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Supplementary model S1:  

Modeling The Coordination of Perceptual Categories 

As a first model instantiating our framework, we introduce a simple 

representation of the situation space and of how agents categorize it (premises 

A-E).  We show how the model, despite its simplicity, can capture the inherent 

flexibility of habits and their sensitivity to context.  We also show how agents, 

despite having different individual prototypes of exemplary cases or situations, 

can learn through minimal changes to tune their perception of the situation space 

and to achieve greater coordination – a phenomenon clearly underlying the 

development of successful collective performance (premise L).  

Our model could be conceived as a simple example of a model of 

“appropriate behavior” (March and Olsen 1989), i.e. behavior triggered by the 

recognition of the type of situation in which an agent finds herself.  In this first 

example, we will concentrate mostly on the first stage of the problem: how a 

situation can be identified so that the corresponding appropriate action can be 

performed? (See also Gavetti and Warglien 2008) We will assume that actions are 

tied to situation categories in a one-to-one correspondence:  an assumption that 

we will relax in later examples. 

Thus, the core of this first model is the representation of the situation 

space and of categorical prototypes within it.  We will assume that the “situation 

space” can be represented literally as a space – actually the product space of 

multiple original quality dimensions or properties that characterize a set of 

situations (see section 4.1 in the text).  A well-studied psychological example is 

the space of perceived colors (Gärdenfors 2000); in the economic context one 



 

 

might consider the space representing possible combinations of product fearues.    

A single situation can be located as a point in such space. Similarity between 

situations is defined (following a broad psychological literature) in terms of spatial 

proximity:  the closer the points representing two situations, the more similar to 

each other they are perceived to be (Shepard 1987) (Nosofsky 1988)1.   

We further assume that agents tend to think coarsely about the situation 

space, aggregating broad sets of situations that have “family resemblance” in 

categories (Rosch and Mervis 1975).  Categories are often structured around 

prototypes (Rosch and Mervis 1975), i.e. cases which are “best examples”, or 

initial examples, of the category.  In our model, a prototypical situation is a case 

highly representative of a class of situations judged by an agent as being “of the 

same type”.  Once they are imprinted in memory, prototypes tend to generate 

quite automatically (and with reduced memory load) a decomposition of the 

situation space into categories:  a situation tends to be attributed  to the category  

whose prototype is most similar to it.  

A simple and elegant geometric model (Gärdenfors 2000) captures the 

essence of the above statements. If prototypes are points in the situation space 

and a category is defined as the set of situations to which a given prototype is 

most similar, the situation space will be naturally decomposed into (convex) 

regions that represent categories of situations around their respective prototypes 

(Figure S.1). This decomposition is called a Voronoi diagram, or Voronoi 

tessellation (Okabe et al. 1992).  

 

 
                                       

1 We do not wish to enter here the controversy on similarity measures originating with 
Tversky (1977). For a critical appraisal and a defense of geometric measures of similarity, see 
Gärdenfors (2000). 



 

 

                            

 Figure S.1. A Voronoi diagram 

 

Thinking by categories helps to explain the inherent flexibility often 

observed in habitual behavior and routines: as long as situations are perceived as 

similar, cases never actually seen previously can be smoothly handled by 

recognizing the category to which they belong. For example, credit authorization 

routines for customers with similar measures of credit worthiness will trigger 

similar actions that in turn generate similar loan contracts. 

  Moreover, it is possible to introduce much more subtle forms of flexibility 

by minimal extensions of this basic model. It has been repeatedly observed 

(Barsalou 1987) that when engaged in similarity judgments, individuals do not 

give unvarying weights to the different attributes along which similarity is 

assessed. Instead, they tend to make an adaptive use of attribute weighting. For 

example, in tasks in which one must discriminate between two categories, 

individuals tend to emphasize or increase the salience of attributes along which 

prototypical exemplars are most different (Nosofsky 1988).   



 

 

Our geometrical model of the situation space can easily capture this 

adaptive use of salience by introducing weighted dimensions of similarity 

(Nosofsky 1988) (Gärdenfors 2000).  If the weight of the dimensions of the 

situation space can be changed, distance and thus similarity between situations 

will change accordingly, and the whole decomposition of the situation space into 

categories will be modified.2      

Figure S.2 provides a simple two-dimensional illustration of this effect. Five 

prototypical points define categories that shift in space as the relative weight (w) 

of the left right dimension increases.  As can be clearly seen, the attribution of a 

situation (the black dot) to categories shifts accordingly.  

The sensitivity of the categorization of situations to salience changes 

suggests a very simple process that makes similarity judgment – and thus action 

triggering – responsive to the context, providing further smoothness to habitual 

behavior and illustrating the “tunable” nature of the action function (see section 

4.2 in the main text).  Indeed, salience tends to respond to important 

environmental cues. For example, seeing a car accident is likely to emphasize an 

individual’s perception of the risk dimension of driving situations, modifying the 

classes of situations in which a driver finds it appropriate to reduce speed.  In 

general, sensitivity to context via salience will produce a typical fuzziness of 

categorical attribution in the “peripheral” regions of categories (situations which 

are located close to the boundaries), while the category membership of situations 

close to prototypes will tend to remain stable.   It is important to point out that 

these changes can happen without any modification of the categorical prototypes 

                                       

2 Those familiar with the principles of geometry will recognize this as simple affine 
transformation of the state space.   



 

 

– just as a result of shifts in the salience of dimensions.  They may also be largely 

unconscious, as when changes in salience are triggered by emotions. 

 

 
 
Figure S.2: Voronoi diagrams of space with five prototypes (shown by numbers). The situation 

(black dot) is categorized differently at each of three different levels of relative weight w for the left-
right dimension. 



 

 

The model above can be extended to multiple agents.  Indeed, it allows us 

to capture two sources of heterogeneity in their perception of situations: 

differences in prototypes, and differences in the weight accorded to attributes. 

Some weights might be equal to zero, bringing within the scope of the model 

instances where agents consider different dimensions of a situation.  

Clearly, differences in the way situations are categorized may be a 

fundamental source of coordination failures.  We show that a basic form of 

incremental salience adjustment may markedly improve coordination between 

agents who hold heterogeneous perceptions of the situation space in the absence 

of any modification of their prototypes. 

For sake of simplicity, imagine a problem in which there are two agents, 

and two actions  (respectively: {A, B} and {a, b}) available to each one of them.  

Actions are complementary, so that they produce a coordinated outcome only 

when their combination is <A, a>, both agents choose the first of their two 

actions, or <B, b>, both agents choose the second of their two actions. 

Furthermore, agents have two prototypes each, which are related to actions. So 

when the situation is perceived as being of type α, agents will trigger, 

respectively, actions A and a; alternatively, when the situation is perceived as 

being of type β, agents will trigger,  respectively,  actions B and b. The problem 

arises from the fact that the prototypes, and therefore the category boundaries, 

for the situations they label ‘α’ and ‘β,’ may be different between the two agents 

(see Figure 3). Furthermore, agents may start with different weights for the 

attribute dimensions of the situation space.    

Now, imagine that situations are encountered by the two agents, and at 

each new situation they act independently and observe whether their actions were 

coordinated or not.  Whenever coordination failures are experienced, each agent 



 

 

will react by dampening the relative weight (salience) of the dimension that 

contributed most prominently to the coordination failure. 

Figure S.3 shows how coordination failures due to the initial lack of 

alignment of individual categories are corrected by this simple process of 

“salience tuning”. The graph shows the evolution of the average number of 

coordination failures as 500 different random situations are sequentially shown to 

a pair of agents, with substantial improvement occurring quite quickly.3  

 

Figure S.3 Decreasing coordination failures with salience tuning. 

 

Figure S.4 compares the initial and final categorizations of the space in a 

single sequence of a pair that has learned over 500 different situations. The 

alignment of categories (despite the persistent heterogeneity of the prototypes) 

can be clearly seen.4  Further notice the rather rapid mutual adaptation process: 

                                       

3 Averages are computed over 100 different random sets of pairs of prototypes and initial 
weights of the space dimensions.  In turn, for each set of prototypes and weights, 100 different 
series of 500 random situations are run. 

4 Like most learning processes, though, this one will work only within some boundary 
conditions.  It requires that the sets of prototypes of the agents be ordered in the same way on 
any dimension (order-monotonicity).  For example, prototypes of a category X should be North-
East of those of a category Y for both agents.  In other words, the model suggests the process will 
work, even if the prototypes are in different locations for the two actors, so long as they are 
similarly ordered on the dimensions that define the category space. This seems a reasonable 
requirement that individuals share some common structure in their representations that in turn 
may subsume a common coarse structure of experience. 



 

 

after 20 trials coordination succeeds in about 90% of the cases (10% of errors),  

and after  80 trials the success rate reaches  approximately 95%. 

 

Figure S.4:  Co-adaptation of two actors’ conceptual spaces. 

 

 



 

 

 

Supplementary Model S2:  

Modeling acts and actions in ‘transform‐the‐target’  

As a second illustration of modeling within the framework we consider a 

two-player experimental task, the ‘Transform-The-Target’ card game which has 

been used to establish key features of routinized activity in a controlled laboratory 

setting. Multiple experiments have shown that dyadic, habit-based action patterns 

develop within the first few deals, after just a couple minutes of play (Cohen and 

Bacdayan 1994; Egidi and Narduzzo 1997; Wang and Zhang 2008).  

This experiment has proven to be a useful context in which to study the 

emergence of recurring interaction patterns among individuals.  The emergent 

behaviors have many of the properties associated with skillful collective 

performance, including the rapid execution of interdependent behavior and 

“suboptimality”, the property that while patterns emerge to achieve the desired 

goal, they do not necessarily provide the most efficient solution path to the 

problem the actors face.   

Background Task Information 

We begin with a presentation of the task details for those not familiar with 

Transform-The-Target (TTT). For the two-person version, the game is played with 

six cards, the 2, 3, and 4 of hearts and of spades5. The board, as shown in Figure 

                                       

5 Versions for more than two players have also been developed (Wang and Zhang 2008; 

Wollersheim 2009). 



 

 

S2.1, has four positions while each of the two players holds one card in the 

positions labeled HAND-CK, at the top, and HAND-NK, at the bottom.6 The key 

board position is the TARGET. The aim of play is to maneuver the red 2 into the 

TARGET area. Among the other three board positions, two are occupied by cards 

that are placed face-down (the DOWN-A and DOWN-B positions), and the third 

holds a card that is face-up (the UP position), and therefore visible to both 

players.  Play proceeds in alternating turns, beginning with the player labeled 

‘ColorKeeper’. A turn allows a player to exchange his or her HAND card with one 

of the board cards, or to “pass”. When a series of exchanges with the board 

successfully moves the red 2 into the TARGET area, the play for that deal of the 

cards ends.  No verbal communication is allowed. In a typical experiment, a dollar 

might be won for completing the deal.  The number of moves by both players 

would be counted, and each move might cost $.10. After 40 deals of the cards are 

played, each deal providing a different starting configuration, the net earnings 

would be divided between the two players.  

What makes the game challenging is one further rule. The players do not 

have symmetric capabilities.  One player, the one designated “ColorKeeper”, can 

exchange with the TARGET only when that player’s hand card, HAND-CK and the 

TARGET card are of the same color.  The other player, designated 

“NumberKeeper”, can exchange with the TARGET only when the HAND-NK and 

TARGET cards are of the same number.  

 

                                       

6 Board positions are labeled with capital letters. 



 

 

 

                         

Figure S2.1. Left panel (a) showing cards visible to ColorKeeper at start of deal. Right panel 

(b) showing configuration of cards after NumberKeeper’s finishing move.  

 

In TTT there are 720 permutations of the six playing cards, and there are 

two players who might have the next turn, so the game can be in 1440 states. Of 



 

 

these, 240 correspond to the goal, that is, the red 2 is in the TARGET. This state 

space is small compared to real world problems, but big enough to keep novice 

players quite challenged for the duration of a 40-minute experimental session.  

The successive deals the players encounter, which come in a predetermined 

sequence, present a number of difficulties. Some are quite easy, and can be 

solved in just 2 or 3 smart moves. Typical hands require 4 or 5 moves. Some are 

quite difficult, and even good players may need 6 or 7 moves. It is not unusual for 

beginners to slowly take 10 or 15 steps to complete a deal that players with well-

developed action patterns can do quickly in 4 or 5.  
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Table S2.1: Successive states of play in example hand of TTT.  Columns indicate the player 

to move next, the cards occupying each of the six positions, and the move made by the player to 

produce the state in the following row. Underlines indicate the cards that are exchanged in 

producing the state in the following row. 

 

It may help to build intuition for the patterned action we are modeling if we 

“walk through” play of a typical deal as listed in Table S2.1.  Figure S2.1 and the 

first line of the Table show the positions of cards just after our example hand has 

been dealt.  The player in the “ColorKeeper” (CK) role has the first move.  She sees 

that the red 2 is neither in her hand, HAND-CK, which holds the black 4, nor in 

the TARGET or UP positions of the board. (The two DOWN cards, -A and -B, and 

the NumberKeeper’s HAND-NK card cannot be seen by CK.) CK searches for the 

red 2 by exchanging her HAND-CK card with the card at board position DOWN-B. 

In our example CK is fortunate in her search and now holds the red 2, and it is 

NK’s turn. We are at row 2 of the Table. He exchanges his HAND-NK with DOWN-

A (underlined).  He is looking for the red 2 as well, and, since he can’t see DOWN 

cards or HAND-CK, he doesn’t know CK has found the red 2.  

CK cannot finish at row 3 by putting the red 2 into the TARGET since that 

would change the card color in the TARGET, violating the definition of the 

ColorKeeper role. (For that matter, NK couldn’t put the red 2 in if he held it in 

HAND-NK either. He needs the TARGET to contain the black 2 in order for that 

exchange to keep the TARGET number unchanged, as required by his role.)  CK’s 

next act is exchanging her hand card with the UP card on the board. (Yielding row 



 

 

4.) After that, experienced players would typically be quick to complete the hand.  

NK also exchanges with UP.  CK puts the black 2 in the TARGET. NK puts in the 

red 2, and the hand is finished after six moves. (Table S2.1, row 7, and Figure 

S2.1b.) 

This is not actually the ideal solution for this particular deal of the cards. 

For example, if CK exchanges with UP on the first move, there is a good chance of 

finishing in four steps instead of six. But pairs of players develop their action 

patterns over a number of different deals they face in their early experience, and 

then apply them to get good results in a new situation, sometimes without 

noticing that still better options existed.  Such occasions of smooth-though-

sometimes-suboptimal action are a hallmark of habit-based action patterns.  The 

success of TTT as an experimental instrument has been its ability to evoke just 

such patterns from subjects. 

 

Presentation of the Model 

We show that play of the game can be represented as a computational 

model embodying many of the premises of section 2.1 of our main text. The 

ultimate goal of the game is to place a specific card (the 2 of hearts) in a specific 

location on the board (the TARGET) subject to constraints of information (hidden 

cards) and action (specialized player roles). The constraints on action also 

preclude any explicit communication among the players.  While placing the 2 of 

hearts in the TARGET location is the ultimate goal, players generally develop sub-

goals or intermediate ends-in-view, such as placing a card in a jointly visible area 

that enables action on the part of the other player. The most basic actions 

(premise I) of the TTT game are each player’s exchanges of the card in their hand 



 

 

with four possible board positions, or “passing” their turn.7  Each player therefore 

has five fundamental actions. The game aligns with the most fundamental aspect 

of the paper’s framework: each action is a function that transforms the game-play 

situation and is applicable only in certain conditions (C). For an action to be 

available to a player, it has to be the player’s turn, and, in the case of exchanges 

with the TARGET, the cards in that position and in the player’s HAND have to 

jointly conform to the player’s role restriction. Each action (except pass), changes 

three aspects of the TTT world: a board position gets a new card; the player’s 

HAND position gets the card from the board position; and it becomes the other 

player’s turn to move.  Each action is potentially applicable in a large set of board 

situations, since the remaining cards can be in many different permutations 

among the unaffected board positions.  

Each action might be invoked in the pursuit of several different near-term 

objectives, or activated-ends (F). For example, exchanging with one of the DOWN 

cards might be done in an effort to locate the red 2.8 But at other times, a player 

might exchange for a DOWN card as part of seeking a card needed to prepare the 

TARGET for a subsequent finishing move.  

The program fragment in Figure S2.2 shows how these components of an 

action can be incorporated into a simulation model.9 The function definition is 

shown with 3 inputs: the current state of game play, situation_ ; a predicate 

                                       

7 This model does not incorporate the manner of performing each action, although human players 

do move physical playing cards, or drag card-images on computer screens. 

8 The game is played with six cards: the 2, 3, 4 of hearts and spades.  Therefore, it is sufficient to distinguish the suits 
by their color and the computational model refers to the cards as r2, r3, r4, b2, b3, b4.   
9 The language used is Mathematica (v6). Many other languages would be possible, of course.  Mathematica has been 
used in view of its strength in combining functional and declarative (rule-based) programming styles. It is fundamental 
to our framework to represent action as a function and Mathematica provides a medium in which this approach is easily 
expressed.  



 

 

(returning True or False) that defines a desired condition for the future, 

endInViewQ_ ; and a possible board transformation, act_ . The function operates 

on the board if the state of the board is consistent with the action’s conditions, 

and the expected result of acting (E, L) would achieve the condition desired, the 

activated-end.  For brevity, the ancillary functions expectations, transform, and 

adapt are not shown. 

 

… 

In[4]:= 
action[situation_, activatedEndQ_, act_] :=  

                 Module[{s = situation, eQ = activatedEndQ, a = act}, 
                     If[eQ[expectation[s, a]], 
                        {transform[s, a], adapted[eQ, s, a, True]}, 
                        {s, adapted[eQ, s, a, False]}  
                ] 
           ]; 

 
In[5]:= 
{resultSituation, resultActivatedEnd} =  

                  action[{r2, r3, b2, b4, r4, b3, ck}, ckHandB2Q, exchangeUp] 
 
Out[1]= 
   {{"b2", "r3", "r2", "b4", "r4", "b3", "nk"}, {ckHandB2Q, "attained"}} 

 

Figure S2.2:  Mathematica code for a function implementing action for the game TTT.  

 

Also shown in Figure S2.2 is an input line, In[5],  invoking the function in a 

particular situation_ that is shown as a sequence of cards and an indication of 

which player has the next move that occupy the ordered positions {HAND-CK, 

DOWN-A, UP, DOWN-B, HAND-NK, TARGET, next-mover}. The activatedEndQ_ 

invoked in this case is ckHandB2Q, a predicate that tests “Is the HAND-CK card 

the black 2?” The act_ under consideration is exchangeUp, an exchange of HAND-

CK with the UP board position. The action will return two results. The 



 

 

transformation is activated in this case since the expectations associated with the 

situation and action are consistent with the activated-end. Therefore, the function 

returns a list of two items, shown as Out[1]: (1) the resultSituation, which reflects 

the transform of the board positions by exchanging the cards in the UP and 

HAND-CK positions and advancing the next-mover, and (2) a list indicating the 

activatedEnd has been attained as the result of the function adapted which has 

been called with a parameter of True that indicates an act occurred. Thus, the 

action function has produced an act (G). If the transformation were not activated, 

the action function would have produced no act, and would have returned two 

different results: (1) the unchanged board situation with unchanged next-mover, 

and (2) a list indicating a possible revision of the activatedEnd resulting from the 

function adapted called with a parameter of False. 

The action uses the function adapted to check whether its results have met 

its expectations, whether it has produced the desired result, or whether an 

inability to act signals a need for changed objectives (F, K). It uses these 

indicators of its performance to modify activated-ends using an updating process 

that is not shown here in detail.  This updating allows the activated-ends to be 

strengthened or generalized if the action achieves expectations and activated-

ends, and to be repaired if there has been a breakdown.(B,K). 10  

Our discussion of this computational model of TTT has not exercised the 

model in full play conditions. The complexity of that exposition is beyond the 

scope of this paper. Instead, we have described only a key portion of the model in 

order to demonstrate how natural it is to embody the premises of our framework 

                                       

10 In the conditions of this example, the first order expectations of these lowest level actions will always be met. The 
program is not allowed ever to mistakenly alter the board into an impossible configuration or lose track of which player 
will move next. For higher order actions, however, it is possible that expectations will not be met, mainly because of 
imperfect generalizations from prior experience.  



 

 

in a small computer program and to represent recurring action patterns as 

functions.  

 

 

 



 

 

Supplementary Model S.3:  

Modeling Patterns of Participation 

A third illustration relies on an entirely different modeling strategy, 

demonstrating how our approach can be translated into models of dynamic 

networks of agents. 

In this case, we want to model the activation of patterns of coordinated 

action that are “distributed” among a group of agents. This can be considered as 

an elementary model of the retrieval of “routinized” behavior, in which previously 

learned action patterns are activated by stimuli coming from the environment, 

from within the group itself, or both. Models of this type illustrate some of the 

mechanisms that assure coherence in the collective performance of distributed 

systems of agents [premise L]. Furthermore, they offer insights into how the 

repetition of action patterns can alter the perception of the environment in terms 

of categories, thus extending (or contracting), in turn, the domain of application 

of actions themselves [premises C and K]. 

We consider a particularly simple system in which the central problem is for 

subgroups of agents to become active in circumstances where their capabilities 

are complementary and to avoid co-activation when their capabilities are mutually 

interfering or incompatible. Hence, the collective performance in this case will be 

patterns of co-activation of the agents varying in response to differences in 

environmental or contextual factors.  In our model, this is represented as the 

alignment of binary states of the agents, which clearly captures some basic 

aspects of organizing (Levinthal and Warglien 1999; Milgrom and Roberts 1990; 

Simon 1962; Thompson 1967).  The model can be considered an example of 



 

 

“aggregation” (Axelrod and Bennett 1993): agents have to decide how to partition 

themselves into mutually compatible subgroups that are also suited to 

environmental circumstances. For example, rescuers may have to decide how to 

divide into two groups to face a complex emergency, or a group of workers may 

have to decide who will take the day shift and who will work the nights. 

To make it simple, we assume that agents can take only two effective 

states, which we label 1 and -1, thus determining two subgroups (the agents in 

state 1 and the agents in state -1). However, agents can also be temporarily in an 

“undecided” state, labeled 0. The system models each agent as having links to 

many of the others. These “connections” represent complementarities and trade 

offs between individual agents.  These may be due to multiple factors: 

complementarities of skills or locations, perhaps even relationships of empathy or 

animosity.  Altogether, these connections summarize the propensity of a pair of 

agents to activate themselves jointly (positive connections) or separately (negative 

connections).  For example, agents with complementary abilities will, ideally, have 

positive propensity to joint activation (taking the same state).  There is no reason 

to assume that there is only one kind of complementarity/conflict relationship. A 

pair of individuals may have some complementary skills, but at the same time 

hold other incompatible abilities or feelings. Furthermore, different tasks or 

different environments may put different demands on such skill sets resulting in 

the possibility of multiple patterns of activation among the same set of actors.  

We assume that agents link a set of situations to a pattern of activation associated 

with it. These associations thus implicitly define categories of situations linked to 

specific activation patterns. In general, such associations are expected to be 

learned (e.g. by associative or Hebbian learning (Hertz et al.  1991)), but for sake 

of simplicity we will directly specify them into our model. We will also assume that 



 

 

such connections are symmetric (each pair of agents have the same perception of 

their complementarities/tradeoffs) or, more reasonably, they show randomly 

distributed deviations from the symmetric case for any pair of agents, (with no 

loss of qualitative results (Hertz et al. 1991)).  In this model, agents rely on 

observing others’ behavior to modify their own and thereby coordinate with 

others, rather than exploiting explicit communication – a tacit process resembling 

soccer players in the field or drivers in traffic rather than participants in a 

meeting.11 Every agent looks at others’ states and aggregates that information. We 

assume that agents attempt to improve their overall level of fit (or reduce their 

level of frustration) with other agents.  The resulting behavior is very similar to 

what you observe at dinnertime during conferences: everybody looks for a table 

where the sum of interesting/pleasant persons maximally exceeds the sum of 

undesirable ones (with each diner, of course, having her own weighting of the 

desirability of the others). In our model, agents proceed in much the same way. If 

an agent sees another agent, with whom she has positive connections, having her 

same state, she will compute a positive input; if she sees another agent, with 

whom she has negative connections, having her same state, she will compute a 

negative input; and vice versa when agents’ states are discordant.  The agent will 

adopt a value of its state corresponding to the sign of the “weighted majority” of 

the other agents’ states.12  Thus, the network of agents is subject to shifting of 

state variables in response to shifts in the state variables of the agents to which 

                                       

11 See Hutchins 1995, Warglien and Marchiori 2005, Gavetti and Warglien  2007 for ways to 
model explicit communication in this type of network models. 

12 More formally, each agent i will update its state according to:  

€ 

xi = sgn( wij x j
j≠ i
∑ )

 
where xi is the state of an agent i. w is the matrix of the connections, and represents the 

sum of all underlying layers, and wij is the value of a connection between agents i and j. 



 

 

one is connected. It can be shown that such networks will converge by 

subsequent adaptations to a stable point in which no agent further modifies its 

state (Hopfield 1981; Hertz et al. 1991; Axelrod and Bennet 1993).  Common 

images to represent such a process of convergence are those of a ball rolling 

down a surface until it finds the bottom of some basin in the surface – or 

symmetrically one of a hill climbing path, where going up leads inevitably to a 

(local) peak.  In general, there can be many such stable points, representing 

different stable patterns of behavior. This enables the model to represent multiple 

action patterns within a single structure.  Indeed, an arbitrary initial state of the 

environment will trigger an adaptive process through which agents will rapidly 

converge towards one of the stable patterns implied by the connection structure 

of the agents’ network.  Thus, any state of the environment will be implicitly 

categorized – and a corresponding pattern of activation will be triggered. Clearly, 

the process of categorization and activation is distributed among agents (there is 

no central coordinator), and the network of connections acts as sort of collective 

memory.  

We are now ready to further explore this basic model.  In what follows, we 

show how a group of agents can smoothly respond to variable environments, and 

can categorize the environment and evoke an appropriate activation pattern even 

in conditions in which inputs are incomplete, or some agents have been removed 

from the group, thereby demonstrating the robustness of the patterns of action 

and the corresponding categorization of the situation.  

Subsequently, we show that, under simple assumptions on how the 

experience of action payoffs are taken into account by agents, successful patterns 

of action may tend to annex new states of the world to their domain of application 

even without previously experiencing such states (a kind of “categorical 



 

 

imperialism” by successful patterns of action). Finally, we show how categories 

may disappear (or appear) as the result of such processes, and how discontinuous 

change in behavior may thereby arise out of an underlying continuous change in 

the structure of the network. 

We introduce a simple role structure in the group of agents: some agents 

have interface roles, interacting directly with the environment, while others are 

working “inside” the organization (e.g. “back-office” workers). In particular, we 

model a group of seven agents, four of them interacting directly with the 

environment (shown in Figure S.3.1 as shaded circles), while three are on the 

“inside” (unshaded).  Continuous lines in the figure represent positive 

relationships, while dashed lines represent negative connections.  

        

Figure S.3.1: Network of agents in a stable configuration, about here.  

 

The environment can take different configurations, each of them resulting 

from the combination of four binary (e.g. present/absent, or low/high) features.  

For example, if a feature is “high” it will take a ↑ value, if it is “low” it will take a ↓ 

value. A full environmental context, that we conventionally mark by angle 

brackets, can be specified by an ordered list, such as   <↑, ↓, ↑, ↑>.  Thus, there 

are 24=16 possible environmental configurations.  Interface agents are feature 

detectors:  each one of them detects a feature of the environment and reflects it 



 

 

in its initial state (e.g. if a feature has a ↑ state it takes a 1  value, if the feature is 

↓ it takes a  -1  value). 

Agents’ connections associate patterns of activation with specific sets of 

environmental contexts. While many pattern of activation can be stable 

configurations of a given network of connections, for simplicity we will consider a 

case in which only two activation patterns are stable. We will call the activation 

patterns α and β and use A and B for the corresponding environment categories 

(the set of states of the environment associated respectively with α and β). We first 

show that the patterns of behavior and the associated categorization of the 

environment encoded in the agents’ weighted network are robust and can 

respond to variation in inputs, incomplete information, and even the deletion of 

group members. These are all features that we associate with the flexibility and 

smoothness of collective performance.  

The connections shown in Figure S.3.1 guarantee that the agents will 

respond to all possible states of the environment by reproducing one of the 

network’s two stable patterns of action, {1, 1,-1, 1,-1,-1, 1} and {1,-1,-1, 1,-1, 1, 

1}.13 This means that all states of the environment will be categorized accordingly. 

If, for example, the state of the environment < ↓, ↓, ↑ ↑> , which we have pre-

defined for our illustration, is presented to the network, it will evoke a pattern of 

action {1, 1,-1, 1, -1, -1, 1}, the one shown in Figure 7. The same network 

pattern will occur with the initial state of the environment <↑, ↑, ↓, ↑>.  Thus the 

two states of the environment belong to the same category A.  Conversely, state 

                                       

13 Braces denote patterns of action and bold characters the state of agents that are 
interfaces with the environment. Interface agents may change their values as the organization 
adjusts to the environment. 



 

 

<↑, ↓, ↑, ↓> will be associated with the pattern {1,-1,-1, 1,-1,1,1} and will belong 

to a different category, B.    

Not only can this model of collective performance respond to all possible 

inputs by smoothly converging to one of its stored patterns of activation, it can 

also robustly survive the incomplete presentation of environmental states. Table 

S.3.1 reports the robustness of collective performance as a function of the 

number of environmental features missing from the input received by interface 

agents.  For a given network and each possible input, we compare the implicit 

classification of the environmental state reached when all environmental features 

are present with the one achieved when a number of features are randomly set to 

0. Robustness is measured as the fraction of instances in which the same implicit 

classification is achieved despite missing information. As in Figure S.3.1, we use a 

network of seven units (four of which were interface agents); in this variant of the 

model, three stored patterns are designated to represent prior learning (and 

equally spanning the input space). The simulation was repeated 100 times for 

each input, and each time the missing features were randomly determined. 

 

(a) 

# of missing features 

(b) 

Robustness  

1 0.86 

2 0.81 

3 0.77 

Table S.31:  Robustness of collective performance with varying features. 

 

An even more remarkable form of robustness is that the patterns of 

activation will be preserved even if members of the seven-agent group are 



 

 

deleted at random. Table S.3.2 reports the robustness of collective performance 

as a function of the number of deleted agents. In this case, robustness can be 

measured using an indicator of successful partial reconstructions: surviving 

agents can only reconstruct the parts of the original stable pattern that do not 

involve the deleted agents. Since as fewer agents are considered the chances of 

random success increase, the third column in the table shows the difference 

between the actual success rate and the chance success rate (measuring the 

“marginal contribution” of the surviving connection structure). 

 

(a) 

Number of 

agents deleted 

(b) 

Relative Frequency 

of successful partial 

reconstructions 

(c) 

(b) − random 

chance of successful 

partial reconstruction 

1 agent 0.96 0.93 

2 agents 0.96 0.90 

3 agents 0.94 0.88 

4 agents 0.78 0.53 

Table S.3.2:  Robustness of collective performance with varying individuals 

 

Interesting modeling issues arise by allowing some dynamics in the relative 

weight of activation patterns.  A given network of connections associated with 

multiple activation patterns can be thought of as the aggregation of multiple 

layers of connections, each one associated with a single pattern. Dynamically this 

can be conceived as resulting from the fact that each time some nodes of the 

network are simultaneously active in a given situation, they reinforce connections 

among them. Statically, one can engineer the network by summing networks 



 

 

associated with each activation pattern. Thus, by experience or by design, each 

pattern of activation carries its own “marginal contribution” to the overall network 

of connections.  

Until now, we have assumed that patterns were equally weighted in 

determining the value of the connections between agents, and that, in addition, 

these weights were constant.  However, relaxing this assumption may be useful. 

For example, Gilboa and Schmeidler (2001) have suggested that experienced 

payoffs may change the relative weight of cases in individual memories, thus 

altering over time the behavior of decision makers. We can follow their suggestion 

in order to explore how the expression of patterns of activation  may affect the 

way the environment is subsequently categorized – altering in turn the domain in 

which particular activations will be expressed.  

Suppose, for example, that each time agents carry out a pattern of 

activation associated with a given situation they modify the relative weight of the 

pattern in proportion to the experienced payoff. There is no need at this stage to 

specify which specific reinforcement process is at work; it suffices that higher 

average payoffs imply an increasing relative weight for a given pattern of 

activation. For simplicity we consider a setting in which there are two modal 

environment configurations, the most frequent ones. This allows us to ignore 

details of how small variations in the environmental configurations are 

experienced. In the same vein, we assume – as shown by simulations not reported 

here – that other configurations have frequency low enough that they do not 

significantly affect, the dynamics of the network.14   

 We consider the situation with the following properties:  
                                       

14 Of course, this is an extreme assumption, but we make it only to simplify the logic of our 
exposition. Analogous results can be obtained in less extreme settings that relax this assumption, 
as well as with different reinforcement processes. 



 

 

- the first network pattern (say α), when evoked by its modal state of the 

environment  A* (belonging to category A) , gets a stronger reward than the 

second pattern (say β) when the latter is expressed in response to its own modal 

state of the environment B*  (belonging to category B) 

- both payoffs are positive  

- whenever α is expressed in the environment configuration B*, the payoff 

is lower than the one generated by action β, though still positive. Symmetrically, β 

is less good than α when expressed in A* 

- each prototypical state occurs with approximately equal frequency over 

time.  

 

As a result of the reinforcement process, the relative weight of the (A, α) 

case will increase over time. The relative weight of (B, β) will conversely diminish. 

The dynamics of the network of agents can be usefully portrayed with the help of 

the now familiar representation of a “landscape” curve.  Figure S.1.2 captures the 

evolution of three important features of the agents’ network behavior as the 

relative weights of the first case, λ, and of the second one, (1-λ), are modified.  

The curves show two basins of attraction corresponding to the categories A and B 

(the portions of the diagram leading a rolling ball respectively to α or β).  These 

represent the number of configurations of the environment categorized by each 

pattern.  As λ grows, there are transitions in the width of such basins. In other 

words, at some critical values of λ, the category associated with pattern α annexes 

new states of the environment (those formerly associated with β   ). This implies 

that as it succeeds, and thus raises its relative weight, the pattern of action α 

extends its domain of application to new environmental configurations. It is 



 

 

remarkable that some configurations of the environment can shift their 

categorical attribution without ever having been experienced – as a mere outcome 

of the “categorical imperialism” of successful patterns of activation. In effect, they 

change attribution because they have some similarity to other environments that 

were experienced as rewarding. 

  The depth of the curves represents a measure of the “frustration” or 

“energy” of the system.15 The more propensities of agents are satisfied, the lower 

the frustration level will be. As can be seen from the Figure, as λ grows, the 

energy of the  α pattern decreases while that of β increases. Changes in energy 

are continuous and a linear function of λ.   Finally, the value of the curve at the 

top between the two valleys offers a graphical representation of the “energy wall” 

separating the two activation patterns. The higher the wall, the more a pattern is, 

so to speak, protected from the attraction exerted by the other. But, as the wall 

disappears, as for λ=.8 in the fourth panel of Fig.S.3.2., the pattern β with highest 

energy loses any attractive force and its whole basin of attraction landslides 

towards α. The outcome is the disappearance of a stable pattern of action, 

missing any domain (or category) of environments supporting its activation. 

                                       

15 A conventional measure of “frustration” or “energy” in networks such as the one we 
model here is:  

 
  , where x(i)  and w(i,j) are interpreted as above. It is easy to see that H will diminish 

(increase) each time that agents that have positive (negative)  “propensity” connections are in the 
same group - and vice versa for the case in which they are in different states.  See Axelrod and 
Bennet (1993) for a slightly different measure with similar properties. 



 

 

 

Figure S.3.2.   Frustration levels for two activation patterns at varying levels of λ (lambda), the relative 
weight of pattern α 
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