrite.

B. Literature Survey

The pertinent literature can be divided into two main sections, the first of which is concerned with the theoretical development and experimental verification of the role which electron transfer takes in adsorption and in heterogeneous catalysis. The investigations of the hydrogen-deuterium exchange reaction on various catalysts and of kinetic studies using ferrite catalysts for various reactions pertain more directly to this thesis and are therefore reviewed in more detail in separate sections. Although much work has also been done on metals, this survey will emphasize

the adsorption and heterogeneous catalysis on oxide semiconductors. The second category includes the methods of preparation, phase behavior, and semiconducting properties of cobalt ferrite. These sections of the literature are reviewed below and those articles which pertain directly to this work are discussed in more detail in other chapters of this thesis.

1. The Electron Theory of Catalysis

a. Development of Theory

A theoretical approach to surface catalysis was considered in 1916 by Langmiur (60) who suggested that chemical forces hold adsorbed particles to the surface. Roginskii and Schultz (80), in 1928 emphasized the electronic considerations and Rideal and Wansbrough-Jones (76) proposed a relationship between the work function of metals and the speed of catalytic reaction. De Boer (16) studied the relationship between the work function and the ionization potential of the adsorbed gas during ionic adsorption.

Brewer (15), 1928, Schmidt (83), 1933, and Nyrop (71), 1935, suggested that during some catalytic reactions the adsorbed species must be present on the surface in an ionized form. Lennard-Jones (62), in his electron theory of chemisorption on metal surfaces, formulated the problem of the electron transfer process in chemisorption.

With the development of quantum mechanical treatments of solids and the application of Fermi-Dirac statistics to electrons, detailed studies of the electronic factor in catalysis on metals

and semiconductors became possible. Reviews of the theoretical and experimental development of the electron transfer process in metals have been given by Garner (30) and Culver and Tompkins (15).

The electron theory of catalysis relating chemisorption, catalytic activity and semiconducting properties for semiconducting oxides cannot yet be regarded as complete. At least three approaches to the problem have been proposed. The boundary-layer theory, independently developed by Aigrain and Dugas (1), Hauffe and Engell (38) and Weisz (105) emphasizes the electron transfer between the semiconductor and the chemisorbed layer. The density and energy level of the surface electrons are changed by the space charge which builds up in the boundary layer between the interior of the semiconductors and the adsorbed species on the surface; this change in surface electron charge density causes corresponding changes in the heat of adsorption and the reactivity of the chemisorbed gas. Wolkenstein (109), (110), (111), in another approach, emphasizes the covalent and ionic bond formation between adsorbate and semiconductor using conduction electrons or electron holes of the semiconductor. Wolkenstein (109), (110), (111) differentiates between "weak" and "strong" chemisorption. Dowden, Mackenzie, and Trapnell (19) emphasize covalent bonding by means of atomic orbitals or electrons of the metal ions of the oxide,

Recent articles by Wolkenstein ⁽¹¹²⁾, ⁽¹¹³⁾, indicate his views on the present state of the electron theory of catalysts.

Roginskii ⁽⁷⁹⁾ has attempted to formulate rules for the selection

of catalysts based on the electron theory of catalysis. An attempt has been made by $Garrett^{(32)}$ to indicate how the electron theory may be applied in a quantitative manner. Garrett's paper follows the approach of Krusemeyer and Thomas $^{(56)}$ to the adsorption and charge transfer on semiconducting surfaces.

b. Chemisorption Studies

The electron theory of chemisorption predicts a variation in the semiconducting properties of the solid surface, such as the electrical conductivity, Hall effect, and thermoelectric power, with gas adsorption. Experimental verifications of this effect have been given, for example, for the adsorption of various gases on $\text{ZnO}^{(5,\ 14,\ 24,\ 28,\ 40,\ 47,\ 54,\ 58,\ 69,\ 91,\ 101,\ 103)}$, $\text{NiO}^{(7,\ 8,\ 24,\ 48,\ 101)}$, and $\text{Cu}_2\text{O}^{(31,\ 34,\ 47,\ 74)}$.

Other examples may be found in review articles by Wolkenstein (112), Parravano and Boudart (73), Winter (100), Hauffe (37), and Morrison (68).

c, Reaction Studies

Many experimental studies have been reported which attempt to relate the catalytic activity to the semiconducting properties of the catalyst surface. The decomposition of nitrous oxide, oxidation of carbon monoxide, and hydrogen-deuterium exchange, in particular, have been frequently used to study this effect. These investigations fall into two categories. The first group of experiments measured changes in reaction rate or activation energy as a function of the hole and electron concentration of the catalyst, which

may be controlled by bulk doping. Wagner (102), first used this technique in trying (unsuccessfully) to improve the rate of the nitrous oxide decomposition on ZnO by doping the latter with Ga₂O₃. Later experiments, however, were successful. For example, Schwab and Block (86) have investigated the carbon monoxide exidation on Li- and Cr-doped NiO and Ga- and Li-doped ZnO, In both cases a change in activation energy with doping was observed. Similar correlations between catalytic activity and doping have been reported by Schwab et al. (87) for the carbon monoxide oxidation on various mixed oxides: Molinari and Parrayano (66) for the hydrogen-deuterium exchange on ZnO; Hauffe et al. (39) for the nitrous oxide decomposition on NiO; Block and Chon (10) for the carbon monoxide oxidation on CoO; Keier et al. (49) for the carbon monoxide oxidation on NiO; Otwinowska et al. (72) for the dehydration of isopropanol on ZnO; and Dogramadzi and Matic (18) for the hydrogen-deuterium exchange on ZnO and NiO.

All of the experiments mentioned above were made on single carrier oxide semiconductors. A few experiments have been conducted on two carrier semiconductors in which not only the carrier concentration but also the type of carrier may be changed by doping. Watson (104), for instance, has investigated the catalytic activity of the Friedel-Crafts reaction on p- and n-type germanium.

Penzkofer (75) reported that the activation energy for the dehydrogenation of formic acid on germanium was less for p-type (32 Kcal/mole) than for n-type (40 Kcal/mole). The hydrogenation

of ethylene on p- and n-type germanium and silicon has been reported by Krawczynski (5¹⁴). The activation energy was found to be 22 Kcal/mole for n-type and 3 to 6 Kcal/mole for p-type germanium. The similar study on silicon gave activation energies of 11 Kcal/mole and 5 Kcal/mole, respectively. Kuchaev and Boreskov (59) reported that, at 150°C, intrinsic germanium was an order of magnitude more active for the hydrogen-deuterium exchange than were either n-type or p-type germanium.

The second category of experiments measures both the electrical conductivity and catalytic activity during the course of a reaction.

This type of investigation has been made by Matveev and Boreskov (65)

for the dissociation of methyl alcohol on Zno; by Bielanski et al. (6)

for the dehydration of ethyl alcohol on various oxides; Weller and

Voltz (106) for the hydrogen-deuterium exchange on Cr₂O₃; Otwinowska (72)

et al. for the dehydration of isoproponal on ZnO. Schwab (85) reported
a variation of electrical conductivity with catalytic activity for various mixed catalysts. A similar investigation was also made by Alkhazov and Bielanski (2) on Fe₂O₃Al₂O₃. Further discussion may be found in review articles by Wolkenstein (112), Law (61), Parravano and Boudart (73), Winter (108), Hauffe (37) and Morrison (68).

d. Hydrogen-Deuterium Exchange Studies

Hydrogen-deuterium exchange and reversible chemisorption have been observed for ZnO in the temperature range -190° to 200°C by Taylor et al. (93)(94) and Harrison and McDowell (36). Heckelsberg et al. (41) measured the simultaneous variation of con-

ductivity and catalytic activity of the hydrogen-deuterium exchange on Li-, Al-, and Cr-doped ZnO. Molinari and Parravano (66) measured the catalytic activity of the hydrogen-deuterium exchange on ZnO as a function of Li-, Al-, and Ga-doping. The catalytic activity of chromic oxide for hydrogen-deuterium exchange after pretreatment in either hydrogen or oxygen was measured by Weller and Voltz (106). Dowden et al. (19) measured the rate of hydrogen-deuterium exchange on the oxides of most of the transition metals. Dogramadzi and Matic (18) studied the effect of Li- and Ga-doping of ZnO and NiO on the catalytic activity of the hydrogen-deuterium exchange. The hydrogen-deuterium exchange on p-type, n-type and intrinsic germanium was studied by Kuchaev and Boreskov (59). Other investigations using the hydrogen-deuterium exchange on oxides are discussed in review articles by Parravano and Boudart (73) and Halpern (35).

e. Reactions on Ferrite Catalysts Schwab et al. (87) reported that the carbon

monoxide oxidation proceeds faster and with lower activation energy on zinc ferrite than on magnesium ferrite. Svaalenak and Scott⁽⁹²⁾ investigated the ortho-para hydrogen conversion on iron-zinc oxide catalysts as a function of increasing ferrite content. In his review on the properties of oxide catalysts based on semiconducting properties, Solymosi⁽⁹⁰⁾ included a detailed discussion of the relationship between the catalytic properties of oxide mixtures and spinels and their electrical properties. Linde et al.⁽⁶³⁾ studied the catalytic

activity of Co-Mn spinels for the oxidation of propane. The catalytic activity for the conversion of water gas on ferrites of NiO, ZnO, CoO, MnO, and MgO was studied by Fukutome and Kusano⁽²⁹⁾. Most exhibited weak activity. NiO-Fe₂O₃ and CoO-Fe₂O₃, however, were found to be very active after a short initiation period in which the ferrite is reduced by the water gas.

2. Cobalt Ferrite

a. Preparation

The general methods of ferrite preparation have been outlined by Economos (20). Economos (21) also compared these different methods, giving the percent conversion to ferrite as a function of firing time and temperature for Ni ferrite. The effect of iron oxide particle size on Ni ferrite formation was reported by Economos and Clevenger (22). Methods of preparation of cobalt ferrite are outlined by Robin and Benard (78), Smiltens (89) and Jonker (45).

b. Phase Behavior

Robin and Benard (78) constructed a phase diagram for the Fe-Co-O systems based on x-ray diffraction data of a series of mixed iron and cobalt samplesheated at temperatures up to 1000°C. Smiltens (89) studied the 1200°C, 1400°C and 1626°C isotherms of the Fe-Co-O systems. Smiltens (89) used the triangular diagram method, based on chemical analysis of the quenched samples and x-ray diffraction data. The data of Smiltens (89) was substantiated by Jonker (45) at a temperature of 1350°C. Both Smiltens (89) and

Jonker reported that in the vicinity of CoFe₂O₄ the ferrite has a spinel structure with a ratio of metal to oxygen ions of 3:4.

c. Semiconducting Properties

The semiconducting properties of transition metal oxides, including cobalt ferrite, were reported by Jonker and Van Houten (46). A detailed analysis of the semiconducting properties of cobalt ferrite was made by Jonker (45). From measurements of resistivity, activation energy and Seebeck effect, Jonker (45) derived an energy level scheme by which the semiconducting properties of CoFe₂O₄ can be described.

II. THEORY

A. Semiconducting Properties of Cobalt Ferrite

cobalt ferrite belongs to the group of transition metal oxides whose semiconducting properties depend on a partially filled 3d band. The importance of understanding the fundamental properties of the transition metal oxides has been emphasized in recent years, due to their increased use in heterogeneous catalysis (23), electric and magnetic (33) circuits, and corrosion applications (25). A review of the properties of oxides of the 3d transition metals has been given by Morin (67).

In the case of a relatively simple oxide such as zinc oxide, the energy bands may arise from the filled 2p levels of the O and the empty 4s levels of the Zn++ which are broadened when the ions form the solid. The energy gap, or forbidden region, which determines the semiconducting properties of the oxides is the energy separation of the 2p and 4s bands. However, the existance of a partially filled 3d band in the transition metal oxides makes possible other energy levels in the 3d band. The semiconducting properties of 3d oxides will be controlled by the relative energy of the 3d and 2p levels of the anions and the 4s levels of the cation. Morin (67) points out that calculations of the energy levels of the 3d metals (88) indicate that the 4s band is at least 10 ev wide and overlaps the 3d band which, in Ni, for example, is approximately 2.8 ev wide. Since the 3d band can hold 10 electrons as

compared to two electrons for the 4s band, the 3d band in Ni, per electron, is only 1/15 as wide as the 4s band. Morin (67) postulates that the overlap of the 3d wave function in the already narrow 3d band present in the metals is reduced further due to the increased distance between the ions in the oxide. When the 3d band becomes extremely narrow, it can no longer be considered a continuous band, and the 3d charge carrier can be treated as occupying energy levels localized on the cations.

The conduction in such a narrow band or "localized level" semiconductor is due to the lattice vibrations which cause the electron wave functions on adjacent cations to overlap with a higher degree of probability. Transport of this type, resulting in an extremely low mobility (10⁻⁴ to 10⁻⁸ cm²/v.-sec. for CoFe₂O₄) which increases exponentially with temperature, is given by

$$\mu = \frac{d^2 e v e^{-2/kT}}{kT}$$
 (1)

where μ = mobility

d = jump length

ν = lattice frequency

 \mathbf{g} = activation energy for lattice deformation

Due to the very low mobility, no Hall effect, photoconductivity, or carrier injection would be expected in a localized level semiconductor.

For conduction to take place in the 3d levels, there must be present in pure $CoFe_2O_4$, some Co^{III} and Fe^{II} (hole electron pair)

which can exchange electrons with Co^{II} and Fe^{III}. These states, however, can exist only at high temperature. However, the room temperature semiconducting properties of CoFe₂O₄ can be varied by introducing excess Co^{III} (holes) or Fe^{II} (electrons) into the lattice. Cobalt ferrite has an inverse spinel structure, with the cobalt ions and half of the iron ions on the octahedral sites, and the remaining iron on the tetrahedral sites. Since excess $\mathrm{Fe}^{\mathrm{II}}$ and Co III also occupy octahedral sites, cobalt ferrite, Co FexO4, may be considered as the following series of mixed crystals. For x>2 the mixed crystal consists of 3-x molecules of Fe^{II}(Co^{II}Fe^{III})O_L and x-2 molecules of $Fe^{III}(Fe^{II}Fe^{III})O_h$; thus x-2 represents the Fe^{II} or electron content per molecule of the n-type ferrite. For the p-type ferrite $(x \le 2)$ the crystal can be considered x-1 molecules of Fe III (Co Fe III) Oh and 2-x molecules of Fe III (Co IICo III); thus 2-x represents the Co^{III} or hole concentration of the ferrite. Since the n- and p-type conductivities of cobalt ferrite can be related to the concentration of excess Fe^{II} and Co^{III} in the lattice, cobalt ferrite may be classified as a controlled-valency semiconductor [Verwey et al. (99)(100)]. Note, however, that no foreign doping elements need be added to the lattice.

Jonker (45) proposed the following localized band model to describe the semiconducting properties of cobalt ferrite (Figure 1). The following discussion (through equation 18) outlines Jonker's (45)(46) treatment of the semiconducting properties of cobalt ferrite.

Figure 1. Energy Level Scheme for Cobalt Ferrite. E_f is the Fermi level (for a p-type ferrite in this case). q_1 and q_2 are activation energies for jumps of electrons and holes. α and β are the contribution to transport levels of electrons and holes. Energy of Co^{II} is taken as zero. E_g is energy of Fe^{II} level. Ea and Ed are the energies of acceptor and donor levels.

Since the distribution of charge carriers over the different energy levels affects both the conductivity and Seebeck effect, a brief description follows concerning the application of Fermi statistics for interpreting the measurements. The method of calculation is analogous to that for the energy band

scheme in normal semiconductors [i.e. Kittel⁽⁵¹⁾, Mason⁽⁶⁴⁾] with the bands replaced by localized energy levels.

For the case of p-type ferrites, with excess Co, the application of Fermi statistics gives

$$\frac{N_{V}}{1 + \exp\left(\frac{E_{f}}{kT}\right)} = \frac{N_{A}}{1 + \exp\left(\frac{E_{a}-E_{f}}{kT}\right)} + \frac{N_{C}}{1 + \exp\left(\frac{E_{g}-E_{f}}{kT}\right)}$$
(2)

(holes in valence level) = (electrons in + (electrons in acceptor level) + conduction level)

Since the ${\rm Co}^{\rm III}$ concentration is small in the series of mixed crystals in this study, the number of available valence levels and conduction levels, designated by N_V and N_C, will be approximately equal to the number of cobalt or iron ions, respectively, which occupy octahedral sites. Since there are eight Co ions and eight Fe ions occupying octahedral sites in the cobalt ferrite unit cell, and since the cell constant is 8.39Å, it follows that N_V = N_C = 1.35 x $10^{22} {\rm cm}^{-3}$. Since N_V = N_C, in the following discussion the subscript will be dropped (i.e., N_V = N_C = N).

Equation (2), relating the hole concentration, the Fermi level, temperature and acceptor level concentration, can be simplified by making various assumptions which are valid over limited temperature ranges. At low temperatures the last term of Equation (2) may be neglected, and the resulting equation which is quadratic in the

factor, $\exp(-E_{\rm f}/{\rm kt})$, and may be solved for $E_{\rm f}$. When kT << Ea, the resulting equation simplifies to

$$E_{f} = kT \ln \frac{N}{N_{A}}$$
(3)

In this temperature region where the donor levels are completely ionized, but the intrinsic conduction is still negligible, the concentration of holes in the valence level, n_2 , will equal the concentration of acceptor levels, N_a . Therefore, Equation (3) may be written

$$E_{f} = kT ln \frac{N}{n_{2}}$$
(4)

or

$$m_2 = N \exp\left(-\frac{E_f}{kT}\right) \tag{5}$$

For an n-type material, with excess Fe^{II}, an analogous development gives

$$E_g - E_f = kT \ln \frac{N}{n_1} \tag{6}$$

or

$$n_1 = N \exp\left[-\left(E_g - E_f\right)/kT\right]$$
 (7)

The difference between n_1 and n_2 , fixed by the chemical composition of the ferrite, is independent of temperature. The equilibrium between holes and electrons is given by the law of mass action:

$$\eta_1 \eta_2 = N^2 \exp\left(-E_g/kT\right) \tag{8}$$

Therefore, a cobalt ferrite with a majority carrier concentration appreciably greater than $\sqrt{n_1 n_2}$ will have a negligible concentration of minority carriers and the majority carrier concentration will be practically independent of temperature.

The general expression for the electrical conductivity, $\boldsymbol{\sigma}$, for a two carrier semiconductor is

$$\sigma = \gamma_1 e \mu_1 + \gamma_2 e \mu_2 \tag{9}$$

The variation of σ with temperature for $n_1 >> \sqrt{n_1 n_2}$ and $n_2 >> \sqrt{n_1 n_2}$ may therefore be attributed to the variation of μ_1 and μ_2 with temperature.

Insight into the energy level scheme of cobalt ferrite may also be gained by measurement of the Seebeck effect, or thermoelectric power. A temperature difference Δ T between the ends of the sample causes an emf of $\Theta \Delta$ T microvolts, where Θ , the thermoelectric power, is given in microvolts/degree.

The significance of the Seebeck effect is often explained in terms of its inverse, the Peltier effect, which is a measure of the heat absorbed at one semiconductor-metal junction, and liberated at the other, when current is passed through the semiconductor. The Peltier coefficient is expressed in units of joules/coulomb, or volts.

The thermoelectric power and Pelti coefficient, II, are related by the Kelvin relationship

$$\Theta T = II$$
 (10)

These effects arise from the fact that the energy level of the current carrying electron in the semiconductor differs from that of the metal. In normal band type semiconductors an additional term must be added to account for the transfer of kinetic energy of the carriers in moving from a hot to a cold region. In a localized level semiconductor, Jonker (45) indicates that a similar additional term must be added to account for the transport of the energy in excess of that indicated by the electron levels. He further points out that not only is it difficult to predict the magnitude of the contribution of the activation energy, q, to the transport energy, but even the sign of the contribution may be in doubt, since the activation energy may be associated with either the emitting or receiving ion: If the energies, \prec and β , are associated with

the transport of electrons and holes respectively, Jonker (45) points out that the Peltier effect for cobalt ferrite is given by

$$II = \frac{-n_1 \mu_1 (E_9 - E_f + d) + n_2 \mu_2 (E_f + B)}{n_1 \mu_1 e + n_2 \mu_2 e}$$
(11)

In the concentration ranges where one type of carrier predominates Equation (11) reduces to

$$e\Pi = e\Theta T = -(E_g - E_f + \alpha) \qquad n_1 >> n_2 \qquad (12)$$

or

$$eII = e\Theta T = (E_f + \beta) \qquad n_2 >> n_1 \qquad (13)$$

Combining Equations (5), (13) and (7), (12) gives

$$e\Theta T = -\alpha - kT \ln \frac{N}{n_1} \qquad n_1 >> n_2 \qquad (14)$$

for an n-type ferrite, and

$$e\Theta T = +\beta + kT ln \frac{N}{n_2} \qquad n_2 > 7n_1$$
(15)

for a p-type ferrite,

Jonker (45) reports that both \prec and β are linear functions of temperature. Therefore, Equations (14) and (15) can be solved for Θ to give

$$\Theta = \frac{k}{e} \left[\ln \frac{N}{n_1} + \alpha' \right] \qquad n_1 >> n_2$$
 (16)

or

$$\Theta = \frac{k}{e} \left[\ln \frac{N}{N_2} + \beta' \right] \qquad N_2 > 7 N_1 \qquad (17)$$

In the temperature range for which Equations (5) and (7) apply, Equations (16) and (17) predict that Θ will be independent of temperature. Jonker (45) found the Seebeck effect for cobalt ferrite to be temperature independent between room temperature and 160°C.

The difference between the band type and localized level type semiconductors is emphasized by a plotting Θ vs n, for various materials (Figure 2, from Jonker ($^{1}6$)). The theoretical slope, of 198 μ v/°C. per decade of concentration, is observed for all cases. At the intersection of the extrapolated lines with the abscissa, as can be seen from Equations (16) and (17), n is approximately equal to N, the number of sites available for electrons or holes. Band theory predicts a value for N given by

$$N = 2 \left[\frac{2\pi m^* kT}{h^2} \right]^{3/2}$$
(18)

If m* = 1, at room temperature, N = $2.5 \times 10^{19} \text{cm}^{-3}$. The CdS(Kroger et al. $^{(55)}$), PbS(Bloem $^{(11)}$) and CdTc(de Nobel $^{(17)}$) curves, Group I in Figure 2, intersect the abscissa at approximately this value.

The localized level semiconductor, Group II in Figure 2, including data on NiO(van Houten (97)), $COFe_2O_4(Jonker^{(45)})$, $Fe_2O_3TiO_2$ and $LaFeO_3(Jonker^{(44)})$, intersect the abscissa at extrapolated values of N = 10^{22} which is approximately equal to the number of metal ions/cc. present in the oxide. This emphasizes the different character of the two groups of semiconductors.

Figure 2. Schematic Survey of the Seebeck Effect of a Number of Compounds as a Function of Hole Concentration, n, Extrapolated to the Intersection Points With the Abscissa.

From measurements of both electrical conductivity and thermoelectric power, Jonker (45) calculated a set of values of the pertinent parameters which characterize the room temperature semi-conducting properties of ${\rm Co}_{3-x}{\rm Fe}_{\rm x}{\rm O}_{4}$. (See Table I).

TABLE I.

Constants Needed to Describe the Semiconducting Properties of ${\rm Co_{3-x}}{\rm Fe_{x}}{\rm O_{14}}$

$$E_g = 0.55 \text{ eV}$$
 $A = 0.025 \text{ eV} = 1 \text{ kT}$
 $A = 0.15 \text{ eV} = 6 \text{ kT}$
 $A = 0.205 - 0.175 \text{ eV}$
 $A = 0.51 - 0.475 \text{ eV}$
 $A = 0.51 - 0.475 \text{ eV}$
 $A = 0.7 - 1.3 \times 10^{-4} \text{cm}^2/\text{v.sec.}$
 $A = 0.6 - 2.1 \times 10^{-8} \text{cm}^2/\text{v.sec.}$
 $A = 0.6 \times 10^{12} \text{sec.}^{-1}$
 $A = 0.5 \times 10^{14} \text{sec.}^{-1}$
 $A = 0.6 \times 10^{14} \text{sec.}^{-1}$
 $A = 0.6 \times 10^{14} \text{sec.}^{-1}$

The energy gap, E_g , of cobalt ferrite may be estimated by calculating the energy change in the valency reaction $Co^{II} + Fe^{III} \longrightarrow Co^{III} + Fe^{II}.$

$$E_{\mathbf{g}} = I_3(c_0) - I_3(F_e) + \sum c.f.$$
 (19)

where I_3 refers to the third ionization potential and \lesssim c.f refers to the crystal field stabilization energies. If I_3 values from Finkelnburg and Humback (27) and \lesssim c.f from Jonker and von Houten (46) are used, the calculations give $E_g = 33.49 - 30.64 - 1.5 = 1.35$ ev.

This value compares reasonably well with Jonker's experimental value of $E_{\rm g}=.55$ ev, since elastic energy contributions have been neglected. Jonker and von Houten (46) also point out that, since the acceptor levels are completely ionized at room temperature in samples with an excess carrier concentration as high as 10%, $E_{\rm a}$ and $E_{\rm d}$ must be smaller than 0.06 ev.

B. The Effect of Chemisorption on Thermoelectric Properties

The preceeding development assumes that only one type of donor or acceptor level exists. However, the electron transfer associated with the adsorption of either donor or acceptor atoms would introduce other levels on the surface of the ferrite. These surface states, due to the nature of the bond formed between the adsorbed ions and the surface (which might be characterized by the degree of electron sharing, or degree of covalent bonding), might be at energy levels which are different from the donor and acceptor levels formed in the semiconductor due to additions of excess Fe^{II} or Co^{III} to the crystal structure. Assuming that these surface acceptor states, $N_{\rm B}$, are all at the energy level, $E_{\rm b}$, the application of Fermi statistics in the surface region gives

$$\frac{N}{1+e^{x}p\left[\frac{E_{f}}{kT}\right]} = \frac{N_{A}}{1+e^{x}p\left[\frac{E_{a}-E_{f}}{kT}\right]} + \frac{N_{B}}{1+e^{x}p\left[\frac{E_{b}-E_{f}}{kT}\right]} + \frac{N}{1+e^{x}p\left[\frac{E_{g}-E_{f}}{kT}\right]}$$
(20)

At low temperatures, the last term may be neglected and the resulting equation is cubic in $\exp(-E_{\hat{\mathbf{f}}}/kT)$. For the temperature range in which $E_{\hat{\mathbf{a}}}<< kT$, $E_{\hat{\mathbf{b}}}<< kT$, this cubic equation can be solved for $E_{\hat{\mathbf{f}}}$ to give

$$E_{f} = kT \ln \frac{N}{N_{A} + N_{B}}$$
(21)

Equation (21) is analogous to the previous case, but the denominator now contains the total number of acceptor states, due to excess Co^{III} and due to adsorption. A similar solution may be derived for the n-type material. Therefore, in the temperature range where both Ea and Eb are much smaller than kT, an increase in the number of acceptor atoms adsorbed on the surface is analogous to an increase in the number of holes (Co^{III}), and an increase in the donor atoms on the surface corresponds to an increase in the number of electrons (Fe^{II}). Thus the Fermi level at the surface is related to both the stoichiometry and the degree of adsorption.

Huston (43) points out that, although the thermoelectric power is sometimes thought of as characteristic of the bulk material, in the case of a compressed powder or sintered sample a large fraction

of the total temperature drop through the sample would probably be localized at the sintered "necks" or regions of particle to particle contact. Consider, for example, a compressed powder, such as illustrated in Figure 3. The space charge layer, formed as a result of the electron transfer between the adsorbed gas and the surface, is indicated by the shaded borders of the particles. would not expect the temperature gradient within such a compressed powder to be uniform. If an idealized spherical particle is considered, Parravano and Domenicali (74) point out that the temperature distribution in a collinear row of particles will resemble the distribution given in Figure 4. The solid lines inside the spheres (Figure 4a) represent isothermal surfaces, and the dashed curves represent lines of heat flow. Figure 4b shows qualitatively the temperature variation along a line connecting the centers of a collinear row of particles. This model illustrates that the temperature gradient in the region of particle to particle contact may differ appreciably from the gradient farther the particle, causing the measured thermoelectric power to be "weighed" heavily in favor of the contact region. If this were the case, this surface layer contribution to the thermoelectric power would be large. Parrayano and Domenicali (74) measured the thermoelectric power of powdered NiO under different gas atmospheres and presented a theoretical analysis showing how the ratio between the thickness of the space charge layer at the semiconductor surface and the "thickness" of the thermal gradient affects the change in

Figure 3. Cross Section of Compressed Powder Sample. (Shading Indicates Space Charge Region)

Figure 4. Temperature Distribution in Idealized Spherical Particles (74).

thermoelectric power resulting from chemisorption. A similar study on the thermoelectric behavior of pellitized 60 x 10¹ Å germanium particles exposed to oxygen and water vapor has been made by Kmetko⁽⁵²⁾. Thus, at the surface of the cobalt ferrite the distance between the conduction band (or valence band) and the Fermi level, indicated by measurements of the thermoelectric power of a compressed, powdered sample, is related not only to the composition (Fe/Co ratio) of the ferrite but also to the amount and type (donor or acceptor) of ions adsorbed on the surface.

C. The Effect of Changes in Fermi Level on Adsorption and Catalytic Activity

Figure 5. Energy Picture For Adsorption

The change in heat of adsorption will then be equal to the change in Fermi level, E_{\uparrow} , caused by the new Fe/Co ratio.

$$Q = Q_0 + \Delta \phi = Q_0 - \Delta E_f \tag{22}$$

The degree of surface coverage, assuming Langmuir adsorption, is

$$\Theta = \frac{b P_A}{1 + b P_A} \tag{23}$$

$$b = b_0 e^{(Q_0/kT)} e^{(\Delta \phi/kT)}$$
(24)

is the adsorption coefficient and $\mathbf{P}_{\mathbf{A}}$ is the pressure of gas \mathbf{A}_{\bullet}

The rates of adsorption and desorption are determined by the activation energy of the absorbed complex. This energy also depends on the level of chemical potential of the electrons.

Temkin (95) has shown that a change in activation energy of adsorption forms some part of the change in heat of adsorption.

Figure 6. Change in Activation Energy of Adsorption With Changes in Chemical Potential of the Electrons (12).

In Figure 6, curve I represents the Van der Waals interaction energy of the molecule A. As a molecule of A approaches the surface it is acted upon by a repulsive force and thereby increases in potential energy. Curves II and III represent potential energy of the chemically absorbed specie as a function of the distance from the

surface of catalysts with different compositions, i.e., different Fe/Co ratios, in the case of cobalt ferrite. At the intersection of curves I and II (or I and III) the particle will follow the chemically absorbed curve (II or III) if x decreases, and will follow the Van der Waals curve as x increases. This intersection, then, represents the activated complex. The activation energy of adsorption is

$$E_1 = E_{01} - \delta \Delta \phi \tag{25}$$

and the activation energy for desorption is

$$E_2 = E_{02} + (1 - 8) \Delta \phi$$
 (26)

where is between 0 and 1.

The rate of adsorption is

$$\omega_1 = k_1 P_A (1-\theta) = k_{01} e^{8\Delta\phi/kT} P_A (1-\theta)$$
(27)

The rate of desorption is

$$w_2 = k_2 \Theta = k_{02} e^{-(1-8)\Delta \phi/kT}$$
(28)

At equilibrium

$$\omega_1 = \omega_2 = k_{02} \frac{P_A b_o e}{1 + P_A b_o e^{Q_o/kT} e^{\Delta \phi/kT}}$$
(29)

Equation (29) indicates, that at equilibrium, as the work function increases, the rates of adsorption and desorption increase for low degrees of surface coverage, pass through a maximum at $\Theta = X$, and decrease at high degrees of surface coverage.

Boreskov applies these results to clarify the effects of displacement of the Fermi level of oxide catalyst on the activity with respect to the hydrogen-deuterium exchange reaction. If the hydrogen-deuterium exchange can be represented by

$$S(H) + \frac{1}{2}D_2 \rightarrow S + HD \tag{30}$$

$$S + \frac{1}{2}H_2 \rightarrow S(H)$$
 (31)

and if Equation (30) is rate controlling, the rate will be given by

$$r = k P_{H_2}^{1/2} \Theta \tag{32}$$

where Θ is the fraction of the surface covered with hydrogen. Since Equation (30) is the rate controlling step, Θ will be given by the equilibrium adsorption isotherm corresponding to Equation (31):

$$\Theta = \frac{\sqrt{b P_{H_2}}}{1 + \sqrt{b P_{H_2}}} \tag{33}$$

Therefore,

$$F = k P_{H_2} \Theta = \frac{k_0 P_{H_2} \sqrt{b_0 e^{Q/kT} e^{3Q/kT}}}{\left[1 + \sqrt{b_0 e^{Q/kT} e^{4Q/kT} P_{H_2}}}$$
(34)

Analogous equations may be written if the role of $\rm H_2$ and $\rm D_2$ in Equations (30) and (31) are interchanged.

If the hydrogen-deuterium exchange is represented by the reactions

$$S(H) + S(D) \rightarrow 2S + HD$$
 (35)

$$S + \frac{1}{2}H_2 \rightarrow S(H) \tag{36}$$

$$S + \frac{1}{2}D_2 \rightarrow S(D) \tag{37}$$

when reaction (35) is rate controlling, the rate will be given by

$$r = k \Theta^2 \tag{38}$$

where Θ is the fraction of the surface covered. In this case,

Boreskov (12) points out that

$$\Theta = \frac{\sqrt{b P_{H_2}}}{1 + \sqrt{b P_{H_2}}} \tag{39}$$

and

$$r = k \Theta^{2} = k_{0} \frac{b_{0} e^{Q/kT} e^{Q/kT} P_{H_{2}}}{[1 + \sqrt{b_{0} e^{Q/kT} e^{\Delta \Phi/kT} P_{H_{2}}}]^{2}}$$
(40)

In either case, lowering the Fermi level, which is equivalent to increasing the work function, decreases the activation energy of adsorption and increases the activation of desorption, see Equations (25) and (26). Therefore, in regions of low surface coverage, ($\Theta < \emptyset$) lowering the Fermi level should increase the catalytic activity (see Equations (34) and (40).

D. Determination of Activation Energy and Pre-exponential Factor

The kinetic data for the reaction $H_2 + D_2 \rightarrow 2HD$ were computed from the percentage conversion p, defined as

$$P = \frac{\left(\frac{[HD]}{[H_2]}\right)_t}{\left(\frac{[HD]}{[H_2]}\right)_t + 2\left(\frac{[D_2]}{[H_2]}\right)_t} \times 100 = \frac{[HD]_t}{[HD]_t + 2[D_2]_t} \times 100$$
(41)

Values of p were determined at three flow rates as a function of temperature. Figure 7 shows a typical data plot. The method of calculating the activation energy and pre-exponential factor is outlined below.

Figure 7. Typical Data Plot.

1. Activation Energy

Values of the activation energy were calculated from flow rates and corresponding temperatures at constant conversion.

(See solid lines in Figure 7). If the rate of change in deuterium concentration is assumed to be equal to the first power of the deuterium concentration

$$-\frac{d[D_2]}{dt} = k[D_2] \tag{42}$$

Therefore

$$-\int_{[D_2]_0}^{[D_2]_t} \frac{d[D_2]}{[D_2]} = kt$$
(43)

At constant conversion the integral on the left side of Equation (43) is a constant, A. Writing k in the Arrhenius form, $k = k_0 e^{-E/kT}$ and substituting $\frac{V}{v}$ for t, gives

$$kt = A = \frac{V}{v} k_0 e^{-E/kT}$$
(44)

where

V = void volume of reactor in cc.

V = flow rate through reactor, cc./min.

The flow rate v_a , measured at ambient temperature and pressure is related to v by:

$$v = \frac{\sqrt{a} T R }{T_a P}$$
(45)

Therefore

$$A = \frac{k_o V T_a P}{v_a T P_a} e^{-\frac{E}{kT}}$$
(46)

or

$$ln[vaT] = -\frac{E_{kT}}{kT} + ln[\frac{VT_aPk_o}{APa}]$$
(47)

Since the quantity, $\left[\begin{array}{c} V \text{ Ta Pk}_0 \\ A \text{ Pa} \end{array}\right]$ is constant during the run, the activation energy, E, may be determined from the slope, -E/k, of a plot of $\ln[v_aT]v_s \stackrel{!}{-}$. The procedure was repeated for three values of conversion. Note that this method of determining the activation energy is independent of the kinetic order of the reaction (i,e., the assumption of first order kinetics is unnecessary).

2. Preexponential Factor

The preexponential factor was calculated from value of the flow rate and corresponding percent conversion at constant temperature (see dotted lines, Figure 7).

If the reaction is first order,

$$-\frac{d[D_2]}{dt} = k[D_2] \tag{48}$$

or

$$\ln \frac{\left[D_{2}\right]_{0}}{\left[D_{2}\right]_{t}} = kt \tag{49}$$

However, since the HD concentration at time = 0 is negligible,

$$\frac{\left[\begin{array}{c}D_{2}\end{array}\right]_{o}}{\left[\begin{array}{c}D_{2}\end{array}\right]_{t}} = \frac{2\left[\begin{array}{c}D_{2}\end{array}\right]_{t} + \left[\begin{array}{c}HD\right]_{t}}{2\left[\begin{array}{c}D_{2}\end{array}\right]_{t}} = \frac{1}{1-p} \tag{50}$$

Equation (49) then becomes

$$ln\left[\frac{1}{1-p}\right] = kt \tag{51}$$

Combining Equations (44), (45) and (51) gives

$$\ln\left[\frac{1}{1-P}\right] = \frac{R_0 V T_0 P}{v_0 T_0 R_0} e^{-E/kT}$$
(52)

Since the temperature is a constant, a plot of $\ln \left[\frac{1}{1-\beta} \right]$ vo. $\frac{1}{\sqrt{a}}$ results in a straight line of slope m, where

$$m = \frac{k_0 V T_a P}{T P_a} e^{-E/kT}$$
(53)

The pre-exponential factor, k_0 , can then be calculated, since

$$ln k_o = \frac{E}{kT} + ln \left[\frac{mTPa}{VTaP} \right]$$
 (54)

This procedure was repeated for three values of temperature.

E. Isotopic Analysis By the Mass Spectrometer

The analysis of hydrogen isotopes on the mass spectrometer was developed by Bleakney (9). Since this technique is frequently used in tracer studies, it has been developed to a high accuracy, and, in some laboratories, is a routine method. A detailed descrip-

tion of isotopic analysis by a mass spectrometer has been given by Kirshenbaum⁽⁵⁰⁾. A brief outline of the factors which are involved is presented below.

When the mixture of H_2 , HD and D_2 enters the mass spectrometer, monotomic, diatomic, and triatomic hydrogen ions are produced (see Table II).

TABLE II. Ions From a Mixture of the Hydrogens in Which H is More Abundant Than $D^{(50)}$.

Ion	Mass	Intensity	Dependence of Peak Height on Pressure
H	1	weak	a _l P+, b _l P ²
H ₂	2	very strong	a ₂ P
D	2	very weak	azP+bzP ²
H ₃	3	weak	b ₄ P ²
HD	3	weak	a ₅ .P
D ₂	4	very very weak	a 6.P
H ₂ D	4	very very weak	b ₅ .P ²
HD 2	5	very very weak	b6P2
D ₃	6	very very weak	b7P2

The height of the peak at a particular mass number is proportional to both the number of molecules having that mass and the ionization efficiencies of the molecules. In the case of the hydrogen isotopes, the peak height is a function only of the number of molecules, since the ionization efficiencies of hydrogen and deuterium do not

measurably differ (50), (77), (96)

The $\rm H_2$, $\rm HD$, $\rm D_2$ mixture used in this study was approximately 98% $\rm H_2$. Table II shows concentration of the various ions present in the mass spectrometer as a function of pressure. The peak height I, for masses 2, 3, and 4, are, therefore given by

$$I_2 = a_2 P \tag{55}$$

$$I_3 = a_5 P + b_4 P^2 \tag{56}$$

$$I_4 = a_6 P \tag{57}$$

Since the gas is 98% $\rm{H_2}$, P \cong $\rm{I_2/a}$ or

$$I_3 = \left[\frac{a_5}{a_2}\right]I_2 + \left[\frac{b_4}{(a_2)^2}\right]I_2^2 \tag{58}$$

or

$$\frac{\mathcal{I}_3}{\mathcal{I}_2} = \left[\frac{a_5}{a_2}\right] + \left[\frac{b_4}{\left(a_2\right)^2}\right] \mathcal{I}_2 \tag{59}$$

Therefore

$$\frac{\overline{I_3}}{\overline{I_2}} = \frac{[HD]}{[H_2]} + \frac{[H_3]}{[H_2]^2} I_2$$
 (60)

If the results of analyses made at different pressures are plotted, the intercept of an $\frac{T_3}{T_2}$ vs. T_2 graph will equal $\frac{\Box HD]}{\Box H_2]}$

For a 1-2% \mathbb{D}_2 mixture, \mathbb{D}_2 mixture, \mathbb{D}_2 and may be neglected,

Therefore

$$\frac{I_4}{I_2} = \frac{a_6}{a_2} = \frac{\left[D_2\right]}{\left[H_2\right]} \tag{61}$$

Nier, Stevens, and Rustad⁽⁷⁰⁾ indicate that it is desirable to operate the mass spectrometer at sufficient high pressures to minimize dilution or memory effects, which become pronounced at low pressures.

III. EXPERIMENTAL APPARATUS AND TECHNIQUES

A. Kinetic Experiments

1. Catalyst Preparation and Analysis

Reagent grade cobalt carbonate (J. T. Baker Co.) and iron oxide (General Chemical Division, Allied Chemical and Dye Corporation) were weighed out, mixed, and wet ball milled in acetone (in a Szegvari Attritor, Type SV, Size Ol, Union Process Company) for four hours. An analysis of the cobalt carbonate and iron oxide is given in Table XVI, Appendix V. The sample was then dried overnight. The resulting cake was crushed into a powder, loaded in platinum boats, and fired at 1050°C. for four hours in air in a Harper Model HL 7618 furnace (Harper Electric Furnace Corporation) controlled by a Brown Electronik Controlled (Minneapolis Honeywell Model 152C15PS-226-91Q2). The material was crushed with a motar and pestle and put through a No. 40 mesh screen.

The resulting powder was poured into a 3/8" diameter die, and compressed at a pressure of 20,000 psi (Buehler Ltd., Type 1315AB Hydralic Specimen Mount Press) to form pellets, 3/8" diameter, and approximately 1/2" high. These pellets were then placed on top of a layer of the No. 40 mesh powder in platinum boats and fired at 1350°C. for ten hours in air in a Burrell high temperature furnace Type B-7 (Burrell Technical Supply Co.). The samples were then quenched in air. The resulting sintered pellets were crushed and screened, and

the fractions that would pass a No. 40 mesh screen but would not pass a No. 100 mesh screen were used as the catalyst in the hydrogen-deuterium exchange studies.

The surface area of the catalyst powder was measured using nitrogen adsorption at liquid nitrogen temperatures. The results were plotted according to B. E. T. theory. The density of the catalyst was measured in a 10 cc. picnometer.

Catalyst samples were made having four different Fe/Co ratios. The Fe/Co ratios were determined by comparing the catalyst pellets to three pellets with known Fe/Co ratios by means of a Norelco X-ray Flourescent Spectrometer (Phillips Electronics, Inc. Type 42202). The three pellets with known Fe/Co ratios were made from the same starting materials as the catalysts. However, they were wet ball milled in acetone for ten hours, and thenpressed at 4,000 psi into 1" pellets. The catalyst pellets were mounted in bakelite and polished with a fine diamond polishing wheel. The samples were then analyzed twelve times on each side. In order to check the homogeniety of the pellets, two samples were rough surface ground (600 A paper) and then polished with the fine diamond wheel, exposing a new layer of material, between each analysis.

X-ray diffraction patterns were taken to determine the crystal structure of the powder samples and microscopic examination of the polished surfaces of the pellets were made.

2. Apparatus

A diagram of the kinetic study apparatus is shown in Figure 8. The cylinder of prepurified hydrogen (Matheson Company,

Figure 8. Kinetic Study Apparatus.

Inc.) was specified by the Matheson Company to be 99.9% pure and to contain less than 20 ppm oxygen. The purity of deuterium (General Dynamics Corporation) was specified by General Dynamics Corporation to be 99.5%. The pressure of the gases leaving these cylinders was controlled by Matheson No. 1 single stage pressure regulators. The hydrogen then passed through a Deoxo Type 5-50 catalytic hydrogen purifier (Baker and Company, Inc.) which was designed to reduce the oxygen content of the hydrogen stream to less than one ppm. The oxygen content of the hydrogen at this point was below the level which could be detected on the mass spectrometer, 10 ppm. The water formed in the Deoxo unit was removed from the hydrogen stream in a phosphorus pentoxide drying column. The gas flowed through 1/4" copper tubing with brass compression fittings and 1/4" helium leak tested brass bellows seal needle valves (Hoke, Type A433) into a glass lined mixing tank. pressures of hydrogen and deuterium were regulated so that a 2% deuterium 98% hydrogen mixture was formed in the mixing tank at a total pressure of 60 psi. Flow of the hydrogen-deuterium mixture from the mixing tank was manually regulated by a Matheson No. 1 pressure regulator and 1/4" needle valve and was measured by a rotameter (Fischer and Porter, Precision Bore Flowrator),

In the low pressure side of the flow system, downstream from the rotameter, the gas flowed through 7 or 8 mm Pyrex tubing fitted with high vacuum oblique bore stopcocks (Pyrex brand No. 7544). The gases then passed into the preheating coil and

reactor, which were contained in a constant temperature bath. A sample of the gas stream was taken as it left the reactor. The gas then passed through a soap bubble flowmeter in which the volumetric flow rate was measured, and was then vented. A vacuum pump (Cenco Hyvac-7) was connected to the system to facilitate removing air from the lines and sample tube before each run.

The copper high pressure side of the system, including the mixing tank, was statically pressure tested at 80 psi and the entire system was tested with a vacuum of 10^{-4} mm Hg., measured by a McLeod fitting type vacuum gage (Scientific Glass Apparatus Company, Inc.). The system was also checked with a helium leak detector (Consolidated Electrodynamics Corporation Type 24-210).

Pyrex glass mixing vessel was chosen since the hydrogen-deuterium exchange reaction is not appreciably catalyzed by Pyrex glass at room temperature. A double walled vessel, able to withstand a pressure as high as 80 psi, was designed. The pressure in the annulus between the glass inner vessel and the steel outer shell was manually controlled so that the pressure differential across the glass did not exceed 5 psi. The outer shell was fabricated from 5" O. D. heavy wall steel pipe. A 1/2" thick steel bottom plate was welded to the pipe. The 1/2" thick top plate was attached with eight 1 1/2" 8-32 steel bolts. The rubber gasket between the top plate and the steel shell was coated with SEAL-ALL (Allen Products Corporation) to prevent leakage. The glass inner

Figure 9. Mixing Tank Details.

vessel was held in place by means of a 3/4" Veeco vacuum coupling (Vacuum Electronics Corporation) which was silver soldered to the top plate. Gas entered the annulus through a standard 1/4" pipe fitting. The annulus gas pressure was measured by a 0-100 psi pressure gauge (U. S. Gauge Co.). The pressure of the hydrogendeuterium gas mixture in the inner glass vessel was measured by the pressure gauge in the Matheson No. 1 pressure regulator which was attached to the top plate by means of steel pipe fittings.

Details of the constant temperature bath and reactor vessel are shown in Figure 10. A 2000 ml. stainless steel beaker was clamped to an aluminum support rod. An asbestos shell, with walls 1 1/2" thick, was fabricated to fit snuggly around the stainless steel beaker. This insulating shell, attached to the aluminum support rod with an adjustable slide, could be removed to facilitate rapid cooling of the bath. A 1 1/2" thick asbestos lid was constructed. The stainless steel beaker was filled to approximately 1" of the top with Dow Corning 550 heat stable silicon The current input to the 250 watt knife type immersion fluid. heater (Cenco Cat. No. 16551) was regulated by a gas thermometer type thermoregulator and relay (Supersensitive Relay No. 4-5400, American Inst. Company, Inc.). Agitation was provided by a variable speed stirrer (Eastern Industried Inc. Model 3). The bath temperature was measured with a Chromel P-Alumel couple in conjunction with a Leeds and Northrop type 8662 portable potentiometer. The hydrogen-deuterium gas mixture was preheated to the

Figure 10. Reaction Vessel Details.

bath temperature in a coil of 7 mm Pyrex tubing and then passed through the reactor. The reactor was a section of Pyrex tubing, 25 mm long, with the diameter enlarged to 10 mm. A slight constriction in the line below the reactor supported a small wad of glass wool which, in turn, supported the catalyst. A small wad of glass wool was also inserted on top of the catalyst to prevent the gas from blowing the catalyst out of the reactor.

The temperature controller was essentially a gas
thermometer with two electrical contacts in the mercury column,
which activated a supersensitive relay, regulating the current
to the bath heater. The temperature setting could be controlled
by varying the height of mercury in the pressure leg. In order
to avoid oxidation of the mercury at the upper electrode, hydrogen
was used to fill the bulb.

3. Experimental Procedures

Hydrogen and deuterium were introduced into the mixing tank. The pressures were regulated manually during the filling operation in order to achieve a final pressure of 60 psi, with 2% deuterium, 98% hydrogen in the gas mixture. A weighed amount of catalyst was placed in the reactor and a gas mixture flow of 30 cc/min, was started through the reactor. After flowing at this rate for 1/2 hour to flush air out of the system, the flow was reduced to 10 cc/min, and the reactor temperature was raised to 200°C. The catalyst was activated for twelve hours at 200°C. The

bath temperature was then lowered to 70-75°C, and held at this temperature for at least four hours.

The catalyst had now been activated and the run was started. The gas flow rate was measured on the soap bubble flowmeter, and the reactor temperature was noted. The stopcocks on the mass spectrometer sample tube were closed, and the sample switching stopcock was turned, diverting the gas flow through the second sample tube. The gas sample was removed and an empty sample tube was put in its place for the next measurement. The experimental conditions (temperature and/or flow rate) were then changed to the next set of desired values. While the system was coming to a new steady state (15-20 minutes), the gas sample was analyzed on the mass spectrometer.

As the run progressed and the pressure in the mixing tank dropped, gas was periodically bled from the annulus so that the pressure differential across the glass inner vessel would not exceed 5 psi. In order to avoid air contamination of the premixed gases, the pressure in the mixing tank was not allowed to fall below 15 psig.

4, Analytical Methods

The analysis of the gas samples were made on the mass spectrometer (Consolidated Engineering Corporation Type 21-013B, Modified to Type 21-103C specifications). A quantitative analysis of a gas mixture is, in general, obtained by comparing the sample cracking pattern against standard samples of the pure components.

However, since the sensitivity of the mass spectrometer for hydrogen and deuterium are approximately equal (13.6 div/µ for hydrogen, 13.5 div/µ for deuterium) (3) in this special case the ratio of peak heights will equal the ratio of partial pressures. If the sensitivity of the spectrometer for hydrogen deuteride is assumed to be also 13.5 div/µ, then the ratio of the peak heights for all three gases in the mixture will equal the ratios of their partial pressures and no standard samples need be run. The validity of this assumption was verified by comparing the mass balances of samples taken before and after reaction.

More specifically, the %D in the unreacted $\rm H_2+D_2$ mixture was calculated from the mass spectrometer analysis. The sample was then passed over the catalyst and the resulting $\rm H_2+HD+D_2$ mixture was analyzed on the mass spectrometer. The calculated %D, based on an HD sensitivity of 13.5 div/ μ , was then compared to the %D calculated for the unreacted gas.

The most accurate method for determining the composition of $\rm H_2$ + HD + D₂ mixtures, described in the theory chapter, requires that each sample be analyzed four or five times, at different pressures. Since, in following the course of the exchange reaction, a new sample was taken each 15-20 minutes, it was impossible to make multiple analyses of each sample. Instead, all of the samples of any one run were analyzed only once, and each analysis was made using the same gas pressure in the mass spectrometer. This technique would introduce a consistent error (approximately +3%) in the HD

and D analyses which could be eliminated during the calculation of 2 the activation energy and pre-exponential factor, since these calculations involved only differences in percent conversions.

(See sample calculations, Appendix II).

B. Thermoelectric Power Studies

1. Catalyst Preparation and Analysis

In order to produce a high surface area ferrite powder for the thermoelectric power studies the following preparation procedure was used. The reagent grade iron oxide and cobalt carbonate were weighed, mixed and then wet ball milled in acetone for four hours. The sample was dried overnight at 120°C. and fired for four hours at 1035°C. in a Harper Model HL7618 furnace. The material was crushed with a mortar and pestle and put through a No. 40 mesh screen. It was then mixed on a rolling mill for seventeen hours. The powder was placed in mullite combustion boats, McDaniel, high temperature mullite, fired in air for eight hours at 1100°C. (Harper Type HL7618 furnace), air quenched, crushed in a mortar and pestle and passed through a No. 40 mesh screen. The powder was then poured into a 3/8" diameter die and compressed at 2,000 psig, into pellets 3/8" in diameter and approximately 1/2" long which were used in the thermoelectric power studies,

The Fe/Co ratio of the powder was determined by chemical analysis. The ferric ion was precipitated from 10% H_2SO_4 solution by cupferron, the ammonium salt of nitrosophenyl-hydroxyamine, separating the iron from the cobalt. The iron was

then reduced with stannous chloride and titrated with standard potassium dichromate. The cobalt was weighed as cobalt sulfate, obtained by evaporating the oxide with HoSO4 and igniting at 550°C.

X-ray diffraction patterns were taken in order to determine the crystal structure of the material.

The surface area of the powder was measured using nitrogen adsorption at liquid nitrogen temperatures. The results were plotted according to B. E. T. theory.

The partial size distribution of the ferrite powder was determined from electron photomicrographs (RCA EML Electron Microscope) at 1100X magnification,

The density of the powder was measured by means of a 10 cc. picnometer.

2. Apparatus

A diagram of the thermoelectric power apparatus is given in Figure 11. The gas inlet manifold was constructed with 7 mm Pyrex tubing, and high vacuum oblique bore Pyrex stopcocks (Pyrex Cat. No. 7544). The prepurified hydrogen used in the hydrogen-deuterium exchange study was also used in this work. The helium (General Dynamics Corporation, 99.5% pure) pressure was regulated by a Matheson No. 1 single stage regulator. The helium was purified by passing it through hot copper oxide 350°C. and activated charcoal cold trap, cooled with dry ice in isopropanol. Pressure measurements were made with a McLeod tilting type vacuum gauge (Scientific Glass Apparatus Company, Inc.) and a

Figure 11. Thermoelectric Power Apparatus.

mercury manometer.

The details of the thermoelectric power cell are shown in Figures 12 and 13. A modified Dresser coupling (Dresser Industries, Inc., Style 65) was used to support the sample holder and Pyrex cover. Tightening the ends of the Dresser coupling forced a copper sleeve to expand the "O" ring, forming a vacuum tight seal between the coupling and the sample holder and Pyrex cover.

The vacuum system and purification train were attached to the cell by an "O" ring seal in a 5/16" Veeco vacuum coupling which was silver soldered over a 5/16" hole drilled in the coupling.

The electrical leads passed through Kovar tubes. The primary coil, made from No. 26 gauge Chromel A heating wire, was wound on the Pyrex envelope and covered by approximately 1/2" of asbestos insulation. The current to this coil was controlled by a variable transformer (Variac Type 200-CM).

betails of the sample holder and electrical wiring are shown in Figure 13. The sample holder was mounted on a stainless steel support which was bolted to the brass sample holder mount. The sample was mounted between two 20 mil. platinum discs (Baker Platinum Division of Englehard Industries), supported by 2 mm. bore capillary Pyrex tubing. These capillary tubes were mounted inside hollow stainless steel cylinders which were welded to the sample holder support. When the sample had been placed between the discs, a stainless steel knob, threaded into the outer cylinder,

Figure 12. Thermoelectric Power Cell Details.

Thermoelectric Power Apparatus; Sample Holder and Internal Wiring Details. Figure 13.

was tightened, firmly clamping the pellet in place. The secondary Chromel A heating coil, controlled by a variable transformer (Variac, Type 200-CM), was wound on the inner glass capillary tube. A No. 40 Chromel-P-Alumel thermocouple (Hoskins Manufacturing Co.) and a No. 30 gauge platinum lead (for EMF measurement) were spot welded on each platinum electrode on the side opposite the sample. The Chromel-P and Alumel leads passed through a 2-holed ceramic insulating tube mounted in the bore of the capillary tubing. The platinum leads were threaded through a similar ceramic insulator which was mounted outside of the stainless steel cylinders. The eight leads (4 thermocouple wires, 2 platinum EMF wires, and 2 secondary heater wires) passed through the brass sample holder mount and through the Kovar glass seals in the face plate.

Details of the external electrical wiring are shown in Figure 12. The Chromel-P-Alumel thermocouple wires lead to the O°C. cold junction. Copper wires then connected the thermocouple wires to a thermocouple switch (Leeds and Northrup Ten Point rotary switch Cat. No. 8240). The output terminals of this switch were connected to the "B" contacts of a double pole, double throw thermal free switch (Leeds and Northrup Cat. No. 3294). The inner contacts of the DPDT switch were connected to a potentiometer (Leeds and Northrup Type K-3) and electronic DC null detector (Leeds and Northrup Cat. No. 3834).

The platinum EMF wire lead to the inner terminals of a similar double pole, double throw switch. The "A" terminals of

Figure 14. Thermoelectric Power Apparatus, Wiring Diagram.

the two switches were then connected through a DC micro voltammeter (Hewlett Packard Model 425A). A switch was provided to short out the micro volt-ammeter for zeroing purposes.

As Figure 14 indicates, when both double pole, double throw switches were connected to terminals "A", and the null detector was switched off, the EMF between platinum discs was measured through the platinum leads by means of the micro voltammeter, (used as a null instrument) in conjunction with the K-3 potentiometer. When both double pole, double throw switches were connected to terminals "B", the temperatures on the platinum discs were measured through the Chromel-P-Alumel couples and thermocouple switch, by means of the DC null detector and K-3 potentiometer.

3. Experimental Procedures

To minimize the electrical contact resistance, the ends of the ferrite pellet were first coated with graphite by rubbing with a pencil. This technique was used by Jonker (45).

Van Uitert reported that indium-mercury and graphite form good electrical contacts on ferrite.

The ferrite pellet was clamped between the platinum discs and the Pyrex envelope put in place. The Dresser fitting was then tightened so that the "O" ring made a vacuum tight seal on the Pyrex envelope. The cell was evacuated to 10⁻¹ mm Hg. It was then filled with purified helium and evacuated to 10⁻¹ mm Hg. This cycle was repeated five times in order to flush any residual air

from the cell. The cell was then filled with helium and the primary heater coil voltage was set at the desired value. The secondary heater voltage was adjusted to impose a temperature difference of 1-3°C. across the pellet. The EMFs were then measured with a Leeds and Northrup Type K-3 potentiometer, coupled with the DC electronic null detector (Leeds and Northrup Cat. No. 3834) for temperature measurements (Chromel-P-Alumel couples), and coupled with the Hewlett Packard Model 425A micro volt-ammeter (used as a high impedence null detector) for the thermoelectric EMF measurement (platinum-ferrite couples). The resistance of the sample and platinum leads was measured with anohm meter (Triplett, Model 630.

The helium pressure was then reduced to 30 cm. Hg. and 2-6 cm. of hydrogen gas (or oxygen) was introduced. The pressure was increased to 76 cm. H. with prepurified helium. The temperatures, thermal EMF and resistance were recorded as function of time. The measurements were continued until steady state was reached.

The cell was then evacuated (10⁻⁴ cm), flushed five times with helium, and a helium-oxygen (or hydrogen) mixture was introduced and similar measurements were taken.

Catalyst composition, gas composition and temperature were the independent variables of this study.

C. Experimental Program

The hydrogen-deuterium exchange reaction was initially studied in the 110-130°C, temperature range, using an eight hour

activation time at 200°C. Four different catalyst compositions were used, two p-type and two n-type. Per cent conversion data were taken as a function of temperature at two different flow rates. The activity of the catalyst did not remain constant when data for a third flow rate was taken.

In order to avoid this effect, all subsequent exchange data were taken in the 55-75°C, temperature range, using a twelve hour activation period at 200°C. Using this technique, reproducible kinetics data were taken, as function of temperature, using four catalyst compositions (two p-type, two n-type), three flow rates (10, 15, 20) cc/min,

The thermoelectric power studies, investigating the direction of the change in Seebeck coefficient during gas (hydrogen and oxygen) adsorption, were made in order to gain some insight into the electron transfer process during adsorption. These studies were made as a function of temperature and gas composition, using two catalyst compositions, one n-type and one p-type.

Four hydrogen-deuterium exchange runs were also made on a series of mixed, sintered, p- and n-type ferrite catalysts, to see what effect the formation of p-n junctions in the catalyst would have on the kinetics of the reaction.

IV, EXPERIMENTAL RESULTS

A, Hydrogen-Deuterium Exchange Studies

1. Ferrite Catalyst Characterization

Cobalt ferrite catalyst samples, $\text{Co}_{3-x}\text{Fe}_x\text{O}_4$, having four different compositions were prepared in pellet form, two with x > 2.0 and two with x < 2.0. The Fe/Co ratios of these samples were determined by comparing the catalyst pellets to samples with known Fe/Co ratios by means of an x-ray flourescent spectrometer. Tables XIV and XV, Appendix IV, shows the Fe/Co ratios and standard deviations which resulted from the twenty-four measurements made on each known sample and each catalyst pellet. Figure 15 is the catalyst composition calibration curve determined by the three samples with known Fe/Co ratios of 0.9/2.1, 1.0/2.0, and 1.1/1.9. The resulting catalyst compositions, $\text{Co}_{1.07}\text{Fe}_{1.93}\text{O}_4$, $\text{Co}_{1.03}\text{Fe}_{1.97}\text{O}_4$, $\text{Co}_{0.98}\text{Fe}_{2.02}\text{O}_4$, and $\text{Co}_{0.93}\text{Fe}_{2.07}\text{O}_4$, are also indicated on Figure 15.

In order to check on the homogeniety of the catalyst pellets, catalyst sample $\text{Co}_{0.98}\text{Fe}_{2.02}\text{O}_4$, was surface ground between each of the twenty-four x-ray analyses in order to expose a new layer of material to the spectrometer. As Table III indicates, no significant difference was observed in the standard deviation of this sample as compared to the standard deviation of the three other catalyst samples, in which the twenty-four measurements were repeated on the same surface.

The thermoelectric power and resistivity of the four catalyst pellet samples were measured. In Figures 16 and 17 the results of these measurements are compared to similar data reported by Jonker (45).

Figure 15. Catalyst Composition Calibration Curve for X-Ray Flourescent Spectrometer Data.

Note that in both Jonker's data and the data of this study an extreme change occurs in both the electrical resistivity and thermoelectric power as the catalyst composition passes through x = 2.0. For x < 2.0 a high resistivity, p-type ferrite resulted, while for x > 2.0 a lower resistivity, n-type ferrite was observed. No variation in thermoelectric power or resistivity during the adsorption of hydrogen or oxygen was observed for these pelletized, sintered samples after 48 hours at 250° C.

TABLE III. Comparison of Standard Deviations of X-Ray Analyses of the Four Catalyst Samples

Catalyst Sample	Side	Peak Height Ratio Fe/Co	Standard Deviation
Co _{1.07} Fe _{1.93} O ₄	1	1.001	0.0128
	2	0.986	0.0118
Co _{1.02} Fe _{1.98} O ₄	1	1.053	0.0114
	2	1,043	0.0022
Co _{0.93} Fe _{2.02} 0 ₄ *	1	1.137	0.0128*
	, 2	1,140	0,0141*
Co _{0.93} Fe _{2.07} 0 ₄	1	1.232	0.0139
	2	1.222	0.0125

^{*}Surface ground between measurements

A microscopic examination of the polished surfaces of the catalyst pellets, and x-ray diffraction patterns of the samples of

2.10 Thermoelectric Power of Cobalt --0 JONKER'S DATA (ROOM TEMPERATURE) DATA OF THIS WORK (60°C) Ferrite as a Function of 2.05 Ó 2.00 Co3-x Fex O4 Composition. 0 ı ⊙ 1.95 \odot Figure 16. <u>6.</u> THERMOELECTRIC 2°√v u 60° 4 60° 4 200-800-- 800 0

, язмоя

crushed pellets indicated that single phase spinel compounds were formed for all four compositions. These results are in good agreement with reports of the phase behavior of cobalt ferrite by Jonker (45), Smiltens (89), Robin and Benard (78), and Roiter and Paladino (81). A typical x-ray diffraction pattern is given in Figure 35a, Appendix III. All of the lines, except two, in the x-ray diffraction pattern shown in Figure 35a may be attributed to the diffraction of Co radiation on a spinel structure. The two extra lines are caused by iron contamination in the cobalt target in the x-ray diffraction tube. This error may be checked by applying a correction factor equal to the ratio of the wavelengths of the iron and cobalt radiation. (See footnote, Table XIII, Appendix III.) Sample calculations of "d" values for the x-ray diffraction pattern are given in Table III, Appendix XIII.

The catalyst pellets were crushed and screened. The fraction which would pass through a No. 40 mesh Tyler screen but would not pass through a No. 100 mesh Tyler screen was used as the catalyst for the hydrogen-deuterium exchange studies.

The surface area of this crushed powder, measured in a B. E. T. apparatus, was found to be 0.08 m²/gm. No variation in surface area, within the experimental accuracy of the B. E. T. measurements, was observed between the different catalyst samples.

Figure 18 is a typical photomicrograph of the crushed catalyst particles. As would be expected due to the screening procedure employed, the particle sizes lie in the range 0.15 to 0.5 mm.

Figure 18. Photomicrograph (11.5x) of the Crushed Pellet Catalyst Particles

The density of the ferrite catalyst, measured in a 10 cc. picnometer, was 5.2 gm/cc.

2. Exchange Runs

Preliminary runs indicated that for given flow rate and temperature, the per cent conversion would remain constant as a function of time (the constant flow was continued for as long as four hours), after the catalyst was activated for 12 hours at 200°C

in a hydrogen atmosphere. It was further found that activated samples would be rapidly deactivated if exposed to air or oxygen.

Preliminary runs were also made to test the variation in per cent conversion with flow rate and temperature. Run 72, shown in Figure 19, illustrates that consistent values of the per cent conversion were observed as the flow rate was alternated from 20 cc./min. to 37 cc./min. at a constant temperature of 126°C. In Figure 20, Run 74 indicates that at a constant flow rate (20 cc./min.) the per cent conversion observed at decreasing temperatures was the same as that observed when the temperature was increasing.

A plot of the data from a typical hydrogen-deuterium exchange experiment is shown in Figure 21. A summary of the activation energies and pre-exponential factors for the hydrogen-deuterium exchange experiments are given in Table IV. The experimental data used in calculating Table IV is given in Tables X and XI, Appendix IA.

In Figures 22 and 23 the activation energy and preexponential factor, respectively, are plotted as a function of the $Co_{3-x}Fe_{x}O_{4}$ composition variable, x. The activation energy increases
4 to 5 Kcal/mole and the pre-exponential factor increases 6 to 7
orders of magnitude as the composition progresses from x < 2.0
to x > 2.0. This compensation effect is emphasized in Figure < 24, which is a plot of activation energy vs. < < (ko).

Figure 19. The Effect of Changes in Flow Rate on Percent Conversion at Constant Temperature.

Figure 20. Percent Conversion as a Function of Temperature at Constant Flow Rate.

Figure 21. A Typical Hydrogen-Deuterium Exchange Run.

Figure 22. Activation Energy as a Function of Catalyst Composition.

Figure 23. Pre-Exponential Factor as a Function of Catalyst Composition.

Compensation Effect Between Activation Energy, E, and Preexponential Factor, Ln \mathbf{k}_{O} . Figure 2^{μ} .

TABLE IV. Summary of Activation Energy and Pre-exponential Factors for Hydrogen-Deuterium Exchange Experiments

	otaka a karana	llO°C Runs			75°C Runs			
Sample	Type	Run No.	Act. Energy Kcal/mole	Pre-exp. Factor ln(k _O)	Run No.	Act, Energy Kcal/mole	Pre-exp. Factor ln(k _O)	
Co _{l.07} Fe _{l.93} O ₄	р	76	19,4	29,2	108	18.3	30.1	
		77	19.9	30,2	110	18.5	30,2	
		78	18.4	27.6				
Co _{1.03} Fe _{1.97} 0 ₄	p	80	18.7	27,5	111	19.0	30,8	
		81	18.5	26 , 9	112	18.6	30.1	
		82	18.8	27.2				
Co _{0,98} Fe _{2,02} 0 ₄	n	83	23.2	33.4	120	23.9	37.8	
		84	23.0	33.0	121	23.1	36,1	
		85	22.9	33.0				
		86	22.3	32.0				
co _{0,93} Fe _{2,07} 0 ₄	n	89	23.3	33.8	123	23.4	37.3	

The results of four runs made on mixed, sintered, p- and n-type catalysts are given in Table V . The activation energies and pre-exponential factors calculated for these runs, which were made to see what effect the formation of p-n junctions in the catalyst might have on the exchange kinetics, do not differ appreciably from the results for the unmixed catalyst listed in Table IV .

TABLE V . Activation Energies and Pre-exponential Factors for Runs Using Mixed Sintered Catalysts

Sample	Sintering Time (hr)	Run No.	Act. Energy Kcal/mole	Pre-exp. Factor ln(k _o)
50% Co _{1.07} Fe _{1.93} O ₄	0	125	20,7	33.5
50% Co _{0.93} Fe _{2.07} 04	l hour 850°C	126	21.6	34.4
	l h o ur 990°C	127	21.1	34.2
	l hour 1120°C	128	22.1	34.3

B. The Effect of Chemisorption on Thermoelectric Power

l. Cobalt Ferrite Characterization

Cobalt ferrite powder having two different compositions, one with x < 2.0 and one with x > 2.0, were prepared. The compositions of these samples, determined by means of wet chemical analysis, were $^{\text{Co}}_{1.09}^{\text{Fe}}_{1.91}^{\text{O}}_{4}$ and $^{\text{Co}}_{0.96}^{\text{Fe}}_{2.04}^{\text{O}}_{$

X-ray diffraction patterns of the samples indicated that a single phase spinel compound was formed in each case. A typical x-ray diffraction pattern is presented in Figure 35B, Appendix III. All lines in Figure 35B are characteristic of the spinel structure except for the two extra lines caused by the iron contamination in the cobalt target of the x-ray tube (see footnote, Table XIII, Appendix III).

The surface area of the ferrite powder was measured by

B. E. T. techniques. Figure 25 shows the surface area of the ferrite

powder as a function of the firing time.

Figure 25. Surface Area of Ferrite Powder as a Function of Firing Time (1035°C for 4 hours followed by 1100°C for 20 hours)

The samples used in the chemisorption studies were fired for four hours at 1035°C followed by eight hours at 1100°C, which corresponds to a surface area of $2m^2/gm$.

Figure 26 is a photomicrograph of the resulting sintered agglomerates of small particles. These agglomerates were separated by means of a mortar and pestle in accordance with the techniques outlined by Schuster and Fullam (84). Figures 27 and 28 are electron micrographs of the resulting separated particles. From eight

electron micrographs at 11000x magnification, including the micrograph in Figure 27, the particle size distribution of the ferrite was obtained. This particle size distribution results in a normal distribution when plotted on a logarithmic scale (see Figure 29) but gives a skewed curve when plotted on a linear scale. This "skewed" distribution, found in previous work (74)(26), is probably due to sintering of the ferrite powder.

Figure 26. Photomicrograph (60x) of Sintered Ferrite Powder Agglomerates

Figure 27. Electron Photomicrograph (11000x) of Separated Particles

Figure 28. Electron Photomicrograph (16000x) of Separated Ferrite Particles

Figure 29. Particle Size Distribution For Separated Ferrite Particles

The density of the ferrite powder, measured by means of a 10 cc. picnometer, was 5.3 gm/cc. If a spherical particle shape is assumed, the average particle size can be estimated by

$$d = \frac{6}{A p} = 0.56 \text{ microns}$$

where A is the surface area and \(\rho\) the solid density. This value agrees quite well with the value determined electronmicroscopically.

2. Thermoelectric Power Measurements During Chemisorption of Hydrogen and Oxygen Gases

Preliminary runs were made to test the variation of emf with \triangle T and the emf at zero \triangle T under varying gas atmospheres.

Figure 30, in which the emf is plotted for $Co_{0.93}Fe_{2.07}O_{4}$ for eight different Δ T's, illustrates that no variation in thermoelectric power was observed for different Δ T values. Table VI illustrates that the emf's produced by temperature differences near Δ T = 0 is constantly small in helium, hydrogen, and oxygen atmospheres. The Δ T values in this table, given in millivolts (Chromel-Alumel couples) are all less than 0.02°C (i.e., .01°C = .0004 millivolts). This table indicates that the intercept of the emf vs. Δ T curve, the slope of which determines the thermoelectric power, does not appreciably vary in helium, hydrogen, or oxygen atmospheres.

TABLE VI. Variation of EMF at Δ T \cong 0 for Different Gas Atmospheres

	Helium	Atmos.	Hydrogen Atmos.		Oxygen Atmos.	
Sample	$\Delta^{\mathbb{T}}$	emf	$\Delta^{\mathbb{T}}$	emf	$\Delta^{\mathbb{T}}$	emf'
Co _{1.09} Fe _{1.91} O ₄	0,0003	0.0021	0,0000	0.0310	0.0007	0.0112
Co _{0.96} Fe _{2.04} 0 ₄	0,0001	0,0302	0,0005	0.0092	0,0003	0.0412

Typical plots showing the change in thermoelectric power during gas adsorption are given in Figure 30 (high temperature = 250°C), Figure 32 (intermediate temperature = 150°C), and Figure 33 (low temperature = 88°C). A summary of the results of all of the thermoelectric power runs is given in Table VII . Raw data for these runs are presented in Tables XII, Appendix IB.

Figure 30. Variation of EMF of Ferrite Pellet with ΔT Across the Pellet.

Variation of Thermoelectric Power with Time in Helium, Hydrogen, and Oxygen Atmospheres; Temperature = 250°C. Figure 51.

Variation of Thermoelectric Power with Time in Helium and Hydrogen Atmospheres; Temperature = 150°C. Figure 32.

Variation of Thermoelectric Power with Time in Helium, Hydrogen, and Oxygen Atmospheres; Temperature = 88°C. Figure 33.

TABLE VII *Thermoelectric Power Change During the Adsorption of Hydrogen and Oxygen

	rature C
113	

^{*} The arrows show the direction of change of the absolute value of thermoelectric power upon admittance of the gas. The numbers (1), (2), refer to the order which the gases were admitted., i.e., compare Runs No. 155, 157, 150, and 155a with Figures 31, 32, 33, and 34.

^{**} In Run 155a the thermoelectric power changes from - to + as oxygen was first introduced and from + to - when hydrogen was introduced. The + and - signs on the arrows indicate this change.

V. DISCUSSION OF RESULTS

A. Catalyst

The methods outlined by Jonker (45) were used in preparing the cobalt ferrite catalyst. A hard, sintered, non-porous ferrite pellet resulted. Crushed ferrite pellets having four different compositions were used as catalysts for the hydrogen-deuterium exchange studies.

If the hydrogen-deuterium exchange reaction occurs by means of an adsorption-desorption mechanism on the cobalt catalyst, the investigation of the electron transfer process by means of thermo-electric power measurements during the chemisorption of hydrogen and oxygen would be valuable in gaining an insight into the mechanism of the reaction.

However, no change was observed in the thermoelectric power of these sintered ferrite catalyst pellets during the adsorption of helium, hydrogen, or oxygen. This result would be expected if, as discussed in Chapter II, the ratio of the surface layer to particle diameter was so small that the contribution of the surface layer to the thermoelectric power, which would be influenced by the chemisorbed gas, was negligible. In this case, the measured thermoelectric power would be characteristic of the bulk thermoelectric power of the pellet and would be independent of the degree of adsorption on the surface.

In order that the surface contribution to the thermoelectric power would be an appreciable part of the total measured thermoelectric

power, a ferrite pellet with a much larger surface to volume ratio was required. To achieve this end, the technique used by Parravano and Domenicali (74) in studying the thermoelectric behavior of solid particulate nickel oxide was applied to the ferrite. In this technique high surface area powder is compressed to form mechanically strong pellets without the need for additional heating. In order to make the high surface area powder needed for this technique, a ferrite preparation procedure was used in which final firing of the ferrite material occurred at a lower temperature (1100°C as compared to 1350°C) and in a powder form (as compared to a compressed pellet form). The observed variation of thermoelectric power under different gas atmospheres for the mechanically compressed pellets made from the powdered ferrite indicates that the surface contribution to the thermoelectric power is appreciable. The thermoelectric power measurements made on these powdered samples shows the same trend (i.e., swing from + to = at x = 2.0) with composition as was observed for the sintered pellets. However, due to the contribution of the surface layer, the magnitude of the thermoelectric power of the powdered samples would not be expected to agree with the value reported by Jonker (45), which correspond to the bulk thermoelectric power of the ferrite. By observing the direction of the change in thermoelectric power of the compressed powder pellets, an insight can be gained into the electron transfer mechanism during adsorption and desorption. This insight may then be applied to better understand the reaction mechanism of the heterogeneous catalysis of hydrogen-deuterium on the cobalt surface.

If the results of the thermoelectric power studies made on this higher surface area ferrite are going to apply to the kinetic study results made on the pelletized ferrite, it must be demonstrated that the two preparation techniques result in the same ferrite material, with different surface areas. This assumption is supported by Figure 35, Appendix III, in which the x-ray diffraction patterns and true solid densities of the two materials are compared. The x-ray diffraction patterns agree both in the line position and relative intensity, indicating that the two methods of preparation result in the same single phase spinel structure. The true solid density compares well also.

A surface area of 2 m²/gm. (Figure 25) and average particle size of .5 microns (Figure 29) resulted from the preparation of cobalt ferrite in the powder form. This particle size is small enough that the space charge layer formed by the transfer of electrons between the adsorbed ions and the catalyst is of the same order of magnitude as the particle size. Parravano and Domenicali⁽⁷⁴⁾ reported changes in the thermoelectric power during the adsorption of various gases on nickel oxide, a localized level semiconductor, which was prepared in a manner similar to the ferrite and had approximately the same particle size (i.e., fired at 1100°C in air), with an average particle size of .57 microns. They reported a lower limit of 600Å for the thickness of the space charge region. Due to the similarity in type of material (localized level semiconductor), firing temperature, and particle size, this value, 600Å, is probably a good estimate of the space charge layer thickness at the surface of the cobalt ferrite.

B. Thermoelectric Power Changes During Chemisorption

The measured thermoelectric power, as pointed out in Chapter II, is a function of the hole and electron carrier concentration. Consequently, factors such as catalyst composition, temperature, and chemisorbed ions which change the carrier concentration will also alter the thermoelectric power. The temperature and catalyst composition, however, were held constant during each run, so that the observed change in thermoelectric power may be attributed to changes in carrier concentration caused by the electron exchange between the adsorbed ions and the catalyst surface.

The change in thermoelectric power during chemisorption was observed over the temperature ranges 80° - 250°C. The results of these runs fall into three categories which will be designated as high temperature (approximately 250°C), intermediate temperature (140° - 180°C), and low temperature (80° - 100°C).

1. High Temperature Runs

At high temperatures, the acceptor levels and donor levels, which are at most .06 ev above the valence band or below the conduction band respectively, have become ionized, and some electrons are thermally excited across the .55 ev gap from the valence band, into the conduction band. When this occurs, the ferrite becomes a two carrier semiconductor, with the electrons in the conduction band contributing to the n-type conductivity and the holes in the valence band contributing to the p-type conductivity. In this temperature range the thermoelectric power,

$$\Theta T = \frac{-n_1 \mu_1 \left[E_9 - E_5 + a \right] + n_2 \mu_2 \left[E_5 + B \right]}{n_1 \mu_1 e + n_2 \mu_2 e}$$
(11)

where the Fermi level, E_g and $(E_g - E_f)$ are logarithmic functions of carrier concentration. Equation (11) shows that when $n_1 \cong n_2$ the thermoelectric power will be directly proportional to the carrier concentration. If $n_1 >> n_2$ (or $n_2 << n_1$) however, Equation (11) reduces to

$$e\Theta T = -\alpha - kT ln \frac{N}{n_1} \qquad (n_1 77 n_2) \qquad (14)$$

$$e \Theta T = +\beta + kT ln \frac{N}{n_2} \qquad (n_2 > 7n_1)$$
 (15)

and Θ becomes inversely proportional to the logarithm of n_1 or n_2 . Jonker ⁽⁴⁵⁾ reports the cobalt ferrite becomes a two carrier semiconductor at temperatures above approximately 160°C. Experimental evidence of two carrier ferrite at high temperatures (250°C) was also observed in this work (see next paragraph). For compositions in the neighborhood of $CoFe_2O_4$, this intrinsic dissociation occurs at lower temperatures ⁽⁴⁵⁾.

At 250°C, hydrogen ions, adsorbed on a two carrier n-type ferrite, would give up electrons to the catalyst surface, thereby increasing the absolute value of the n-type thermoelectric power as predicted by Equation (11). When the electron concentration increased to the point where $n_1 >> n_2$, Equation (11) reduces to Equation (14) and the magnitude of n-type thermoelectric power should begin to decrease. If oxygen is now admitted to the surface, electrons will be transferred to the adsorbed oxygen atoms, increasing the absolute value of the thermoelectric power. This effect, is clearly demonstrated in Runs No.

138, 139, 142, 155 and 155a. See Table VII and Figure 34. Run 155a, Figure 34, is particularly interesting. In this run, oxygen was adsorbed at 250°C on an n-type ferrite. As electrons were transferred, $\rm n_1$ became smaller than n_2 and the thermoelectric power switched from n-type to p-type, changing from an initial value of -170 $\mu v/^{\circ}C$ to a value of +600 μ v/°C where it began to level off as n₂ >> n₁. At this point hydrogen was introduced and the transfer of electrons from the hydrogen to the surface (and probably the reduction of the adsorbed oxygen to water) caused the thermoelectric power to swing from +600 μ v/°C to a value of -420 μ v/°C. At this point n₁ >> n₂ and, as predicted by Equation (14), the absolute value of thermoelectric power began to decrease as n_1 increased further. The amounts of hydrogen and oxygen needed for a transition from the two carrier case, Equation (11), to the single carrier case, Equation (15) may be estimated by using the data given by Jonker, Table I. This data predicts, at room temperature for instance, at a maximum thermoelectric power, 2% of the acceptor levels are ionized and a minimum thermoelectric power at 0%. (This minimum is 0% excess Fe, rather than some larger value, due to the large mobility ratio, $\mu / \mu_2 = 10^{4}$). If the acceptor levels are furnished by the adsorbed gas, and if the surface contribution to the thermoelectric power controls the measured value, a 2% coverage would be necessary to swing the thermoelectric power from the negative minimum to the positive maximum (see Figure 34). The magnitude of this calculated per cent coverage is certainly reasonable.

These runs demonstrate that at 250°C the ferrite behaves as a two carrier semiconductor, with hydrogen being adsorbed as an electron

Run Number 155a; Variation of Thermoelectric Power with Time in Oxygen and Hydrogen Atmospheres. Figure 54.

donor and oxygen being absorbed as an electron acceptor.

2. Intermediate Temperature Runs

In the intermediate temperature range, the acceptor levels (or donor levels) are thermally ionized, but the intrinsic conduction is negligible. Therefore, either n₁ or n₂ predominates and Equations (14) and (15) apply, with the absolute value of the thermoelectric power being inversely proportional to the logarithm of the concentration of the majority carriers. In this case the absolute value of the thermoelectric power of an n-type ferrite should be decreased by hydrogen adsorption and increased by oxygen adsorption. In a similar manner the magnitude of the thermoelectric power of a p-type ferrite should be increased by oxygen adsorption and be decreased by hydrogen adsorption. Runs No. 157 and 159 (TABLE VII) demonstrate this effect.

3. Low Temperature Runs

At still lower temperatures (80°-120°C) the ferrite is a single carrier semiconductor with completely ionized donor and acceptor levels. Therefore, the effect of the transfer of electrons from the adsorbed hydrogen or oxygen would be expected to be the same as the effect observed in the intermediate temperature range. However, in this low temperature range, which corresponds to the temperature of the kinetic exchange experiments, no change in thermoelectric power was observed during the adsorption of hydrogen and oxygen. In this temperature range, the adsorption on the powdered ferrite, therefore, takes place with little electron exchange between the adsorbed molecules and the catalyst surface.

C. Kinetic Studies

The present data show that the hydrogen-deuterium exchange on cobalt ferrite proceeds in two stages: (a) an activation stage, in which the catalyst's activity increases with time, followed by (b) a second stage, in which, the catalyst activity is constant. During the activation stage the 98% hydrogen, 2% deuterium gas mixture flows over the catalyst for twelve hours at 200°C. The activated catalyst could be de-activated by exposing it to air or oxygen.

The data also indicate that the activation energy of the hydrogen-deuterium exchange reaction on cobalt ferrite, $(\text{Co}_{3-x}\text{Fe}_x\text{O}_{4})$, is a function of the catalyst composition (see Figure 22). For the p-type catalysts, with x < 2.0, the activation energy was 18 to 19 Kcal/mole, while for the n-type catalysts, with x > 2, the activation energies increased to 23 to 24 Kcal/mole. A similar change was observed in the luk_{0} factor, which increased from 30 to 31 (for x < 2.0) to 36 to 38 (for x > 2.0). Thus a compensation effect was observed between the activation energy E, and the luk_{0} (see Figure 24).

D. Proposed Reaction Mechanism

The exchange reaction occurs on cobalt ferrite in two stages:

(a) an activation stage in which the catalytic activity increases with time and (b) a second stage in which the exchange reaction occurs with constant catalytic activity. The proposed mechanism for the hydrogen pretreatment during the activation stage is given by the following reactions:

$$S(O^{-}) + \frac{1}{2}H_{2} \longrightarrow S(OH^{-})$$
 (62a)

$$S(O^{-}) + \frac{1}{2}D_2 \longrightarrow S(OD^{-})$$
 (62b)

$$S(0^{-}) + \frac{1}{2}H_2 \rightarrow S(0H^{-}) + e^{-}$$
 (63a)

$$S(O^{-}) + \frac{1}{2}D_2 \rightarrow S(OD^{-}) + e^{-}$$
 (63b)

$$2S(OH^{-}) \rightarrow H_{2}O + S(O^{-}) + e^{-}$$
 (64)

where S refers to a surface site.

In this proposed mechanism the hydrogen pretreatment corresponds to the reduction of adsorbed oxygen. The oxygen is present on the surface of the ferrite as 0° and 0°°. The reaction of hydrogen with 0° (reaction 62a) will be referred to as Type A adsorption, reaction with 0°° (reaction 63), will be called Type B adsorption. Morrison (68) has proposed this scheme to describe the adsorption of hydrogen on ZnO. He points out that the singly ionized oxygen atom should provide an attractive adsorption site for hydrogen since the heat involved for the reaction

is approximately 2.6 ev, calculated from known heats of reaction for various similar reactions. Morrison also reports, that for ZnO, the activation energy is greater for Type B adsorption than for Type A adsorption. Other similar activation pretreatments have been reported in the literature. Molinari and Parravano (66) proposed reaction 62a and reaction 64 to describe the activation of ZnO. Holm and Blue (42) and unpublished data from the Frick Chemical Lab (66) indicate that several molybdenum, tungsten, and uranium oxides are not

active for the hydrogen-deuterium exchange until they are subjected to similar pretreatments.

After the catalyst has been activated, the proposed exchange reaction mechanism is given by the reactions:

$$S(OH^{-}) + \frac{1}{2}D_{2} \rightarrow S(O^{-}) + HD$$
 (65a)

$$S(OD^-) + \frac{1}{2}H_2 \longrightarrow S(O^-) + HD$$
 (65b)

$$S(OH^{-}) + S(OD^{-}) + 2S(O^{-}) + HD$$
 (66)

The catalytic reaction occurs by exchange between the deuterium or hydrogen and the surface OH or OD groups, respectively, reactions 65a and 65b, or between the adsorbed OH and OD group on the surface, reaction 66. Wicke (107) has shown that reactions 65a and 65b describe the mechanism of the hydrogen-deuterium exchange reaction on alumina catalysts. This mechanism has also been proposed by Molinari and Parravano (66) to explain the hydrogen-deuterium exchange in ZnO.

In the present study the following observations substantiate the plausibility of this mechanism:

1. Thermoelectric Power Studies During Chemisorption

At high temperatures, during hydrogen adsorption, a shift in thermoelectric power corresponding to an electron transfer to the catalyst was observed. This electron transfer could be explained by reactions 63a,63b and 64, which occur during the high temperature pretreatment of the catalyst. If the activation energy for Type B adsorption is greater than for Type A adsorption, which is the case for ZnO [Morrison (68)], then reactions 63a and 63b would occur at higher

temperatures.

As the temperature is lowered, the semiconductor becomes a single carrier semiconductor, and the observed change in thermoelectric power with hydrogen adsorption decreases, until, in the temperature range 80° to 100°, no change in thermoelectric power is observed during the adsorption of hydrogen. This effect may be caused by the increased predominance of Type A adsorption over Type B adsorption as the temperature is lowered. In Type A adsorption, reactions 62a and b, there is no electron transfer to the catalyst surface and consequently, no change in thermoelectric power would be expected.

Since the amount of electron transfer is small at temperatures corresponding to the exchange reaction temperature, the bending of the bands at the catalyst surface due to the build up of surface charge will be small. This means that the distance between the conduction band (and valence band) and the Fermi level will be approximately the same at the surface as it is in the bulk of the catalyst. Consequently, it would be expected that changes in the Fermi level caused by varying the Fe/Co ratio of the ferrite would influence both the catalytic properties and the surface contribution to the catalyst's thermoelectric power.

2. Hydrogen-Deuterium Exchange Data

The reaction proceeds in two stages: phase one, in which the catalytic activity increases with time, followed by phase two of constant activity. Phase one could then correspond to a reduction of the surface oxygen and an increase in the surface OH and OD concentration. The second stage is a truly catalytic stage in which the hydrogen-deuterium is

exchanged with the surface OH and OD groups. Since the OD and OH groups are formed in phase one, the measured catalytic activity of phase two should increase with time during phase one. These effects have been observed.

Air or oxygen treatment of the activated surface would reoxidize the hydrogenated surface, reducing the OH and OD concentrations and lowering the catalytic activity. It was observed that the introduction of air or oxygen during an exchange run would immediately deactivate the catalyst. The catalyst could then be reactivated by reducing the catalyst with hydrogen (or deuterium) at high temperature.

If the surface oxygen, S(0") or S(0""), is considered as the active site for adsorption of hydrogen and deuterium on the cobalt surface, Boreskov's relationship (see Theory section) between catalytic activity and Fermi level, described in the Theory Chapter, would apply. Reaction 63a and 63b would be analogous to Equation (30), resulting in an exchange rate of the form of Equation (34). Similarly, reaction 66 would be analogous to Equation (35), resulting in a rate of exchange of the form of Equation (40). This mechanism, then, would predict that lowering the Fermi level (becoming more p-type) should increase the catalytic activity. The activation energy for hydrogen-deuterium exchange reaction was observed to be lower for the p-type ferrite than for the n-type. Although the pre-exponential factor varied in such a manner as to compensate for the change in activation energy, causing only small variation in the overall reaction rate with Fermi level, the direction of the observed change in catalytic activity is

consistent with the direction of the change in Fermi level of the catalyst, as predicted by Boreskov's relationships.

VI. CONCLUSIONS

The hydrogen-deuterium exchange reaction on cobalt ferrite occurs in two stages: (1) The first stage is an activation stage, in which the catalytic activity increases with time. This step might be associated with the reduction of oxygen on the surface of the ferrite, and the corresponding formation of OH and OD groups. (2) In the second stage, the catalytic exchange reaction occurs with constant activity. In this step, it seems likely that exchange occurs between hydrogen and deuterium and the OD and OH groups formed in stage one. This reaction mechanism is consistent with the data of this study and has been used in previous investigations to explain the hydrogen-deuterium reactions on other catalysts. The activation energy for the hydrogen-deuterium exchange reaction on the cobalt ferrite is lower on p-type than on n-type ferrite. A compensation effect was observed between the activation energy and pre-exponential factor.

In four runs made to determine the effect of p-n junctions on catalytic activity, no increase in catalytic activity was observed on mixed, sintered p- and n-type catalysts. Since the relative surface area of p-n junction, produced by sintering the mixed ferrite, could not be determined, it may only be concluded that either (1) the junction is not appreciably more active for the exchange reaction, or (2) the relative area of p-n junction produced by the sintering process was so small that any increase (or decrease) in catalytic activity at the junction would not affect the overall activity of the catalyst.

This study has also furnished data which, along with previous investigations reported in the literature, indicate that the changes in thermoelectric power of particulate systems due to gas chemisorption may be used to gain an insight into electron exchange occuring at the solid surface.

Future work of interest would be to study the oxygen and hydrogen adsorption isotherms on cobalt ferrite and the electron transfer during adsorption. These investigations would shed further light into the mechanism of the exchange reaction.

APPENDIX I

EXPERIMENTAL DATA

A. Raw Data and Calculated Per Cent Conversions for Hydrogen-Deuterium Exchange Runs

TABLE VIII. Preliminary Runs at Constant Temperature (Run 72) and Constant Flow Rate (Run 74)

	me Temp.	Flow (cc. min.)	Mass H2	Spec. Peak HD	Height D2	Per Cent Conversion	Sample	Time (min)	Temp.	Flow (cc. min.)	Mass H2	Spec. Peak	Height D2	Per Cent Conversion
Run 72, Cat	alyst Co _{l.}	07 ^{Fe} 1.93 ⁰ 4					Run 74,	Catal	yst Co _l	07 ^{Fe} 1.93 ⁰ 4				
C 10 D 12 E 14 F 16 G 18 H 20 I 22 K 27 L 30 M 34 O 36 P 38 P 42 S 44 U 47	124.5 126.25 126.25 126.25 126.25 126.25 126.25 126.25 126.25 126.25 126.25 126.25 126.5 126.5 126.5 126.5 126.5 126.5	20 20 20 20 37 37 37 37 20 20 20 37 37 37 37 20	2418 2190 23574 2589 2385 2424 2294 2490 2358 2481 24510 2433 2433 2433 2433 2439 2439	36.3 35.5 36.3 35.3 25.7 26.2 28.7 26.2 26.7 26.7 26.7 27.3 37.3 38.3 37.3 38.1	30.4 27.2 29.2 28.1 25.8 35.8 35.8 36.4 36.4 36.3 36.4 36.3 36.4 36.3	.374 .381 .383 .384 .271 .268 .268 .272 .390 .390 .387 .269 .267 .267 .267 .387 .378	ABCDEFGHIЪKLMNOPQRSTU	586 120 140 160 224 240 260 280 3240 340 420 440 440 440 440	144, 25 144, 0 145, 75 137, 2 137, 0 136, 9 131, 0 130, 8 122, 75 123, 2 131, 5 131, 0 136, 3 136, 3 136, 2 145, 6 145, 8	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1779 2064 2160 1773 2181 2376 2172 2412 2412 2376 2376 2382 2409 2412 2427 2415 2460 2399	39.4.1.4.4.3.2.0.4.2.5.0.5.3.5.3.0.4.2.5.0.5.3.5.3.0.4.4.1.7.6.6.4.1.7.6.6.6.4.1.7.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6	19.5 23.4 21.4 27.6 29.4 23.2 29.4 23.5 35.6 30.6 77.1 26.8 26.8	.462 .469 .468 .407 .389 .387 .325 .325 .319 .244 .243 .324 .319 .321 .379 .372 .456 .452 .452

TABLE IX.

Mixed P- and N-Type Catalyst Runs

Sample	Time (min	Temp.	Flow (cc. min.)	Mass i H2	Spec. Peak	Height	Per Cent Conversion	Sample	Time (min		Flow (cc. min.)	Mass 1	Spec. Peal HD	K Height D ₂	Per Cent Conversion
Run 125,	Catal	Lyst 50)	(Co _{1.07} Fe _{1.93}	504, 50	600.93Fe2	2.07 ⁰ 4 (n	ot sintered)	Run 126	, Cat	alyst 50	%Co _{1.07} Fe _{1.}	9304, 50	%C00.93F	e _{2.07} 04 (sintered 850°, 1 hour)
D	60 80	74.0	20.0	4350	96.6	58.1	• 454	A	90	77.8 74.7	20.0	3940	81.7	49.1 54.7	• 454
E F	100	74.1 72.3	20.0 19.9	4530 4350	103.5 86.2	59•7 63•1	.461 .408	B C	110 130	72.6	20.0 20.0	3940 4030	70.1 62.3	60.3	.391 .341
G.	115	70.0	20.5	4380	75.7	63.4	• 353	D C	150	70.2	20.0	4070	53.3	66.2	.287
H	130	67.0	19.9	4400	62.0	77.1	•287	я	175	72.4	14.9+	4080	78.5	54.1	.420
Ť	150	71.0	15.0	4370	97.8	56.8	.463	F	205	70.5	14.9+	4000	58.1	57.9	.370
Ĵ	170	69.2	15.0	4380	89.2	63.2	414	- G	230	68.25	15.0	4020	59.4	63.8	.318
K	190	67.0	15.0	4320	75.9	68.1	.358	H	255	65.8	15.0	4110	49.1	62.4	.261
L	210	64.5	15.0	4330	64.3	74.8	.301	I	325	68.2	9.8	4060	78.1	53.7	.421
M	240	68.6	9.8	4380	115.8	50.2	. 335	J	355	66.0	9.9	4080	68.7	58.9	. 368
N	270	66.2	9.9	4530	100.2	58.4	.461	K	425	64.0	9•9	4060	60.1	63.2	.322
0	300	64.5	9.85	4390	89.2	63.3	.413	L	455	61.8	9.9	4060	50.9	67.9	.273
P	330	62.0	9.9+	4350	74.9	69.4	• 350								
Q	360	59•5	9•9	4560	65.8	79.0	. 294								
Run 127,	Catal	yst 50%	Co _{1.07} Fe _{1.93}	509	6Co _{0.93} Fe ₂	2,07 ⁰ 4 (s	intered 0°C, 1 hr.)	Run 128	Cate	alyst 50	%Co _{1.07} Fe _{1.9}	9304, 50	%Co _{0.93} F	2.07 ⁰ 4 (sintered 1100°C, 1 hr.)
A	85	71.2	20.0	3720	75.4	48.8	.436	Α	140	74.2	20.0	4000	77.9	54.2	.418
В	105	69.5	19.9	3950	72.5	56.1	. 393	В	160	72.5	19.9	3920	68.1	57.1	.374
C	125	67.0	20.0	4140	64.8	64.4	- 335	C	180	70.2	20.0	4100	61.2	54.5	.322
D	145	65.1	20.0	4190	56 . 6	69.0	.291	D	200	68.0	20.0	4150	52 . 4	70.2	.272
E	170	67.7	15.5	4090	81.5	53.9	. 431	E	225	70.3	14.0	3 880	71.8	53.6	·401
F	195	65.9	15.0	4130	74.7	58.8	.388	F	250	68.5	15.0	4150	68.2	61.9	- 355
G -	225	63.7	15.0	4200	64.6	65.9	•329	G	275	66.3	15.0	4100	57.7	66.4	• 303
H	250	61.4 62.8	15.0	4140 4180	54.6	69.4	. 282 . 424	H	300	64.0	15.0	4140	48.8	71.8	.254
J	275 305	61.0	10.0	4270	82.5	56.1 61.8		J.	330 360	65.0 63.3	9.8 9.8+	4090 4220	71.9	58.8 64.8	•379
K	335	59.0	9•9 9•9	4270	75.3 64.4	65.5	•379 •330	K	390	61.0	9.0 1 9.85	4 220 3970	67.2 53.4	65 . 9	.341 .288
T.	370	57 . 0	9•9 9•9	4140	54.7	69.4	.283	L	420	59.0	9.05	4090	46.8	71.7	.200 .246
_	2,0	7100	2.0		7.01	<i>□j•</i> -ι	•===		0))• U	2.9	1030	.0.0	1701	. L.10

High Temperature Runs

Sample	Time (min)	Temp.	Flow (cc. min.)	Mass S H ₂	Spec. Peak	Height D2	Per Cent Conversion	Sample		Temp.	Flow (cc. min.)	Mass 1	Spec. Peak	Height	Per Cent Conversion
Run 76,	Cataly	st Co _{l.} (7 ^{Fe} 1.93 ⁰ 4					Run 83,	Catal	Lyst Co _O	.98 ^{Fe} 2.02 ⁰ 4				
B C D E F G H	115 170 215 260 315 360 429 470	110.25 105.3 100.4 95.6 104.8 110.4 114.5 119.75	20.2 19.8 19.7 19.8 36.8 36.4 37.1 36.0	2373 2514 2520 2487 2403 2469 2428 2463	48.2 43.1 34.9 26.1 25.8 33.6 31.5 45.0	23.8 28.9 33.3 37.1 35.9 25.6 27.1	. 503 . 427 . 344 . 260 . 264 . 333 . 381 . 448	L M N O P Q R S T	320 340 360 390 430 460 500 525 548 575	120.2 120.2 120.2 116.0 109.75 105.1 115.4 119.5 124.5	19.5 19.2 19.2 19.2 19.0 19.3 35.7 34.9 35.5	2430 2340 2391 2439 2436 2430 2469 2415 2274 2376	46.1 45.7 46.6 40.6 29.1 21.4 25.4 30.7 36.2 46.6	26.8 25.0 25.9 30.1 35.3 39.0 38.1 24.9 25.6	. 462 . 477 . 474 . 399 . 292 . 215 . 250 . 310 . 385 . 477
Run 77,	Cataly		07 ^{Fe} 1.93 ^O 4												
A B C D E F G H	90 135 180 225 270 315 360 405	115.4 110.0 104.8 100.7 109.8 115.1 120.2 124.75	19.3 19.4 19.0 19.3 36.4 36.0 36.0	2601 2571 2589 2739 2808 2505 2865	51.0 42.1 34.9 29.1 38.7 42.2 56.0	26.2 30.0 34.4 39.9 36.8 29.1 29.7	. 493 . 412 . 332 . 267 . 345 . 420 . 484	Run 84, A B C D E F G H I	20 40 60 90 120 150 175 190 220	125.0 125.0 125.0 125.25 119.8 114.9 110.1 120.0 120.1 124.5	.98 ^{Fe} 2.02 ^O 4 19.4 19.8 19.1 19.4 19.3 35.7 35.7 35.7	2304 2292 2313 2328 2364 2364 2364 2364 2364	47.1 49.1 50.3 41.5 33.3 26.0 29.4 29.3	22.9 22.4 22.6 27.1 31.4 35.4 34.3 31.5	.507 .523 .527 .434 .347 .269 .299 .299
Run 78,			07 ^{Fe} 1.93 ⁰ 4					J K	250 280	130.1 134.8	35.5 35.5	2376 2388	35.3 45.0 53.6	26.7 22.7	.457 .541
A B C D E F G H	80 130 185 230 375 320 365 410	120.5 115.0 109.5 105.0 114.0 120.3 125.1 130.1	19.3 19.5 19.3 19.2 35.2 35.0 35.1	2406 2370 2367 2430 2433 2469 2412 2259	53.7 46.3 38.5 33.4 32.7 40.7 46.1 48.4	21.1 24.8 28.7 32.3 33.2 29.9 25.8 21.5	.560 .483 .401 .341 .330 .405 .472 .530	D E F	110 140 170	124.9 124.75 120.2	.98 ^{Fe} 2.02 ⁰ 4 19.2 19.5 19.6	2406 2424 2391	53.1 53.4 44.4	23.6 23.6 27.4	•535 •531 •448
D	Cotole	at Co	Eo O		•			G H I	200 230 265	115.0 110.2 119.8	19.7 19.7 48.8	2388 2394 2388	36.0 28.1 24.8	31.9 35.9 38.0	.361 .281 .246
E F G H	95 115 135 166 180	119.5 119.5 119.5 115.5 115.6	19.1 19.1 19.1 19.1 19.2 19.4	2319 2307 2316 2334	41.7 42.8 43.5 37.7	27.0 26.5 26.7 29.9 29.8	. 436 . 447 . 449 . 387 . 384	J K L M	290 320 350 385	119.75 124.8 130.2 135.1	48.6 48.5 48.4 48.5	2364 2412 2400 2400	24.6 31.3 38.8 46.9	38.0 35.2 31.7 27.4	.245 .308 .383 .461
J K	215 230	109.8	19.5 19.1	2322 2364 2373	37.2 29.7 29.7	34.3 34.6	• 302 • 300	Run 86,	Catal	yst Co _O	.98 ^{Fe} 2.02 ⁰ 4				
M N O P Q R	250 275 290 315 340 365 400	105.4 115.0 114.8 109.8 125.0 130.2 117.1	19.1 34.9 34.7 34.9 34.8 19.7	2361 2406 2406 2415 2418 2412 2412	23.2 23.8 24.2 30.5 28.0 45.4 41.4	37. 7 38. 4 38. 5 35. 3 31. 4 27. 7 29. 5	.236 .237 .239 .301 .377 .450	D E G H I J K L	80 100 120 150 180 210 240 270 300	125.15 125.2 125.3 119.8 114.8 110.1 120.0 124.8 129.8	19.3 19.6 19.6 19.6 19.6 35.5 35.1	2421 2424 2424 2427 2415	45.9 46.8 47.9 sample 31.4 24.0 26.6 34.1 42.0	24.9 24.8 24.8 33.5 37.0 36.4 32.3 28.7	. 479 . 485 . 491 . 319 . 245 . 267 . 345 . 421
			3 ^{Fe} 1.97 ⁰ 4	ماراه	lin a		ha a	М	330	135.25	35.5	2421	29.6	24.3	• 505
E F G	170 190 210	125.0 120.1 120.1	19.5 19.7 19.7	2442 2541 2442	41.0 35.7 34.1	29.2 33.8 32.9	.412 .346 .329	Run 89,	Catal	yst Co _O	.93 ^{Fe} 2.07 ⁰ 4				
H I J K L M	245 290 320 350 380 420	115.25 109.9 119.8 124.5 129.7 136.25	19.7 19.4 34.9 34.8 34.8 34.7	2709 2430 2520 2436 2436 2481	31.6 21.6 23.2 27.3 33.0 42.3	39.5 38.2 40.2 35.9 33.3 29.8	.282 .220 .224 .275 .334 .415	A B C D E F G H I J K	70 85 100 145 175 205 235 265 295 325 355	115.2 115.4 115.4 115.2 109.8 104.8 100.0 110.0 114.9 120.6 125.0	15.6 19.6 19.6 19.6 19.6 19.6 35.0 34.9 35.2	2322 2346 2334 2364 2364 2376 2376 2364 2364	38.9 41.2 41.4 41.6 32.1 25.5 20.7 22.8 29.0 36.4 43.2	24.9 25.7 25.4 25.6 30.2 33.7 36.2 35.6 32.8 28.7 25.2	. 439 . 450 . 450 . 445 . 347 . 274 . 222 . 243 . 307 . 388 . 467
Run 82,	Cataly 75	st Co _{1.0}	19.6	2346	34.4	29.2	.371	Run 90	Catal	vst Co.	93 ^{Fe} 2.07 ⁰ 4				
B C D E F G H I J	100 130 160 195 220 250 280 316 350	125.6 125.6 120.6 115.3 110.0 120.5 120.5 125.7 129.5 134.2	19.6 19.4 19.4 19.8 34.7 35.0 34.8 34.5 34.3	2340 2274 2358 2343 2373 2448 2355 2430 2379	28.2 28.2 23.7 18.2 19.1 19.4 25.4 29.3	29.1 29.1 31.3 37.9 38.2 38.5 35.4 34.1 31.4	.5717 .312 .251 .19 ⁴ .200 .201 .249 .293 .349	A B C D E F G H I	80 100 120 150 180 210 240 265 295 325	120.7 120.7 120.7 120.9 114.7 110.0 105.8 114.8 120.1 126.5 134.0	19.6 19.6 19.6 19.6 19.6 19.7 19.6 36.6 35.9 36.1	2319 2328 2313 2325 2340 2349 2359 2358 2358 2370	46.6 48.6 48.9 39.2 32.7 26.6 28.0 36.1 46.2 52.1	23.8 23.9 23.5 28.6 32.1 35.1 35.2 31.2 26.2	. 495 . 504 . 509 . 407 . 337 . 274 . 285 . 366 . 468 . 587

Low Temperature Runs

Sample	Time (min)	Temp.	Flow (cc. min.)		Spec. Peak	Height	Per Cent Conversion	Sample	Time (min)	Temp.	Flow (cc. min.)	Mass H ₂	Spec. Peak	Height	Per Cent Conversion
Run 108	, Catal	yst Co _{l.}	.07 ^{Fe} 1.93 ^O 4					Run 120), Cata	lyst Co	0.98 ^{Fe} 2.02 ⁰ 4	<u>!</u>			
H J K L M N O P Q R S T U V W X Y Z & b	240 255 270 285 300 315 325 345 370 380 495 420 430 445 460 475 490 505 520	69. 41 70. 5 70. 5 68. 5 67. 25 67. 25 65. 75 63. 4 64. 25 64. 8 64. 8 64. 8 64. 8 60. 3 58. 5 60. 25	15.1 20.0 20.0 20.0 20.0 15.0 15.0 10.0 9.9 9.9 15.0 15.1 20.0 20.0 20.0 14.9 9.9	2880 2910 2900 2930 2950 2950 2950 2950 2960 2970 2980 3000 3020 3020 3040 3030 2850 3030	55.6 77.75 42.2 50.0 1.5 50.0 1.5 55.4 1.1 1.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	38.06.55.7.1.4.7.1.4.8.4.4.5.5.7.4.2.7.1.4.8.4.4.5.5.7.4.5.5.4.5.5.7.4.5.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.5.4.5	. 427 . 359 . 358 . 317 . 316 . 374 . 369 . 403 . 462 . 407 . 401 . 307 . 205 . 248 . 248 . 210 . 257 . 333 . 297 . 220 . 174	BC DE FG HIJKLMNOPQRSTU	25 45 60 75 125 140 155 200 225 240 255 270 290 330 350 370	71.0 71.2 71.5 71.5 69.0 64.25 65.8 68.1 65.7 63.0 64.7 65.0 65.7 65.2 65.3	20.0 20.0 19.9 20.1 20.0 20.0 20.0 20.0 20.0 15.0 15.0 15.0 9.9 9.85 9.85	2427 2433 2484 24.64 2514 2526 Lost 2559 2568 2580 2588 2599 2607 2592 2692 2646	37.8 45.8 45.8 49.7 5.4 43.7 5.4 40.4 40.0 54.2 40.0 54.3 40.5 40	28.1 31.5 32.9 33.8 34.8 44.7 39.5 358.4 40.3 36.7 36.7 36.7 37.8 38.8 40.3 36.7 36.7 36.7 36.7 36.8 37.8	.402 .408 .416 .420 .427 .373 .249 .247 .279 .357 .419 .354 .295 .244 .333 .450 .398 .335 .274
Run 110	, Catal	Lyst Co _{1.}	.07 ^{Fe} 1.93 ⁰ 4								0.98 ^{Fe} 2.02 ⁰ 1	-	ا ما	37 3	350
M N O P Q R S T U V W X Y Z & b c d e	100 115 130 145 175 190 205 240 255 240 255 340 325 340 355 400 425 445 600	75.0 74.8 74.8 74.5 74.0 73.75 73.0 73.0 73.0 70.6 68.6 68.6 65.75 65.5	25.0 25.0 25.0 25.0 20.0 20.0 15.0 9.9 10.0 9.9 20.0 20.0 20.0 20.0	2670 2700 2710 2730 2730 2750 2750 2750 2770 2800 2800 2830 2830 2830 2850	39.1 41.3 92 52.7 763.7 65.7 2 63.7 79.4 5 79.4 5 72.5 7 2 86.4 7 86.4 7 89.8	40.6 41.0 40.7 46.5 36.5 30.7 23.3 27.6 44.1 39.1 27.6 49.1 49.3	.325 .329 .337 .340 .417 .419 .511 .506 .635 .635 .570 .438 .342 .500 .379 .499 .438 .310	A B C D E F G H I J K L M N O P Q	60 95 115 130 150 160 195 210 225 240 255 270 285 305 325 345	70.0 71.0 72.0 72.3 70.3 68.7 62.3 69.1 67.3 69.1 62.75 60.25 63.5 63.6	19.9 20.0 20.0 20.0 20.0 19.9 20.0 20.0 15.0 14.9 9.9 9.8 9.9	2452 2427 2175 1914 1989 1986 1971 1986 1974 1977 1998 1971 1986 1992	40.1 43.9 42.0 35.6 24.4 32.8 41.1 30.2 25.6 43.7 28.4 21.1	37.3 4.6 2.2 28.4 31.4 2.2 28.4 30.7 4 1.3 2.4 .5 24.5 24.5 24.6	. 350 . 434 . 445 . 384 . 322 . 268 . 360 . 443 . 389 . 330 . 272 . 222 . 473 . 397 . 305 . 234
		,.,	-		•			Run 12	3, Cata 25	1yst Co 72.5	0.93 ^{Fe} 2.07 ^O 1 20.0	± 4540	67.0	65 . 1	.340
E F G H I J K L M N O P Q R	160 175 190 205 220 240 255 270 285 300 320 340 353 375	76.0 76.0 76.0 76.0 73.25 73.25 70.20 29.75 67.25 67.25 67.0 64.4 64.6 62.0	20.0 20.0 20.0 20.0 20.0 20.0 15.0 9.9 15.0 20.0 20.0 20.0 20.0 20.0 20.0	2550 2571 2571 2578 2598 2598 2725 2673 2661 2643 2655 2706 2664	46.6 49.6 51.0 43.8 55.7 60.4 47.0 36.6 30.0 52.8 45.6 38.2	31.5 33.3 34.0 38.0 38.1 26.2 44.1 46.7 39.2 47.1 43.6	. 425 . 427 . 429 . 366 . 457 . 491 . 381 . 293 . 248 . 322 . 423 . 368 . 257 . 307	B C E F G H I J K L M N	40 55 70 85 100 130 145 160 175 195 215 235 255	72.5 72.5 70.6 63.6 68.4 65.7 62.5 60.0 57.0	20.0 19.9 20.0 20.0 20.0 15.0 15.0- 15.0- 9.8 9.85 9.85 9.85	4570 4560 4590 4630 4660 4700 4710 4740 4730 4730 4770 4800	71.4 71.6 59.6 54.6 54.2 41.2 32.8 760.1 48.9	67.8 67.8 75.2 82.9 88.8 73.5 80.7 91.1 72.3 78.2 84.8 20.4	.345 .344 .282 .212 .163 .311 .250 .152 .153 .330 .278 .224 .170
Run 112	. Catal	Lvst Co.	.03 ^{Fe} 1.07 ^O 4					A B	0 15	75.1	19.9 20.0	4810 4890	98.1 99.9	60.4 61.9	. 448 . 447
G H J K L M N O P Q R S T U	25 45 60 75 105 110 140 155 170 185 200 240 255 275	77.4 77.4 77.15 74.2 74.1 70.25 71.25 68.2 68.3 66.0 65.2 63.0	20.1 20.1 20.0 20.0 20.0 20.0 20.0 20.0	2592 2664 2667 2709 2715 2667 2718 2784 2784 2786 2784 2778 2781	53.4 55.8 55.8 47.4 57.7 65.0 49.1 40.2 33.3 43.0 57.2 50.9 34.3 47.0	22.0 43.3 34.3 359.9 359.3 31.4 43.6 44.3 366.1 44.1 344.1	. 455 . 448 . 444 . 437 . 373 . 460 . 510 . 356 . 31.2 . 255 . 329 . 459 . 369 . 263 . 322	CC DEFGHIJKLM	150 45 60 80 105 125 130 155 175 195 215	75.1 72.7 66.4 66.1 68.7 65.8 62.5 64.75 62.0 58.5	20.0 20.0 20.0 14.9 15.0- 15.0 9.8 9.9 9.9	4910 4810 4910 4930 4890 4960 4950 4860 4970 5000 4930	99.9 83.8 63.8 48.8 90.9 75.1 61.6 46.3 91.2 777.7 63.1	70.3 78.4 88.0 67.6 182.3 89.8 66.6 74.1 83.8 90.8	. 373 . 289 . 217 . 402 . 336 . 272 . 205 . 406 . 344 . 275 . 205

B. Raw Data and Calculated Thermoelectric Power for Adsorption Runs

TABLE XII.

Adsorption Runs

un No.		Cr-Al couple)					r-Al couple)	(millivolts)	Power, AcV
	112, Catalys		LO4, Temperature-	250°C	Run No.	119, Catalyst-	Co _{0.96} Fe _{2.04} 0	4, Temperature.	- 250°C
1:43 1:48	He+2cm 0 ₂	0.8576 0.3370	10.6270 3.7800	+532	4:18 4:22	Helium	0.8215 0.0970	-6.3419 -0.4059	-3 02
1:55	II	0.2955	3.5269	+538	4:29	He+2cm H ₂	0.8612	-6.4121	-305
2:00		0.8518	10.8557		4:30 4:31	11	*	-7.100 -7.325	-338 -348
2:15	11	0.8704	11.1547	+545	4:32	11	*	- 7.519	- 358
2:22		0.3161	3.7912		4:33	"	*	-7.711	- 367
2145	11	0.3035	3.7266	+551	4:34 4:35	11	*	-7.883 -8.024	- 375
2:50		0.9099	11.1630	サンフエ	4:36 4:36	11	*	-8.116	-383 -386
					4:37	11	*	-8.225	- 391
3:30	"	0.8759	11,5384	+561	4:38	"	*	-8.301	- 396
3:35		0.3230	3.9865		4:39 4:40	"	*	-8. 305 -8. 387	- 398 - 399
4138 4145	"	0.2928 0.8561	3.6725 11.3563	+561	4:49	He+2cm O2	0.6591	-8.471	-408
-					4:50	" -	*	-7.7 00	- 366
7:26	ii.	0.9306	12.5239	+574	4:51	" .	*	-7.525	- 358
7:35		0.2876	3.5255		4:52 4:53	"	*	-7-354 -7-091	- 350 -338
10:40	**	0.2700	3.4520	+571	4:54	11	*	-6.811	-338 -324
11:00		0.9016	12.2210		4:55	II .	*	-6.546	- 311
**	117 0-: 1	+ a- =	O. ma	05000	4:56	11	* *	-6.351	-3 02
			104, Temperature-		4:57 4:58	11	*	-6.125 -5.864	-291 -270
8:15	Helium	0.9023	9.8052	+470	4:59	II.	*	-5.641	-279 -268
8:30		0.2811	2.6827		5:00	11	*	-5.358	- 255
8 ; 43 8:49	11	0.2620 0.8308*	1.850 4.905	+220	Run No.	120, Catalyst-	Co _{0.96} Fe _{2.04} 0	4	
8:50	He+lcm H ₂	*	4.7116	+212	7:15 7:20	Helium	0.8240 0.0890	6 . 9767 0 . 4585	+300
8:51	tı	*	4.3450	+195	1.20				
8:52	tt.	*	4.0490	+182	7:29	He+2cm H ₂	*	6.8960	+296
8:53	11	*	3.8520	+176	7:30	" -	*	6.742	+290
8:54	11	* *	3.6840	+165	7:31 7:30	11	*	6.505 6.441	+279 +276
8:55 8:56	11	*	3.5490 3.4570	+159 +155	7: 3 2 7: 3 3	11	*	6.277	+276 +270
8:57	11	*	3.3790	+152	7:34	11	*	6.105	+263
8:58	n	*	3.317	+148	7:35	"	*	5.929	+255
8:59	11	*	3 . 261	+146	7136	"	· *	5.7 ⁴⁰	+247
9100 9101	11	*	3.211 3.167	+144 +142	7 :3 7 7 :3 8	"	*	5.530 5.267	+237 +227
9:02		*	3.125	+142	7:39	11	*	5.207 5.071	+218
					1.12	11	*		
9:03	11	*	3 . 085	+139	7:40	•	^	4.860	+209
9:04	11	*	3.047	+137					-
9:04 9:05	11	*	3.047 3.015	+137 +135	8:00	He+2cm O2	*	4.770	+205
9:04	11	*	3.047	+137	8:00 8:01		*	4.770 10.650	+205 +461
9:04 9:05 9:06	11	* * *	3.047 3.015 2.984	+137 +135 +134	8:00 8:01 8:02	He+2cm O2	*	4.770 10.650 10.875	+205 +461 +470
9:04 9:05 9:06 un No.	"" " 114, Catalys	* * t- ^{CO} 0.96 ^{Fe} 2.04	3.047 3.015 2.984 404, Temperature-	+137 +135 +134 250°C	8:00 8:01 8:02 8:03 8:04	He+2cm 0 ₂	* * * *	4.770 10.650	+205 +461
9:04 9:05 9:06 un No.	"" 114, Catalys	* * t- ^{Co} 0.96 ^{Fe} 2.04 0.8507	3.047 3.015 2.984 404, Temperature-	+137 +135 +134	8:00 8:01 8:02 8:03 8:04 8:05	He+2cm O ₂	* * * *	4.770 10.650 10.875 10.972 11.025 11.045	+205 +461 +470 +474 +477
9:04 9:05 9:06 un No.	"" " 114, Catalys	* * t- ^{CO} 0.96 ^{Fe} 2.04	3.047 3.015 2.984 404, Temperature-	+137 +135 +134 250°C	8:00 8:01 8:02 8:03 8:04 8:05	He+2cm O ₂	* * * *	4.770 10.650 10.875 10.972 11.025 11.045 11.053	+205 +461 +470 +474 +477 +477 +477
9:04 9:05 9:06 un No. 10:30	"" ll4, Catalys Helium	* * t- ^{CO} 0.96 ^{Fe} 2.04 0.8507 0.2037	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271	+137 +135 +134 250°C	8:00 8:01 8:02 8:03 8:04 8:05 8:06	He+2cm O ₂	* * * *	4.770 10.650 10.875 10.972 11.025 11.045 11.053	+205 +461 +470 +474 +477 +477 +477 +477
9:04 9:05 9:06 un No. 10:30 10:40	"" 114, Catalys	* * t- ^{Co} 0.96 ^{Fe} 2.04 0.8507	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271	+137 +135 +134 250°C	8:00 8:01 8:02 8:03 8:04 8:05	He+2cm O ₂	* * * * * *	4.770 10.650 10.875 10.972 11.025 11.045 11.053 11.052 11.046	+205 +461 +470 +474 +477 +477 +477 +477 +477
9:04 9:05 9:06 un No. 10:30 10:40 11:35 11:36	"" 114, Catalys Helium " He+1cm H ₂	* * * t- Co _{0.96} Fe _{2.04} 0.8507 0.2037 0.8527 *	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271 -7.545 -7.839 -7.970	+137 +135 +134 250°C -356 -370 -384 -391	8:00 8:01 8:02 8:03 8:04 8:05 8:06 8:07 8:08	He+2cm 0 ₂ " " " " " " " " " "	* * * * * * * * * *	4.770 10.650 10.875 10.972 11.025 11.053 11.052 11.046 11.022	+205 +461 +470 +474 +477 +477 +477 +477 +477
9:04 9:05 9:06 m No. L0:30 L0:40 L1:35 L1:36 L1:37 L1:38	Helium He+lcm H ₂	* * t- Co _{0.96} Fe _{2.04} 0.8507 0.2037 0.8527 * *	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271 -7.545 -7.839 -7.970 -8.148	+137 +135 +134 250°C -356 -370 -384 -391 -400	8:00 8:01 8:02 8:03 8:04 8:05 8:06 8:07 8:08 8:09	He+2cm 0 ₂ " " " " " " " " " " 126, Catalyst-	* * * * * * * *	4.770 10.650 10.875 10.972 11.025 11.045 11.052 11.052 11.046 11.022	+205 +461 +470 +474 +477 +477 +477 +477 +477 +477
9:04 9:05 9:06 m No. L0:30 L0:40 L1:35 L1:36 L1:37 L1:38	"" 114, Catalys Helium " He+1cm H ₂	* * t- Coo.96Fe2.04 0.8507 0.2037 0.8527 * * * *	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271 -7.545 -7.839 -7.970 -8.148 -8.267	+137 +135 +134 250°C -356 -370 -384 -391 -400	8:00 8:01 8:02 8:03 8:04 8:05 8:06 8:07 8:08 8:09	He+2cm O ₂ " " " " " " " " " " 126, Catalyst-	* * * * * * * * * *	4.770 10.650 10.875 10.972 11.025 11.045 11.052 11.046 11.022 4, Temperature- 6.629	+205 +461 +470 +474 +477 +477 +477 +477 +477 +477
9:04 9:05 9:06 m No. LO:30 LO:40 L1:35 L1:36 L1:37 L1:38 L1:39 L1:40	Helium He+lcm H ₂	* * t- Co _{0.96} Fe _{2.04} 0.8507 0.2037 0.8527 * *	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271 -7.545 -7.839 -7.970 -8.148 -8.267 -8.404	+137 +135 +134 250°C -356 -370 -384 -391 -400 -406 -413 -419	8:00 8:01 8:02 8:03 8:04 8:05 8:06 8:07 8:08 8:08 8:08	He+2cm 0 ₂ " " " " " " " " " " 126, Catalyst-	* * * * * * * * * * * * * * * * * * *	4.770 10.650 10.875 10.972 11.025 11.045 11.053 11.052 11.046 11.022 4, Temperature- 6.629 6.890	+205 +461 +470 +474 +477 +477 +477 +477 +477 +477
9:04 9:05 9:06 m No. 0:30 0:40 L1:35 L1:36 L1:38 L1:39 L1:40 L1:41 L1:42	Helium He+lcm H ₂	* * * t- Coo.96Fe2.04 0.8507 0.2037 0.8527 * * * * * * * *	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271 -7.545 -7.839 -7.970 -8.148 -8.267 -8.404 -8.546 -8.631	+137 +135 +134 250°C -356 -370 -384 -391 -400 -406 -413 -419 -423	8:00 8:01 8:02 8:03 8:04 8:05 8:06 8:07 8:08 8:09 Run no. 1:50 1:45	He+2cm O ₂ " " " " " " " " " " 126, Catalyst-	* * * * * * * *	4.770 10.650 10.875 10.972 11.025 11.053 11.052 11.046 11.022 4, Temperature- 6.629 6.890 6.825	+205 +461 +470 +474 +477 +477 +477 +477 +477 +477
9:04 9:05 9:06 m No. 0:30 0:40 1:356 1:37 1:38 1:39 1:41 1:42 1:43	Helium He+lcm H ₂	* * * t- Co _{0.96} Fe _{2.04} 0.8507 0.2037 0.8527 * * * * * * * * *	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271 -7.545 -7.839 -7.970 -8.148 -8.267 -8.404 -8.546 -8.631	+137 +135 +134 250°C -356 -370 -384 -391 -400 -413 -413 -413 -423 -431	8:00 8:01 8:02 8:03 8:04 8:05 8:06 8:07 8:08 8:00 Run no. 1:30 1:40 1:45 1:55	He+2cm O ₂ " " " " " " " 126, Catalyst- Helium " "	* * * * * * * * * * * * * * * * * * *	4.770 10.650 10.875 10.972 11.025 11.045 11.053 11.052 11.046 11.022 4, Temperature- 6.829 6.825 6.760 6.606	+205 +461 +470 +474 +477 +477 +477 +477 +477 +477
9:04 9:05 9:06 n No. 0:30 0:40 1:35 1:38 1:39 1:41 1:42 1:44 1:44	Helium He+lcm H ₂	* * * t- Coo.96Fe2.04 0.8507 0.2037 0.8527 * * * * * * * * * *	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271 -7.545 -7.839 -7.970 -8.148 -8.267 -8.404 -8.546 -8.631 -8.782 -8.850	+137 +135 +134 250°C -356 -370 -384 -391 -400 -406 -413 -419 -423 -431 -435	8:00 8:01 8:02 8:03 8:04 8:05 8:06 8:07 8:08 8:09 Run no. 1:70 1:45 1:55 1:55	He+2cm O ₂ " " " " " " " 126, Catalyst- Helium " " "	* * * * * * * * * * * * * * * * * * *	4.770 10.650 10.875 10.972 11.025 11.053 11.052 11.046 11.022 4, Temperature- 6.629 6.890 6.825 6.760 6.606 6.520	+205 +461 +470 +477 +477 +477 +477 +477 +477 +477
9:04 9:05 9:06 n No. 0:30 0:40 1:356 1:38 1:41 1:44 1:44 1:44 1:44	Helium He+lcm H ₂	* * * t- Co _{0.96} Fe _{2.04} 0.8507 0.2037 0.8527 * * * * * * * * *	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271 -7.545 -7.839 -7.970 -8.148 -8.267 -8.404 -8.546 -8.631 -8.782 -8.990	+137 +135 +134 250°C -356 -370 -384 -391 -406 -413 -419 -423 -431 -435 -437	8:00 8:01 8:02 8:03 8:04 8:05 8:06 8:07 8:08 8:09 Rum no. 1:30 1:45 1:55 2:00 2:05	He+2cm O ₂ " " " " " " " " " " " Helium " " " "	* * * * * * * * * * * * * * * * * * *	4.770 10.650 10.875 10.972 11.025 11.045 11.052 11.046 11.022 4, Temperature- 6.629 6.890 6.825 6.760 6.606 6.520 6.456	+205 +461 +470 +477 +477 +477 +477 +477 +477 +477
9:04 9:05 9:06 m No. 0:30 0:40 1:35 1:36 1:37 1:38 1:41 1:42 1:44 1:44 1:45 1:44 1:45 1:44	Helium He+lcm H ₂	* * * * t~ Coo.96Fe2.04 0.8507 0.2037 0.8527 * * * * * * * * * * * * * * * * * *	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271 -7.839 -7.970 -8.148 -8.267 -8.404 -8.546 -8.631 -8.782 -8.850 -8.901 -8.939 -8.966	+137 +135 +134 250°C -356 -370 -384 -391 -400 -406 -413 -419 -423 -435 -435 -437 -439 -449	8:00 8:01 8:02 8:03 8:04 8:05 8:06 8:07 8:08 8:09 Run no. 1:70 1:45 1:55 1:55	He+2cm O ₂ " " " " " " " 126, Catalyst- Helium " " "	* * * * * * * * * * * * * * * * * * *	4.770 10.650 10.875 10.972 11.025 11.053 11.052 11.046 11.022 4, Temperature- 6.629 6.890 6.825 6.760 6.606 6.520	+205 +461 +470 +477 +477 +477 +477 +477 +477 +477
9:04 9:05 9:06 No. 10:35 1	Helium He+lcm H ₂ "" "" "" "" "" "" "" "" ""	* * * * * t- Coo.96Fe2.04 0.8507 0.2037 0.8527 * * * * * * * * * * * * * * * * * *	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271 -7.545 -7.839 -7.970 -8.148 -8.267 -8.404 -8.546 -8.631 -8.782 -8.950 -8.991 -8.939 -8.939	+137 +134 +134 250°C -356 -370 -384 -391 -406 -413 -419 -423 -435 -435 -437 -437 -437 -439 -440 -440	8:00 8:01 8:02 8:03 8:04 8:05 8:06 8:07 8:08 8:09 Rum no. 1:30 1:45 1:55 2:00 2:05	He+2cm O ₂ " " " " " " 126, Catalyst- Helium " " " "	** * * * * * * * * * * * *	4.770 10.650 10.875 10.972 11.025 11.045 11.053 11.052 11.046 11.022 4. Temperature- 6.629 6.825 6.760 6.606 6.520 6.495	+205 +461 +470 +477 +477 +477 +477 +477 +477 +477
9:04 9:05 9:06 M.O.:30 0:30 0:40 11:36 11:37 11:44	Helium He+lcm H ₂	* * * * t- Coo.96Fe2.04 0.8507 0.2037 0.8527 * * * * * * * * * * * * * * * * * *	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271 -7.545 -7.839 -7.970 -8.148 -8.267 -8.404 -8.546 -8.631 -8.782 -8.850 -8.901 -8.939 -8.966 -8.981 -8.990	+137 +134 250°C -356 -370 -384 -391 -400 -403 -413 -413 -413 -431 -437 -431 -437 -439 -441 -442	8:00 8:01 8:02 8:03 8:04 8:05 8:06 8:07 8:08 8:09 Run no. 1:30 1:40 1:45 1:55 2:00 2:05 2:11	He+2cm O ₂ " " " " " " " 126, Catalyst- Helium " " " " " " " " " " " " " " " " " " "	** * * * * * * * * * * * *	4.770 10.650 10.875 10.972 11.025 11.045 11.053 11.052 11.046 11.022 4, Temperature- 6.629 6.890 6.825 6.760 6.520 6.456 6.495 7.707 7.817	+205 +461 +470 +477 +477 +477 +477 +477 +477 +477
9:04 9:05 9:05 9:06 m No. 10:30 10:40 10:36 10:37 10:38 10:39 10:40 10:41 10:44	Helium He+lcm H ₂ "" "" "" "" "" "" "" "" ""	* * * * * t- Coo.96Fe2.04 0.8507 0.2037 0.8527 * * * * * * * * * * * * * * * * * *	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271 -7.545 -7.839 -7.970 -8.148 -8.267 -8.404 -8.546 -8.631 -8.782 -8.950 -8.991 -8.939 -8.939	+137 +134 +134 250°C -356 -370 -384 -391 -406 -413 -419 -423 -435 -435 -437 -437 -437 -439 -440 -440	8:00 8:01 8:02 8:03 8:04 8:05 8:06 8:07 8:08 8:09 Run no. 1:50 1:45 1:55 2:00 2:05 2:10	He+2cm O ₂ " " " " " " 126, Catalyst- Helium " " " " " " " " " " " " " " " " " " "	* * * * * * * * * * * * * * * * * * *	4.770 10.650 10.875 10.972 11.025 11.053 11.052 11.046 11.022 4. Temperature- 6.629 6.825 6.760 6.825 6.760 6.6520 6.495 7.707 7.817 7.939	+205 +461 +470 +477 +477 +477 +477 +477 +477 +477
9:04 9:05 9:06 m No. 10:30 10:30 10:40 11:37 11:39 11:40 11:41 11:42 11:44 11:45 11:44 11:45	Helium He+1cm H ₂ "" "" "" "" "" "" "" "" ""	* * * * * * * * * * * * * * * * * * *	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271 -7.545 -7.839 -7.970 -8.148 -8.267 -8.404 -8.546 -8.631 -8.782 -8.850 -8.991 -8.999 -9.900	+137 +134 +134 250°C -356 -370 -384 -391 -406 -413 -419 -423 -435 -435 -437 -437 -437 -437 -439 -440 -4443	8:00 8:01 8:02 8:03 8:04 8:05 8:06 8:07 8:08 8:09 Rum no. 1:30 1:40 1:45 1:55 2:00 2:05 2:10	He+2cm O ₂ " " " " " " 126, Catalyst- Helium " " " " " " " " " " " " " " " " " " "	* * * * * * * * * * * * * * * * * * *	4.770 10.650 10.875 10.972 11.025 11.053 11.052 11.046 11.022 4, Temperature- 6.629 6.830 6.825 6.760 6.606 6.520 6.493 7.707 7.817 7.959 8.041	+205 +461 +470 +477 +477 +477 +477 +477 +477 +477
9:04 9:05 9:05 n No. 0:140 1:35 1:36 1:37 1:41 1:42 1:44 1:45 1:44 1:45 1:44 1:45 1:45 1:46 1:47 1:48 1:49	Helium He+lcm H ₂	* * * * t- Coo.96Fe2.04 0.8507 0.2037 0.8527 * * * * * * * * * * * * * * * * * *	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271 -7.545 -7.839 -7.970 -8.148 -8.267 -8.404 -8.546 -8.631 -8.782 -8.850 -8.901 -8.939 -8.966 -8.981 -8.990	+137 +134 250°C -356 -370 -384 -391 -400 -403 -413 -413 -413 -431 -437 -431 -437 -439 -441 -442	8:00 8:01 8:02 8:03 8:04 8:05 8:06 8:07 8:08 8:09 Run no. 1:50 1:45 1:55 2:00 2:05 2:10 2:112 2:115 2:20 2:45 3:00	He+2cm O ₂ " " " " " " " " " " " " " " " " " " "	* * * * * * * * * * * * * * * * * * *	4.770 10.650 10.875 10.972 11.025 11.053 11.052 11.046 11.022 4. Temperature- 6.629 6.825 6.760 6.825 6.760 6.6520 6.495 7.707 7.817 7.939	+205 +461 +470 +477 +477 +477 +477 +477 +477 +477
9:04 9:05 0:30 0:30 0:30 0:40 1:35 1:36 1:37 1:42 1:44 1:44 1:44 1:44 1:44 1:44 1:45 1:46 1:47 1:48 1:49	Helium He+lcm H ₂ "" "" "" "" "" "" "" "" ""	* * * * * * * * * * * * * * * * * * *	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271 -7.545 -7.839 -7.970 -8.148 -8.267 -8.404 -8.546 -8.631 -8.782 -8.850 -8.901 -8.939 -8.966 -8.981 -8.990 -9.000 -7.4514	+137 +134 +134 250°C -356 -370 -384 -391 -406 -413 -419 -423 -435 -435 -437 -437 -437 -437 -439 -440 -4443	8:00 8:01 8:02 8:03 8:04 8:05 8:06 8:07 8:08 8:09 Run no. 1:30 1:40 1:45 1:55 2:00 2:05 2:15 2:12 2:15 2:20 2:30 2:45	He+2cm O ₂ " " " " " " " 126, Catalyst- Helium " " " " " " " " " " " " " " " " " " "	** * * * * * * * * * * * *	4.770 10.650 10.875 10.972 11.025 11.045 11.053 11.052 11.046 11.022 4, Temperature- 6.890 6.825 6.760 6.825 6.760 6.456 6.493 7.707 7.817 7.939 8.041 8.200	+205 +461 +470 +477 +477 +477 +477 +477 +477 +477
9:04 9:05 0:05 0:30 0:30 0:40 1:35 1:36 1:37 1:38 1:44 1:45	Helium He+lcm H ₂ "" "" "" "" "" "" "" "" ""	* * * * * * * * * * * * * * * * * * *	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271 -7.845 -7.970 -8.148 -8.267 -8.404 -8.546 -8.631 -8.782 -8.850 -8.990 -9.000 -7.4514 -1.8501	+137 +135 +134 250°C -356 -370 -384 -391 -406 -413 -413 -413 -423 -431 -437 -437 -437 -437 -439 -449 -443 -443 -443 -386	8:00 8:01 8:02 8:03 8:04 8:05 8:06 8:07 8:08 8:09 Run no. 1:50 1:45 1:55 2:00 2:05 2:10 2:112 2:115 2:20 2:45 3:00	He+2cm O ₂ " " " " " " " " " " " " " " " " " " "	* * * * * * * * * * * * * * * * * * *	4.770 10.650 10.875 10.972 11.025 11.052 11.052 11.046 11.022 11.046 12.022 4, Temperature- 6.629 6.825 6.760 6.606 6.520 6.456 6.493 7.707 7.817 7.939 8.041 8.200 8.242	+205 +461 +470 +477 +477 +477 +477 +477 +477 +477
9:04 9:05 0:05 0:30 0:30 0:35	## 114, Catalys Helium He+lcm H ₂ "" "" "" "" "" "" "" "" ""	* * * * * * * * * * * * * * * * * * *	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271 -7.545 -7.839 -7.970 -8.148 -8.267 -8.404 -8.546 -8.631 -8.782 -8.850 -8.901 -8.959 -8.966 -8.981 -8.990 -9.000 -7.4514 -1.8501 -1.6901 -7.1873	+137 +135 +134 250°C -356 -370 -384 -391 -406 -413 -413 -413 -423 -431 -437 -437 -437 -437 -439 -449 -443 -443 -443 -386	8:00 8:01 8:02 8:03 8:04 8:05 8:06 8:07 8:08 8:09 Run no. 1:30 1:40 1:45 1:55 2:00 2:05 2:11 2:12 2:15 2:20 2:35 3:00 3:40	He+2cm O ₂ " " " " " 126, Catalyst- Helium " " " " " " " " " " " " " " " " " " "	* * * * * * * * * * * * * * * * * * *	4.770 10.650 10.875 10.972 11.025 11.055 11.052 11.046 11.022 11.022 11.026 6.629 6.890 6.825 6.760 6.606 6.520 6.493 7.707 7.817 7.939 8.041 8.200 8.242 8.290 7.905	+205 +461 +470 +477 +477 +477 +477 +477 +477 +477
9:04 9:05 9:06 m No. 10:30 10:30 10:40 11:37 11:39 11:40 11:41 11:42 11:44 11:45 11:44 11:45	Helium He+lcm H ₂ "" "" "" "" "" "" "" "" ""	* * * * * * * * * * * * * * * * * * *	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271 -7.845 -7.839 -7.970 -8.148 -8.267 -8.404 -8.546 -8.631 -8.782 -8.850 -8.991 -8.999 -9.000 -7.4514 -1.8501 -1.6901 -7.1873	+137 +135 +134 250°C -356 -370 -384 -391 -406 -413 -413 -413 -423 -437 -437 -437 -437 -437 -437 -437 -43	8:00 8:01 8:02 8:03 8:04 8:05 8:06 8:07 8:08 8:09 Run no. 1:50 1:45 1:55 2:00 2:05 2:10 2:12 2:12 2:15 2:20 2:30 2:44 4:13	He+2cm O ₂ " " " " " " " " " " " " " " " " " " "	* * * * * * * * * * * * * * * * * * *	4.770 10.650 10.875 10.972 11.025 11.052 11.052 11.052 11.046 11.022 4. Temperature- 6.629 6.825 6.760 6.606 6.520 6.456 6.493 7.707 7.817 7.939 8.041 8.200 8.242 8.290 7.905 4.63 4.27	+205 +461 +470 +477 +477 +477 +477 +477 +477 +477
9:04 9:05 0:30 0:30 0:30 0:30 0:35	Helium He+lcm H ₂ "" "" "" "" "" "" "" "" ""	* * * * * * * * * * * * * * * * * * *	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271 -7.545 -7.839 -7.970 -8.148 -8.267 -8.404 -8.546 -8.631 -8.782 -8.850 -8.901 -8.939 -8.966 -8.981 -8.990 -9.000 -7.4514 -1.8501 -1.6901 -7.1873 -7.7946 -1.9769	+137 +135 +134 250°C -356 -370 -384 -391 -406 -413 -413 -413 -423 -437 -437 -437 -437 -437 -437 -437 -43	8:00 8:01 8:02 8:03 8:04 8:05 8:07 8:08 8:09 Run no. 1:30 1:45 1:55 2:00 2:05 2:10 2:12 2:15 2:20 2:30 2:45 3:00 3:40 4:13	He+2cm O ₂ " " " " " " " " " " " " " " " " " " "	* * * * * * * * * * * * * * * * * * *	4.770 10.650 10.875 10.972 11.025 11.053 11.052 11.052 11.046 11.022 4, Temperature- 6.829 6.825 6.760 6.825 6.760 6.493 7.707 7.817 7.939 8.041 8.200 8.242 8.290 7.905 4.63 4.27 3.98 3.76	+205 +461 +470 +4777 +4777 +4777 +4777 +4777 +4777 +4777 +4565 +4656 +4566 +4566 +4566 +4560 +578 +582 +582 +582 +582 +582 +582 +582 +58
9:04 9:05 9:05 00:30 10:30 10:40 11:36 11:37 11:42 11:44 11:45 11:44 11:45 11:46 11:45 11:46 11:45 11:46 11:47 11:48 11:49	Helium He+lcm H ₂ "" "" "" "" "" "" "" "" ""	* * * * * * * * * * * * * * * * * * *	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271 -7.545 -7.839 -7.970 -8.148 -8.267 -8.404 -8.546 -8.631 -8.782 -8.850 -8.901 -8.939 -8.966 -8.981 -8.990 -9.000 -7.4514 -1.8501 -1.6901 -7.1873 -7.7946 -1.9769	+137 +135 +134 250°C -356 -370 -384 -391 -406 -413 -413 -413 -423 -431 -437 -437 -437 -437 -437 -437 -437 -437	8:00 8:01 8:02 8:03 8:04 8:05 8:06 8:07 8:08 8:09 Rum no. 1:30 1:40 1:45 1:55 2:00 2:05 2:10 2:12 2:15 2:20 2:30 2:45 3:00 3:40 4:13 4:25 4:27 4:28 4:27	He+2cm O ₂ " " " " " " 126, Catalyst- Helium " " " " " He+2cm O ₂ " " " " Helium He+2cm H ₂ "	* * * * * * * * * * * * * * * * * * *	4.770 10.650 10.875 10.972 11.025 11.053 11.053 11.052 11.046 11.022 4, Temperature- 6.629 6.830 6.825 6.760 6.606 6.520 6.493 7.707 7.817 7.937 7.817 7.939 8.041 8.200 8.242 8.290 7.905 4.63 4.27 3.98 3.76 3.565	+205 +4461 +470 +477 +477 +477 +477 +477 +477 +477
9:04 9:05 9:06 10:30 10:30 10:30 10:36 10:36 10:37 10:39	# 114, Catalys Helium He+lcm H ₂ "" "" "" "" Helium He+lcm O ₂	* * * * * * * * * * * * * * * * * * *	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271 -7.545 -7.839 -7.970 -8.148 -8.267 -8.404 -8.546 -8.631 -8.782 -8.850 -8.901 -8.959 -8.966 -8.990 -9.000 -7.4514 -1.8501 -1.6901 -7.1873 -7.7946 -1.9769 -1.3420 -6.9451 -6.8115	+137 +135 +134 250°C -356 -370 -384 -391 -406 -413 -413 -413 -423 -431 -437 -437 -437 -437 -437 -437 -437 -437	8:00 8:01 8:02 8:03 8:04 8:05 8:07 8:08 8:09 Run no. 1:30 1:45 1:50 1:55 2:00 2:05 2:10 2:15 2:20 2:30 2:45 3:00 3:40 4:13 4:25 4:26 4:27 4:28 4:29 4:30	He+2cm O ₂ " " " " " 126, Catalyst- Helium " " " " " " " " " " " " " " " " " " "	** * * * * * * * * * * * *	4.770 10.650 10.875 10.972 11.025 11.053 11.052 11.052 11.046 11.022 4, Temperature- 6.829 6.825 6.760 6.825 6.760 6.493 7.707 7.817 7.939 8.041 8.200 8.242 8.290 7.905 4.63 4.27 3.98 3.76 3.65 3.45 3.30	+205 +461 +470 +4777 +4777 +4777 +4777 +4777 +4777 +4777 +4631 +4631 +4566 +4567 +5600 +57882 +582 +582 +582 +582 +584 +305 +3646 +236
9:04 9:05 9:05 10:30 10:30 10:40 11:35 11:37 11:39 11:42 11:41 11:45	Helium He+lcm H ₂ "" "" "" "" "" "" "Helium He+lcm O ₂	* * * * * * * * * * * * * * * * * * *	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271 -7.545 -7.839 -7.970 -8.148 -8.267 -8.404 -8.546 -8.631 -8.782 -8.850 -8.901 -8.939 -8.966 -8.939 -9.000 -7.4514 -1.8501 -1.6901 -7.1873 -7.7946 -1.9769 -1.3420 -6.9451	+137 +135 +134 250°C -356 -370 -384 -391 -406 -413 -413 -413 -423 -431 -437 -437 -437 -437 -437 -437 -437 -437	8:00 8:01 8:02 8:03 8:04 8:05 8:06 8:07 8:08 8:09 Run no. 1:30 1:40 1:45 1:55 2:00 2:05 2:10 2:12 2:15 2:20 2:30 2:45 3:40 4:13 4:25 4:26 4:27 4:28 4:29 4:30 4:31	He+2cm O ₂ " " " " " " " " " " " " " " " " " " "	** * * * * * * * * * * * *	4.770 10.650 10.875 10.972 11.025 11.053 11.052 11.022	+261 +470 +477 +477 +477 +477 +477 +477 +477
9:04 9:05 9:07 10:30 10:30 10:30 10:40 10:36 10:40 10:36 10:40	# 114, Catalys Helium He+lcm H ₂ "" "" "" "" Helium He+lcm O ₂	* * * * * * * * * * * * * * * * * * *	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271 -7.545 -7.839 -7.970 -8.148 -8.267 -8.404 -8.546 -8.631 -8.782 -8.890 -8.990 -9.000 -7.4514 -1.8501 -1.6901 -7.1873 -7.7946 -1.9769 -1.3420 -6.9451 -6.8115 -1.4865	+137 +135 +134 250°C -356 -370 -384 -391 -406 -413 -413 -413 -423 -431 -437 -437 -437 -437 -437 -437 -437 -437	8:00 8:01 8:02 8:03 8:04 8:05 8:06 8:07 8:08 8:09 Run no. 1:30 1:40 1:45 1:55 2:00 2:05 2:11 2:12 2:15 2:20 2:35 2:20 2:45 3:00 3:40 4:13 4:25 4:26 4:27 4:28 4:29 4:31 4:35	He+2cm O ₂ " " " " " " " " " " " " " " " " " " "	* * * * * * * * * * * * * * * * * * *	4.770 10.650 10.875 10.972 11.025 11.053 11.052 11.052 11.023 11.022 11.023 11.022 11.023 11.033 11.	+261 +470 +477 +477 +477 +477 +477 +477 +477
9:04 9:05 0:30 0:30 0:40 0:30 0:40 0:30 0:40	Helium He+lcm H ₂ "" "" "" "" "" "" "" "" "" "" "" "" "	* * * * * * * * * * * * * * * * * * *	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271 -7.545 -7.839 -7.970 -8.148 -8.267 -8.404 -8.546 -8.631 -8.782 -8.850 -8.901 -8.959 -8.966 -8.990 -9.000 -7.4514 -1.8501 -1.6901 -7.1873 -7.7946 -1.9769 -1.3420 -6.9451 -6.8115	+137 +135 +134 250°C -356 -370 -384 -391 -406 -413 -413 -413 -423 -431 -437 -437 -437 -437 -437 -437 -437 -437	8:00 8:01 8:02 8:03 8:04 8:05 8:07 8:08 8:09 Run no. 1:30 1:45 1:55 1:55 2:20 2:05 2:145 2:20 2:35 2:445 3:00 3:40 4:13 4:26 4:26 4:29 4:34 4:35 4:35 4:34 4:35 4:35 4:36	He+2cm O ₂ " " " " " " " " " " " " " " " " " " "	** * * * * * * * * * * * *	4.770 10.650 10.875 10.975 11.025 11.053 11.052 11.052 11.046 11.022 4, Temperature- 6.829 6.825 6.760 6.825 6.760 6.493 7.707 7.817 7.939 8.041 8.200 8.242 8.290 7.905 4.63 4.27 3.98 3.76 3.65 3.45 3.30 3.12 2.98 2.70	+205 +461 +470 +4777 +4777 +4777 +4777 +4777 +4777 +4777 +4631 +4663 +4663 +4566 +4566 +4566 +4560 +578 +582 +582 +582 +582 +582 +582 +582 +58
9:04 9:05 0:30 0:30 0:30 0:30 0:35 0:30 0:35	Helium He+lcm H ₂ "" "" "" "" "" Helium Helium Helium Helium He-lcm O ₂	* * * * * * * * * * * * * * * * * * *	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271 -7.839 -7.970 -8.148 -8.267 -8.404 -8.631 -8.782 -8.850 -8.901 -8.939 -8.966 -8.981 -8.950 -9.000 -7.4514 -1.8501 -1.6901 -7.1873 -7.7946 -1.9769 -1.3420 -6.9451 -6.8115 -1.4865 -1.0660	+137 +135 +134 250°C -356 -370 -384 -391 -406 -413 -413 -413 -423 -431 -437 -437 -437 -437 -437 -437 -437 -437	8:00 8:01 8:02 8:03 8:04 8:05 8:06 8:07 8:08 8:09 Run no. 1:30 1:40 1:45 1:55 2:00 2:05 2:11 2:12 2:15 2:20 2:35 2:20 2:45 3:00 3:40 4:13 4:25 4:26 4:27 4:28 4:29 4:31 4:35	He+2cm O ₂ " " " " " " " " " " " " " " " " " " "	** * * * * * * * * * * * *	4.770 10.650 10.875 10.972 11.025 11.053 11.052 11.052 11.023 11.022 11.023 11.022 11.023 11.033 11.	+2461 +477 +4777 +4777 +4777 +4777 +4777 +4777 +4777 +4777 +4777 +4663 +4663 +4566 +4566 +4567 +55602 +55602 +5788 +5788 +5788 +582 +582 +582 +582 +582 +582 +582 +5
1040 00 No. 1330 1340 1350 1341 1350 1350 1350 1350 1350 1350 1350 135	Helium He+lcm H ₂ "" "" "" "" "" Helium Helium Helium Helium He-lcm O ₂	* * * * * * * * * * * * * * * * * * *	3.047 3.015 2.984 404, Temperature- -7.2632 -1.6271 -7.839 -7.970 -8.148 -8.267 -8.404 -8.631 -8.782 -8.850 -8.901 -8.939 -8.966 -8.981 -8.950 -9.000 -7.4514 -1.8501 -1.6901 -7.1873 -7.7946 -1.9769 -1.3420 -6.9451 -6.8115 -1.4865 -1.0660	+137 +135 +134 250°C -356 -370 -384 -391 -406 -413 -413 -413 -423 -431 -437 -437 -437 -437 -437 -437 -437 -437	8:00 8:01 8:02 8:03 8:04 8:05 8:06 8:07 8:08 8:09 Run no. 1:30 1:40 1:45 1:55 2:00 2:15 2:10 2:12 2:15 2:20 2:30 2:45 3:40 4:13 4:25 4:27 4:28 4:39 4:35 4:34 4:35 4:45 4:45 4:45 4:45 4:45	He+2cm O ₂ " " " " " " " " " " " " " " " " " " "	** * * * * * * * * * * * *	4.770 10.650 10.875 10.972 11.025 11.053 11.052 11.022	+205 +461 +470 +477 +477 +477 +477 +477 +477 +477

 $[\]star\,\Delta\,\text{T}$ assumed unchanged from previous reading.

 $[\]star\Delta$ T assumed unchanged from previous reading.

B. Raw Data and Calculated Thermoelectric Power for Adsorption Runs

TABLE XII. (continued)

Adsorption Runs

Time		AT (milli v olts Cr-Al couple)	EMF (millivolts)	Thermoelectr Power, MV/°		Atmosphere	ΔT (millivolts Cr-Al couple)	EMF (millivolts)	Thermoelectric Power, ww/°C
Run No.	149, Catalyst	t- Co _{1.09} Fe _{1.9}	104, Temperature	140°C	Run No.	153, contin	ued		
9:05	Helium	0.3469	5.071	+598	3:00	He+2cm H ₂	0.5421	5.0212	+380
9:08 9:26	11	0.3157 0.3341	4.941 5.211	+640 +640	3:30 4:10	11 -	0.5401 0.5399	3.9485 3.4877	+300 +265
9:37	11	0.3414	5.203	+630	4:30	11	0.5378	2.9453	+225
9:40	Не+6cm Н ₂	0.3410	5.226	+633	5:00 6:00	"	0.5365 0.5378	2.6848 2.4307	+205 +185
9:55	,, -	0.3441	5.206	+627	6:30	11	0.5377	2.2351	+170
10:17 10:44	11	0.3408 0/3369	5.266 5.200	+633 +634	7:00 7:30	11	0.5384 0.5212	2,2362 2,0995	+170 +165
11:25	11	0.3362	5.132	+628	8:00	11	0.5271	20.310	+158
11:55 1:10	"	0.3349	5.135 5.139	+699 +626	10:00 12:00	11	0.5317 0.5301	1.8794 1.7442	+145 +135
1:17	11	0.3373 0.3368	5.102	+626					
1:36 2:17	"	0.3362 0.3338	5.128 5.668	+626 +625	Run No.	155, Cataly	st- Co _{0.96} Fe _{2.04}		e 250°C
2:55	TT .	0.3348	5.561	+619	8:00 8:05	Helium "	0.7939 0.7907	-7.1658 -7.2012	-369 -372
3:20 4:06	"	0.3332 0.3316	5.034 4.936	+620 +613	9:25	11	0.8021	-7.1765	- 367
4:15	"	0,3223	4.984	+672	9:30	He+2cm H ₂	0.7990	-7.2013	-371
9.05	Walden.	0.3430	5.068	+607	10:06	"	0.7900	-9.3950	-371 -486
8:25 8:45	Helium "	0.3334	5.020	+618	10:12 10:24	"	0.7917 0.7929	-9.6226 -9.3721	-499 -483
9:00	11	0.3350	4.9885	+616	10:35	"	0.7939	-8.7067	- 450
9:01	Не+6cm 02	0.3377	5.431	+659	10:45 10:58	"	0.7965 0.7895	-7. 9370 -7. 3278	-409 -384
9:11	" -	0.3400	5.645	+680	11:15	11	0.7917	- 6.9735	-361
9:25 9:47	"	0.3355 0.3338	5.415 5.536	+664 +674	11:35 12:05	11	0.7947 0.7956	-6.6719 -6.4026	-344 -332
10:21	11 11	0.3331	5.555	+684	1:10	11	0.7903	- 5.9917	-311
11:15	"	0.3366	5.336	+676	2:00	"	0.7838	-5. 7496	-3 01
Run No.	150, Catalyst	t- Co _{0.96} Fe _{2.0}	1404, Temperature	88°C	5:45 7 : 20	11	0.8000 0.7707	-5.3270 -5.0251	- 275 - 269
10:35	Helium	0.2485	-1.4825	-5,4,4		Work Com Co			-3 80
10:40	11	0.3025 0.2621	-1.7264 -1.5405	-235 -241	7:35 7:50	He+2cm 02	0.8034 0.7925	-7.4235 -7.7265	-400
11:00	11	0.2561	-1.5015	- 241	8:05	11	o. <u>7</u> 969	-8:1215	-420 hzo
11:15	**	0.2525	-1.4785	- 241,	8:30 9:00	11	0.8037 0.8128	-8.4259 -8.8361	-432 -446
11:20	Не+6cm Н₂	0.2497	-1.4762	-243	9:30	11	0.8075	- 9.0535	- 459
11:26 11:44	" -	0.2461	-1.4392	- 239 - 240	10:00 8:00a	.m. "	0.8027 0.8097	-9.1718 -10.112	-467 -512
12:05	11	0.2445 0.2456	-1.4322 -1.4535	-243					
12:40	11	0.2479	-1. 4575	-242			yst- Co _{0.96} Fe _{2.0}		
12:59 1:15		0.3483 0.2486	-1.4605 -1.4667	-242 -242	10:35	Helium	0.7700	-3.002	-160
3:50	"	0.2489	-1.4615	-241	10:50	He+2cm 02	0.7705	4.844	+258
12:00	U	0.2600	-1.5115	- 235	10:55 10:56	"	0.7737 *	7.1925	+382 +412
11:55		0.2617	-1.4722	-232	10:57	n n	*	7.7920 8.160	+432
12:36 12:47	n	0.2482 0.2422	-1.429 -1.448	-246 -245	.10:59	"	*	8.700	+460 +476
12:55	11	0.2436	-1. 454	- 245	11:00 11:01	· · ·	*	9.000 9.181	+486
1:12	11	0.2422	-1. 458	- 246	11:04	11	* *	9.412	+498
1:15	Не+6cm 0 ₂	0.2749	-1.489	-246	11:06 11:12	11	*	9.576 9.926	+507 +526
1:31 2:02	11 -	0.2499 0.2494	-1.408 -1.503	-246 -249	11:16	11	*	10.183	+538
2:50	n	0.2531	-1. 536	- 249	11:25		*	10.590	+560
4:00 4:30	"	0.2489 0.2470	-1.562 -1.483	-247 -246	11:35	He+2cm H ₂	*	10.955	+580
4:55	11	0.2440	-1.471	-247	11:45 11:50	11	*	11.273 9.0665	+595 +480
8:05	11	0.2484	-1. 490	- 246	11:54	"	*	8.1665	+426
Run No.	152, Catalys	t- Co _{l OG} Fe _{l C}	0104, Temperature	250°C	11:55 11:58	"	*	7.400 6.300	+391 +333
11:00	Helium	0.6843	6.4105	+385	12:10	"	*	2.464	+131
8:00	**	0.6522	6.2801	+395	12:22 12:35	17	*	-0.549 -1.934	- 28 -102
8:35	He+2cm02	0.6219	6.9265	+460	15:44	"	*	- 2 . 558	- 1.35
9:00	"	0.6321	8.0105	+519	12:55 1:01	n n	* *	-3.333 -3.648	-176 -193
9:30 10:10	**	0.6575 0.6596	8.9979 9.4334	+560 +590	1:37	"	*	-5. 129	- 271
10:55	11	0.6604	9 . 58 25	+595	1:50 2:10	11	* 0.7829	-5.504 -6.2412	-291 -326
11:55		0.6672	9.9505	+603	2:25	"	0.7814	-6.649	- 348
1:10	He+2cm H ₂	0.6465	8.1565	+520	2:45 3:00	11	0.7738 0.77 7 5	-7.0435 -7.360	-373 -388
1:30 2:00	?	0.6277 0.6329	5.7830 4.4892	+378 +290	3:45	**	0.77 7 5 0.7810	-7.9317	- 416
2:30	ii .	0.6199	3.6301	+240	4:15	11	0.7786	-8.0414 -8.2676	_424 _430
3:00 3:30	"	0.6319 0.6355	3.1598 2.9401	+205 +190	4:45 6:00	11	0.7781 0.0770	-8.1015	-431
4:00	11	0.6216	2 . 7356	+186	7:00	11 11	0.8067	- 7.9513	-404
4:30 5:00	11	0.6242 0.6314	2.6045 2.5911	+172 +168	11:00		0.8030	-6.4329	-3 28
						. 157, Catal	yst- Co _{0.96} Fe _{2.0}	1404, Temperati	re 160°C
Run No.	153, Catalys	t- Co _{1.09} Fe _{1.0}	Olo, Temperature	250°C	12:50 1:02	Helium "	0.5036 0.5034	-5.8138 -5.7602	-472 -470
12:20 7:30	Helium "	0.5408 0.5330	4.3696 4.8789	+332 +335	1:10	n	0.5038	- 5.7654	-470
7:30 7:45	He+2cm 02	0.5212	4.9102	+385		Walfam #			-470
8:00 8:30	" -	0.5117 0.5218	5.2398 5.7422	+420 +450	1:20 1:25	Не+6cm Н ₂	0.5067 0.5003	-5.7917 -5.7457	-471
9:00	11	0.5099	5.8382	+470	1:40	11	0.5028	- 5.6978	- 463
9:30 10:00	"	0.5100 0.5212	5.9810 6.1585	+481 +485	2:00 2:25	11	0.5000 0.4971	- 5.5129 - 5.3922	-455 -445
10:30	11	0.5222	6.1207	+482	2:45	11 11	0.4908	- 5.2933	-441
11:00	11	0.5177	6.1900 6.1524	+488 +425	3:30 4:25	11	0.4911 0.4933	-5.2250 -5.1359	-436 -429
11:30 12:00	11	0.5206 0.5311	6.3385	+488	5:55	11	0.4947	-5.0171	- 419
			-		11:15 8:00a		0.4946 0.4960	-4.7628 -4.6227	-3 95 -3 82
							anged from previo		J- -

 $[\]star_{\Delta}\mathtt{T}$ assumed unchanged from previous reading.

B. Raw Data and Calculated Thermoelectric Power for Adsorption Runs

TABLE XII. (continued)

Adsorption Runs

Time	Atmosphere 6			Thermoelectric Power,س۷/°C	Time		T (millivolts Cr-Al couple)	EMF (millivolts)	Thermoelectric Power, \u03b2V/°C
Run No.	126, continue	<u>a</u> 0.5985	0. 0 3 5	+ 2.3	Run No.	142, Catalys	t- ^{Co} 0.96 ^{Fe} 2.0	404, Temperatur	e 250°C
9:30	" -		-0.279	-19. 0		Helium	0.6590	-4.605	- 287
9:45	"	0.6029	-0.33	-22.0	7:40	"	0.6532 0.6581	-4.690 -4.782	- 290
10:05 10:30	n	0.5863 0.5592	-0.295 -0.286	- 20.0 - 21.0	7:50		0.6581	- 4. 782	- 298
11:00	11	0.5708	- 0.752	-18.0	7:52	He+10cm H ₂	*	- 5.090	-311
11:50	11	0.5708 0.5680 0.5655	-0.247	-18.0	7:55		*	-5.235	- 325
1:00p	.m. "	0.5655	-0.245	-18.0	8:02	"	*	-5.321	- 331
2:00	"	0.5545	-0.915	-16. 0	8:06	11	*	-5.370 -5.370 -5.327 -5.308	-333
Dun Ma	170 Cotol	aa.	101 Manus	0E00G	8:27	"	*	-5.370	- 333
10.45	Helium	0.1148	404, Temperatu -8.386	-300	8:37 8:45	11	*	-5.308	-331 -330
1017)	nerrum	0.11.	-0.000	-500	8:48	11	*	-5.295	-328
10:52	не+6cm н ₂	0.1142	-8.366	- 299	9:31	11	*	- 5.067	-314
		0.11 ⁴ 2 *	-8.366 -8.415	-301	9:53	"	*	-4.995	-310
10:56	"	*	-8.310	- 298	11:05	11	* *	-4.795 -4.473	-295
11:00	11	* *	-8.13 8	- 291	11:55 1:10	11	*	4.429	-277 -274
11:02 11:06	11	*	-7.976 -7.700	- 285 - 275	1110			-1.12)	
11:10	**	*	-7.514	- 269	3:55	Helium	*	-4.538	- 290
11:16	II .	*	-7.214	- 258					
11:22	11	*	- 6.976	- 249	3:57	He+10cm 02	* * *	-4.821	- 308
11:26	"	*	- 6.858	- 245	3:59		*	-4.210 5.00h	-314 -300
11:34	11 11	*	-6.654	- 238	4:00 4:02	"	0.6410 0.6431	-5.004 -5.281	-320 -338
11:55 12:12	 11	*	-6.294 -6.067	- 225 - 216	4:05	11	0.6431	- 5.475	~3 50
12:37	"	*	-5. 897	-211	4:10		*	-5. 656	- 362
12:42	11	*	-5.860	-209	4:17	11	*	- 5.855	-374
1:30	11	*	- 5.552 - 4.718	-1 98	4:23	11	* • 6615	- 5.967	- 386
6:17	"	*	-4.718	- 169	4:30 4:40	11	0.6615 *	-6. 073	-3 89
10:10	"	*	- 4,260	-155	4:45	11	*	-6.182 -6.231	-3 95 - 399
11.17	Не+ 6ст_0 ₂	0.1103	_3 OF	-143	8:40	11	*	-7.239	- 469
11:19	He-rocm 02	*	-3.95 -4.920	-178	12:00	11	*	-7.239 -7.468	- 478
11:20	11	*	-5.100	-185					
11:23	11	*	-5.640	-204	Run No.	143, Catalys	t~ ^{Co} 1.09 ^{Fe} 1.9	0104, Temperatur 7.309	e 250°C
11:26	"	*	-5.935	- 215	9:10	Helium	0.6374	7.309	+468
11:31	"	*	- 6.206	- 296	10:10	"	0.6792	7.082	+462
11:38 11:50	"	*	-6.359 -6.420	- 230 - 233		_ / _	- (ć -=0	1.1
12:00	11	*	-6.695	-242	10:25	He+ 6 cm H $_2$	0.6327 0.6287	6.938 6.820	+447 +446
12:07	11	*	-6.916	- 251	10:30 10:35	17	0.6298	6.743	+439
12:19	Ħ	*	- 7.005	- 254	10:50	11	0.6257	6.359	+417
12:50	11	*	-7.233	- 262	11:37	11	*	6.359 5.795 5.443	+379
Davis Ma	170 Cotolerat	0	O) Mamma a sea de servi	0E09a	12:01	"	*	5.443	+356
Run No.	199, Catalyst-	C00.96Fe2.04	04, Temperature	270 0	12:57	11	0.6275	5.114	+334
3133	Helium	0.0172	-4.724	-265	1:55 2:42	11	0.6230	4.835 4.690	+317 +306
3:38	He+2cm H ₂	0.0728 *	-4.825	-271	~				.,,00
3:40			-5. 19	- 290	4:02	Helium		4.931	+324
3:44	11 -	*							
	11	*	- 5.255	- 294		- / -			-A. I.
3:53		*	- 5.255 - 5.30	-294 -297	4:05	Не+6cm 0 ₂	0.6073	8.156	+544
3:53 3:56	11	* * *	-5.255 -5.30 -5.574	-294 -297 -312	4:05 4:10	He+6cm 0 ₂	0.6073 0.6023 *	8.156 8.297	+544 +563
3:53 3:56 4:00	11 11 11	* * * *	-5.255 -5.30 -5.57 ⁴ -5.297	-294 -297 -312 -297	4:05 4:10 4:19	"	0.6073 0.6023 * *	8.156 8.297	
3:53 3:56	11 11 11 11 11	* * *	-5.255 -5.30 -5.574 -5.297 -4.860	-294 -297 -312	4:05 4:10	11 11 11	0.6023 * * *	8.156 8.297 8.555 8.761 8.879	
3:53 3:56 4:00 4:04 4:18 4:23	11 11 11 11 11	* * * * * *	-5.255 -5.30 -5.574 -5.297 -4.860 -4.358 -4.323	-294 -297 -312 -297 -272 -244 -241	4:05 4:10 4:19 4:26 4:40 5:00	11 11 11	0.6023 * * * 0.6326	8,156 8,297 8,555 8,761 8,879 8,951	+56 3 +579
3:53 3:56 4:00 4:04 4:18 4:23 4:40	11 11 11 11 11 11	* * * * * *	-5.255 -5.30 -5.574 -5.297 -4.860 -4.358 -4.323 -4.208	-294 -297 -312 -297 -272 -244 -241 -236	4:05 4:10 4:19 4:26 4:40 5:00 6:50	" " " " "	0.6023 * * * 0.6326	8.156 8.297 8.555 8.761 8.879 8.951 9.135	+563
3:53 3:56 4:00 4:04 4:18 4:23 4:40 4:52	11 11 11 11 11 11 11 11	* * * * * *	-5.255 -5.30 -5.574 -5.297 -4.860 -4.358 -4.323 -4.208 -4.190	-294 -297 -312 -297 -272 -244 -241 -236 -234	4:05 4:10 4:19 4:26 4:40 5:00 6:50 7:40	11 11 11	0.6023 * * 0.6326 0.6473 *	8.156 8.297 8.555 8.761 8.879 8.951 9.135 9.141	+56 3 +579
3:53 3:56 4:00 4:04 4:18 4:23 4:40	11 11 11 11 11 11	* * * * * *	-5.255 -5.30 -5.574 -5.297 -4.860 -4.358 -4.323 -4.208	-294 -297 -312 -297 -272 -244 -241 -236	4:05 4:10 4:19 4:26 4:40 5:00 6:50 7:40 8:40	11 11 11 11 11	0.6023 * * * 0.6326	8.156 8.297 8.555 8.761 8.879 8.951 9.135 9.141 8.944	+56 3 +579
3:53 3:56 4:00 4:04 4:18 4:23 4:40 4:52 8:40	11 11 11 11 11 11 11 11 11	* * * * * * * * * * * *	-5.255 -5.30 -5.57 ¹ 4 -5.297 -4.860 -4.358 -4.323 -4.208 -4.190 -3.845	-294 -297 -312 -297 -272 -244 -241 -236 -234 -215	4:05 4:10 4:19 4:26 4:40 5:00 6:50 7:40 8:40 9:50	11 11 11 11 11 11 11 11 11 11	0.6023 * * 0.6326 0.6473 *	8.156 8.297 8.555 8.761 8.879 8.951 9.135 9.141	+56 3 +579
3:53 3:56 4:00 4:04 4:18 4:23 4:40 4:52 8:40	" " " " " " " " " " " " " " " " " " "	* * * * * * * * * * * *	-5.255 -5.30 -5.574 -5.297 -4.860 -4.358 -4.323 -4.208 -4.190 -3.845	-294 -297 -312 -297 -272 -244 -241 -236 -234 -215	4:05 4:10 4:19 4:26 4:40 5:00 6:50 7:40 8:40 9:50 10:35 11:20	11 11 11 11 11	0.6023 * * 0.6326 0.6473 * *	8.156 8.297 8.555 8.761 8.879 8.951 9.141 8.944 8.963 8.908 9.287	+56 3 +579
3:53 3:56 4:00 4:04 4:18 4:23 4:40 4:52 8:40 Run No.	11 11 11 11 11 11 11 11 11	* * * * * * * *	-5.255 -5.30 -5.57 ¹ 4 -5.297 -4.860 -4.358 -4.323 -4.208 -4.190 -3.845	-294 -297 -312 -297 -272 -244 -241 -236 -234 -259 -215 re 250°C	4:05 4:10 4:129 4:26 4:40 5:00 6:50 7:40 8:40 9:50 10:35	11 11 11 11 11 11 11 11 11 11	0.6023 * * 0.6326 0.6473 * *	8.156 8.297 8.555 8.761 8.879 8.951 9.135 9.141 8.963 8.908	+56 3 +579
3:53 3:56 4:00 4:04 4:18 4:23 4:40 4:52 8:40 Run No. 9:10 9:30 9:45	" " " " " " " " " " " " " " " " " " "	* * * * * * * * * * * *	-5.255 -5.30 -5.574 -5.297 -4.860 -4.358 -4.328 -4.208 -4.190 -3.845 -104, Temperatus 7.216 7.160 7.227	-294 -297 -312 -297 -272 -214 -241 -236 -234 -215 re 250°C +381 +381 +385	4:05 4:10 4:19 4:46 4:40 5:00 6:50 7:40 8:40 9:50 10:35 11:20	11 11 11 11 11 11 11 11	0.6023 * 0.6326 0.6473 * * * * * * * *	8.156 8.297 8.555 8.761 8.879 8.951 9.135 9.141 8.944 8.963 8.908 9.287 9.290	+563 +579 +579
3:53 3:56 4:00 4:04 4:18 4:23 4:40 4:52 8:40 Run No.	" " " " " " " " " " " " " " " " " " "	* * * * * * * *	-5.255 -5.30 -5.574 -5.297 -4.860 -4.358 -4.323 -4.208 -4.190 -3.845 104, Temperatum 7.216	-294 -297 -312 -297 -272 -244 -241 -236 -234 -259 -215 re 250°C	4:05 4:10 4:19 4:26 4:40 5:00 6:50 7:40 8:40 9:50 10:35 11:20 Run No.	""""""""""""""""""""""""""""""""""""""	0.6023 * 0.6326 0.6473 * * * * *	8.156 8.297 8.555 8.761 8.879 8.951 9.135 9.141 8.963 8.963 8.908 9.287 9.290	+563 +579 +579 +579
3:53 3:56 4:00 4:04 4:18 4:23 4:40 4:52 8:40 Run No. 9:10 9:30 9:45 9:55	""" "" "" "" "" "" "" "" "" "" "" "" ""	* * * * * * * * * * *	-5.255 -5.30 -5.574 -5.297 -4.860 -4.358 -4.323 -4.208 -4.190 -3.845 -104, Temperatum 7.216 7.160 7.227 7.777	-294 -297 -312 -297 -272 -214 -241 -236 -234 -215 re 250°C -381 +381 +385 +385	4:05 4:10 4:19 4:26 4:40 5:00 6:50 7:40 8:40 9:50 10:35 11:20 Run No.	11 11 11 11 11 11 11 11	0.6023 * 0.6326 0.6473 * * * * * * * * * * * * * * * * * *	8.156 8.297 8.555 8.761 8.879 8.951 9.135 9.141 8.963 8.963 8.908 9.287 9.290	+563 +579 +579 +579 e 250°C
3:53 3:56 4:00 4:04 4:18 4:23 4:40 4:52 8:40 9:30 9:45 9:55 9:56	" " " " " " " " " " " " " " " " " " "	* * * * * * * * * * * *	-5.255 -5.30 -5.574 -5.297 -4.866 -4.558 -4.323 -4.208 -4.190 -3.845 -104, Temperatus 7.216 7.160 7.227 7.777	-294 -297 -312 -297 -272 -214 -241 -236 -234 -215 re 250°C -381 +381 +385 +385	4:05 4:10 4:19 4:26 4:40 5:00 6:50 7:40 8:40 9:50 10:35 11:20 12:20 Run No. 10:27 10:27 10:41	147, Catalys	0.6023 * 0.6326 0.6473 * * * * * * * * * * * * * * * * * *	8.156 8.297 8.555 8.761 8.879 8.951 9.135 9.141 8.963 8.908 9.287 9.290 104, Temperatur 5.8662 5.774 5.913	+563 +579 +579 +579 e 250° c +745 +452 +450
3:53 3:56 4:00 4:04 4:18 4:40 4:52 8:40 9:10 9:30 9:45 9:55 9:55	" 141, Catalyst Helium He+6cm 02	* * * * * * - Co _{1.09} Fe _{1.9} * *	-5.255 -5.30 -5.574 -5.297 -4.860 -4.358 -4.323 -4.208 -4.190 -3.845 -104, Temperatum 7.216 7.160 7.227 7.777	-294 -297 -312 -297 -272 -214 -241 -236 -234 -215 re 250°C +381 +381 +385	#105 #110 #119 #126 #140 5100 6150 7140 8140 9150 10:25 11:20 Run No. 10:27 10:27	147, Catalys	0.6023 * 0.6326 0.6473 * * * * * * * * * * * * * * * * * * *	8.156 8.297 8.555 8.761 8.879 8.951 9.135 9.141 8.963 8.963 8.963 9.287 9.290 104, Temperature 5.8662 5.774 5.913	+563 +579 +579 +579 • 250°C
3:53 3:56 4:00 4:04 4:18 4:23 4:40 4:52 8:40 9:30 9:45 9:55 9:56	" " " " " " " " " " " " " " " " " " "	* * * * * * - Col.09Fel.9 * * *	-5.255 -5.30 -5.774 -5.297 -4.866 -4.558 -4.325 -4.208 -4.190 -3.845 7.216 7.160 7.227 7.777 10.010 10.184 10.265 10.339	-294 -297 -312 -297 -212 -214 -241 -236 -234 -215 re 250° c -385 +385 +385 +585 +552 +545 +5550	4:05 4:10 4:19 4:26 4:40 5:00 6:50 7:40 8:40 9:50 10:35 11:20 12:20 Run No. 10:27 10:27 10:41	147, Catalys	0.6023 * 0.6326 0.6473 * * * * * * * * * * * * * * * * * *	8.156 8.297 8.555 8.761 8.879 8.951 9.135 9.141 8.963 8.908 9.287 9.290 104, Temperatur 5.8662 5.774 5.913	+563 +579 +579 +579 e 250° c +745 +452 +450
3:53 3:56 4:00 4:04 4:123 4:40 4:52 8:40 9:30 9:45 9:56 9:58 10:02 10:07 10:15	ll-l, Catalyst Helium He+6cm O ₂	* * * * * * * * * * * * * * * * * * *	-5.255 -5.30 -5.574 -5.297 -4.860 -4.358 -4.323 -4.208 -4.190 -3.845 7.216 7.216 7.227 7.777 10.010 10.184 10.265 10.339 10.366	-294 -297 -312 -297 -272 -274 -244 -241 -236 -234 -215 re 250° C +384 +381 +385 +385 +385 +540 +545 +550 +552	#105 #110 #119 #126 #140 5100 6150 7140 8140 9150 10:35 11:20 12:20 Run No. 10:20 10:27 10:41	147, Catalys	0.6023 * 0.6326 0.6473 * * * * * * * * * * * * * * * * * *	8.156 8.297 8.555 8.761 8.879 8.951 9.135 9.141 8.963 8.963 8.963 9.287 9.290 104, Temperatur 5.8662 5.774 5.913 5.946 5.955	+563 +579 +579 +579 e 250°C +445 +445 +445 +444
3:55 3:56 4:00 4:04 4:18 4:23 4:40 4:52 8:40 9:10 9:45 9:55 9:56 9:56 9:56 9:56 10:02 10:07 10:15	### Helium He+6cm O2	* * * * * * * * * * * * * * * * * * *	-5.255 -5.30 -5.574 -5.297 -4.860 -4.358 -4.328 -4.208 -4.190 -3.845 -7.216 -7.160 -7.227 -7.777 -10.010 10.184 10.265 10.339 10.396 10.496	-294 -297 -312 -297 -212 -294 -241 -241 -236 -234 -215 re 250°C -381 +381 +385 +385 +385 +580 +545 +550 +550 +550	#105 #110 #119 #126 #140 5100 6150 7140 8140 9150 10:35 11:20 12:20 10:27 10:41 10:55 11:07	147, Catalys	0.6023 * 0.6326 0.6473 * * * * * * * * * * * * * * * * * * *	8.156 8.297 8.555 8.761 8.979 8.951 9.135 9.141 8.963 8.963 8.963 9.287 9.290 7.200 7.200 7.200 7.200 7.200 7.200 7.200 7.200 7.200 7.200 7.200 7.200 7.200 7.200 7.200 7.200 7.200 7.200 7.200 7.200	+563 +579 +579 +579 e 250°C +445 +452 +452 +445 +442
3:53 3:56 4:00 4:04 4:18 4:23 4:40 4:52 8:40 9:10 9:30 9:45 9:55 9:58 10:02 10:02 10:02 10:25	ll-l, Catalyst Helium He+6cm O ₂	* * * * * * * * * * * * * * * * * * *	-5.255 -5.30 -5.574 -5.297 -4.860 -4.358 -4.208 -4.190 -3.845 7.160 7.226 7.777 10.010 10.184 10.265 10.396 10.456 10.456	-294 -297 -312 -297 -214 -241 -241 -236 -234 -215 re 250° c -385 +385 +385 +585 +552 +540 +556	#105 #110 #119 #126 #140 5100 6150 7140 8140 9150 10:35 11:20 12:20 Run No. 10:20 10:27 10:41	147, Catalys Helium " " " " " " " " " " " " " " " " " "	0.6023 * 0.6326 0.6473 * * * * * * * * * * * * * * * * * *	8.156 8.297 8.555 8.761 8.879 8.951 9.135 9.141 8.963 8.963 8.963 9.287 9.290 104, Temperatur 5.8662 5.774 5.913 5.946 5.955	+563 +579 +579 +579 e 250°C +445 +452 +450 +441 +422 +415
3:55 3:56 4:00 4:04 4:18 4:23 4:40 4:52 8:40 9:10 9:10 9:45 9:55 9:56 9:58 10:02 10:07 10:12 10:20 10:25 10:25	### He+6cm O2	* * * * * * * * * * * * * * * * * * *	-5.255 -5.30 -5.574 -5.297 -4.860 -4.358 -4.323 -4.208 -4.190 -3.845 7.216 7.227 7.217 10.010 10.184 10.265 10.359 10.366 10.456 10.456 10.504	-294 -297 -312 -297 -272 -244 -241 -236 -234 -215 re 250° C +384 +385 +385 +385 +385 +552 +5540 +555 +556 +556 +557	#105 #110 #119 #126 #140 5100 6150 7140 8140 9150 10:35 11:20 12:20 10:27 10:41 10:55 11:107	147, Catalys:	0.6023 * 0.6326 0.6473 * * * * * * * * * * * * * * * * * * *	8.156 8.297 8.555 8.761 8.879 8.951 9.135 9.141 8.944 8.963 8.908 9.287 9.290 7.04, Temperatur 5.8662 5.774 5.913 5.946 5.955 5.652 5.534 5.328 5.057	+563 +579 +579 +579 e 250°C +145 +452 +452 +455 +445 +442 +415 +399 +379
3:53 3:56 4:00 4:04 4:18 4:23 4:40 4:52 8:40 9:10 9:30 9:45 9:55 9:58 10:02 10:02 10:02 10:25	141, Catalyst Helium He+6cm O ₂	* * * * * * * * * * * * * * * * * * *	-5.255 -5.30 -5.574 -5.297 -4.860 -4.358 -4.208 -4.190 -3.845 7.160 7.226 7.777 10.010 10.184 10.265 10.396 10.456 10.456	-294 -297 -312 -297 -214 -241 -241 -236 -234 -215 re 250° c -385 +385 +385 +585 +552 +540 +556	#:05 #:10 #:19 #:26 #:40 5:00 6:50 7:40 8:40 9:50 10:35 11:20 12:20 Run No. 10:27 10:41 10:55 11:14 11:14 11:26 11:28 11:50	147, Catalys Helium He+6cm H ₂	0.6023 * * 0.6326 0.6473 * * * * * * * * * * * * * * * * * * *	8.156 8.297 8.555 8.761 8.879 8.951 9.135 9.141 8.963 8.908 9.287 9.290 104, Temperatur 5.8662 5.774 5.913 5.946 5.955 5.652 5.534 5.328 5.057 4.965	+563 +579 +579 +579 e 250° c +445 +452 +450 +445 +444 +422 +415 +399 +379 +375
3:55 3:56 4:00 4:04 4:18 4:23 4:40 9:10 9:10 9:30 9:45 9:55 9:56 9:58 10:02 10:07 10:12 10:20 10:25 10:30 10:45	141, Catalyst Helium He+6cm O ₂	* * * * * * * * * * * * * * * * * * *	-5.255 -5.30 -5.574 -5.297 -4.860 -4.358 -4.323 -4.208 -4.190 -3.845 7.216 7.216 7.227 7.777 10.010 10.184 10.265 10.359 10.366 10.462 10.504 10.589 10.577	-294 -297 -312 -297 -214 -241 -241 -236 -234 -215 re 250° c +381 +385 +385 +385 +585 +580 +554 +556 +554 +556 +556	#105 #110 #119 #126 #140 5100 6150 7140 8140 9150 10:25 11:20 10:27 10:41 10:55 11:07 11:14 11:26 11:38 11:50 12:10	147, Catalys:	0.6023 * 0.6326 0.6473 * * * * * * * * * * * * * * * * * * *	8.156 8.297 8.555 8.761 8.879 8.951 9.135 9.141 8.944 8.963 8.908 9.287 9.290 1004, Temperatur 5.8662 5.774 5.913 5.946 5.955 4.869	+563 +579 +579 +579 e 250°C +445 +450 +445 +445 +445 +445 +399 +379 +379 +375 +367
3:55 3:56 4:00 4:04 4:18 4:23 4:40 9:10 9:10 9:30 9:45 9:55 9:56 9:58 10:02 10:07 10:12 10:20 10:25 10:30 10:45	## 141, Catalyst Helium He+6cm O ₂	* * * * * * * * * * * * * * * * * * *	-5.255 -5.30 -5.574 -5.297 -4.860 -4.358 -4.328 -4.208 -4.190 -3.845 -7.216 -7.160 -7.227 -7.777	-294 -297 -312 -297 -214 -241 -241 -236 -234 -215 re 250° c +381 +385 +385 +385 +585 +580 +554 +556 +554 +556 +556	#:05 #:10 #:19 #:26 #:40 5:00 6:50 7:40 8:40 9:50 10:35 11:20 12:20 Run No. 10:27 10:41 10:55 11:14 11:14 11:26 11:28 11:50	147, Catalys Helform H ₂	0.6023 * * 0.6326 0.6473 * * * * * * * * * * * * * * * * * * *	8.156 8.297 8.555 8.761 8.879 8.951 9.135 9.141 8.963 8.908 9.287 9.290 104, Temperatur 5.8662 5.774 5.913 5.946 5.955 5.652 5.534 5.328 5.057 4.965	+563 +579 +579 +579 e 250° c +445 +452 +450 +445 +444 +422 +415 +399 +379 +375
3:55 3:56 4:00 4:104 4:123 4:40 4:52 8:40 9:30 9:45 9:55 9:55 9:55 10:02 10:02 10:02 10:25 10:20 10:25 10:20 10:25 10:30 10:45 11:00	## Helium Helium Helium	* * * * * * * * * * * * * * * * * * *	-5.255 -5.30 -5.574 -5.297 -4.860 -4.358 -4.323 -4.208 -4.190 -3.845 7.216 7.227 7.777 10.010 10.184 10.265 10.356 10.456 10.456 10.456 10.504 10.569 10.577	-294 -297 -312 -297 -272 -244 -241 -236 -234 -215 re 250° C +381 +385 +385 +385 +585 +552 +540 +545 +552 +556 +556 +556 +556 +557 +556	#105 #110 #119 #126 #140 5100 6150 7140 8140 9150 10:25 11:20 10:27 10:41 10:55 11:07 11:14 11:26 11:38 11:50 12:10	147, Catalys Helform H ₂	0.6023 * 0.6326 0.6473 * * * * * * * * * * * * * * * * * *	8.156 8.297 8.555 8.761 8.879 8.951 9.135 9.141 8.963 8.908 9.287 9.290 104, Temperatur 5.8662 5.774 5.913 5.946 5.955 5.652 5.534 5.328 5.057 4.965 4.879 4.879	+563 +579 +579 +579 e 250°C +445 +445 +450 +445 +444 +422 +415 +399 +375 +362
3:55 3:56 4:00 4:08 4:18 4:40 4:52 8:40 9:10 9:30 9:45 9:55 9:56 9:58 10:02 10:07 10:15 10:20 10:25 10:30 11:00	141, Catalyst Helium He+6cm O ₂	* * * * * * * * * * * * * * * * * * *	-5.255 -5.30 -5.574 -5.297 -4.860 -4.358 -4.323 -4.208 -4.190 -3.845 7.216 7.160 7.227 7.777 10.010 10.184 10.265 10.339 10.356 10.462 10.569 10.577 10.119	-294 -297 -312 -297 -214 -214 -241 -236 -234 -215 re 250° c -381 +385 +385 +385 +385 +585 +550 +552 +554 +556 +557 +558 +563	#:05 #:10 #:19 #:26 #:40 5:00 6:50 7:40 8:40 9:50 10:35 11:20 10:27 10:41 10:55 11:07 11:11 11:14 11:26 11:38 11:50 12:10 2:49 3:06	147, Catalys Helium Helium Helium	0.6023 * 0.6326 0.6473 * * * t- Co _{1.09} Fe _{1.9} 0.5370 0.5220 0.5404 0.5497 0.5514 0.5482 0.5465 0.5465 0.5465 0.5463 0.54439 0.5469 0.5528	8.156 8.297 8.555 8.761 8.879 8.951 9.135 9.141 8.963 8.908 9.287 9.290 104, Temperatur 5.8662 5.774 5.913 5.946 5.955 5.652 5.534 5.328 5.057 4.879 4.870 4.559 4.559	+563 +579 +579 +579 e 250° c +745 +452 +450 +445 +445 +399 +379 +379 +379 +362 +362 +336 +349
3:55 3:56 4:00 4:104 4:123 4:40 4:52 8:40 9:30 9:45 9:55 9:55 9:55 10:02 10:02 10:02 10:25 10:20 10:25 10:20 10:25 10:30 10:45 11:00	### ##################################	* * * * * * * * * * * * * * * * * * *	-5.255 -5.30 -5.574 -5.297 -4.860 -4.358 -4.323 -4.208 -4.190 -3.845 7.216 7.227 7.777 10.010 10.184 10.265 10.356 10.456 10.456 10.456 10.504 10.569 10.577	-294 -297 -312 -297 -212 -294 -244 -244 -244 -236 -234 -215 re 250° C -384 +385 +385 +385 +385 +585 +556 +556 +556 +557 +556 +557 +558 +563	#105 #110 #119 #126 #140 5100 6150 7140 8140 9150 10:355 11:20 12:20 Rum No. 10:25 11:07 11:11 11:14 11:26 11:38 11:50 12:10 1:10 2:49 3:06 3:40	147, Catalys Helium " " He+6cm H ₂ " " " Helium "	0.6023 * * 0.6326 0.6473 * * * * * * * * * * * * * * * * * * *	8.156 8.297 8.555 8.761 8.879 8.951 9.135 9.141 8.963 8.963 8.928 9.290 104, Temperatur 5.8662 5.774 5.946 5.955 5.652 5.5328 5.057 4.965 4.879 4.879 4.559 4.625	+563 +579 +579 +579 e 250° C +445 +445 +445 +445 +444 +422 +415 +399 +375 +375 +367 +362 +366 +349 +547
3:55 3:56 4:00 4:04 4:18 4:40 4:52 8:40 9:10 9:30 9:45 9:55 9:56 9:58 10:07 10:15 10:20 10:25 10:30 10:45 11:00 1:04 1:06 1:06 1:10	Helium He+6cm O ₂ "" "Helium He+6cm H ₂	* * * * * * * * * * * * * * * * * * *	-5.255 -5.30 -5.574 -5.297 -4.860 -4.358 -4.328 -4.208 -4.190 -3.845 7.216 7.160 7.227 7.777 10.010 10.184 10.265 10.339 10.396 10.462 10.569 10.577 10.119 9.773 9.503 9.284 9.109	-294 -297 -312 -297 -212 -294 -241 -241 -236 -234 -215 -234 -215 -238 +385 +385 +385 +385 +580 +589 +550 +550 +556 +557 +558 +563 +563	#105 #110 #119 #126 #140 5:00 6:50 7:40 8:40 9:50 10:35 11:20 12:20 Run No. 10:27 10:41 10:55 11:07 11:11 11:14 11:26 11:38 11:50 12:10 1:10 2:49 3:06 3:40 4:47	147, Catalyst Helium "" "" "" "" "" "" "" "" "" "" "" "" ""	0.6023 * * 0.6326 0.6473 * * * * * * * * * * * * * * * * * *	8.156 8.297 8.555 8.761 8.879 8.951 9.135 9.144 8.963 8.963 8.989 9.287 9.290 104, Temperatur 5.8662 5.78662 5.7946 5.995 5.652 5.652 5.534 5.328 5.057 4.965 4.870 4.559 4.656	+563 +579 +579 +579 e 250°C +445 +452 +452 +455 +445 +445 +445 +415 +379 +375 +362 +362 +347 +347
3:55 3:56 4:00 4:04 4:18 4:23 4:40 4:52 8:40 9:10 9:30 9:45 9:55 9:56 9:58 10:02 10:02 10:02 10:03 10:45 11:00 1:04 1:06 1:09 1:100	Helium He+6cm O ₂	* * * * * * * * * * * * * * * * * * *	-5.255 -5.30 -5.574 -5.297 -4.860 -4.358 -4.208 -4.190 -3.845 -1.160 -7.216 -7.216 -7.27 -7.777 -10.010 -10.184 -10.265 -10.356 -10.456 -10.456 -10.456 -10.504 -10.504 -10.509 -10.577 -10.119 -9.773 -9.503 -9.284 -9.109 -8.654	-294 -297 -312 -297 -272 -274 -214 -236 -234 -215 re 250° C +381 +385 +385 +385 +585 +552 +554 +556 +556 +557 +556 +557 +556 +563	#105 #110 #119 #126 #140 5100 6150 7140 8140 9150 10:355 11:20 12:20 Rum No. 10:25 11:07 11:11 11:14 11:26 11:38 11:50 12:10 1:10 2:49 3:06 3:40	147, Catalys Helium " " He+6cm H ₂ " " " Helium "	0.6023 * * 0.6326 0.6473 * * * * * * * * * * * * * * * * * * *	8.156 8.297 8.555 8.761 8.879 8.951 9.135 9.141 8.963 8.963 8.928 9.290 104, Temperatur 5.8662 5.774 5.946 5.955 5.652 5.5328 5.057 4.965 4.879 4.879 4.559 4.625	+563 +579 +579 +579 e 250° C +445 +445 +445 +445 +444 +422 +415 +399 +375 +375 +367 +362 +366 +349 +547
3:55 3:56 4:00 4:04 4:18 4:23 4:40 9:10 9:10 9:45 9:55 9:55 9:56 9:58 10:02 10:07 10:15 10:20 10:25 10:30 10:45 11:00 1:04 1:06 1:06 1:06 1:06 1:06 1:06 1:06 1:06	Helium He+6cm O ₂ "" "Helium He+6cm H ₂	* * * * * * * * * * * * * * * * * * *	-5.255 -5.30 -5.574 -5.297 -4.860 -4.358 -4.323 -4.208 -4.190 -3.845 7.216 7.216 7.227 7.777 10.010 10.184 10.265 10.359 10.366 10.462 10.504 10.589 10.5777 10.119 9.773 9.284 9.109 8.654 8.455	-294 -297 -297 -297 -272 -244 -241 -236 -234 -215 re 250° C -381 +385 +385 +385 +385 +585 +556 +556 +556 +556 +556 +556 +5	#105 #110 #119 #126 #140 5:00 6:50 7:40 8:40 9:50 10:35 11:20 12:20 Rum No. 10:20 10:27 10:41 10:55 11:07 11:11 11:14 11:26 11:38 11:50 12:10 1:10 2:49 3:06 3:40 #147 8:20	147, Catalys Helium "" "" He+6cm H ₂ "" "" Helium ""	0.6023 * * 0.6326 0.6473 * * * * * * * * * * * * * * * * * *	8.156 8.297 8.555 8.761 8.879 8.951 9.135 9.141 8.963 8.908 9.287 9.290 104, Temperatur 5.8662 5.774 5.946 5.955 5.652 5.524 5.328 5.057 4.879 4.879 4.559 4.656 4.970	+563 +579 +579 +579 e 250° C +445 +445 +445 +445 +399 +375 +375 +362 +362 +366 +349 +347 +347 +346
5:55 3:56 4:00 4:04 4:18 4:40 4:52 8:40 9:10 9:30 9:45 9:55 9:58 10:02 10:25 10:25 10:30 10:45 11:00 1:04 1:06 1:09 1:20 1:20 1:25 1:35	Helium He+6cm O ₂	* * * * * * * * * * * * * * * * * * *	-5.255 -5.30 -5.574 -5.297 -4.860 -4.358 -4.208 -4.190 -3.845 -1.160 -7.216 -7.160 -7.227 -7.777 -10.010 -10.184 -10.265 -10.396 -10.462 -10.504 -10.504 -10.589 -10.577 -10.119 -7.73 -7.73 -7.73 -7.73 -7.73 -7.73 -7.73 -7.75 -7.77 -7.	-294 -297 -312 -297 -214 -215 -226 -234 -215 re 250° C -384 +381 +385 +385 +385 +385 +580 +540 +545 +550 +552 +556 +556 +556 +557 +556 +556 +557 +556 +556	#:05 #:10 #:19 #:26 #:40 5:00 6:50 7:40 8:40 9:50 10:35 11:20 12:20 Run No. 10:27 10:41 10:55 11:07 11:14 11:26 11:38 11:50 12:10 1:10 1:10 1:10 3:06 3:40 4:47 8:20	147, Catalyst Helium "" "" "" "" "" "" "" "" "" "" "" "" ""	0.6023 * * 0.6326 0.6473 * * * * * * * * * * * * * * * * * *	8.156 8.297 8.555 8.761 8.879 8.951 9.135 9.141 8.963 8.908 9.287 9.290 104, Temperatur 5.8662 5.774 5.946 5.955 5.652 5.534 5.328 5.057 4.879 4.559 4.655 4.879 4.655 4.970 7.491	+563 +579 +579 +579 e 250° c +445 +445 +452 +455 +445 +445 +415 +379 +375 +362 +346 +349 +347 +346 +533
3:55 3:56 4:00 4:104 4:123 4:40 9:100 9:100 9:100 9:45 9:55 9:56 9:58 10:02 10:07 10:125 10:20 10:25 10:20 10:45 11:00 1:04 1:09 1:100 1:25 1:25 1:25 1:25 1:25 1:25 1:25	Helium He+6cm O ₂ "" "" Helium He+6cm H ₂	* * * * * * * * * * * * * * * * * * *	-5.255 -5.30 -5.574 -5.297 -4.860 -4.358 -4.323 -4.208 -4.190 -3.845 -1.160 -7.227 -7.716 -10.10 -10.184 -10.265 -10.339 -10.566 -10.456 -10.569 -10.594 -10.569 -10.577 -10.119 -7.757 -7.7557	-294 -297 -297 -297 -272 -294 -214 -236 -234 -215 re 250° C +381 +385 +385 +385 +585 +552 +554 +556 +556 +557 +556 +557 +556 +563 +563	#105 #110 #119 #126 #140 5:00 6:50 7:40 8:40 9:50 10:35 11:20 12:20 Rum No. 10:20 10:27 10:41 10:55 11:07 11:11 11:14 11:26 11:38 11:50 12:10 1:10 2:49 3:06 3:40 #147 8:20	147, Catalyst Helium "" "" "" "" "" "" "" "" "" "" "" "" "	0.6023 * * 0.6326 0.6473 * * * * * * * * * * * * * * * * * * *	8.156 8.297 8.555 8.761 8.879 8.951 9.135 9.141 8.963 8.908 9.287 9.290 104, Temperatur 5.8662 5.774 5.946 5.955 5.652 5.524 5.328 5.057 4.879 4.879 4.559 4.656 4.970	+563 +579 +579 +579 e 250° c +1450 +1450 +1450 +1455 +349 +375 +362 +346 +347 +346 +533 +538
3:55 3:56 4:00 4:18 4:18 4:40 4:52 8:40 9:10 9:45 9:55 9:56 9:58 10:07 10:25 10:20 10:25 10:30 11:00 1:04 1:06 1:06 1:06 1:10 1:20 1:20 1:20 1:20 1:20 1:20 1:20	Helium He+6cm O ₂	* * * * * * * * * * * * * * * * * * *	-5.255 -5.257 -5.297 -4.860 -4.358 -4.323 -4.208 -4.190 -3.845 7.216 7.216 7.160 7.227 7.777 10.010 10.184 10.265 10.339 10.396 10.462 10.504 10.589 10.577 10.119 9.773 9.503 9.284 9.109 8.654 8.495 8.007 7.326	-294 -297 -297 -297 -272 -294 -244 -244 -236 -234 -215 re 250° C	#:05 #:10 #:19 #:26 #:40 5:00 6:50 7:40 8:40 9:50 10:35 11:20 Run No. 10:20 10:27 10:41 10:55 11:07 11:11 11:14 11:26 11:38 11:50 12:10 1:10 1:10 2:49 3:06 3:40 #:47 8:20 8:29 8:31 8:46 8:56	147, Catalyst """ """ """ """ """ """ He+6cm H ₂ "" "" "" Helium "" "" "" Helium "" "" "" "" He+2cmO ₂	0.6023 * * 0.6326 0.6473 * * * * * * * * * * * * * * * * * *	8.156 8.297 8.595 8.761 8.879 9.951 9.135 9.141 8.963 8.908 9.287 9.290 104, Temperatur 5.8662 5.774 5.913 5.946 5.955 5.652 5.534 5.328 5.057 4.879 4.879 4.879 4.625 4.670 7.590	+563 +579 +579 +579 • 250° c
8 mm No. Rum No. 9:10 9:30 9:45 9:55 9:56 9:58 10:02 10:07 10:15 11:00 1:04 1:06 1:09 1:10 1:25 1:35 1:35 2:23	Helium He+6cm O ₂	* * * * * * * * * * * * * * * * * * *	-5.255 -5.30 -5.277 -5.297 -4.860 -4.358 -4.208 -4.190 -3.845 -4.190 -3.845 -7.216 -7.227 -7.777 -10.010 -10.184 -10.265 -10.359 -10.366 -10.456 -10.504 -10.569 -10.577 -10.119 -7.73 -7.73 -7.73 -7.73 -7.73 -7.73 -7.73 -7.73 -7.73 -7.73 -7.7567 -7.326 -7.023 -6.510	-294 -297 -297 -297 -272 -244 -241 -236 -234 -215 re 250° C +384 +385 +385 +385 +552 +5540 +5552 +556 +556 +5563 +557 +558 +563	#105 #110 #119 #126 #140 5:00 6:50 7:40 8:40 9:50 10:35 11:20 12:20 Rum No. 10:20 10:27 10:41 10:55 11:07 11:11 11:14 11:26 11:38 11:50 12:10 1:10 2:49 3:06 3:40 #147 8:20 8:29 8:29 8:21 8:46 8:56 9:00	147, Catalys "" "" "" "" "" "" "" "" "" "" "" "" "	0.6023 * * 0.6326 0.6473 * * * * * * * * * * * * * * * * * * *	8.156 8.297 8.555 8.761 8.879 8.951 9.135 9.141 8.963 8.963 8.928 9.280 104, Temperatur 5.8662 5.774 5.946 5.955 5.652 5.534 5.955 5.652 5.534 5.955 4.879 4.870 4.559 4.656 4.970 7.618 7.590 7.593	+563 +579 +579 +579 • 250° C +445 +445 +445 +445 +445 +445 +399 +375 +362 +362 +346 +347 +347 +346 +538 +542 +543 +543 +543 +543
3:55 3:56 4:00 4:04 4:18 4:40 4:52 8:40 9:10 9:30 9:45 9:55 9:56 9:58 10:07 10:15 10:20 10:25 10:35 10:36 11:00 1:06 1:06 1:06 1:09 1:10 1:20 1:20 1:20 1:20 1:20 1:20 1:20	Helium He+6cm O ₂	* * * * * * * * * * * * * * * * * * *	-5.255 -5.30 -5.257 -5.277 -4.860 -4.358 -4.208 -4.190 -3.845 -4.190 -7.216 -7.160 -2.27 -7.777 -10.010 -10.184 -10.265 -10.359 -10.366 -10.456 -10.504 -10.504 -10.508 -10.509 -10.577	-294 -297 -297 -297 -272 -294 -244 -241 -236 -234 -215 re 250° c	#:05 #:10 #:19 #:26 #:40 5:00 6:50 7:40 8:40 9:50 10:35 11:20 Run No. 10:20 10:27 10:41 10:55 11:07 11:11 11:14 11:26 11:38 11:50 12:10 1:10 1:10 2:49 3:06 3:40 #:47 8:20 8:29 8:31 8:46 8:56	147, Catalyst """ """ """ """ """ """ He+6cm H ₂ "" "" "" Helium "" "" "" Helium "" "" "" "" He+2cmO ₂	0.6023 * * 0.6326 0.6473 * * * * * * * * * * * * * * * * * *	8.156 8.297 8.595 8.761 8.879 9.951 9.135 9.141 8.963 8.908 9.287 9.290 104, Temperatur 5.8662 5.774 5.913 5.946 5.955 5.652 5.534 5.328 5.057 4.879 4.879 4.879 4.625 4.670 7.590	+563 +579 +579 +579 • 250° c
8 mm No. Rum No. 9:10 9:30 9:45 9:55 9:56 9:58 10:02 10:07 10:15 11:00 1:04 1:06 1:09 1:10 1:25 1:35 1:35 2:23	Helium He+6cm O ₂	* * * * * * * * * * * * * * * * * * *	-5.255 -5.30 -5.277 -5.297 -4.860 -4.358 -4.208 -4.190 -3.845 -4.190 -3.845 -7.216 -7.227 -7.777 -10.010 -10.184 -10.265 -10.359 -10.366 -10.456 -10.504 -10.569 -10.577 -10.119 -7.73 -7.73 -7.73 -7.73 -7.73 -7.73 -7.73 -7.73 -7.73 -7.73 -7.7567 -7.326 -7.023 -6.510	-294 -297 -297 -297 -272 -244 -241 -236 -234 -215 re 250° C +384 +385 +385 +385 +552 +5540 +5552 +556 +556 +5563 +557 +558 +563	#105 #110 #119 #126 #140 5:00 6:50 7:40 8:40 9:50 10:35 11:20 12:20 Rum No. 10:20 10:27 10:41 10:55 11:07 11:11 11:14 11:26 11:38 11:50 12:10 1:10 2:49 3:06 3:40 #147 8:20 8:29 8:29 8:21 8:46 8:56 9:00	147, Catalys "" "" "" "" "" "" "" "" "" "" "" "" "	0.6023 * * 0.6326 0.6473 * * * * * * * * * * * * * * * * * * *	8.156 8.297 8.555 8.761 8.879 8.951 9.135 9.141 8.963 8.963 8.928 9.280 104, Temperatur 5.8662 5.774 5.946 5.955 5.652 5.534 5.955 5.652 5.534 5.955 4.879 4.870 4.559 4.656 4.970 7.618 7.590 7.593	+563 +579 +579 +579 • 250° C +445 +445 +445 +445 +445 +445 +399 +375 +362 +362 +346 +347 +347 +346 +538 +542 +543 +543 +543 +543

^{*} AT assumed unchanged from previous reading

 $[\]star\Delta T$ assumed unchanged from previous reading

B. Raw Data and Calculated Thermoelectric Power for Adsorption Runs

TABLE XII (continued)

Adsorption Runs

Time	Atmosphere	AT (millivolts Cr-Al couple)	EMF (millivolts)	Thermoelectric Power MV/°C
		- Co _{O,96} Fe _{2,04} 04	, Temperature	
11:20	Helium	0,1130	- 0,8968	= 300
11:50	11	0,1061	- 0,7739	- 299
12:05	11	0,1055	- 0,7689	- 300
12:15	He+6cm H ₂	0,1051	- 0.7689	- 300
12:25	11 -	0.1041	- 0.7630	- 301
12:40	11	0,1036	- 0.7605	- 301
1:12	11	0.1042	-0.7636	- 300
1:55	11	0,1050	-0.7650	-2 99
5:25	11	0.1093	-0.7940	= 298
		t- Co _{0.96} Fe _{2.04} C	4, Temperature	120°C
5:40	Не+6ст Н	0.2045	-1.5015	- 303
5:45	11 -	0,2840	-2 ,0390	- 294
5:47	11	0.3184	=2 _* 3477	= 303
5:55	11	0,3721	- 2.6989	297
6:05	11	0.4056	-2,9261	- 296
6:30	11	0,4276	-3,0847	- 296
8:00	tr	0.4349	-3.1286	-29 6
Run No,	159, Catalyst	- co _{0.96} Fe _{2.04} 04	, Temperature	180°C
8:30	Helium	0,5795	-4.3194	- 306
8:45	11	0.5776	<u>4</u> ,3094	- 306
			· * * * * * * * * * * * * * * * * * * *	J 5 5
9:00	He+10cm H2	0,5668	<u>4</u> , 2454	- 206
9:10	11	0.5664	-4, 2436	- 306
10:00	11	0,5719	-4.2201	- 301
11:45	11	0.5738	-4,1733	- 298
2:45	11	0.5699	=4,0800	- 293
6:25	11	0.5706	<u>-</u> 4,0277	-289
9:30	11	0,5762	<u>-4</u> ,0454	- 287
8:00	a m 11	0,5653	=3,0+)+ =3,9265	= 285
0,000	NO TITE	○☆ ノ ○ノノ	-J. JLUJ	-20)

APPENDIX II

SAMPLE CALCULATION

Sample calculations of activation energy and pre-exponential factor for a typical hydrogen-deuterium exchange run are given below. Run No. 111, using Co_{1.03}Fe_{1.97}O₄ catalyst, is selected for this example solution. The data plot for Run No. 111 is given in Figure 21. The calculation techniques for determining the activation energy and pre-exponential factor are outlined in Chapter II, section D.

A. Activation Energy Calculation

As indicated by Equation (41), the activation energy may be determined from the slope of the $\mathbf{L}[v_aT_i]vs$. $1/T_i$ plot, where T_i is the temperature required at each flow rate v_i to reach the constant per cent conversion, p. The procedure was repeated for three values of per cent conversion, (i.e., i = 1, 2, 3).

Per Cent Conversion p	v _a cc./min.	Temperature °K	$v_a T$	$l_n\left(\frac{\mathbf{v_a}^T}{10}\right)$	<u>1</u> T
. 275	9.95	333.5	3318	5.804	.0029985
	15.00	338.2	5073	6.229	.0029568
	20.00	341.9	6838	6.527	.0029248
, 350	9.95 15.00	337.1 341.9	3354 5129	5.815 6.240	.0029240 .0029664 .0029248
.425	20.00	345.7	6914	6.538	.0028927
	9.95	340.1	3384	5.284	.0029403
	15.00	345.1	5176	6.249	.0028977
	20.00	348.8	6977	6.548	.0028666

Per Cent Conversion Activation Energy Calculation E = (1.987)(slope)

.275 E =
$$(1.987)$$
 $\left[\frac{6.5 - 5.8}{299.8 - 292.6}\right] (10^{-3})$ = 19.0 Kcal/mole

.350 E =
$$(1.987) \left[\frac{6.5 - 5.8}{296.8 - 289.6} \right] (10^{-3}) = 19.2 \text{ Kcal/mole}$$

*425 E =
$$(1.987 \left[\frac{6.5 - 5.8}{294.3 - 286.8} \right] (10^{-3})$$
 = 18.6 Kcal/mole

B, Pre-exponential Factor Calculation

As indicated by Equation (54),

$$ln k_o = E/kT + ln \left[\frac{mTPa}{\sqrt{TaP}} \right]$$
 (54)

where m is the slope of a plot of $\mathcal{L}_n\left[\frac{1}{1-p}\right]$ vs. $\frac{1}{v_a}$. The values of p and v_a for this plot are determined from Figure 21, at constant temperature. This procedure is repeated for three values of temperature. The smaple calculation below is made at a temperature of 67.5°C.

v _a	р	<u>l</u> 1-p	$ln\left[\frac{1}{1-p}\right]$	1 v _a
20.0	. 250	1.333	.288	.0500
15.0	, 324	1.480	" 392	.0667
9.9	<u>.</u> 437	1.778	. 576	.1005

$$\ln k_0 = \ln \left[\frac{mTP_a}{VT_aP} \right] + \frac{E}{kT}$$

$$lnk_0 = ln \left[\frac{(5.6)(340.5)(14.6)}{(.43)(296.0)(14.6)} + \frac{19.0}{(1.987)(340.5)} \right]$$

$$lnk_0 = 2.7 + 28.1 = 30.8.$$

APPENDIX III

COMPARISON OF FERRITE MATERIALS USED IN EXCHANGE STUDIES AND THERMOELECTRIC POWER STUDIES

A. Hydrogen-Deuterium Exchange Studies

Co_{0.98}Fe_{2.02}O₄ Crushed Pellet B. Thermoelectric Power Studies

Co_{0.96}Fe_{2.04}O₄

1. X-Ray Diffraction Pattern

2. Bulk Density

5.2 gm./cc.

5.3 gm./cc.

Figure 35. Comparison of X-Ray Diffraction Patterns and True Bulk Densities of Ferrite Materials Used in Exchange Studies and Thermoelectric Power Studies.

TABLE XIII. CO0.96Fe2.0404 X-Ray Diffraction Pattern Calculation

Line Number	Intensity**	mm	29	đ	h ² +k ² +1 ²
1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 1 5 6 7 8 9 0 1 2 3 4 1 5 6 1 7 8 9 0 1 2 2 3 4 2 4	30 50 100 4 2 50 2 30 70 80 3 2 5 20 5 20 5 20 10 45 16 30	29,880 28,495 27,865 27,665 27,490 26,475 25,265 24,575 24,575 24,575 23,515 23,515 23,990 22,465 22,070 21,415 21,010 20,290 19,035 18,315 17,485	21.32 35.17 41.47 45.47 45.22 50.62 55.37 67.47 74.37 81.62 88.92 90.22 95.47 99.42 105.97 110.02 117.22 136.97 145.27	4.84 2.91 2.256 2.415 2.326 2.092 1.925 1.718 1.610 1.480 1.415 1.368 1.374 1.263 1.209 1.172 1.091 1.098 .988 .968 .961	3 8 12 12 * 16 19 24 27 32 5 * 43 44 48 516 59 47 76 80
25	5	16.720	150.92	. 920	83

*These two lines are caused by iron contamination in the cobalt target used in the x-ray diffraction apparatus. These lines are apparent for the two strong intensities, 100 and 80. The ratio of the d values of the strong intensity lines to the d values of the extra lines should equal the ratio of the iron and cobalt wave lengths, 1.098. This calculation is given below:

45.22/41.97 = 1.098 and 81.62/74.37 = 1.098

**Center = 32.012

APPENDIX IV

X-RAY FLOURESCENT SPECTROMETER ANALYSES DATA

TABLE XIV.

X-Ray Flourescent Data for Catalyst Samples

Sample	Side	Peak 1	Height Co	Fe/Co	Average	Std. Dev.	Sample	Side	Peak I Fe	Height Co	Fe/Co	Average	Std. Dev.
^{Co} 1.07 ^{Fe} 1.93 ^O 4	1	75.2 77.6 76.3 78.0 76.8 77.2 78.1 78.1 78.3 78.4	76.2 77.6 78.3 76.8 77.8 77.2 77.1 77.7 78.2 78.4 77.0	.987 1.000 .974 1.016 .987 1.000 1.013 1.005 .999 .999 1.002	1.001	.0128	^{Co} 0.98 ^{Fe} 2.02 ^O 4*	1	83.2 84.7 85.5 85.5 84.3 85.7 84.9 85.7 84.9 85.6 85.6	74.8 74.1 74.2 74.0 75.6 74.6 95.0 74.3 75.1 75.0	1.112 1.150 1.142 1.153 1.131 1.137 1.132 1.145 1.153 1.153 1.151 1.127	1,1367	.0141
	2	82.9 81.9 82.4 83.4 84.0 81.8 83.0 84.5 84.0 83.3	84.8 84.2 83.6 84.6 83.8 84.5 83.8 84.5 84.8 84.8	.978 .966 .979 1.005 .977 1.005 .976 .982 .983 1.000 .991	0.9859	,0118		2	76.1 76.0 75.6 75.5 73.9 74.8 76.8 75.1 74.4 75.5 74.7	66.2 66.8 66.0 65.6 65.5 66.4 67.0 66.2 64.9	1.150 1.138 1.145 1.151 1.127 1.127 1.127 1.121 1.126 1.140	1.140	.0141
					0.,00,0	.0110	*Sample reground	l betwe	en each a	analysis		1.1.0	.01.1
^{Co} 1.03 ^{Fe} 1.07 ^O 1	1	74.5 74.4 76.3 76.0 75.7 76.7 75.6 75.6 75.6 75.6	71.2 71.9 71.6 71.3 71.2 71.8 72.7 72.6 72.7 72.2 71.4 71.6	1.046 1.035 1.066 1.063 1.068 1.041 1.039 1.047 1.056	1.0525	.0114	^{Co} 0.93 ^{Fe} 2.07 ⁰ 4	1	78.6 77.6 78.9 78.4 78.9 77.9 78.2 78.3 78.8 79.7	64.3 63.4 64.2 64.5 64.2 64.4 64.4 62.4 63.7	1.222 1.214 1.244 1.221 1.223 1.235 1.235 1.214 1.239 1.231 1.266 1.235	1,2316	.0139
	2	5502736454 844.36454 884.354.454 88888 8888 8888 8888	79.5 81.0 81.2 80.2 81.3 81.5 79.7 80.2 80.8 80.8 81.2 81.0	1.050 1.043 1.034 1.050 1.042 1.034 1.049 1.046 1.046 1.032 1.038 1.054	1.0427	.0022		2	86.1 86.4 85.4 86.7 86.5 86.5 87.5 87.9 86.4	71.7 70.7 70.4 70.1 70.0 71.5 70.1 71.4 70.7 70.9 71.4 70.5	1.201 1.222 1.213 1.237 1.236 1.210 1.222 1.211 1.238 1.240 1.213 1.226	1,222	.0125

TABLE XV.

X-Ray Flourescent Data for Mixtures with Known Fe/Co Ratios

Sample	Side	Peak He Fe	eight Co	Fe/Co	Average	Std. Dev.	Sample	Side	Peak F	leight Co	Fe/Co	Average	Std. Dev.
^{Co} 0.90 ^{/Fe} 2.10	1	83.4 83.8 83.2 83.5 83.5 83.2	64.3 64.5 64.2 64.7 64.4	1.297 1.299 1.296 1.291 1.293 1.292	1.295	.0091	^{Co} 1.10 ^{/Fe} 1.90	1	75.2 75.9 75.6 76.0 75.3 75.5	79.6 79.2 79.7 80.0 79.3 81.2	0.945 0.958 0.949 0.950 0.950	.947	.0085
	2	85.5 85.9 85.4 86.0 85.1	67.0 66.7 66.6 67.0 67.3 67.4	1.276 1.289 1.279 1.275 1.278	1.277	.0077		2	76.8 76.7 76.3 76.0 75.9 76.4	80.3 80.8 80.2 80.0 80.0	0.956 0.040 0.951 0.950 0.949 0.947	.951	.0029
co _{1.0} /Fe _{2.0}	1	80.8 81.4 81.1 81.2 80.9 81.3	72.9 73.3 72.9 72.7 72.7 73.4	1.108 1.111 1.112 1.117 1.113 1.108	1,112	.0098							
	2	83.0 83.7 83.4 83.2 83.5 83.1	75.4 75.6 75.9 76.5 75.5 76.5	1.101 1.107 1.099 1.089 1.106 1.086	1,098	.0091							

APPENDIX V

CHEMICAL ANALYSES OF RAW MATERIALS

TABLE	VI. Analyses of Fe ₂ 0 ₃ and CoCO ₃			
Fe ₂ 0 ₃	(Baker and Adamson Quality, Reagent grade, General Chemical Division, Allied Chemica	l and	Dye Cc	rp.)
Assay	Fe ₂ 0 ₃)	min,	99.0	%
Ins Sul C op Zin	mum Limits of Impurities cluable in HCl cates (So ₄) cer (Cu) c (Zn)		0.20 0.20 0.00)) 5
	stances not precipitated by ${ m H_{ m L}OH}$ (as sulfates)		0,10)

CoCO₃ (Reagent grade cobalt carbonate, J. T. Baker Chemical Company)

Assay as Co	47.8	%
Insoluable in HCl	0.005	
Chloride (Cl)	0.001	
Nitrogen Compounds (as N)	0,005	
Sulfates (So4)	0.003	
Lead (Pb)	0.003	
Copper (Cu)	0,002	
Iron (Fe)	0.001	
Nickel (Ni)	0.05	
Alkalides and Earths (SO_{l_1})	0.24	

APPENDIX VI

ENERGY OF FORMATION OF CoFe₂O₁₄

The standard free energy of formation of $CoFe_2O_1$ may be calculated from the following data:

Reaction*	Standard Free Energy of Reaction $\triangle G_{\mathrm{T}}$, cal.	Accuracy Kcal.	Temperature Range °K	Reference
$2\langle c_0 \rangle = 2\langle c_0 \rangle + (o_2)$	111,800 - 33.8T	2	298 - 1400	57
$\langle \text{FeO} \rangle = \langle \text{Fe} \rangle + \frac{1}{2} (0_2)$	55,620 - 10.83T	3	298 - 1642	57
$\langle \text{Fe}_3 \text{O}_4 \rangle = \langle \text{FeO} \rangle + \frac{1}{2} (\text{O}_2)$	74 ,6 20 - 29.9T	3	298 - 1642	57
$3\langle \text{Fe}_2 \text{O}_3 \rangle = 2\langle \text{Fe}_3 \text{O}_4 \rangle + \frac{1}{2}(\text{O}_2)$	59,620 - 33.62T	8	298 - 1460	57
⟨Co⟩ + ⟨Fe ₂ 0 ₅ ⟩ = ⟨CoFe ₂ 0 ₄ ⟩	- 5,000**		1275	××
$(H_2) + \frac{1}{2}(O_2) = (H_2O)$	-58,900 + 13.1T	1	298 - 2500	57

Calculated Standard Free Energy of $CoFe_2O_4$

$$\langle \text{Co} \rangle + 2 \langle \text{Fe} \rangle + 2 \langle \text{O}_2 \rangle \longrightarrow \langle \text{CoFe}_2 \text{O}_4 \rangle$$

$$\Delta G_{m} = -241,490 + 69.67T$$

Equilibrium Oxygen Pressure

$$log_{10} Po_2 = \frac{-241,490 + 69.67T}{9.14T} = 7.64 - \frac{26,420}{T}$$

If $P(O_2)$ is replaced by the equivalent $\frac{FH_2O}{PH_2}$, the following equations apply:

* \langle \rangle indicates solid, () indicates gas

**Estimate from data by Schmalzried (82) for similar spinel reactions.

BIBLIOGRAPHY

- l. Aigrain, P. and Dugas, C. Z., Z. Elektrochem., <u>56</u>, 363, (1952).
- 2. Alkhazov, T. G., Belenskii, M. S., Izvestia Vysshikh Ucheb. Zavendenii, Neft i Gas, 3, 73, (1960).
- 3. A. P. I. Project 44, "Mass Spectral Data", Serial No. 452,453, (1950).
- 4. Becker, J. A., Green, C. B., Pearson, G. L., Trans. Am. Inst. Elect. Engrs. 65, 711, (1946).
- 5. Bevan, D. J. M. and Anderson, J. S., Disc. Faraday Society, 8, 235, (1950).
- 6. Bielanski, A., Deren J., and Haber, J., Nature, 179, 668, (1957).
- 7. Bielanski, A., Deren J., Haber, J., and Sloczynski, J., Proc. International Congress on Catalysis, 2nd, Paris, 1960, 2, 1653, (1961).
- 8. Bielanski, A., Deren J., Haber J., Sloczynski, J., and Wilkowa, J., Bull. acad. polon. sci., Ser. Sci., Chim geol. et geograph, 1, 333, (1959).
- 9. Bleakney, W., Phys. Rev. 40, 496, (1932); 41, 32, (1932).
- 10. Block, J. and Chon, H. Z., Elektrochem., 60, 912, (1956).
- 11. Bloem, J., Philips Research Repts., 13, 167, (1958).
- 12. Boreskov, G. K., Doklady Akad. Nauk SSSR, 127, 591, (1959).
- 13. Brewer, A. K., J. Phys. Chem. 32, 1006, (1928).
- 14. Cimino, A., Molinari, E., Cipollini, E., Gass. Chim. ital., 90, 79, 91, 120, (1960).
- 15. Culver, R. V. and Tompkins, F. C., Advances in Catalysis, 11, 68, (1959).
- 16. de Boer, J. H., "Electron Emission and Adsorption Processes", Cambridge University Press, London, 1935.
- 17. de Nobel, D., Philips Research Repts., 14, 361, (1959).

- 18. Dogramadzi, N. N., Matic, Z. B., Bull. Inst. Nuclear Sci., "Boris Kidrich", 11, 155, (1961).
- 19. Dowden, D. A., Mackenzie, N., and Trapnell, B. M. W., Proc. Roy. Soc. A237, 245, (1956).
- 20. Economos, G., J. Am. Ceram. Soc., 38, 241, (1955).
- 21. Economos, G., J. Am. Ceram. Soc., 38, 628, (1959).
- 22. Economos, G. and Clevenger, T. R., Jr., J. Am. Ceram. Soc., 43, 48, (1960).
- 23. Emmett, P. H., "Catalysts", Volz, Reinhold Publishing Corp., New York, 1955.
- 24. Enikeyev, E. H., Margolis, L. I., and Roginskii, S. Z., Doklady Akad. Nauk SSSR, 124, 606, (1959).
- 25. Evans, U. R., "Metallic Corrosion, Passivity, and Protection", Edward Arnold and Co., London, 1937.
- 26. Farrar, R. L., and Smith, H. A., J. Phys. Chem. 59, 763, (1955).
- 27. Finkelnburg, W. and Humbach, W., Naturwiss, 42, 35, (1955).
- 28. Frilzche, H., Z. Physik, 133, 422, (1952).
- 29. Fukutome, M. and Kusano, K., Kogyo Kagaku Zasshi, 63, 1186, (1960).
- 30. Garner, W. E., Advances in Catalysis, 9, 169, (1957).
- 31. Garner, W. E., Gray, T. J., and Stone, F. S., Proc. Roy. Soc., A197, 296, (1949).
- 32. Garrett, C. G. B., J. Chem. Phys., 33, 966, (1960).
- 33. Gorter, E. W., Proc. I. R. E., 43, 1945 (1955).
- 34. Gray, T. J., Disc. Faraday Society, 8, 331, (1950).
- 35. Halpern, J., Advances in Catalysis, 11, 301, (1959).
- 36. Harrison, L. G. and McDowell, C. A., Proc. Roy. Soc., <u>A228</u>, 66, (1955).
- 37. Hauffe, K., Advances in Catalysis, 7, 213, (1955).
- 38. Hauffe, K. and Engell, H. J., Z. Elektrochem., 56, 366, (1952).

- 39. Hauffe, K., Glang, R., and Engell, H. J., Z. physik Chem., 201, 223, (1952).
- 40. Hauffe, K. and Vierk, A. L., Z. physik Chem., 196, 160, (1950).
- 41. Heckelsberg, L. F., Clark, A., and Bailey, G. C., J. Phys. Chem., 60, 559, (1956).
- 42. Holm, V. C. F. and Blue, R. W., Ind. Eng. Chem., 44, 107, (1952).
- 43. Huston, A. R., in "Semiconductors", (Hannay, N. B., editor), p. 541, Reinhold Publishing Corporation, New York, 1959.
- 44. Jonker, G. H., unpublished measurements, (mentioned in Ref. 46).
- 45. Jonker, G. H., J. Phys. Chem. Solids, 9, 165, (1959).
- 46. Jonker, G. H. and van Houten, S., in "Halbleiterprobleme Band VI", p. 118, Verlag Friedr. Vieweg and Sohn, Braunschweig, 1961.
- 47. Keier, N. P. and Chizhikova, G. I., Doklady Akad. Nauk SSSR, 120, 830, (1955).
- 48. Keier, N. P. and Kutseva, L. N., Doklady Akad. Nauk SSSR, 117, 259, (1957).
- 49. Keier, N. P., Roginskii, S. Z., and Sazonovo, I. S., Izvest. Akad. Nauk SSSR, Ser Fiz, 21, 183, (1957).
- 50. Kirshenbaum, I., "Physical Properties and Analysis of Heavy Water", (Urey, H. C. and Murphy, G. M., editors), McGraw-Hill Book Company, Inc., New York, 1951.
- 51. Kittel, C., "Introduction to Solid State Physics", John Wiley and Sons, New York, 1956.
- 52. Kmetko, E. A., Phys. Rev. 99, 1642A, (1955).
- 53. Korsunovskii, G. A., Doklady Akad. Nauk SSSR, <u>134</u>, 1394, (1960).
- 54. Krawczynski, Dissertation, Munich, (1956).
- 55. Kroger, F. A., Vink, H. J., and Volger, J., Physica, <u>20</u>, 1095, (1954); Philips Research Repts. 10, 39, (1955).
- 56. Krusemeyer, H. J. and Thomas, D. G., J. Phys. Chem. Solids, <u>1</u>, 78, (1958).
- 57. Kubaschewski, O., and Evans, E. L., "Metallurgical Thermodynamics", Pergamon Press, New York, 1958.

- 58. Kubokawa, Y. and Toyama, O., J. Phys. Chem. 60, 833, (1956).
- 59. Kuchaev, J. L. and Boreskov, G. K., Problemy Kinetiki i Kataliza, 10, 108, (1960).
- 60. Langmiur, I., J. Am. Chem. Soc. 38, 2221, (1916); 40, 1361, (1918); Trans. Faraday Society, 17, 607, (1922).
- 61. Law, J. T. in "Semiconductors", (Hannay, N. B., editor), p. 676, Reinhold Publishing Corporation, New York, 1959.
- 62. Leonard-Jones, J. G., Trans. Faraday Society, 28, 333, (1932).
- 63. Linde, V. R., Margolis L. Y. and Roginskii, S. Z., Doklady Akad. Nauk SSSR, 136, 860, (1961).
- Mason, D. R., "Semiconductor Theory and Technology", Engineering Summer Conference, The University of Michigan, (1962). (To be published by McGraw-Hill Book Company, Inc., New York).
- 65. Matveev, K. and Boreskov, G. K., Problemy Kinetiki i Kataliza, 8, 165, (1955).
- 66. Molinari, E. and Parravano, G., J. Am. Chem. Soc., 75, 5233, (1953).
- 67. Morin, F. J. in "Semiconductors", (Hannay, N. B., editor), p. 600, Reinhold Publishing Corporation, New York, (1959).
- 68. Morrison, S. R., Advances in Catalysis, 7, 259, (1955).
- 69. Myosnikov, I. A. and Pshezhetsky, S. Y., Problemy Kinetiki i Kataliza, 8, 175, (1955).
- 70. Nier, A. O. C., Stevens, C. M., and Rustad, B., S. A. M. Report A-573, March 17, 1943.
- 71. Nyrop, J. E., "The Catalytic Action of Surfaces", Williams and Norgate, London, 1937.
- 72. Otwinowska, H., Treszczanowixz, E., and Ciboroski, S., Actes intern. Congr. Catalyse, 2nd, Paris 1960, 2, 1733, (1960).
- 73. Parravano, G. and Boudart, M., Advances in Catalysis, 7, 47, (1953).
- 74. Parravano, G. and Domenicali, C. A., J. Chem. Phys., <u>26</u>, 359, (1957).
- 75. Penzkofer, Dissertation, Munich, (1956).

- 76. Rideal, E. K. and Wansbrough-Jones, O. H., Proc. Roy. Soc., Al23, 202, (1929).
- 77. Rittenberg, D., Bleakney, W., and Urey, H. C., J. Chem. Phys., 2, 48, (1934).
- 78. Robin, J. and Benard, J., Compt. rend. 232, 1830, (1951); Compt. rend. 23, 734, (1952).
- 79. Roginskii, S. Z., Problemy Kinetiki i Kataliza, Akad. Nauk SSSR, Trudy Konf., 1958, 10, 5, (1960).
- 80. Roginskii, S. Z. and Schultz, E., Z. physik. Chem. <u>A138</u>, 21, (1928).
- 81. Roiter, B. D. and Paladino, A. E., J. Am. Ceram. Soc. 45, 128, (1962).
- 82. Schmalzried, H., Z. physik Chem. Neue Folge, 25, 178, (1960).
- 83. Schmidt, O., Chem. Revs., 12, 363, (1933).
- 84. Schuster, M. C. and Fullam, E. F., Ind. Eng. Chem., <u>18</u>, 653, (1946).
- 85. Schwab, G. -M., Angew, Chem., 73, 399, (1961).
- 86. Schwab, G. -M., and Block, J., Z. Elektrochem. <u>58</u>, 756, (1954); Z. physik Chem. N. F., 1. 42, (1954).
- 87. Schwab, G. -M., Roth, E., Grintzos, C., and Mavrakis, N., in "Structure and Properties of Solid Surfaces", p. 464, University of Chicago Press, Chicago, 1953.
- 88. Slater, J. C., "Handbuch der Physik", Vol. 19, J. Springer, Berlin, 1956.
- 89. Smiltens, R., J. Am. Chem. Soc., 79, 4881, (1957).
- 90. Solymosi, F., Magyar Tudomanyos Akad. Kens. Tudomanyak Ostalyonak Kozlemenyei, 13, 97, (1960).
- 91. Stockmann, F., Z. Physik, 127, 563, (1950).
- 92. Svadlenak, R. E. and Scott, A. B., J. Am. Chem. Soc., 79, 5385, (1957).
- 93. Taylor, H. S. and Liang, S. C., J. Am. Chem. Soc., 69, 1306, (1947).

- 94. Taylor, H. S. and Strother, C. O., J. Am. Chem. Soc., <u>56</u>, 586, (1934).
- 95. Temkin, M. I., J. Phys. Chem. (U.S.S.R.) 15, 296, (1941).
- 96. Urey, H. C. and Teal, G. K., Revs. Modern Phys. 7, 34, (1935).
- 97. van Houten, S., J. Phys. Chem. Solids, <u>17</u>, 7, (1960).
- 98. van Uitert, L. G., J. Chem. Phys., 23, 1883, (1955); 24, 306, (1956).
- 99. Verwey, E. J. W., in "Semiconducting Materials", p. 151, Butterworth Scientific Publications, London, 1951.
- 100. Verwey, E. J. W., Haaijman, P. W., Romeijn, F. C., and van Oosterhout, G. W., Philips Research Repts., 5, 173, (1950).
- 101. Wagner, C., Z. physik. Chem. B22, 181, (1933).
- 102. Wagner, C., J. Chem. Phys., 18, 69, (1950).
- 103. Wagner, C. and Hauffe, K., Z. Elektrochem., 44, 172, (1938).
- 104. Watson, H., Jr., J. Appl. Phys., 32, 120, (1961).
- 105. Weisz, P. B., J. Chem. Phys. 20, 1483, (1952); ibid 21, 1531, (1953).
- 106. Weller, S. W. and Voltz, S. E., J. Am. Chem. Soc. <u>75</u>, 5227, (1953); Z. physik. Chem. Frankfort, N. S., <u>5</u>, 100, (1955).
- 107. Wicke, E., Z. Elektrochem., 53, 279, (1949).
- 108. Winter, E. R. S., Advances in Catalysis, 10, 196, (1958).
- 109. Wolkenstein, Th., Uspekhi Fiz. Nauk, <u>60</u>, 249, (1956).
- 110. Wolkenstein, Th., J. chim. phys., 54, 175, (1957).
- lll. Wolkenstein, Th., Advances in Catalysis, 9, 807, 818, (1957).
- 112. Wolkenstein, Th., Advances in Catalysis, 12, 189, (1960).
- 113. Wolkenstein, Th., "Theorie Electronique de la Catalyse sur les Semi-conducteurs", Mason and Cie, Paris, 1961.

NOMENCLATURE

Surface area, m²/gm. Α Proportionality constant between pressure runs and mass a₁...a₆ spectrometer peak height (see Table II) Proportionality constant between (pressure)² and mass b₁...b₇ spectrometer peak height (see Table II) Ъ Adsorption coefficient Defined by Equation (24) bo đ. Electron jump length, cm, see Equation (1) Average particle diameter, microns đ. Average interplanar spacing (see Table XIII) đ. \mathbf{E} Activation energy in Arrheius equation, Kcal/gm. mole Energy of adsorption $\mathbf{E}_{\mathbf{1}}$ Energy of desorption $\mathbf{E}_{>}$ Defined by Equation (25) E_{Ol} E₀₂ Defined by Equation (26) Energy of acceptor level Ea E_h Energy of surface acceptor level Energy of donor level E_{d} Fermi level $\mathbf{E}_{\mathbf{f}}$ Eg Energy of conduction level Charge on electron е Base of natural logarithms е Planck's constant h h,k,l Miller indices I Ionization potential

I	Mass spectrometer peak height (i=2,3,4refers to mass of molecule)
k	Boltzmann's constant
k	Rate Constant
^k o	Pre-exponential factor in Arrhenius equation
kl	Rate constant for adsorption
k ₂	Rate constant for desorption
k _{Ol}	Defined by Equation (27)
k ₀₂	Defined by Equation (28)
ln	Natural logarithm (to the base e)
m*	Effective mass
m	Defined by Equation (53)
N	Concentration of sites available for electrons and holes, cm-3
$\mathbb{N}_{\mathbb{A}}$	Total concentration of acceptors (ionized and unionized)
N_{B}	Total concentration of surface sites
$^{ m N}_{ m C}$	Concentration of states in conduction level
N_{D}	Total concentration of donors (ionized and unionized)
N_{V}	Concentration of states in valence level
n	Concentration of electrons in conduction level
n ₂	Concentration of holes in valence levels
P	Pressure
p	Per cent conversion of deuterium to hydrogen-deuteride
Q	Heat of adsorption
q	Activation energy for lattice deformation

```
r
            Rate of reaction
  S
            Surface site for adsorption
            Temperature, °K
  T
  t
            Time
  V
            Void volume of reaction, cc.
            Flow rate through reactor at S.T.P. cc./min.
  ٧
            Flow rate through reactor at actual temperatures and
  v_{a}
            pressure, cc./min.
            Energy of interaction between adsorbed atom and surface
  \mathbf{W}
            Rate of adsorption
  W٦
  \nabla
            Rate of desorption
  X
            Extra contribution to transport energy levels of electrons
  ×
             \prec (kT)
  B
            Extra contribution to transport energy levels of holes
 \beta'
             \boldsymbol{\beta} (kT)
  X
            Defined by Figure 6 and Equations (25) and (26)
 Δ
            Indicates a difference (i.e., \Delta T = T_2 - T_1)
            Thermoelectric power, wv/°C
 Θ
            Per cent surface coverage
 Θ
            Mobility, cm^2/v, sec.
μ
μ
            Abbreviation for micron
            Frequency of lattice vibrations, sec -1
 v
II
            Peltier coefficient
            Catalyst density
Σ
            Summation
σ
            Electrical conductivity
```

Work function

V

Subscripts

1	Electrons, or adsorption
2	Holes, or desorption
A	Acceptor level, or molecule A
a	Actual conditions
В	Surface acceptor level
C	Conductor level
0	Initial state
+	Пime

Valence level

