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p/a = Fi/cq = 2a (2) 
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REFERENCE is MADE to the simplified "Approach to Supersonic 

Airfoil Theory" of W. E. Strohmeyer and D. R. Gero in the 
August issue, as corrected in the October issue (JOURNAL OF THE 
AERONAUTICAL SCIENCES) . The following simpler and still more 
direct approach has been found particularly well suited to under
graduate instruction because of the easy visualization of the 
geometrical concepts involved. The customary symbols are 
employed, as noted in the accompanying sketch. 

I t is assumed as usual that the general flow conditions at the 
given airfoil section are known and two-dimensional in character. 
The figure shows a simple example at M = y/%\ a thin, flat 
plate moving horizontally through the air at a small angle of 
attack a. Consider what has happened since the LE was one 
chord length back of where the TE is now. At that moment, 
pressure impulses traveled out from the LE' in all directions, 
relative to the air at a rate of V/M ft. per sec.; and, in the time 
required for the wing to go a distance 2c, will have reached the 
circumference of a circle of radius c \ / 2 - Similar circles could be 
drawn from all other points through which the LE has passed, 
defining a zone limited by a common tangent line (the so-called 
Mach line) in this case at 45° to the direction of motion, as shown. 

Consider the air now as in motion relative to the airfoil's lower 
surface. By construction, the pressure and deflection of air (be
cause of its reaction on the airfoil surface) are confined to the re
gion above and to the right of the line LE-A extended, because 
only within that zone is it possible for a disturbance to be trans
mitted. A particle of air striking directly under the LE will be 
deflected out of its original path through the angle a, but will 
have no immediate effect on particles still farther below. Parti
cles of air which have gone before, however, have made it possible 
for all the air in the triangle LE-TE-A to be similarly deflected 
and, for negligible changes in density, it is uniformly so deflected. 
Furthermore, due to the weak oblique shock wave and small de
flection, the longitudinal component of speed in this triangle is 
still approximately V. 

The total section of air (normal to the direction of motion) 
acted upon over a unit of span is then TE-A or approximately c; 
the mass of air acted upon is p Vc slugs per sec , and the downward 
velocity imparted to it is Va. The rate of change of momentum 
per sec , constituting the normal force for the lower surface (lbs. 
per ft. of span), is 

Fi = pV2ca = 2qca (i) 

The surface pressure per unit area is then Fi/c, and the gage 
pressure coefficient 

Similar analysis holds for the upper surface, the pressure there 
being numerically equal but negative. Thus the section lift 
coefficient (substantially equal to the normal force coefficient): 

Ci = (Fi - Fu/cq) = 4a (3) 

I t must be noted that Eqs. (2) and (3) are valid for the assumed 
M = s/2 only. However, it is clear from the same principles 
tha t in any case the length of the line TE-A, and hence the react
ing force, will be proportional to tan fi, which in this case happened 

As tan M = V Vikf2 to be unity. 
pressure and lift (for a < / i ) become: 

1, the final equations for 

p/q = (2a/ VM2 - 1) 

Ci = (4a/ VM2 - 1) 

(4) 

(5) 

In Eq. (4), a is considered negative when in a direction to pro
duce negative p. The corresponding drag (neglecting surface 
friction) is then simply the rearward component of the normal 
force, or approximately in this case: 

Cdii = Cia = (4a2 / VM2 - 1) (6) 

Here the subscript w indicates that it is wave drag, because the 
actual energy loss making up this element of the drag occurs in 
two oblique shock waves, one below the leading edge (practically 
coincident with the line LE-A) and a similar one above the trail
ing edge. 

The same principles and the same result, expressed in Eq. (4) 
hold for any small increment of surface in two-dimensional flow. 
Hence, aerodynamic forces on finitely thick or curved surfaces 
complying with these general conditions can be found by simple 
summation or integration of the pressure times each increment of 
area involved. For a cambered airfoil of finite thickness with 
sharp LE and TE, C\ integrates to the same form as Eq. (5) if a 
is taken as the angle of attack of a straight line joining the LE 
and TE. 

Corrections for sweep or tip loss are negligible for small LE 
sweep angle (up to about 10°) and for tips cut back at approxi
mately the Mach angle. The theory becomes increasingly in
accurate at M —» 1, and in any case where the distance from the 
given airfoil section to the tip is less than c/ VM2 - 1. Subject 
to these and other minor qualifications, there is no induced angle 
in the sense employed in low-speed airfoil theory, and no direct 
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effect of aspect ratio. Thus wave drag pertains to thickness as 
well as to lift (angle-of-attack), and can be superimposed from 
results of separate computations. From test data thus far avail
able, frictional drag appears to be of the same order of magnitude 
as under subsonic conditions. 

Unsteady Flow Theory in Dynamic Stability 

John W. Miles 
Department of Engineering, University of California at Los Angeles 
August 22, 1949 

IN A PAPER delivered at a recent I.A.S. meeting,1 I. C. Statler 
concluded that "unsteady flow effects are not important in 

the calculation of the dynamic stability and response of high-speed 
aircraft." With this broad conclusion, we cannot agree, and we 
wish to point out (what we regard as) certain fallacies in both the 
interpretation of the experimental data and the theoretical 
arguments presented in his paper. At the same time, we wish 
to modify some earlier predictions of our own.3 

In calculating the dynamic stability derivatives, we may gener
ally assume that the reduced frequency k{= coc/2U) is less than 
0.1. I t follows that we may neglect terms of order k or higher 
in the aerodynamic forces in phase with displacements or ac
celerations, since they are to be compared with aerodynamic 
terms of order, zero, and the very large mechanical inertia terms, 
respectively. In the case of the aerodynamic forces in phase with 
the velocities, however, we must consider all terms of order k 
(including terms of order k log k), and it follows that the first-
order effects of unsteady flow considerations will manifest them
selves only in the damping terms. Moreover, in a system which 
is sufficiently underdamped to exhibit marked resonances, damp
ing exerts only a second-order effect on the response of the system 
away from resonance, which will be governed by displacement or 
"spring" forces at lower frequencies and inertia forces at higher 
frequencies, whereas the magnitude of the resonant response is 
critically dependent on damping. Hence, the effects of discrep
ancies between the predictions of steady and unsteady flow 
theory as to the dynamic response of a system must be inferred 
from its behavior in the vicinity of resonance. Examination 
of Statler's results reveals that this is indeed the case, albeit he 
draws his conclusions from the behavior at the higher frequencies. 

In two recent discussions in tnese columns, we have presented 
the first-order (in frequency) results for two-dimensional, thin 
airfoils in subsonic flow.2' 3 (The first-order results for super
sonic flow had been given earlier, for both the two- and three-
dimensional cases.4' 5) These results indicate that the damping 
moment due to rotary motion (i.e., the total component of mo
ment in phase with the angular velocity) is of order k log k for 
sufficiently small k, so that the pitch-damping derivative be
comes infinite as log k when k approaches zero, indicating two-
dimensional, unsteady flow considerations to be increasingly 
important (in determining the damping per cycle) as k is decreased, 
a t least if strip theory is used, as in Statler's calculations. More
over, the results of reference 3 indicate that this logarithmic term 
requires a compressibility correction factor of (1 — Jkf2) -8/2 

rather than the usual (1 — M2)~1/2. Unfortunately, as shown 
by Jones6 and Reissner,7 strip theory is completely inadequate 
for the treatment of unsteady flow effects at extremely low fre
quencies. Indeed, the reduction of Reissner's results for small 
k reveals tha t a term k log (k AR), where AR is the aspect ratio, 
must be subtracted from the term k log k in the two-dimensional 
result, whence the term log k in the pitch-damping derivative is 
replaced by the considerably smaller (in magnitude) term log 
AR, and there is no singularity at k = 0. (There are, of course, 
additional aspect ratio corrections.) I t follows that the num

bers (predicting a large reduction in damping) cited by us in ref
erence 3 are far from realistic and that Statler's use of strip theory 
cannot be a valid basis for any general conclusion. Nevertheless, 
an investigation of a conventional, subsonic configuration of a 
low aspect ratio tail aft of a straight wing based on the results of 
references 3 and 7, reveals that the only important unsteady flow 
effect appears in the "complex downwash lag" at the tail, in 
agreement with Statler's conclusion. (This investigation was 
carried out as a part of a more general study being conducted at 
the North American Aerophysics Laboratory.) However, this 
conclusion cannot be extended to such configurations as the 
canard or the flying wing or to any configuration in supersonic 
flow without further analysis, and, in particular, it appears that 
unsteady flow considerations will exercise a profound effect on 
the pitch damping of a flying wing in either subsonic or super
sonic flow. Moreover, unsteady flow effects, particularly the 
complex sidewash correction, may be expected to exercise a pro
nounced effect on the lateral damping characteristics of a vertical 
fin, as implied by the tendency of many high-speed, jet aircraft 
(with fins designed on the basis of steady flow theory) to "snake." 
Thus, while we should agree with Statler's results for the par
ticular configuration which he considered, we cannot agree with 
his conclusion that this happy state of affairs can be anticipated 
generally. 

As previously pointed out,2' 3 one of the errors in applying 
steady flow theory to unsteady flows is the failure of the former 
to include the term p(d(f>/dt) in the Euler equation for the pres
sure. This same objection must be made to Statler's analysis of 
the oscillating fuselage. The potential given by the Munk 
theory8 for a slender body of revolution is indeed valid for non-
steady flow, but the lift per unit length on a body of revolution is 

*L{xt t) / d 1 5 \\~S(x)w(x, t)~] • 

where w(x, t) is the instantaneous downwash (positive down), 
and Six) is the cross-sectional area at x. (We hope to discuss this 
situation more extensively in a future paper.) The operation of 
time differentiation on that par t of >w(x, t) in phase with the dis
placement evidently gives rise to a damping force. If q is the 
angular velocity, / the length, and So the base area, the damping 
derivative due to an oscillation about a point a aft of the nose, is 
found to be given by 

dM/[d(ql/U)] = -2(pU*/2)Sol (1 - jj (2) 

The result obtained by Statler (which, incidentally, retains some 
terms not justified by slender body theory) is appropriate to flight 
along a curved flight path at constant angle of attack, but not to 
the case of oscillation about a straight flight path. Indeed, it is 
the confusion of these two situations which has been primarily 
responsible for the failure to account correctly for the effects 
of unsteady flow in the calculation of dynamic stability deriva
tives. 

We do not wish to appear unduly critical of Statler's paper and 
remark that the errors we have discussed are extant in much of 
the antecedent work on the same subject. There has been a 
good deal of specious reasoning relative to nonstationary processes 
in moving reference frames; in many cases this may not have 
led to serious error, but it may be recalled tha t Zeno's sophistry 
with respect to time-dependent phenomena did not, in fact, pre
vent Achilles from catching the tortoise nor the arrow from 
catching Achilles. 
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