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A relatively simple empirical equation is set up to fit 
the experimental values of profile drag determined from 
N.A.C.A. tests on uniform-section rectangular airfoils of 
varying thickness, camber, etc., and at varying lift coeffi­
cients. This is made the basis for determining the profile 
drag of the more general airfoil whose chord and section 
vary along its span, and specifically the practical case of 
straight taper in planform and thickness rat io. The 
recognized theoretical expression for induced drag is 
similarly put into more useable form, and combined with 
the profile drag to get the following complete expression 
for the drag coefficient of a tapered airfoil: 

C2) = [R.N.]m -°- 1 5 (0 .0065^+0.125^o 2 ) (H-0.7CL
3 ) 

+0 .318C L
2 (S /& 2 + 7 ) 

where [ R . N . ] m is the Reynolds number based on the mean 
geometric chord; t0 is the root thickness ra t io; b2/S is the 
aspect ra t io ; and <p, \p and y are mathematical functions 

of the taper characteristics which have been put into 
convenient tabular and chart form. After showing tha t 
the equation checks closely with known experimental 
results for tapered airfoils, up to near the stall, numerical 
computation is extended to a series of cantilever airfoils, 
varying in taper characteristics, but related to each other 
on an assumed basis of structural equivalence. Interesting 
conclusions of practical importance are derived therefrom, 
showing particularly the value of tapering the planform 
almost to a point, the small importance of tapering the 
thickness ratio in such a case, and the comparatively 
large drag of the elliptical wing. It is incidentally brought 
out tha t the present criterion for the computation of wing 
bending moments is in error on the unsafe side for highly 
tapered wings; and an improved formula for lateral center 
of pressure is established, its distance from the wing root 
being given b y : xp = b(0A85+0.0S5Ky-0.020Ky

2) for 
straight tapered wings without twist; where b is the span, 
and Ky is the ratio of t ip chord to root chord. 

AT the present time there is a sufficient mass 
of wind tunnel data available on the drag of 

airfoils of rectangular planform so that it is 
possible to compute quite accurately the re­
sistance of such wings at angles of attack below 
the burble point.1 In the case of tapered wings, 
however, an estimation of the drag is consider­
ably more difficult. There is no satisfactory 
method for the determination of the profile drag 
which takes into account all of the factors in­
volved, while the theoretical methods developed 
by Glauert2 for the calculation of the induced 
drag of tapered wings are quite unsuited to 
engineering use. 

The present paper is concerned with the de­
velopment of a method whereby the complete 
drag coefficient for a wing of any arbitrary taper 
in planform and in thickness, aspect ratio, and 
root thickness ratio is determined as a function 
of the Reynolds number based on the mean 
geometric chord. The results are applied to the 
calculation of several tapered wings for which 

1 G. J . Higgins, The Prediction of Airfoil Characteristics, 
N.A.C.A. T.R. No. 312 (1929). 

2 H. Glauert, Aerofoil and Airscrew Theory (1926), Chap­
ter X L 

experimental data are available and excellent 
agreement is found between the wind tunnel 
tests and the computed values. 

The method also lends itself readily to a con­
sideration of the relative merits of the tapered 
wing as compared with other planforms from a 
combined aerodynamical and structural stand­
point. Such an analysis is carried out and the 
superiority of highly tapered wings in this regard 
is definitely shown. 

1. CALCULATION OF PROFILE DRAG 

The basic assumption made in the present 
method for the calculation of the profile drag of 
a tapered wing is that the wing may be divided 
into a series of elementary chordwise strips each 
of which acts independently of the others. The 
drag of the entire wing may then be obtained by 
integration from test results on its component 
sections. Such a process is greatly facilitated by 
a simple empirical equation connecting the 
essential variables. 

The first step is the determination of an 
expression for the profile drag coefficient of an 
elementary section of the wing. Making use of 
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the large mass of data3 now available from the 
Variable Density Wind Tunnel of the National 
Advisory Committee for Aeronautics, at Rey­
nolds numbers of approximately 3,000,000, the 
following equation will be found to fit the family 
of symmetrical airfoils of varying thickness 
ratio /. At zero lift the minimum profile drag 
coefficient may be written in the form 

C.D0 min. = a i + # 2 / 2 . (1) 

With a i = 0.006S, a 2 = 0.125, this matches the ob­
served points within the limits of experimental 
error, fits the condition / = 0 better than the 
similar equation suggested in reference 3, and 
by having one less term is more easily handled. 

It should be mentioned here that the tests on 
which this formula is based are subject to 
several errors4 so that the values of a\ and a2 may 
be subject to future modification when more 
accurate test data are available. For this reason 
the analysis has been carried out using the 
algebraic coefficients in Eq. (1), and the nu­
merical values are then introduced in the final 
results. 

For a given value of CL, Eq. (1) may be 
modified empirically so as to read 

CD9=(a1+a2fi)(l+azCL
8). (2) 

This expression represents approximately the 
envelope of the curves of CD0 against CL for 
airfoils of varying camber in the range below 
the stall. For the data given in reference 3, 
a 3 has the value 0.7. The introduction of the 
term in CL3 in Eq. (2) is not entirely rational 
since for negative lifts the drag would decrease 
instead of increase. However, the expression 
agrees very well with observed data and its 
use may therefore be justified on an empirical 
basis as long as we restrict ourselves to positive 
values of CL> 

In the case of a tapered wing, consideration 
must be given to the fact tha t the chord may 
decrease markedly from root to tip and that 
there may consequently be an appreciable change 

3 Jacobs, Ward and Pinkerton, The Characteristics of 
Seventy-Eight Related Airfoil Sections from Tests in the 
Variable Density Wind Tunnel, N.A.C.A. T.R. No. 460 
(1933). 

4 Reference 3, pp. 45-46. 

in the Reynolds number of the elementary wing 
strips of very highly tapered wings. I t will now 
be assumed that the drag coefficient is related 
to the Reynolds number, R. N., by the exponential 
law 

CD. = A[R.N.]»/«, CL). (3) 

This expression is not entirely satisfactory 
except for a flat plate set at zero angle of at tack 
in which case the drag is pure skin friction. For 
the high Reynolds numbers considered in this 
work, the boundary layer is undoubtedly almost 
completely turbulent and n has the value of 
— 1/5 based on the assumption of a boundary 
layer velocity distribution which varies as the 
l /7 th power of the distance from the plate. 
Karman,5 however, has pointed out that as the 
Reynolds number increases the exponent 1/7 of 
the velocity distribution becomes smaller and 
smaller with a consequent change in the value 
of n. He has derived a logarithmic law for skin 
friction which is undoubtedly more exact than 
the exponential one but which is much too 
complicated to be used in this problem. 

A more serious problem lies in the determina­
tion of the scale effect on the form drag for air­
foils of finite thickness and camber. At present no 
satisfactory theory is available for the calcula­
tion of this effect and we are therefore again com­
pelled to resort to empirical methods. Although 
such experimental data as exist are rather meager 
and incomplete, fairly satisfactory agreement 
with wind tunnel tests is obtained if Eq. (3) is 
used for the entire profile drag coefficient and 
n is put equal to —0.15. 

The profile drag coefficient of any element of 
the wing may thus be written as 

CDo = htR.N.lHai+a2f)(l+asCL*), (4) 

where R . N . = Vy/v= pVy/n, y being the chord of 
the section, V the velocity of flight, v the 
kinematic coefficient of viscosity, p the mass 
density of the air, and fx its absolute viscosity 
coefficient. At the standard temperature of 60°F, 
/JL has the value 3.78 X10~7. The value of h is 
determined by the fact that if [ R . N . ] e is the 
Reynolds number of the experiments on which 

5 Th. von Karman, Turbulence and Skin Friction J. 
Aero. Sci. 1, 1 (1934). 
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FIG. 1. Tapered wing diagram. 

the values of ah a% and a 3 are based, then 
A[R.N.]«n=l. 

We are now prepared to take up the calculation 
of the profile drag of the tapered wing. Practical 
considerations usually demand a straight taper 
from the longitudinal axis out to near each tip. 
If t varies from root to tip, the same requirement 
for straight elements usually applies, but this 
does not mean that t itself varies uniformly. 
Referring to Fig. 1, let z be the maximum thick­
ness and y the chord of any given section at a 
distance x from the root. Then locally the thick­
ness ratio is t=z/y. If the wing elements focus 

at 0 in plan view, then in general they will focus 
at 0' in front elevation if t is to be other than 
uniform. Neglecting any change of shape or 
rounding off at the tip, let 

Kv=yT/yo; Kz = zT/z0; Kt = tT/h=Kz/Ky, (5) 

where the subscripts T and 0 designate the tip 
and root, respectively. If b is the total span, 
then 

2x(\-Kyy 
y=yo\ i-

r 2x{l-Ky)l 

v—~J: 
; = s0 1 

2x{l-Kz) 

} (6) 

and 
[b~2x(l-Kz)i 

lb-2x(l-Kv)l 

The drag coefficient for any section of the wing 
is obtained from Eq. (4), so that considering 
only the case of no aerodynamic twist, or in 
other words, a constant lift coefficient along the 
span, we get for the profile drag of the entire 
wing 

/

6/2 / Vy\ n 

(a1+a2t
2)(— ) ydx 

-b/2 \ V / 

2hqyQl J (l+a3CL
3)J a1-\ra2to

2 

where q=oV2/2 is the dynamic pressure. The 
profile drag coefficient for the entire wing is 
CD0 = DO/QS1 where the wing area is S=(y'ob/2) 
X(l+Ky). We shall also find it most convenient 
to introduce the Reynolds number referred to 
the mean geometric chord, this latter quantity 
being ym = y0(l+Ky)/2. After carrying out the 
integration we finally obtain 

where [R.N.]W= Vym/v, 

2«+1h(l-Ky"+2) 
(P~(n+2)(l+Ky)^(l-KS 

1 

(7) 

(1+Ky)^(l-Ky) 

b-2x(l-Kz)}
2 

b-2x(l-Ky) I-
2x(l-Ky)-r

+l 

I dx, 

and 

X 

h = 

^ 2 = 

^ 3 = " 

2n+lh(l-Ky
n+i) / 1 - i T A 2 

\l-Ky) ' 

n \ l-Kyf 

2n+2h(l-Kv»
+1) /1-K. 

n + 2 

-2-+lh{\-Ky
n 

n+l \I-KJ 

It will be noted at once that both functions 
<p and \p become indeterminate as Ky approaches 
unity, corresponding to the rectangular wing. 
The limiting value of & is easily found by 

file:///i-kJ
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differentiation to be Lim <p=h; Ky->1. In order and expand in a power series in X. We get after 
to find the limiting value of \p, we put Ky= 1 —X simplification 

+ = 
2n+% r ( l - i Q 2 f 3dX ic2\

2 c3X
3 c4X

4 

1 +_ +— 
(2-X)" + 1 L 3 I 4 10 12 56 

2ciX c2X
2 c3X

3 c4X
4 

1 3 4 15 72 

c A c2X2 c3X3 c4X4 

+ {1 + + 
2 6 24 120 

}} (8) 

where 

so that 

Ci = n — 1, 

C3 = (n-l)(n-2)(n-3), 
c4 = (»- l ) (»-2)(»-3)(»-4) , 

Lim ^ = A [ ( l - i Q 2 / 3 - ( l - i Q + l ] 
X->0 

= (V3)(1 + X , + ^ 2 ) , 

which agrees with what would be obtained 
directly for the rectangular wing. 

For the data considered in this paper we have, 
as mentioned on page 169, a\ = 0.0065, a2= 0.125, 
^3 = 0.7 when Re= 3,000,000, so that h= 9.366 
while we shall take n~ — 0.15. The corresponding 
values of <p and \p for various values of Ky and Kz 

are given in Table I and are plotted in Fig. 2. In 
determining the values of -ft, it was found that 
in order to get satisfactory results when using 
the expression (7) it was necessary to carry 
through the computations with a large number 
of significant figures for values of Ky near unity. 
For this reason the expansion in terms of X given 
in (8) was used for the range 0.7 ^Ky^ 1 while 
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the exact formula (7) was used for 0 ^ i £ ^ 0 . 7 . 
For Ky= 0.7 the two formulas give results in 
entirely satisfactory agreement. 

I t will be noted that as Ky approaches zero, 
the value of \p becomes infinite (except for 
Kz= 0). These cases, of course, are of no practical 
significance since they correspond to wings 
having full taper in planform but only partial 
taper in thickness. The wing element at the tip 
thus becomes a section of infinite thickness ratio, 
and according to our original assumption its 
profile drag is infinite. Obviously this analysis 
does not apply to such extreme cases, since Eq. 
(1) is valid only for thickness ratios up to about 
35 percent. 

I t should also be mentioned that this analysis 
gives the true minimum profile drag only for 
symmetrical sections, but it is a very close 
approximation for all good sections of small 
camber. In any case, it is a more fundamental 
representation of the effect of thickness vari­
ations than to deal with the actual minimum 
drag of cambered sections. The latter are more 
properly dealt with through the medium of lift 
coefficient as has been done here. 

It is thus apparent that the mean effective 
thickness ratio of a straight-tapered wing is not 
a simple arithmetic mean, nor yet the value 
corresponding to the position of the so-called 
mean aerodynamic chord employed in center of 
pressure relations. The latter is the chord through 
the lateral centroid of area corresponding to 

x = b(l + 2Ky)/6(l+Ky), (9) 

FIG. 2. Values of ^ and $ for calculation of d DQ. 

whereas the position of the section with mean 
effective thickness ratio could be obtained ap­
proximately (since <p is practically constant) by 
putting t=t0(\p)^ and solving for x, a totally 
useless procedure in this case. 
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TABLE I. Values of <p and \p for calculation of basic profile drag coefficient of tapered wings. 

Ky 

0 
0.01 
0.02 
0.04 
0.06 
0.08 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 

<P 

9.13 

9.22 
9.27 
9.31 
9.33 
9.34 
9.35 
9.36 
9.36 
9.37 
9.37 

Kz=0 

9.13 
8.94 
8.76 
8.45 
8.16 
7.90 
7.62 
6.64 
5.84 
5.24 
4.73 
4.31 
3.94 
3.63 
3.35 
3.12 

0.1 

0 0 

11.70 
11.20 
10.53 
10.02 
9.59 
9.22 
7.79 
6.78 
6.00 
5.37 
4.86 
4.51 
4.06 
3.74 
3.47 

0.2 

0 0 

16.13 
14.70 
13.52 
12.61 
11.91 
11.30 
9.27 
7.92 
6.93 
6.15 
5.53 
5.00 
4.57 
4.20 
3.87 

0.3 

0 0 

22.22 
19.88 
17.43 
15.94 
14.84 
13.96 
11.08 
9.31 
8.04 
7.08 
6.31 
5.68 
5.16 
4.74 
4.34 

0.4 

oo 
29.99 
26.13 
22.25 
20.01 
18.40 
17.14 
13.22 
10.92 
9.33 
8.14 
7.21 
6.45 
5.84 
5.32 
4.87 

* 
0.5 

oo 
39.43 
33.64 
27.98 
24.81 
22.58 
20.86 
15.68 
12.76 
10.79 
9.34 
8.22 
7.33 
6.59 
5.98 
5.46 

0.6 

0 0 

50.55 
42.42 
34.63 
30.34 
27.38 
25.13 
18.47 
14.84 
12.43 
10.69 
9.35 
8.30 
7.44 
6.72 
6.12 

0.7 

oo 
63.33 
52.48 
42.20 
36.61 
32.80 
29.93 
21.59 
17.14 
14.25 
12.17 
10.60 
9.36 
8.36 
7.53 
6.84 

0.8 

0 0 

77.77 
63.80 
50.68 
43.61 
38.84 
35.27 
25.04 
19.69 
16.24 
13.80 
11.96 
10.52 
9.36 
8.40 
7.62 

0.9 

0 0 

93.89 
76.40 
60.06 
51.35 
45.50 
41.15 
28.81 
22.45 
18.41 
15.57 
13.44 
11.78 
10.45 
9.37 
8.46 

1.0 

0 0 

111.67 
90.26 
75.09 
59.83 
52.78 
47.57 
32.91 
25.46 
20.76 
17.47 
15.03 
13.13 
11.62 
10.39 
9.37 

Ky = t ip chord/root chord; Kz = t ip thickness/root thickness. 

2. CALCULATION OF THE INDUCED DRAG 

It is well known that the induced drag 
coefficient of any wing may be written in the 
form 

CDi=(CL*S/irb*)(l + 8), (10) 

where 5 is dependent on the shape of the planform 
and is zero for an elliptical wing. The value of 8 
for the rectangular wing has been determined by 
Glauert6 as a function of the aspect ratio, while 
similar calculations have also been carried out 
for wings of any arbitrary taper in planform, but 
for only one aspect ratio, its value being equal 
to 0, the lift curve slope for infinite aspect ratio. 
Now the angle of attack for the finite aspect 
ratio wing is, when measured in radians, 

a=am+(CLS/^)(l + r)1 

where r, like <5, is dependent on the planform 
shape. Differentiating with respect to CLj we 
obtain for the lift curve slope 

dCL 0 

da l + (p/Tr)(S/b*)(l+r) 

If the value of 0.072 is considered as an average 
value of dCL/da for rectangular wings of aspect 
ratio 6, when the angle of at tack is measured in 
degrees, then the above formula may be used to 
determine a suitable value for 0. In this case we 
find, using Glauert's value for r, tha t /5= 5.56 
(a in radians), or 0.097 (a in degrees). 

The method employed by Glauert for the 
determination of the values of 8 may, of course, 
be applied to tapered wings of any aspect ratio. 

6H. Glauert, reference 2, f 11.4-11.5. 

The process as outlined in reference 2 finally 
reduces to the solution of a system of four 
linear equations in four unknowns, and in the 
general case of a wing of any taper and aspect 
ratio these equations would have algebraic 
coefficients. Even in particular cases where the 
coefficients may be reduced to numerical quan­
tities, the process is a long and tedious one and 
for this reason we have adopted an approximate 
method of treating this phase of the problem. 

In the case of the rectangular wing the value 
of 8 considered as a function of aspect ratio 
may be represented approximately by the em­
pirical equation 

8 = 0M9(b2/S)/{3 = 0.00881b2/S. (11) 

The agreement with the computed values of 8 
could undoubtedly be improved by the use of a 
second degree equation but if it is remembered 
that 8 always enters into the expression for the 
induced drag coefficient in the form 1 + 5 and 
is usually small, it is seen at once that an error 
in the value of 8 will produce only about one-
tenth of that error in Cm- The above simplifica­
tion thus appears to be entirely justified and 
Eq. (11) will be found satisfactory for aspect 
ratios from 4 to 16. 

Now for the tapered wing of aspect ratio equal 
to (3, the value of 8 as a function of Ky, the 
planform taper, is empirically 

8=0.141—0.404(JS:y)*+0.311JS:tf. (12) 

For tapered wings of any other aspect ratio, we 
shall assume that 8 is affected by changes in 
aspect ratio alone in exactly the same way as 
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the rectangular wing. Thus we may combine 
Eqs. (11) and (12) and write as an approximate 
general expression 

5 = K(b2/S)(0.141 -0.4MKyt+0.3llKy). 

The constant K is determined by the condition 
that when b2/S=/3, K(b2/S)=l, so that we 
finally obtain 

d=(b2/S)(0.0254:-0.0727Ky* + 0.0560Ky). .(13) 

The expression for the induced drag coefficient 
is now found to be 

CDi={CL*/ir)(S/» + y), (14) 

where 7 = 0 .0254-0 .0727( iQ*+0.0560i^ . (See 
Table IV for numerical values.) 

On inspection of Eq. (14), it is evident tha t a 
small part of the so-called induced drag coeffi­
cient has little or no dependence on aspect ratio 
but is exclusively a function of lift coefficient. 
The same applies to an important part of the so-
called profile drag given by Eq. (7), except for 
the slight Reynolds number effect. The latter, 
as already pointed out, is of doubtful justifica­
tion in the form used except for that portion of 
the drag directly due to skin friction. Hence 
there is no basic reason, beyond that of arbitrary 
definition, for classifying such parts of the drag 
as either profile or induced. But in view of the 
general acceptance of Glauert's values, approxi­
mately represented by Eq. (14), as "induced 
drag," we arbitrarily call the entire balance 
"profile d rag" and choose our empirical equa­
tion to correspond. This was the classification 
assumed in working up all the results from 
reference 3 and should be kept in mind in the 
interpretation of other experimental data. 

3. COMPARISON WITH EXPERIMENTAL RESULTS 

The complete drag coefficient for tapered air­
foils may now be written as 

CD=[R.N.2mn(<pa1 + ^a2to
2)(l+a3CL") 

+ (CL*/ir)(S/b* + y), 

where <p, \p and y are obtained from Eqs. (7) and 
(14). Using the previously mentioned numerical 
values for the various constants (see page 171) 
we obtain 

Co 
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FIG. 3. Experimental and computed drag coefficients 
for tapered airfoils. 

CD= [R.N.]w-°-15(0.006S^+0.125^o2) 
X(l+0.7CL*) + (CL

2/ir)(S/b2 + y). (15) 

In order to check the accuracy of the various 
assumptions on which our theory is based, 
computations have been carried out for several 
tapered wings for which experimental data 
exist. The results for the tapered Clark Y wing7 

are shown in Fig. 3 and the agreement is found 
to be quite satisfactory except at and beyond the 
neighborhood of maximum lift. Comparisons 
with other tests in the variable density tunnel, 
including the case of a tapered wing with 
rectangular center section,8 show equally good 
agreement, but in the case of tests at low 
Reynolds numbers in atmospheric tunnels, such 
factors as turbulence would undoubtedly require 
a modification of the coefficients in the basic 
profile drag equation, and possibly a change in 
the exponent of the Reynolds number. 

In connection with the expression for the com­
plete drag coefficient given in Eq. (15), it should 
be noted that the quantities [R.N.]m~0-15 and <p 
are almost constant for the usual conditions 
encountered in practice. Thus when the taper 
factors are once determined so as to give an 
optimum value of xp, this equation is very 
appreciably simplified and readily lends itself 
to a further study of the effect of variations in 
design characteristics. 

7 R. F. Anderson, The Aerodynamic Characteristics of 
Three Tapered Airfoils Tested in the Variable Density 
Wind Tunnel, N.A.C.A. T.N. No. 367 (1931). 

8 R. F. Anderson, Tests of Three Tapered Airfoils Based 
on the N.A.C.A. 2200, the N.A.C.A.-M6, and the Clark Y 
Sections, N.A.C.A. T.N. No. 487 (1934). 
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4. RELATIVE M E R I T OF VARIOUS PLANFORMS 

From a purely aerodynamic point of view, the 
ideal wing would be one which for a given aspect 
ratio gave minimum values of cp, \p and y. A 
practical comparison of different airfoils must, 
however, include consideration of certain struc­
tural factors. If we assume full depth wing beams 
in various cantilever wings, each carrying a 
concentrated load W a t mid-span to balance the 
distributed lift, the root bending moment must be 

M0=(W/2)xp, (16) 

where the lateral center of pressure distance 
from mid-span. The U. S. Department of 
Commerce requirements, in effect, make xp 

equivalent to x in Eq. (9), subject to allowance 
for the width of the fuselage. Though this is a 
safe assumption for most wings hitherto in use, 
it is open to serious question for the highly 
tapered wings, as will now be apparent. 

An exact expression for Mo may be found for a 
tapered wing using the aerodynamic theory 
which forms the basis for induced drag calcu­
lations.9 According to Glauert's work given in 
reference 2, the span wise distribution of circula­
tion along the wing may be represented approxi­
mately by the first four terms of a Fourier's 
series; that is, 

r = 2bV(A1 sin 6+As sin 3d 
+Ab sin 58+A-j sin 78), 

where %— —.(6/2) cos 6 and the coefficients Ai 
• • -A7 depend on the shape of the planform and 
the aspect ratio. We now assume that the Kutta-
Joukovsky theorem holds for each elementary 
wing strip, so that dL= pVTdx and the total 
lift is readily found to be 

L=TPV2b*A1/2. (17) 

In a similar way we may calculate the bending 
moment at the root section. We have 

s*b/2 

M0 = I xdL 

= (pbsV2/2)(A1/3+As/5-A5/21+A,/45), 

9 Similar calculations including both torsion and bending 
have been carried out with a somewhat different point of 
view by E. Amstutz, Calculation of Tapered Monoplane 
Wings, N.A.C.A. T.M. No. 578. 

or introducing the lift from (17) and putting it 
equal to the total load W, we get 

Mo=(Wb/irA1)(Al/3+A3/5-Ab/2l+A7/45), 

so that 

xP= (2b/ir)(\+Az/SAl-Ah/2lA1 

+A7/45A1). (18) 

The values of the ratios As/Ai, A5/A1, etc., are 
readily calculated from the tables given in 
reference 2. The values of xp/b for rectangular 
wings of different aspect ratios are given in 
Table II . 

TABLE II. Lateral center of pressure position vs. aspect ratio 
for rectangular wings. 

(P/S)/fi WS)(0 = 5.56) XP/b 

0.50 2.78 0.2225 
0.75 4.17 0.2250 
1.00 5.56 0.2275 
1.25 6.95 0.2290 
1.50 8.34 0.2310 
1.75 9.73 0.2320 

It thus appears that xp is practically in­
dependent of aspect ratio and in the remainder 
of this work, such an assumption will be made. 

For the tapered wing of aspect ratio b2/S=(3 
Glauert's values of Ai, As • • • etc., may be used 
to calculate xp/b for different values of Ky. 
The results are given in Table III . 

TABLE III. Lateral center of pressure position vs. planform 
taper for monoplane wing. 

Ky Xp/b x/b 

0 0.1843 0.1667 
0.25 0.2045 0.2000 
0.50 0.2145 0.2222 
0.75 0.2220 0.2380 
1.00 0.2275 0.2500 

The values of x/b calculated from Eq. (9) are 
also given in Table III , and the results are 
plotted graphically in Fig. 4 as 2xp/b, the 
lateral center of pressure position. 

From the obvious fact that the force dis­
tribution in the general case differs from the 
area distribution along the span, our original 
assumption of zero aerodynamic twist must now 
be called into question even for geometrically 
untwisted airfoils. To take the extreme case of 
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FIG. 4. Lateral center of pressure position vs. 
planform taper. 

taper to a point, the local lift coefficient at 6/20 
from the tip is approximately 1.5 times the mean. 
The area to which this applies, however, is 
small; and at small values of CL the effect on 
the profile drag is small; while at large values of 
d we must consider the three-dimensional flow 
and resultant burbling characteristics, which as 
yet are imperfectly known. Hence for profile 
drag purposes we shall continue to assume zero 
aerodynamic twist, which is equivalent to using 
an arithmetical mean of the lift coefficients. 
This can readily be shown to involve a negligible 
error in profile drag for a twist of any kind not 
exceeding about 5 degrees, except for the burbled 
condition above mentioned. The induced drag 
and lateral center of pressure for twisted airfoils 
can be taken from reference 2. 

Returning now to the airfoil without twist, 
i.e., chord lines all parallel, and median camber 
proportional to chord, it will be noted that the 
geometric and aerodynamic curves in Fig. 4 
cross each other at K 3,= 0.34, approximately. 
For larger values of Ky, i.e., for planforms more 
nearly rectangular, the assumption of uniform 
pressure distribution, usually approximated at 
the burble point, is obviously the more severe 
case. The more pointed wings, however, show 
an intensification of pressure at the tips, which 
is more severe for the unburbled flow, and just 
opposite to the commonly assumed "tip loss." 
We shall therefore take a compromise curve of 

^ p = 6 ( 0 . 1 8 5 + 0 . 0 8 5 X , - 0 . 0 2 0 ^ 2 ) . (19) 

This single equation gives a good engineering 
approximation to the worst conditions of the 
other two curves, and is certainly simpler than 
Eq. (18). 

Substituting (19) in (16) and dividing by s0 

we get the approximate root flange force F; 
then dividing by W/2, and expressing the result 
in terms of aspect ratio and root thickness ratio 
to, we finally obtain a so-cialled structural 
quotient, 

Qs= (b2/2St0)(l+Ky)(0AS5+0.0S5Ky 

-0.020Ky
2). (20) 

For the rectangular wing, Ky=l and this 
expression reduces to Qs=b2/4iSto, while for the 
elliptical wing, the aerodynamic theory gives 
A3 — A5 = A7=0, so that xv=2b/3ir, which is 
identical with the value for the lateral centroid 
of area. Thus the structural quotient for the 
elliptic wing becomes Qs=b2/6Sto. 

A given value of the structural quotient 
approximately establishes the root force in the 
spar flange as a proportion of the gross load 
carried, and seems a logical basis of comparison 
for cantilever wings, particularly when of con­
stant span. 

It will be of interest now to compare charac­
teristics of a series of wings on the rather liberal 
structural basis of Qs=5 and aspect ratio b2/S 
= 6. Using the relations already laid down, we 
get the values shown in Table IV. 

The wing proportions in the table have been 
arbitrarily chosen so as not to bring t below 0.10 
which is assumed as the structural minimum for 
torque stiffness. Below that point the saving in 
drag is small and is usually overbalanced by a 
more-than-proportional falling off of maximum 
lift. 

It will be noted from Eq. (15) that an increase 
in 7 is exactly equivalent to a corresponding 
decrease in the reciprocal of the aspect ratio. 
Hence the latter can be used as a means of re­
ducing the induced drag of all the airfoils to a 
common value. If the elliptical airfoil is arbi­
trarily chosen as the basis, each of the others 
can be brought into line by altering its b2/S 
factor, and finding the new value of t0 which fits 
Eqk (20). Cf

Do in the next to last column of 
Table IV is computed on this basis and thus 
forms a direct comparison of over-all merit from 
a drag standpoint. 
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5. CONCLUSIONS 

In spite of unconsidered factors, various con­
clusions as to tapered cantilever wings may be 
drawn from this table as follows: 

A four to one planform taper with a uniform 
thickness ratio of 15.4 percent is structurally 
about as effective as an untapered wing of 30 
percent thickness, and has about half the basic 
profile drag. 

The further reduction in profile drag of a 
highly tapered wing, by superimposing a taper 
in thickness ratio, is comparatively slight. If, 
however, considerations of arrangement, vision 
or otherwise dictate a more moderate degree of 
planform taper, the benefits of taper in thickness 
ratio are more substantial (12 percent profile 
drag reduction for the wing with j£ y =0.5) , but 
the drag is greater than that obtained with more 
highly tapered planforms alone. 

From a standpoint of performance alone, and 
without regard to construction economics, the 
elliptical planform is about equivalent to the two-
to-one planform taper and decidedly inferior to 
a taper of four-to-one for the entire range of lift 
coefficient. 

The taper to a point appears best of all in the 
final order of merit, though quantitatively the 
margin is small between this and the 8 : 1 
taper. Also it is apparent that the larger span 
required to equalize the induced drag will in­
crease the spar flange weight approximately in 
proportion to the span, for equal flange force" 
If the thickness is further increased to maintain 
constant flange weight, the revised drag of the 
pointed airfoil is increased to approximately 
0.0086 while the increase in the corresponding 
drag of the 8 : 1 airfoil is unnoticeable in the 
results as already given. On the other hand, 
minor considerations of distributed spar force 
and torsional stiffness theoretically favor the 
more pointed airfoil. Thus, though the absolute 
optimum for a specific case would call for a 
finite tip section, still it seems probable that 
tapers at least as high as 8 : 1 will be found 
advantageous for racing and large transports. 

These conclusions on the relative merits of 
the highly tapered wing are, of course, based on 
the assumption that no difficulties will be en­
countered in obtaining satisfactory control and 
other necessary features. As the use of a highly 
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tapered wing requires a large root chord, the 
problem of wing-fuselage interference may be­
come acute, especially in the case of low wing 
monoplanes. Proper filleting at the wing root 
may -solve this difficulty, but further experi­
mental investigation is certainly required10. The 
same also applies to maximum lift. 

10 The case of a wing with . ^ = 0.682 has been studied 
by A. L. Klein, Effect of Fillets on Wing-Fuselage Inter­
ference, Trans . A.S.M.E. 56, No. 1 (1934). 

Preliminary analysis of problems involving 
change in aspect ratio, load distribution, strut 
drag, etc., may be handled in a similar manner11 

by the use of Eq. (15), assuming smoothly curved 
airfoil sections in the general range of proportions 
covered in reference 3. 

11 For the effect of these and other variations on a com­
plete airplane, see R. H. Upson, Wings—A Coordinated 
System of Basic Design, S.A.E. Journal, January, 1930; 
the coefficients being subject to further refinement as 
indicated in the present paper. 


