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S1. Modeling The Coordination of Perceptual Categories

As a first model instantiating our framework, we introduce a simple 

representation of the situation space and of how agents categorize it (premises 

A-E).  We show how the model, despite its simplicity, can capture the inherent 

flexibility of habits and their sensitivity to context.  We also show how agents, 

despite having different individual prototypes of exemplary cases or situations, 

can learn through minimal changes to tune their perception of the situation space 

and to achieve greater coordination – a phenomenon clearly underlying the 

development of successful collective performance (premise L). 

Our model could be conceived as a simple example of a model of 

“appropriate behavior” (March and Olsen 1989), i.e. behavior triggered by the 

recognition of the type of situation in which an agent finds herself.  In this first 

example, we will concentrate mostly on the first stage of the problem: how a 

situation can be identified so that the corresponding appropriate action can be 

performed? (See also Gavetti and Warglien 2008) We will assume that actions are 

tied to situation categories in a one-to-one correspondence:  an assumption that 

we will relax in later examples.

Thus, the core of this first model is the representation of the situation 

space and of categorical prototypes within it.  We will assume that the “situation 

space” can be represented literally as a space – actually the product space of 

multiple original quality dimensions or properties that characterize a set of 

situations (see section 4.1 in the text).  A well-studied psychological example is 

the space of perceived colors (Gärdenfors 2000); in the economic context one 

might consider the space representing possible combinations of product fearues.    



A single situation can be located as a point in such space. Similarity between 

situations is defined (following a broad psychological literature) in terms of spatial 

proximity:  the closer the points representing two situations, the more similar to 

each other they are perceived to be (Shepard 1987) (Nosofsky 1988)1.  

We further assume that agents tend to think coarsely about the situation 

space, aggregating broad sets of situations that have “family resemblance” in 

categories (Rosch and Mervis 1975).  Categories are often structured around 

prototypes (Rosch and Mervis 1975), i.e. cases which are “best examples”, or 

initial examples, of the category.  In our model, a prototypical situation is a case 

highly representative of a class of situations judged by an agent as being “of the 

same type”.  Once they are imprinted in memory, prototypes tend to generate 

quite automatically (and with reduced memory load) a decomposition of the 

situation space into categories:  a situation tends to be attributed  to the category  

whose prototype is most similar to it. 

A simple and elegant geometric model (Gärdenfors 2000) captures the 

essence of the above statements. If prototypes are points in the situation space 

and a category is defined as the set of situations to which a given prototype is 

most similar, the situation space will be naturally decomposed into (convex) 

regions that represent categories of situations around their respective prototypes 

(Figure S.1). This decomposition is called a Voronoi diagram, or Voronoi 

tessellation (Okabe et al. 1992). 

1 We do not wish to enter here the controversy on similarity measures originating with 
Tversky (1977). For a critical appraisal and a defense of geometric measures of similarity, see 
Gärdenfors (2000).



                           

 Figure S.1. A Voronoi diagram

Thinking by categories helps to explain the inherent flexibility often 

observed in habitual behavior and routines: as long as situations are perceived as 

similar, cases never actually seen previously can be smoothly handled by 

recognizing the category to which they belong. For example, credit authorization 

routines for customers with similar measures of credit worthiness will trigger 

similar actions that in turn generate similar loan contracts.

  Moreover, it is possible to introduce much more subtle forms of flexibility 

by minimal extensions of this basic model. It has been repeatedly observed 

(Barsalou 1987) that when engaged in similarity judgments, individuals do not 

give unvarying weights to the different attributes along which similarity is 

assessed. Instead, they tend to make an adaptive use of attribute weighting. For 

example, in tasks in which one must discriminate between two categories, 

individuals tend to emphasize or increase the salience of attributes along which 

prototypical exemplars are most different (Nosofsky 1988).  



Our geometrical model of the situation space can easily capture this 

adaptive use of salience by introducing weighted dimensions of similarity 

(Nosofsky 1988) (Gärdenfors 2000).  If the weight of the dimensions of the 

situation space can be changed, distance and thus similarity between situations 

will change accordingly, and the whole decomposition of the situation space into 

categories will be modified.2 
 
 
 


Figure S.2 provides a simple two-dimensional illustration of this effect. Five 

prototypical points define categories that shift in space as the relative weight (w) 

of the left right dimension increases.  As can be clearly seen, the attribution of a 

situation (the black dot) to categories shifts accordingly. 

The sensitivity of the categorization of situations to salience changes 

suggests a very simple process that makes similarity judgment – and thus action 

triggering – responsive to the context, providing further smoothness to habitual 

behavior and illustrating the “tunable” nature of the action function (see section 

4.2 in the main text).  Indeed, salience tends to respond to important 

environmental cues. For example, seeing a car accident is likely to emphasize an 

individual’s perception of the risk dimension of driving situations, modifying the 

classes of situations in which a driver finds it appropriate to reduce speed.  In 

general, sensitivity to context via salience will produce a typical fuzziness of 

categorical attribution in the “peripheral” regions of categories (situations which 

are located close to the boundaries), while the category membership of situations 

close to prototypes will tend to remain stable.   It is important to point out that 

these changes can happen without any modification of the categorical prototypes 

2 Those familiar with the principles of geometry will recognize this as simple affine 
transformation of the state space.  



– just as a result of shifts in the salience of dimensions.  They may also be largely 

unconscious, as when changes in salience are triggered by emotions.

Figure S.2: Voronoi diagrams of space with five prototypes (shown by numbers). The situation 
(black dot) is categorized differently at each of three different levels of relative weight w for the left-
right dimension.



The model above can be extended to multiple agents.  Indeed, it allows us 

to capture two sources of heterogeneity in their perception of situations: 

differences in prototypes, and differences in the weight accorded to attributes. 

Some weights might be equal to zero, bringing within the scope of the model 

instances where agents consider different dimensions of a situation. 

Clearly, differences in the way situations are categorized may be a 

fundamental source of coordination failures.  We show that a basic form of 

incremental salience adjustment may markedly improve coordination between 

agents who hold heterogeneous perceptions of the situation space in the absence 

of any modification of their prototypes.

For sake of simplicity, imagine a problem in which there are two agents, 

and two actions  (respectively: {A, B} and {a, b}) available to each one of them.  

Actions are complementary, so that they produce a coordinated outcome only 

when their combination is <A, a>, both agents choose the first of their two 

actions, or <B, b>, both agents choose the second of their two actions. 

Furthermore, agents have two prototypes each, which are related to actions. So 

when the situation is perceived as being of type α, agents will trigger, 

respectively, actions A and a; alternatively, when the situation is perceived as 

being of type β, agents will trigger,  respectively,  actions B and b. The problem 

arises from the fact that the prototypes, and therefore the category boundaries, 

for the situations they label ‘α’ and ‘β,’ may be different between the two agents 

(see Figure 3). Furthermore, agents may start with different weights for the 

attribute dimensions of the situation space.   



Now, imagine that situations are encountered by the two agents, and at 

each new situation they act independently and observe whether their actions were 

coordinated or not.  Whenever coordination failures are experienced, each agent 

will react by dampening the relative weight (salience) of the dimension that 

contributed most prominently to the coordination failure.

Figure S.3 shows how coordination failures due to the initial lack of 

alignment of individual categories are corrected by this simple process of 

“salience tuning”. The graph shows the evolution of the average number of 

coordination failures as 500 different random situations are sequentially shown to 

a pair of agents, with substantial improvement occurring quite quickly.3 

Figure S.3 Decreasing coordination failures with salience tuning.

Figure S.4 compares the initial and final categorizations of the space in a 

single sequence of a pair that has learned over 500 different situations. The 

alignment of categories (despite the persistent heterogeneity of the prototypes) 

3 Averages are computed over 100 different random sets of pairs of prototypes and initial 
weights of the space dimensions.  In turn, for each set of prototypes and weights, 100 different 
series of 500 random situations are run.



can be clearly seen.4  Further notice the rather rapid mutual adaptation process: 

after 20 trials coordination succeeds in about 90% of the cases (10% of errors),  

and after  80 trials the success rate reaches  approximately 95%.

Figure S.4:  Co-adaptation of two actors’ conceptual spaces.

4 Like most learning processes, though, this one will work only within some boundary 
conditions.  It requires that the sets of prototypes of the agents be ordered in the same way on 
any dimension (order-monotonicity).  For example, prototypes of a category X should be North-
East of those of a category Y for both agents.  In other words, the model suggests the process will 
work, even if the prototypes are in different locations for the two actors, so long as they are 
similarly ordered on the dimensions that define the category space. This seems a reasonable 
requirement that individuals share some common structure in their representations that in turn 
may subsume a common coarse structure of experience.



 

Supplementary Model S2:  

Modeling acts and actions in ‘transform-the-target’  

As a second illustration of modeling within the framework we consider a two-

player experimental task, the ‘Transform-The-Target’ card game which has been used to 

establish key features of routinized activity in a controlled laboratory setting. Multiple 

experiments have shown that dyadic, habit-based action patterns develop within the first 

few deals, after just a couple minutes of play (Cohen and Bacdayan 1994; Egidi and 

Narduzzo 1997; Wang and Zhang 2008).  

This experiment has proven to be a useful context in which to study the 

emergence of recurring interaction patterns among individuals.  The emergent behaviors 

have many of the properties associated with skillful collective performance, including the 

rapid execution of interdependent behavior and “suboptimality”, the property that while 

patterns emerge to achieve the desired goal, they do not necessarily provide the most 

efficient solution path to the problem the actors face.   

Background Task Information 

We begin with a presentation of the task details for those not familiar with 

Transform-The-Target (TTT). For the two-person version, the game is played with six 

cards, the 2, 3, and 4 of hearts and of spades1. The board, as shown in Figure S2.1, has 

                                                

1 Versions for more than two players have also been developed (Wang and Zhang 2008; 

Wollersheim 2009). 



four positions while each of the two players holds one card in the positions labeled 

HAND-CK, at the top, and HAND-NK, at the bottom.2 The key board position is the 

TARGET. The aim of play is to maneuver the red 2 into the TARGET area. Among the 

other three board positions, two are occupied by cards that are placed face-down (the 

DOWN-A and DOWN-B positions), and the third holds a card that is face-up (the UP 

position), and therefore visible to both players.  Play proceeds in alternating turns, 

beginning with the player labeled ‘ColorKeeper’. A turn allows a player to exchange his 

or her HAND card with one of the board cards, or to “pass”. When a series of exchanges 

with the board successfully moves the red 2 into the TARGET area, the play for that deal 

of the cards ends.  No verbal communication is allowed. In a typical experiment, a dollar 

might be won for completing the deal.  The number of moves by both players would be 

counted, and each move might cost $.10. After 40 deals of the cards are played, each deal 

providing a different starting configuration, the net earnings would be divided between 

the two players.  

What makes the game challenging is one further rule. The players do not have 

symmetric capabilities.  One player, the one designated “ColorKeeper”, can exchange 

with the TARGET only when that player’s hand card, HAND-CK and the TARGET card 

are of the same color.  The other player, designated “NumberKeeper”, can exchange with 

the TARGET only when the HAND-NK and TARGET cards are of the same number.  

 

                                                

2 Board positions are labeled with capital letters. 



 

                         

Figure S2.1. Left panel (a) showing cards visible to ColorKeeper at start of deal. Right panel (b) showing 

configuration of cards after NumberKeeper’s finishing move.  



 

In TTT there are 720 permutations of the six playing cards, and there are two 

players who might have the next turn, so the game can be in 1440 states. Of these, 240 

correspond to the goal, that is, the red 2 is in the TARGET. This state space is small 

compared to real world problems, but big enough to keep novice players quite challenged 

for the duration of a 40-minute experimental session.  The successive deals the players 

encounter, which come in a predetermined sequence, present a number of difficulties. 

Some are quite easy, and can be solved in just 2 or 3 smart moves. Typical hands require 

4 or 5 moves. Some are quite difficult, and even good players may need 6 or 7 moves. It 

is not unusual for beginners to slowly take 10 or 15 steps to complete a deal that players 

with well-developed action patterns can do quickly in 4 or 5.  

 

Row 

Nmbr 

To 

Move 

HndCK DownA UP DownB HndNK TARGET Move 

Made 

1 CK 4♣ 3♥ 2♣ 2♥ 4♥ 3♣ DownB 

2 NK 2♥ 3♥ 2♣ 4♣ 4♥ 3♣ DownA 

3 CK 2♥ 4♥ 2♣ 4♣ 3♥ 3♣ Up 

4 NK 2♣ 4♥ 2♥ 4♣ 3♥ 3♣ Up 

5 CK 2♣ 4♥ 3♥ 4♣ 2♥ 3♣ Target 

6 NK 3♣ 4♥ 3♥ 4♣ 2♥ 2♣ Target 

7 Done 3♣ 4♥ 3♥ 4♣ 2♣ 2♥  

Table S2.1: Successive states of play in example hand of TTT.  Columns indicate the player to move next, 

the cards occupying each of the six positions, and the move made by the player to produce the state in the 

following row. Underlines indicate the cards that are exchanged in producing the state in the following row. 



 

It may help to build intuition for the patterned action we are modeling if we “walk 

through” play of a typical deal as listed in Table S2.1.  Figure S2.1 and the first line of 

the Table show the positions of cards just after our example hand has been dealt.  The 

player in the “ColorKeeper” (CK) role has the first move.  She sees that the red 2 is 

neither in her hand, HAND-CK, which holds the black 4, nor in the TARGET or UP 

positions of the board. (The two DOWN cards, -A and -B, and the NumberKeeper’s 

HAND-NK card cannot be seen by CK.) CK searches for the red 2 by exchanging her 

HAND-CK card with the card at board position DOWN-B. In our example CK is 

fortunate in her search and now holds the red 2, and it is NK’s turn. We are at row 2 of 

the Table. He exchanges his HAND-NK with DOWN-A (underlined).  He is looking for 

the red 2 as well, and, since he can’t see DOWN cards or HAND-CK, he doesn’t know 

CK has found the red 2.  

CK cannot finish at row 3 by putting the red 2 into the TARGET since that would 

change the card color in the TARGET, violating the definition of the ColorKeeper role. 

(For that matter, NK couldn’t put the red 2 in if he held it in HAND-NK either. He needs 

the TARGET to contain the black 2 in order for that exchange to keep the TARGET 

number unchanged, as required by his role.)  CK’s next act is exchanging her hand card 

with the UP card on the board. (Yielding row 4.) After that, experienced players would 

typically be quick to complete the hand.  NK also exchanges with UP.  CK puts the black 

2 in the TARGET. NK puts in the red 2, and the hand is finished after six moves. (Table 

S2.1, row 7, and Figure S2.1b.) 



This is not actually the ideal solution for this particular deal of the cards. For 

example, if CK exchanges with UP on the first move, there is a good chance of finishing 

in four steps instead of six. But pairs of players develop their action patterns over a 

number of different deals they face in their early experience, and then apply them to get 

good results in a new situation, sometimes without noticing that still better options 

existed.  Such occasions of smooth-though-sometimes-suboptimal action are a hallmark 

of habit-based action patterns.  The success of TTT as an experimental instrument has 

been its ability to evoke just such patterns from subjects. 

 

Presentation of the Model 

We show that play of the game can be represented as a computational model 

embodying many of the premises of section 2.1 of our main text. The ultimate goal of the 

game is to place a specific card (the 2 of hearts) in a specific location on the board (the 

TARGET) subject to constraints of information (hidden cards) and action (specialized 

player roles). The constraints on action also preclude any explicit communication among 

the players.  While placing the 2 of hearts in the TARGET location is the ultimate goal, 

players generally develop sub-goals or intermediate ends-in-view, such as placing a card 

in a jointly visible area that enables action on the part of the other player. The most basic 

actions (premise I) of the TTT game are each player’s exchanges of the card in their hand 

with four possible board positions, or “passing” their turn.3  Each player therefore has 

                                                

3 This model does not incorporate the manner of performing each action, although human 

players do move physical playing cards, or drag card-images on computer screens. 



five fundamental actions. The game aligns with the most fundamental aspect of the 

paper’s framework: each action is a function that transforms the game-play situation and 

is applicable only in certain conditions (C). For an action to be available to a player, it 

has to be the player’s turn, and, in the case of exchanges with the TARGET, the cards in 

that position and in the player’s HAND have to jointly conform to the player’s role 

restriction. Each action (except pass), changes three aspects of the TTT world: a board 

position gets a new card; the player’s HAND position gets the card from the board 

position; and it becomes the other player’s turn to move.  Each action is potentially 

applicable in a large set of board situations, since the remaining cards can be in many 

different permutations among the unaffected board positions.  

Each action might be invoked in the pursuit of several different near-term 

objectives, or activated-ends (F). For example, exchanging with one of the DOWN cards 

might be done in an effort to locate the red 2.4 But at other times, a player might 

exchange for a DOWN card as part of seeking a card needed to prepare the TARGET for 

a subsequent finishing move.  

The program fragment in Figure S2.2 shows how these components of an action 

can be incorporated into a simulation model.5 The function definition is shown with 3 

inputs: the current state of game play, situation_ ; a predicate (returning True or False) 

that defines a desired condition for the future, endInViewQ_ ; and a possible board 

transformation, act_ . The function operates on the board if the state of the board is 

                                                

4 The game is played with six cards: the 2, 3, 4 of hearts and spades.  Therefore, it is sufficient to 
distinguish the suits by their color and the computational model refers to the cards as r2, r3, r4, b2, b3, b4.   
5 The language used is Mathematica (v6). Many other languages would be possible, of course.  
Mathematica has been used in view of its strength in combining functional and declarative (rule-based) 
programming styles. It is fundamental to our framework to represent action as a function and Mathematica 
provides a medium in which this approach is easily expressed.  



consistent with the action’s conditions, and the expected result of acting (E, L) would 

achieve the condition desired, the activated-end.  For brevity, the ancillary functions 

expectations, transform, and adapt are not shown. 

 

… 

In[4]:= 
action[situation_, activatedEndQ_, act_] :=  

                 Module[{s = situation, eQ = activatedEndQ, a = act}, 
                     If[eQ[expectation[s, a]], 
                        {transform[s, a], adapted[eQ, s, a, True]}, 
                        {s, adapted[eQ, s, a, False]}  
                ] 
           ]; 

 
In[5]:= 
{resultSituation, resultActivatedEnd} =  

                  action[{r2, r3, b2, b4, r4, b3, ck}, ckHandB2Q, exchangeUp] 
 
Out[1]= 
   {{"b2", "r3", "r2", "b4", "r4", "b3", "nk"}, {ckHandB2Q, "attained"}} 

 

Figure S2.2:  Mathematica code for a function implementing action for the game TTT.  

 

Also shown in Figure S2.2 is an input line, In[5],  invoking the function in a 

particular situation_ that is shown as a sequence of cards and an indication of which 

player has the next move that occupy the ordered positions {HAND-CK, DOWN-A, UP, 

DOWN-B, HAND-NK, TARGET, next-mover}. The activatedEndQ_ invoked in this 

case is ckHandB2Q, a predicate that tests “Is the HAND-CK card the black 2?” The act_ 

under consideration is exchangeUp, an exchange of HAND-CK with the UP board 

position. The action will return two results. The transformation is activated in this case 

since the expectations associated with the situation and action are consistent with the 



activated-end. Therefore, the function returns a list of two items, shown as Out[1]: (1) the 

resultSituation, which reflects the transform of the board positions by exchanging the 

cards in the UP and HAND-CK positions and advancing the next-mover, and (2) a list 

indicating the activatedEnd has been attained as the result of the function adapted which 

has been called with a parameter of True that indicates an act occurred. Thus, the action 

function has produced an act (G). If the transformation were not activated, the action 

function would have produced no act, and would have returned two different results: (1) 

the unchanged board situation with unchanged next-mover, and (2) a list indicating a 

possible revision of the activatedEnd resulting from the function adapted called with a 

parameter of False. 

The action uses the function adapted to check whether its results have met its 

expectations, whether it has produced the desired result, or whether an inability to act 

signals a need for changed objectives (F, K). It uses these indicators of its performance to 

modify activated-ends using an updating process that is not shown here in detail.  This 

updating allows the activated-ends to be strengthened or generalized if the action 

achieves expectations and activated-ends, and to be repaired if there has been a 

breakdown.(B,K). 6  

Our discussion of this computational model of TTT has not exercised the model 

in full play conditions. The complexity of that exposition is beyond the scope of this 

paper. Instead, we have described only a key portion of the model in order to demonstrate 

                                                

6 In the conditions of this example, the first order expectations of these lowest level actions will always be 
met. The program is not allowed ever to mistakenly alter the board into an impossible configuration or lose 
track of which player will move next. For higher order actions, however, it is possible that expectations will 
not be met, mainly because of imperfect generalizations from prior experience.  



how natural it is to embody the premises of our framework in a small computer program 

and to represent recurring action patterns as functions.  
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