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An approximation for mean waiting times in
cyclic server systems with non-exhaustive service

Abstract

The cyclic server system has been the subject of considerable
research over the last few years. Interest in analyzing such
systems has gained momentum due to their application in the
performance analysis of token ring networks. In this paper, we
consider cyclic server systems with the non-exhaustive service
discipline. The performance measures of interest here are the
mean waiting times at the nodes in the system. Exact analysis
of such systems for these performance measures is very
difficult in general, and a number of approximation schemes
have been proposed in the past to evaluate these quantities. This
paper presents a new approximation technique that gives
accurate estimates of these mean waiting times, based on
extensive validation with simulations.



1. Introduction:

A cyclic server system is a system in which a single server attends, in a cyclic
manner, to a number of centers (nodes) at which requests arrive, and queue up for
service. The number of requests serviced at a node, during a visit there by the server,
depends on the service discipline that the server adopts. The service disciplines that
are typically modeled are the exhaustive, the gated, and the non-exhaustive service
disciplines (Watson 1984). When the server departs from a node, he can take a finite
amount of time to switch to the next node, and this is termed the switchover time.

Interest in the analysis of such systems for their performance has gained
considerable momentum recently, especially owing to their direct application in the
modeling and analysis of token ring networks. In modeling such ring networks, the
token is modeled as the single server, and the packets that are generated by the
nodes, for transmission to other nodes, are the requests for service from the system.
When the bandwidth is constant, the size of the packet determines the service time
required to transmit it. The overhead involved in buffering data and switching
control from one node to the next, and the propagation delay, together constitute the
switchover time between nodes. Some typical performance measures of interest
here are the mean waiting time for a request, and the distribution of the cycle time
(the time required to make one complete scan of the system).

In this paper, we consider systems with the non-exhaustive service discipline
where, at most one request is attended to by the server during a visit to a node. This
discipline has been widely adopted in the implementation of token ring networks, due
to its perceived fairness. Requests are assumed here to arrive at the nodes according
to independent Poisson processes and it is assumed that there is unlimited waiting
room at each node to hold these requests. It is also assumed that in each cycle the
server visits each node exactly once. If the server finds no requests at a node when he
visits it, it is assumed that he immediately begins to switch over to the next node.

The analysis of such systems presents considerable difficulties; in general, the
exact analysis for even the mean waiting times in systems with more than two nodes
is unknown at present, and a number of approximate analytical schemes have been
proposed in the past for obtaining these mean waiting times. In this paper, a new
approximation technique, termed Myopic Analysis of Cyclic Non-Exhaustive Service



Systems (MACNESS) is presented. This approximation technique appears to be very
effective in obtaining estimates of the mean waiting times, in comparison with
techniques previously reported.

2. Previous work on cyclic server systems:

The seminal work on the analysis of cyclic server systems is due to Cooper
(1969, 1970), who considered systems with exhaustive and gated service disciplines,
and without switchover times. Following the work of Cooper, a number of papers
have presented both exact and approximate analyses for systems with the exhaustive
and gated service disciplines. Bux (1981) reports exact results for the system in which
all nodes have identical arrival patterns, service time distributions, and switchover
times (the symmetric system). Ferguson and Aminetzah (1985) present exact results
for non-symmetric cyclic server systems (namely, systems where the arrival rates
and the service time distributions at each node as also the distributions of switchover
times can all be different). Simple, approximate analytical models for non-symmetric
systems have been proposed by Bux and Truong (1983) and Carsten et al. (1977)

2.1 Previous work on cyclic server systems with non-exhaustive service:

The analysis of systems using the non-exhaustive service discipline, however,
presents considerable difficulties. A complete analysis of the system with two nodes,
without switchover times has been presented by Eisenberg (1979); and the system
with two nodes with switchover times, but with identical characteristics, has been
analyzed by Boxma (1984). These require a complex analysis of Riemann-Hilbert
boundary value problems, and even for the mean waiting times, no simple
expression results. For the symmetric case, a simple closed form expression for the
mean waiting times has been obtained (Watson (1984), Takagi (1985), Fuhrmann
(1985)). In addition, a conservation law exists for such systems (Watson 1984), which
presents one equation for a weighted sum of the mean waiting times in terms of
known data parameters. Since the exact analysis of such systems appears extremely
difficult in general, a number of approximation techniques have been proposed in the
past, for obtaining these mean waiting times. These approximations are usually
validated through extensive simulations.



A notable contribution towards approximate analysis of cyclic server systems
with non-exhaustive service is the work of Kuehn (1979) who considered systems
with batch Poisson input. The analysis obtained the generating function of the
stationary state probabilities, the Laplace-Stieltjes transforms of the delay
distributions, and the mean waiting times at each node, i, in the system. To obtain
these estimates, two conditional cycle times were considered: a cycle time which
included a service at node i, and a cycle time which had no service at node i. The
variance of each of these cycle times was then approximated assuming that in either
of these cycles, the sojourn time at each node was independent of the sojourn times at
the other nodes (the independence assumption). An imbedded Markov chain
approach was then used to obtain the desired estimates. In addition, a stability
criterion was derived for general GI/G/1 systems with cyclic priority service.

Following the work of Kuehn, a number of papers have reported approximate
analytical results for such networks (Berry and Chandy (1985), Boxma and Meister

(1986), Rego (1986) and Kimura and Takahashi (1986)).

The paper by Berry and Chandy (1985) requires identical distributions for the
service times at all nodes. Arrivals at individual nodes are assumed to be Poisson.
The switchover time is assumed to be a small constant, and is the same for each pair
of nodes. With these assumptions, the approximation technique then views the entire
system as a single M/G/1 queue with an arrival rate set equal to the sum of the
arrival rates over all nodes. It calculates the overall mean queue length in this
M/G/1 system, and then allocates this quantity among the nodes using an iterative
heuristic that is developed in the paper. A simple application of Little's rule (Little
(1961)), then provides the mean waiting times at these nodes.

Kimura and Takahashi (1986) present a diffusion approximation to analyze
systems in which each node can be subject to batch arrivals having arbitrary
distributions. The analysis considers conditional cycle times, and uses the
independence assumption on these conditional cycle times in a manner similar to
Kuehn's analysis. For the special case where the arrivals are Poisson, the mean

waiting times obtained by this analysis are very close to the values obtained by the
method of Kuehn.



Boxma and Meister (1986) consider a non-symmetric system with Poisson
arrivals at each node. The approximation makes use of the conservation law
presented by Watson (1984), and obtains a closed form expression for the mean
waiting times in systems with switchover times. This approximation appears to
provide the most accurate estimates for the mean waiting times among the
techniques reported in the past. A similar result for systems without switchover
times is presented in Boxma and Meister (1987).

T
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Let N denote the number of nodes’in the cyclic server system. Requests for

service at node n in this system, arrive according to an independent Poisson process
with rate A,. The service time demand of a request at node n is assumed to be an
independent, identically distributed random variable with mean by, and second
moment b,(2). The switchover time between node n and node (n mod N) + 1 is an
independent, identically distributed random variable with mean s, and second
moment s,(2), The utilization of the server at node n, py, is defined as

Pn = An bn.

In the ensuing discussion, unless otherwise specified, the index for any
summation is assumed to be over the range 1 through N. Let

S = Y sn,
n
and
p = D
n
The expected cycle time, c, is obtained from (Kuehn 1979)
¢ = Ysn+ Dpac (3.1)
n n
from which,
S
= _— 3.2
c T 3.2)

It can be shown (Kuehn 1979) that the following conditions are necessary and
sufficient for the stability of this system:



p < 1, (3.3a)

and
max Apc < 1. (3.3b)

n

It is assumed that the system being analyzed satisfies the above stability conditions.

To motivate the analysis consider, first, the cyclic server system with just one
node. This corresponds to an M/G/1 vacation system wherein the server takes a
vacation following each visit to the node. Assuming that the distribution of the
vacation time is known, and is independent of the time spent at the node, a technique
is presented which obtains the exact mean waiting time experienced by a request at
this node. This technique is then extended in a direct manner to obtain mean waiting
time estimates for the general system with N nodes: let w, denote the mean waiting
time at node n. To obtain the wyp's, each node in the system is considered in isolation
as a single node, single server system with vacations.

3.1 The analysis for a system with one node:

For this case, we drop the subscript on the parameters. Thus, we let s denote
the mean vacation time, and s(2) denote the second moment of the vacation. Consider
a tagged request (customer) that arrives to the system. Let p(i) denote the probability
that the arriving customer sees i customer already in the system. Owing to the fact
that Poisson arrivals see time averages (Wolff 1982), this tagged customer sees the
equilibrium distribution of customers present at the node. Let f denote the fraction of
time that the server is away from the node, on a vacation. Since the utilization of the
server at the node is given by p, it can be seen that

f = 1-p.

In this system, the server immediately begins a new vacation if he finds no
customer present at the node when he visits it. Hence, he is away on vacation at least
p(0) of the time, on the average. Let x denote the fraction of the time that the server is
away on vacation, given at least one customer is present at the node. Then it is clear
that the fraction of time that the server is away from the node can also be written as



f = p(0)+(1 - p(0)) x.

Equating the two expressions for f,
1-p-p(0)

X, = T-20) (3.4)

Let t denote the mean system time (mean waiting time + mean service time)
for this tagged customer and let t(i) represent the mean time in the system for this
customer, conditioned on the fact that it® sees i customers on arrival. Thus,

w+b = t

Z p() (). (3.5)

Consider the case where the arriving customer found the system empty. In
this case, the server has to be on vacation, and the customer interrupts a special
vacation which has an expected residual life (Kleinrock (1975)) of s(2)/2s. In this

case, the expected time in the system for the customer is given by s(2)/2s + b.

Suppose, on the other hand, that the tagged customer found i > 0 customers
already present in the system on arrival. In this case, we choose to identify the
customer at the head of this queue as the Head-Of-Line (HOL) customer. The
expected amount of time it spends in the system is then the sum of two quantities: (i)
the expected time, r, until the HOL customer departs the system, and (ii) the expected
time for the server to complete service on the i-1 remaining customers, followed by a
service on the tagged customer, namely to complete i successive cycles, each of which
includes a service at the node. To determine r, we consider two possible situations:

(a) The customer found the server on vacation: the fraction of time this occurs
is, on the average, x. In this case, the customer interrupts a special vacation which
has an expected residual life of 5(2)/2s. This implies that the expected time till the
departure of the customer at the head of the line is s(2/2s +b.

(b) The arriving customer found the server servicing the HOL customer: the
fraction of time this occurs is, on the average, (1-x). The expected time till the
departure of the HOL customer here is just the expected residual life of this special
service time which is equal to b(2)/2b.

@ The neuter gender will be used to describe the customer, in order to distinguish it from the
server.



Hence,
@ b i
r = x(—2;+b)+(1-x) Zb)' (3.6)

Thus, the values for t(i) are:

. s(2) \ :
td) = ETS b, 1=0, (3.7a)
) s(2) ) ) ) b
t) = x(-is— . b) + (1-%) %) +i(s+b), i>0. (3.7b)

From equations 3.4, 3.5, and 3.7,

(2) (2)
wtb = ( =+ b) (p(0) + x(1-p(0)) + (%b—) 1-x)(1-p(0)) + (v+b)i2ip(i). 3.8)

Note that from Little's rule (Little (1961)) we can set » ip(i) = A (W +b).
i

Using this in equation 3.8, we obtain the following result which we state as

Lemma 1:

The mean waiting time, w, in a single node, single server, vacation system is
given by the expression

@ «(2)
w(l-Mssb) = p (%)+<1-p) (—2?) #ps. (3.9)

|
This expression for w is exact. The above approach is now extended to obtain
the mean waiting times in a system with N > 1 nodes.

3.2 The analysis for general cyclic server systems:

The approximate analysis for the general case, MACNESS, proceeds as
follows: to estimate the mean waiting time at any node, the system is viewed,
myopically, as a single node system with vacations. When the server departs from a



node, the vacation, from the point of view of this node, is now due to the time spent by
the server at all the other nodes as well as the switchover times between the nodes.

Consider the mean waiting time experienced by a tagged customer arriving to
a node n, 1 <n < N. Following the approach of the previous sub-section, let p,(i)
denote the probability that the tagged customer at node n finds i customers already
present at this node. As before, two cases are considered: where i=0, and where 1 > 0.

If the tagged customer finds i=0 customers at node n on arrival, then it always
sees the server on vacation from that node and interrupts this vacation. Let ¥, denote
the expected residual life of this interrupted vacation. Thus this arrival would spend,
on the average, ¥p + by units of time in the system, with probability pn(0).

Suppose, on the other hand, that the tagged customer finds i > 0 customers at
node n on arrival. The expected time in the system, for the tagged customer, is then
the sum of two quantities: (i) the expected time, rp,, from the time of its arrival {ill the
HOL customer departs the system, and (ii) the expected time for the server to
complete i cycles of the system, starting with the instant of the departure of the HOL
customer, and ending with the completion of service on the tagged customer. Similar
to equation 3.4, let

1 - pn - pn(0)

Xp = T 00 (3.10)

denote the fraction of time that the server is away from node n given that there is at
least one customer present at the node. The term r, is then given, analogous to

equation 3.6, as

) be(2)
rn = xg@q+by)+ 1xg) (—-2’-‘5-11-)

This expression assumes that if the server is on vacation at the time of arrival of the
tagged customer, then the expected residual life of this vacation is the same,
independent of the number of customers present at the node at that time. This is
clearly an approximation since, in general, the length of a vacation is dependent on
the number of customers present at the node. It still remains to determine the
expected time for the tagged customer in the system from the moment that the HOL
customer, till the time of service completion on the tagged customer. To this end, let



vp denote the expected length of a vacation which begins after a normal service at
node n (i.e. after a service of expected length by), ending when the server returns to
node n. Also, let

Cn = Vn + bn, (3.11)

denote the expected length of a cycle which begins with a normal service at node n,
ending with the next arrival instant of the server at node n. This cycle includes
possible services at the other nodes , plus the sum of all the switchover times. To
determine Cp, let amn denote the probability that this cycle contains a service at
another node m. Then, since at most one customer is served at node m, we can write
(also refer Kuehn (1979) for a similar derivation):

Omn = }\.m Cn, m#n.

Note that it is possible that when the arrival rate some node, m, is high, then ann
may exceed 1, in which case, it can no longer be interpreted as a probability. In such
cases, it will be necessary to restrict this quantity to be at most 1. Hence, the expected
length of this cycle is given by

Cn s + by + Y min(Ap Cp, 1) by. (312)

m#n

0

If omn <1 for all m, then the above expression simplifies to

s + bp
1'P+Pn,

n

Cn (3.12a)

otherwise, computing the C, values will involve some iteration.

Each of these vacations following the departure of the HOL customer is
preceded by a service at node n. We could now assume that the expected length of
each of these vacations equals v, and proceed exactly as in the analysis of the single
node system. However, this assumption would be incorrect in the case of the vacation
immediately following the departure of the HOL customer. To illustrate, consider the
situation where the tagged customer found the server at node n, attending to the HOL
customer. The arrival then interrupts a special service which has expected duration
bn(2/by,. Adopting a similar reasoning as was used earlier to obtain C,, the cycle
which includes this special service has an expected length C(b), where



Cab) = s+ by + », min(Ay Cp(b), 1)bn. (313) -

m#n

As before, it may be necessary to restrict the term A Cpn(b) to be at most 1 in some
cases. If this term is less than 1 for all m, the above expression simplifies to

2)
Calt) = S Pnn (3.13a)
1-p +pn

otherwise obtaining Cp(b) will generally involve some iteration. Let

vn(b) = Cn(b) - by@/by, (3.14)

denote the special vacation following this interrupted service. Clearly this is not
equal to v,. Similarly, if the tagged customer arrives at node n when the server is on

vacation, then he interrupts a special vacation which, in turn, influences the
vacation following the subsequent departure of the HOL customer at node n.

Let the expected length of the vacation, following the departure of the HOL
A . . o
customer, be denoted by vy. Let ty(i) denote the expected time in the system for an
arrival at node n, given i customers were observed at the node at the time of arrival.
Similar to the analysis for the single node system, we can write

tn(i) vn + bn, 1 = O, (31 53.)

) bn@ A
tn(i) xn(Vn + bn) + (1-xp) (2—bn—) + (vp + bp) + (i-1)(vp + bp), i>0. (3.15b)

The expected system time, tp, is:

th = Wn+byp = ) pnl)tn(). (3.16)
i
From equations 3.15 and 3.16,
by (@

Wn(l - )Ln Vn - pn) = ’{’n (1 - pn) + Pn —5n—+ Pn Vn + (\/f\n - Vn) (1 - pn(O)). (317)

In the above expression, to determine wyp, we still need to evaluate the terms \If\n, Vn
and pn(0). The expressions for these terms are developed in sections 3.3 and 3.4.

10



3.3 Determining the probability, p,(0):

For this system, determining pp(0) exactly can be very complex. Here, this
term is estimated by considering this cyclic server system from a different viewpoint.
Consider a single node, single server system with Poisson arrivals in which, for each
customer, the server requires a setup time that is independent of the service time.
Further, suppose that this setup time has a different distribution for the customer
that arrives to an empty system, than for a customer that arrives to a non-empty
system. Such a system was also studied by Welch (1964) who obtained the distribution
of the number of customers present at the node, given the first two moments of the
distributions for the two setup times and for the service time. We shall refer to this
system, for convenience, as system W. The probability, 7o, of finding zero customers
at a random point in time in this system is presented below as Lemma 2. A proof of
the Lemma may be found in Welch. Here, we develop the expression for Ty using
somewhat informal reasoning. This will assist in drawing an analogy with the cyclic
server system, which is used to estimate py(0).

Suppose the arrival rate to system W is A. Let B denote the first moment of the
distribution for the service time, and let y (respectively,  ),denote the setup time
required for arrivals to a non-empty system (respectively, arrivals to an empty
system). The expression for 7y requires only these first moments, and is given by

Lemma 2:
1-2A
T = (w+£3) -
1-My-V
Proof:

In effect, the mean amount of service time expended by the server on a
customer is increased (on the average) either by ¥, for an arrival to an empty system,
or by v, for an arrival to a non-empty system. In fact, with probability T, this mean
(enhanced) service time 1is equal to  + B, and with probability 1 - Tg, the mean
(enhanced) service time is equal to vy + B. So, the mean (enhanced) service time,

A
overall, is given by B, where

11



ﬁ = o (U + B) + A-10) (v + B).

Now, the utilization of the server by this system, denoted as 6, can be written as

6 = 1 -mo.

Alternately, this utilization is also given as

A

p = AB = A(mo@+ B+ WM (y + B).

Equating the two expressions for 6, and simplifying, the desired result is obtained.
|

It can be observed that the behavior of the cyclic server system with non-
exhaustive service, as we have modeled it, closely resembles system W. When an
customer arrives to an empty system at node n it interrupts a special 'setup' time,
which has a mean residual life equal to ¥, at the time of interruption, before the
server can begin actual service on this customer. Assuming that the total setup'
time in this case is twice this residual life (of course, this is a heroic assumption, but
we shall maintain this), the setup time here is 2V, On the other hand, if the
customer arrives to a non-empty system, then the mean 'setup' time in progress,
between services to customers at this node, is given by v, (with the exception, which
we choose to ignore, of the service following the HOL customer, which involves a
mean 'setup' time of \lr\n as per our assumptions). Hence, the probability, p,(0), of
finding zero customers in this system, is then equated to 7o, with appropriate

substitution of parameters, to obtain the following:

Proposition 1;
@ =  ——tnln*bn) (318)

1- xn(Vn - 2vn )

3.4 Evaluating the terms vV, and Gn:

The terms v, and v n are evaluated by conditioning on the position of the server,
as observed by the tagged customer on arrival. Let ym, denote the event that the server

12



is at node m at the time of arrival of the tagged customer. Similarly, let oy, denote the
event that the server is switching from node m to node (m mod N) + 1 at the time of
arrival of the tagged customer. Let q(ym) and q(op), respectively, denote the
probabilities of these events. From equation 3.1, it can be seen that

d(smle) + > Pm = 1.
m m

Thus the term ppy can be interpreted as the probability that the server is present at
node m at a random point in time, and similarly , the term sp/c can be interpreted
as the probability that the server is switching between nodes m and (m mod N) + 1 at
a random point in time. Noting the fact that a Poisson arrival takes a random look at
the system, we must have q(ym) = pm, and q(om) = sp/c.

We also need to define the expected length of two cycles, (i) A cycle which
includes a special service at node n of expected length b,@/by,, denoted as Cy(b), and
(ii) a cycle which includes a special switchover between nodes n and n+1 of expected
length s,(@/sp, denoted as Cy(s). The expression for Cp(b) was given by equation 3.13.
The expression for Cp(s) is obtained using a similar reasoning:

S + 5n%/sp - sp

Cu(s) = . (3.19)
1-p

The expression for ¥y, is then presented below as Proposition 2. The derivation
for this expression is given in the Appendix.

Proposition 2;
Vn = 2( q(m)/A-pn)) F(nlym) + Z (alom)/-py) ¥loy),  (3.20)
m m
m#n
where
) bu® & d
Vnlym) = o5— + Z Sk + z min(Ax Cp(b), 1) by, (3.20a)
m k=m k=m+1
and
~ Sm(2) - <
fnlom) =  ze—+ Y sk+ 2 min(hCm(s), 1) bk, (3.20D)

k=m+1 k=m+1

13



In equations (3.20a) and (3.20b) it is assumed that 1 <m < n < N. This avoids
the use of the mod function. Note that this does not lead to any loss of generality.
Proposition 3 now develops the expression for the term v n. The derivation of this
expression is also presented in the Appendix.

Proposition 3;
Vn o= (1L-x0) val) + xq (), (3.21)
where
w® = (amt-pw) val ) + D, (alom/L-pn) vall lomw),  (3.22)
m m
m#n
with
volllym) = s + z min(Ax max[Cp(b),Cnl,1) by, (3.22a)
k
k#n
and
vallloyp) = s + Zmin(?&k max[Cpy(s),Cnl,1) by, (3.22b)
k
k#n

In equation 3.17, substituting for x, and v n, using 3.10 and 3.21, an alternate
expression for wy, is obtained as:

bn(2)
Wn(1 - Ap Vn - Pn) = Vn(l - Pn) + Pn (Vn(b) + "Z'E;")*' (Vn(l) - Vn) (1'Pn'Pn(0))- (3.23)

It is easy to show that the expression for the mean waiting times, given by 3.17
(or 3.23), is exact for some limited cases. This is stated as Proposition 4. The proof of
this proposition is straightforward, and is omitted.

Proposition 4:

The expression for the mean waiting times given by equation 3.17 is exact for
the single node vacation system, and for the symmetric system having deterministic
service times, and deterministic switchover times.

[

14



4, The accuracy of the approximation:

The mean waiting time estimates obtained by MACNESS was validated for its
accuracy through extensive simulation on a substantial number of test cases. Under
conditions of relatively low traffic (p < 0.5), the estimates obtained by MACNESS were
very close to the simulation estimates. Under conditions of heavy traffic, when the
system was quite asymmetric, some differences were observed between the two
estimates. In this section, using the conservation law of Watson (1984), a means of
improving the accuracy of the estimates obtained by MACNESS is presented.

4.1 The conservation law:

The conservation law (Watson (1984)), which provides one equation for the
mean waiting times in terms of known data parameters, is presented below:

;pn(l -AnC) Wn = 5(135 ann ba® + 5= Y(n®@-s?) + %%Pn(l +pn).  (41)
n

This law can indicate how effective the approximation is. Suppose we
substitute the mean waiting times obtained from equation 3.17 in place of the wy

values in equation 4.1 and evaluate the resulting expression on the left hand side. Let
the factor ¢ denote the ratio of the expression on the right hand side of this equation,
to the quantity evaluated on the left hand side. Obviously, the closer this ratio is to 1,
the more confidence one would have in the above approximation.

A substantial number of experiments were conducted to determine the
accuracy of the approximation. At low traffic intensities (p < 0.5), the factor, ¢, was
between 0.96 and 1.0 in all of these test cases. In addition, the estimates of wp were
very close to the simulation estimates here. At heavy traffic intensities, this factor
ranged, in general, between 0.90 to 1.10, with a few exceptions outside this range
occuring as the system was nearing the limits of stability. This is to be expected since
we have made several assumptions in arriving at the expression for the mean
waiting times. It is conjectured that the approximation used to obtain the expression
for ¥, is a major contributor in causing the factor to be different from 1 for the heavy
traffic case. We now make use of the conservation law to obtain an improved estimate
for ¥, in the following section.

15



It is to be noted that Boxma and Meister (1986) use the conservation law
directly, to obtain their estimates of mean waiting times. This technique, (henceforth
referred to as the B&M technique) proceeds as follows. At the time of arrival of the
tagged customer at node n, the server is at some place in the system. The arrival sees
the equilibrium distribution of customers at the various nodes, and hence, on the
average, sees Qp = Ap Wn customers waiting at node n. So the mean waiting time for
this customer consists of two quantities: (i) the expected residual cycle time, rcy, for
the server to reach node n, from the place he is currently at, and (ii) the time for the
server to complete A, wy cycles, each of length C,, to serve q, customers. The mean
waiting time is then obtained as:

rCpn
1-ACn

Wn =

The B&M technique now assumes that the residual cycle times are the same for each

node. It then uses the conservation law to obtain a closed form expression for the
wn's. It is remarked, though, that the resulting expression does not provide an

intuitive understanding for the behavior of the system.
4.2 Improved estimates of V', using the conservation law:

Equation 3.17 is first rewritten as:

Wn = Kn + VUn, 4.2)
where
i by®
Kn = Vn (1 - pn) + Pn -Tn— + PnVn, (423)
and
A
Dn = (Vn - Vn) (1 - pn(O)). (4.2b)

In order to improve on the estimates of ¥, it is assumed that the term K, is the same

for all nodes. Note the similarity between this assumption and the assumption made
by the B&M technique. In fact, if we had not accounted for the 'special' vacation
following the departure of the HOL customer, then this approximation would just
reduce to the B&M technique and K, would represent the 'residual cycle time' here.
(We have, of course, presented an intuitive approach for obtaining this 'residual cycle
time'). Applying the conservation law to the above expression for wy, and setting ¥, =

K, an expression for K can be obtained in a straightforward manner as
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X- z,onen
n
Zon
n

where X represents the expression on the right hand side of the conservation law

(4.3)

given in equation 4.1, and
pn(1 - Anc)

0 .
n 1 ')\.nVn' Pn

Thus, a new estimate of ¥, is obtained from equations 4.3 and 4.2a. This
estimate is now used in equation 3.17 for obtaining the wp's. The use of the
conservation law in this manner does imply that this is an iterative algorithm for
obtaining these values. However, in practice these values converge within a few
iterations, and in using this approach we choose not to iterate more than once.

Finally, note that the use of equation 4.1 in this manner guarantees (although
indirectly) that the resulting estimates of wy, do satisfy the conservation law.

4.3 The special case of systems with zero switchover times:

Although the MACNESS approach was motivated by considering a single node
vacation system, it has a direct extension for systems with zero switchover times. We
merely set the mean switchover time at all nodes to be some arbitrarily small but
finite value. Then all the expressions presented earlier hold. (An alternate view of
this approach would be to consider that each of the q(o,) terms are uniformly
replaced by a factor equal to (1-p)/N.) The resulting mean waiting time estimates
appear to be as accurate as in the case with non-zero switchover times.

Boxma and Meister (1987) also present an approximation technique for such
systems. This is also based on the conservation law and is very similar to their
technique for systems with non-zero switchover times.

5. Experimental results:

The estimates of the mean waiting times obtained by MACNESS for some test
cases are presented in Tables 1 through 16. Of these, Tables 1 through 12 are taken
from Boxma and Meister (1986, 1987), and these cover all the examples they present
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therein. The simulation results presented in these tables are also taken from their
papers. It must be noted that the simulation estimates could have some statistical
error. However, the simulation results that are presented in these tables mostly
satisfy the conservation law fairly closely. For comparison, the estimates obtained
using the B&M technique are also presented in these tables. As mentioned earlier,
the B&M technique gives the best results among all the techniques previously
reported. For example, the methods of Kuehn, and Kimura and Takahashi, when
applied to these test cases, often gave large errors, sometimes in excess of 50 %@ .
The errors, indicated in parantheses in these tables are calculated relative to the
values obtained by simulation.

5.1 Discussion of results:

For ease of presentation, the results in these tables represent mean waiting
times that are averaged over groups of queues which have identical characteristics,
and for which the mean waiting times obtained were quite close. It is to be noted, that
the B&M technique obtains the same values for these groups of queues. In general,
however, there will be some (possibly small) difference in mean waiting times
between two adjacent nodes even though they may have the same characteristics
with regard to their service time demands, arrival rates, and switchover times.The
errors presented in these tables are based on comparison with simulation estimates.

When the system is quite asymmetric, with one or more nodes approaching
saturation (as indicated by equation 3.7), then the B&M technique stipulates a
modification to their algorithm if switchover times are not insignificant. In this
modified approach, the conservation law is used to obtain the mean waiting times at
the nodes which are nearing saturation. Then, these nodes are removed, and their
presence in the system is accounted for by inflating the means and second moments
of some of the switchover times accordingly. The mean waiting times for the nodes in
the resulting system (which now has less nodes than in the original system), is now
evaluated using the conservation law once again (it is suggested that this procedure
be repeated several times if necessary). While this appears to improve on the
estimates, there are two potential problems with this approach. First, using this
modified procedure clearly implies that the resulting mean waiting times need not

@ Note, however, that the analyses of Kuehn, and Kimura and Takahashi, obtain more
than just the mean waiting times.
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now satisfy the conservation law on which the technique is based. Secondly, it is hard
to recognize exactly when, and to what extent, this method is to be applied, namely,
whether this really does improve the estimates at all, and if so how many nodes are
to be removed in this manner (Boxma and Meister do present some thumb rules for
guiding this choice; however, see the remark regarding table 11 below). Among the
test cases reported, this modified approach to the B&M technique is applied in tables
2, 8, and in tables 10 through 13 at p=0.8; and table 15 at p=0.75,The application of this
modification does not appear to improve on the estimates in table 11, for example.
However, it does significantly improve on the estimates obtained in the other cases.

The errors reported in the tables are based on comparison with simulation
estimates. In making any comparisons between the two techniques, however, it is to
be noted that the simulation results could be subject to some statistical error of
probably upto 10% in estimating the true mean, especially under very heavy traffic.
In general, for comparing the accuracy of the two approximation techniques, we
choose to ignore cases where the errors are of the order of about 5% or less.
Comparing MACNESS with the B&M technique, it can be observed from the tables
that both produce estimates that are very close to those obtained by simulation when
the traffic is relatively low (p < 0.5). When the traffic is heavy, and the systems are
quite asymmetric, MACNESS does appear to perform significantly better than the
B&M technique. This appears to be especially true when the switchover times are
zero, (as in tables 1, 3, 6, 10 and 14, for example) where the B&M technique gives
estimates that are upto about 40% away from the simulation estimates. The relative
accuracy in the MACNESS estimates is significant considering that it does not call
for a modification in the algorithm under heavy traffic conditions, as required by the
B&M technique (for the case of systems where switchover times are not negligible).

In general, even under conditions of heavy traffic, for the cases presented
here, the estimates obtained by MACNESS are usually within 10% of the simulation
estimates, with a notable exception being table 11, where the errors are as high as
about 18%. It is important to note that this is one case where the simulation results
appear to be quite in error. This observation is based on the fact that the conservation
law, when applied on the simulation estimates, is far from being satisfied. (It was
not possible to get better estimates here as the system is close to saturation in this
example). It is expected that when the systems are even more asymmetric and under
even heavier traffic, the approximation would give larger errors. Some such cases
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were tested; however, the simulation results were unreliable here, and these cases
are not reported, as meaningful comparisons cannot be made.

6. Summary and Conclusion:

The analysis of cyclic server systems with non-exhaustive service is complex.
In general, even obtaining the exact mean waiting times for such systems presents
considerable difficulties. Hence a number of approximate techniques have been
presented in the past.

A new technique, Myopic Analysis of Cyclic Non-Exhaustive Service Systems
(MACNESS), has been proposed in this paper. This technique appears to perform
much better than techniques previously reported, based on extensive validations
through simulations. A notable feature of the technique is that it presents an
intuitively appealing explanation for the average waiting time behavior of these
complex systems. This expression produces estimates that are usually very close to
the mean waiting times obtained by simulations, and appears to be fairly robust even
at very high utilizations, particularly when the conservation law is used to
recalculate the values of the residual vacation times.

The approximation is based on a simple approach, developed in this paper, for
obtaining the mean waiting time for a single node vacation system. This approach is
then, heuristically, extended to the general system with N > 1 nodes. It can be easily
verified that the resulting expression for the mean waiting times, given by equation
3.17, is exact for the completely symmetric case whenever the service times and
switchover times are both deterministic. The approximation has a straightforward
extension for analyzing systems with zero switchover times. It has been observed
- (Boxma and Meister (1987)), that the accuracy of approximate techniques usually
degrades as switchover times tend to zero. In fact, the B&M technique does perform
relatively quite poorly in some of the test cases when the switchover times are zero.

However, no noticeable change in accuracy of estimates can be noticed in the
MACNESS approach.
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APPENDIX

Derivations of the expressions in Pr itions 2 an

Proposition 2;

¥ Y (om1-p) Falym) + Y, (aomVd-pw) Falom),  (AD
m m

m#n
where
bu® o R,
Tlym) = gp—+ dsk+ 2 min(hk Cm(b), 1) by, (A2)
o k=m k=m+1
and
Sm(z) n < .
fmlom) =  —zg—+ Ysk+ D min(kCm(s),1) bk, (A3)

k=m+1 k=m+1

Derivation of equation Al:

In section 3.4 the fraction of time that the server is present at a node m was
obtained as q(ym) = pm, and the fraction of time that the server was switching
between node m and node (m mod N) + 1 was obtained as q(om) = sm/c. Extending
this line of reasoning a little further, given that the tagged customer sees the server
on vacation at the time of its arrival, the fraction of time it sees the server at node m,
m # n, (respectively, switching between nodes m and (m mod N) + 1), is just
q(Ym)/(1-py), (respectively, q(6m)/(1-pn)).

Now, let ¥(nlvyp), (respectively, ¥(n!lom)), denote the conditional residual

vacation time, from the point of view of an arrival at node n, given that the server
was found busy at node m, (respectively, switching between node m and node (m
mod N) + 1), at the point of arrival of the tagged customer.

Suppose that the arrival at node n found the server on vacation, and at some
node m, m#n. (For ease of discussion, it is assumed that 1 <m < n < N). This arrival
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then interrupts a special service which has an expected duration of by(@/by,. The
expected residual life of this interrupted service is, of course, bp(?/2by,. Following
the completion of this service, the server then needs to complete the rest of this
interrupted vacation. This service interruption has, however, induced a cycle of
expected length Cp(b), as given by equation 3.13. Hence, considering a node k on the
path from node m to node n, the expected number of customers served at this node
would be Ax Cry(b). (Again, at high arrival rates, this quantity might exceed 1, and
in this case the probability of a service at node k is assumed as equal to 1). Thus we

have:
g bn® & v
Tl = gp—+ Ysk+ 2, min(Cub),1)by.
m k=m k=m+1

Similarly, consider the case where the tagged customer interrupts the server
switching between nodes m and (m mod N) + 1. The expected length of this
interrupted switchover is sy,(®/sp, and this induces a cycle of length Cp(s), where

S+ 8m@/sm - sm
1-p

Cm(s) =

In this case, the conditional residual vacation time ¥(n!|op) is obtained as

(2) n n
V(nlom) = -;ISHT + z Sk + 2 min(Ax Cm(s), 1) b .

k=m+1 k=m+1

Finally, the residual vacation time ¥, is determined as

W= D, (atm)pw) Tmlmm + D (qom/-pn)) Falom).
m m

m#n



Propositi

Vn (1 - %n) va(b) + Xn V(). (A4)

Derivation of equation A4:

Implicit in the discussion here is the understanding that the tagged customer
arrives to node n and finds one or more customers already present at the node.

Consider the position of the server at the instant of arrival of the tagged
customer. With probability 1 - xp, the arrival finds the server at node n. In this case,
it interrupts a special service of expected duration bp(®/b,. As discussed earlier
(refer equation 3.13), this induces a special cycle of expected length Cn(b), with a
corresponding vacation of expected length v,. This accounts for the first term on the
right hand side.

Suppose, on the other hand, that the tagged customer, on arrival at node n,
finds the server away from the node. This happens with probability x,. In this case,

the arrival interrupts a special vacation. Suppose that the server was performing a
service at node m, m#n. The fraction of time this occurs is just q(ym)/(1-pn), and the
expected length of the interrupted service is by (@/by,. This was the argument used to
obtain the residual life of the interrupted vacation ¥y, wherein it was proposed that
the effect of this interruption induces a special cycle, Cpy(b), which continues until

the server reaches node n, where he now performs a 'normal’ service (i.e. a service
of mean duration by). Here, this argument is extended a little further: it is proposed
that the effect of this interrupted service at node m could continue even after the
- server completes the service at node n, i.e., during the vacation following this
service. In effect, it is proposed that this vacation is governed by either the
interrupted service at node m or the service at node n, whichever dominates. Thus,
in this vacation, the probability of service at a node k, k#n, is given by &km, where

okm =  min(A max[Cp(b),Cpl,1).

Hence, with probability q(yy)/(1-pn), the expected length of a vacation, vy(1 1vm),
which follows a service at node n on the customer at the head of the queue, is given by
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Vn(1 1Ym) = S + Z&km.
k

k#n

Suppose, on the other hand, that the server was switching between node m and
node (m mod N) + 1, at the time of arrival of the tagged customer. The fraction of time
this occurs is q(0py)/(1-pn). In this case, adopting an entirely similar argument, the
expected length of this vacation following the service on the customer at the head of
the queue at node n, vu(1 | o), is given by

vallom) = s + Z&km,
k
k#n
where
Gkm =  min(Ax max[Cmn(s),Cal,1).

Hence, the expected length of a vacation following the service on the customer at the
head of the line, denoted as vn(1), is obtained by the weighted average of these

conditional cycle times as:

va® = Y, (qmV1-pn) Vil lym) + D, (aOm)(1-pn)) vin(l|Om) .
m m

m#n

Given that the arriving customer saw the server away from the node on
arrival, the special vacation following the departure of the customer at the head of
the line is just vp(1). Since this occurs with probability xp, the result follows.
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Utilization (p)
Node Method
0.3 0.5 0.8
Simulation* 0.135 0.553 4144
1 MACNESS* 0.137(1.5) 0.557(0.7) 4.251 (2.6)
Boxma & Meister |0.136 (0.7) 0.556 (0.5) 3.942 (-4.9)
Simulation* 0.115 0.393 1477
2t03 | MACNESS* 0.116 (0.9) 0.414(5.3) 1.623 (9.9)
Boxma & Meister |0.118(2.6) 0.417(6.1) 2.087 (41.3)
“

* The mean waiting times have been averaged over corresponding group of queues.
Errors are indicated in parantheses.

Table 1: Comparison of mean waiting times obtained by MACNESS
with simulation, and with technique of Boxma and Meister. N=3,
A1 =0.6, A2 = A3 =0.2; All service time distributions exponential with
b1=b2=b3. All switchover times equal to zero.

L~ |

Utilization (p)
Node Method

0.3 0.5 0.8

Simulation* 0.333 0.976 9.090
1 MACNESS* 0.334(0.3) 0.970(-0.6) 9.162 (0.8)
Boxma & Meister |0.334(0.3) 0.959(-1.7)  8.360(-8.0)
Simulation* 0.261 0.599 1.920
2t03 | MACNESS* 0.261 (0.0) 0.614(2.5) 2.083 (8.5)

Boxma & Meister | 0.262 (0.4) 0.628 (4.8) 1.480 (-22.9)

* The mean waiting times have been averaged over corresponding group of queues.

Errors are indicated in parantheses.

Table 2: Comparison of mean waiting times obtained by MACNESS
with simulation, and with technique of Boxma and Meister. N=3,
A1=0.6; A2=A3=0.2; All service time distributions exponential with
b2=b3=(1/3) bl. All switchover times exponential and equal to 0.05.
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Utilization (p)

Node Method

0.3 0.5 0.8
Simulation* 0175 0.677 4473
1 MACNESS* 0.182(4.0) 0.731 (8.0) 4.905 (9.7)
Boxma & Meister |0.180(2.9) 0.733(8.3) 5.203 (16.3)
Simulation* 0.156 0.569 3.570
2t03 | MACNESS* 0151(-3.2) 0.553(-2.8) 3.203(-10.3)

Boxma & Meister | 0.155(-2.5) 0.550(-4.8) 2.755(-23.6)
M

* The mean waiting times have been averaged over corresponding group of queues.
Errors are indicated in parantheses.

Table 3: Comparison of mean waiting times obtained by MACNESS
with simulation, and with technique of Boxma and Meister.

=3, A =A2=2A3=1/3; All service time distributions exponential
with b2=b3=(1/3) bl. All switchover times equal to zero.

Utilization (p)
Node Method
0.3 0.5 0.8
Simulation* 0.570 1.384 11.260
1 MACNESS* 0.570(0.0) 1.470(6.2) 12591 (11.8)

Boxma & Meister | 0.570(0.0) 1.494(7.2) 13.020 (15.6)

Simulation* 0.502 1.196 8.600
2t03 | MACNESS* 0493 (-1.8) 1.157(-3.3) 7.554(-12.2)
Boxma & Meister | 0.493(-1.8) 1.121(6.3) 6.890 (-19.9)

Dl

* The mean waiting times have been averaged over corresponding group of queues.
Errors are indicated in parantheses.
Table 4: Comparison of mean waiting times obtained by MACNESS
with simulation, and with technique of Boxma and Meister.

N=3, Al =A2 =23 =1/3; All service time distributions exponential
with b2=b3=(1/3) bl. All switchover times exponential and equal to 0.10.

28



Utilization (p)
Node Method
0.3 0.5 0.8
Simulation 0.175 0.679 4.490
‘1 MACNESS 0176 (0.5) 0.711 (4.7 4,718 (5.1)
Boxma & Meister |0.170(-2.9) 0.681(0.3)  4.965 (10.6)
Simulation* 0.163 0.602 3.891
2t06 | MACNESS* 0160(-1.8) 0.610(1.3) 3.832(-1.5)
Boxma & Meister 0.161 (0.0) 0.622(3.3) 3.724 (-4.3)
Simulation 0.175 0.675 4.468
7 MACNESS 0.176(0.6) 0.710(5.2) 4.708 (5.4)
Boxma & Meister [0.170(-2.9) 0.681(0.9) 4.965(11.1)
Simulation* 0.161 0.620 3.869
8t016 | MACNESS* 0.160(-0.6) 0.610(-1.6) 3.831 (-1.0)
Boxma & Meister |0.163(1.2) 0.622(0.3) 3.724 (-3.7)

* The mean waiting times have been averaged over corresponding group of queues.
Errors are indicated in parantheses.

Table 5: Comparison of mean waiting times obtained by MACNESS
with simulation, and with technique of Boxma and Meister. N=16,
Al = =16 = 1/16; All service time distributions exponential with
b1=b7, b2=..=b6=b8=..=b16=(1/3)b1. All switchover times equal to zero.

P—— m
Utilization (p)
Node Method
0.3 0.5 0.8
Simulation 0.140 0.595 4.538
1 MACNESS 0.142(1.4) 0.604(1.5) 4.601 (1.4)
Boxma & Meister | 0.140(0.0) 0.584(-1.8) 4.383(-3.4)
Simulation* 0.110 0.355 1.149
2t016 | MACNESS* 0.108 (-1.8) 0.345(-2.8)  1.098 (-4.4)

Boxma & Meister | 0.113(2.8) 0.375(5.6)  1.427(-24.2)

m |

* The mean waiting times have been averaged over corresponding group of queues.

Errors are indicated in parantheses.

Table 6: Comparison of mean waiting times obtained by MACNESS
with simulation, and with technique of Boxma and Meister. N=16,
A1=0.6; A2=.=A16=2/75; All service time distributions exponential with
identical means. All switchover times equal to zero.
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Utilization ()
Node Method
0.3 0.5 0.8
Simulation 0.823 1.697 8.780
1 MACNESS 0.835(1.5) 1.752(3.2) 9.349 (6.5)
Boxma & Meister |0.831 1.0) 1.742(2.7) 10.060 (14.6)
Simulation* 0.793 1.591 7.980
2t06 | MACNESS* 0.796 (04) 1.586(-0.3) 7.900(-1.0)
Boxma & Meister 0.797(0.5) 1.590(-0.1) 7.540(-5.5)
Simulation 0.833 1.720 8.900
7 MACNESS 0.835(0.2) 1.752(1.9) 9.340 (4.9)
Boxma & Meister [0.831(-0.2) 1.742(1.3) 10.060 (11.8)
Simulation* 0.793 1.591 7.910
8t016 | MACNESS* 0.796 (0.3) 1.586(-0.3) 7.850(-0.8)
Boxma & Meister |0.797(0.5) 1.590(-0.1)  7.540 (-4.6)

* The mean waiting times have been averaged over corresponding group of queues.
Errors are indicated in parantheses.

Table 7: Comparison of mean waiting times obtained by MACNESS
with simulation, and with technique of Boxma and Meister. N=16,
A = =A16=1/16; All service time distributions exponential with
bl=b7, b2=..=b6=b8=..=b16=(1/3)bl. All switchover times equal to 0.05.

Utilization (p)
Node Method
0.3 0.5 0.8
Simulation 0.330 1.015 9.710
1 MACNESS 0.325(-1.5) 1.026(1.1) 10.284(5.9)
Boxma & Meister | 0.321 (-2.7) 0.996 (-1.9) 9.790(0.9)
Simulation* 0.222 0.495 1.350
2t016 | MACNESS* 0.219(-1.4) 0.484(-2.2) 1.303(-3.5)
Boxma & Meister | 0.224(0.9) 0.521(5.3) 1.240(-8.1)

* The mean waiting times have been averaged over corresponding group of queues.

Errors are indicated in parantheses.

Table 8: Comparison of mean waiting times obtained by MACNESS
with simulation, and with technique of Boxma and Meister. N=16,
A1=0.6; A2=.=A16=2/75; All service time distributions exponential with
identical means. All switchover times equal to 0.01.
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Utilization ()
Node Method
0.3 0.5 0.8
Simulation 0.377 1.479 10.748
1 MACNESS 0349(-74) 1.403(-5.1) 10.427(-3.0)
Boxma & Meister |[0.375(-0.5) 1.512(2.2) 10.662(-0.8)
Simulation* 0.332 1.107 4128
2t06 | MACNESS* 0.300(-9.6) 1.030(-7.00 4.605(11.6)
Boxma & Meister |0.328(-1.2) 1.134(24) 4.719(14.3)
Simulation 10.385 1.547 11.105
7 MACNESS 0.422(9.6) 1.709(10.5) 11.027(-0.7)
Boxma & Meister [0.375(-2.6) 1.512(-2.3) 10.662 (-4.0)
Simulation* 0.307 1.015 3.888
8t016 | MACNESS* 0299 (2.7) 1.015(0.0) 4523 (16.3)
Boxma & Meister [0.328(6.8) 1134(11.7) 4.719(21.4)

* The mean waiting times have been averaged over corresponding group of queues.
Errors are indicated in parantheses.

Table 9: Comparison of mean waiting times obtained by MACNESS
with simulation, and with technique of Boxma and Meister. N=16,

A1=A7=0.15; A2=..A6=A8=.A16=0.05; Service time distributions at nodes

2..6, and 8..16 exponential with identical means; service at node 1 Erlang-4

with b1=6b2; service at node 7 Hyperexponential with coefficient of
variation=2, and b7=6b2. All switchover times equal to zero.

Utilization (p)
Node Method
0.3 0.5 0.8

Simulation* 0.131 0.532 3.905

1to4 MACNESS* 0133(1.5) 0.535(0.6) 3.926(0.5)
Boxma & Meister | 0.131(0.0) 0.521 (-21) 3.612(-7.5)
Simulation* 0.123 0.439 1.896

2t016 | MACNESS* 0.121(-1.6) 0.437(-0.5) 1.910(0.7)
Boxma & Meister | 0.124(0.8) 0.463 (5.5)  2.467(30.1)

* The mean waiting times have been averaged over corresponding group of queues.

Errors are indicated in parantheses.

Table 10: Comparison of mean waiting times obtained by MACNESS
with simulation, and with technique of Boxma and Meister. N=16,

Al=.=A4=0.16; A5=.=A16=0.03; All service time distributions exponential

with identical means. All switchover times equal to zero.
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Utilization (P)
Node Method
0.3 0.5 0.8
Simulation 1.198 3.253 41.260
1 MACNESS 1.200(0.2) 3.189(-2.0) 33.993(-17.6)
Boxma & Meister [1.224(2.2) 3.271(0.6) 33.840(-18.0)
Simulation* 0.946 2.011 6.270
2t06 | MACNESS* 0913(-3.5) 1.933(-3.9) 17.059(12.6)
Boxma & Meister [0.940(-0.6)  2.027 (0.8) 4.900 (-21.9)
Simulation 1.247 3.335 39.210
7 MACNESS 1.273(2.1) 3.447(3.3) 34.379(-12.3)
Boxma & Meister [1.224(-1.8) 3.271(-1.90 33.840(-13.7)
Simulation* 0.922 1.902 6.170
8t016 | MACNESS* 0912(-1.1) 1.923(1.1) 7.027 (13.9)
Boxma & Meister |0.940(2.0) 2.027 (6.6) 4.900 (-20.6)

* The mean waiting times have been averaged over corresponding group of queues.
Errors are indicated in parantheses.

Table 11: Comparison of mean waiting times obtained by MACNESS

with simulation, and with technique of Boxma and Meister. N=16,
A1=A7=0.15; A2=..A6=A8=..116=0.05; Service time distributions at nodes
2..6, and 8..16 exponential with identical means; service at node 1 Erlang-4

with b1=6b2; service at node 7 Hyperexponential with coefficient of
variation=2, and b7=6b2. All switchover times equal to 0.05.

Utilization (p)
Node Method
0.3 0.5 0.8

Simulation* 0.898 1.929 17.660

1to4 MACNESS* 0.901 (0.3) 1.922(-04) 17.901(1.3)
Boxma & Meister | 0.897(-0.1) 1.884(-2.3) 16.870(-4.2)
Simulation* 0.717 1.267 3.570

2t016 | MACNESS* 0.714(-0.4) 1.255(-1.0) 3.967(11.1)
Boxma & Meister | 0.720(0.4) 1.307(3.2) 3.14(-12.0)

* The mean waiting times have been averaged over corresponding group of queues
Errors are indicated in parantheses.
Table 12: Comparison of mean waiting times obtained by MACNESS
with simulation, and with technique of Boxma and Meister. N=186,

Al=.=A4=0.16; A5=.=A16=0.03; All service time distributions exponential
with identical means. All switchover times equal to 0.05.
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m
Utilization (P)
Node Method
0.3 0.5 0.8
Simulation* 0.505 1.188 9.250
1to3 | MACNESS* 0.505 (0.0) 1.160(-2.4) 10.160(9.8)
Boxma & Meister | 0504 (-0.2) 1.041(3.8) 10.056(8.7)
Simulation* 0.379 0.685 1.597
4t08 | MACNESS* 0.376(-0.8) 0.681(-0.6) 1.782(11.6)
Boxma & Meister |0.378(-0.2) 0.701 (2.3) 1.451(-9.1)

* The mean waiting times have been averaged over corresponding group of queues.
Errors are indicated in parantheses.

Table 13: Comparison of mean waiting times obtained by MACNESS
with simulation, and with technique of Boxma and Meister.

N=8, Al = =A3=03,M = =18 =0.02;

bl=.. =Db8. Service at nodes 1 through 3 are Erlang-4. Service at nodes
4 through 8 are Hyperexponential with coefficient of variation = 2.

All switchover times equal to 0.05.

Utilization (p)
Node Method

0.3 0.6 0.9

Simulation* 0.206 1.251 6.103
1to5 | MACNESS* 0204 (-1.0) 1.231(-1.6) 5.682(-6.9)
Boxma & Meister |0.208 (1.0) 1.305 (4.3) 8.580 (28.9)

Simulation 0.236 1.875 26.747
6 MACNESS 0240 (1.7) 1.935(3.2) 24.541(-8.2)

Boxma & Meister | 0.235(-0.4) 1.837(-2.2) 20.727 (-22.51)

* The mean waiting times have been averaged over corresponding group of queues.
Errors are indicated in parantheses.

Table 14: Comparison of mean waiting times obtained by MACNESS
with simulation, and with technique of Boxma and Meister.

N=6, A1 = - = A5 =0.0673, A6 = 0.2558; All service times have bimodal
distribution with coefficient of variation 1.01, and identical means.
All switchover times are equal to zero.
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Utilization (P)
Node Method
0.25 0.50 0.75

Simulation* 0.952 2.251 5.915

1,4 MACNESS* 0931 (2.2) 2.251(0.0) 6.590 (11.4)
Boxma & Meister* | 0.936 (-1.7) 2.331 (3.6) 5.383 (-11.0)
Simulation* 0.995 2.675 8.999

2,5 MACNESS* 1.009(1.4) 2.679(-0.1) 9.951(10.6)
Boxma & Meister* | 1.008 (1.3) 2.697 (0.8) 7.094 (-21.1)
Simulation 1.145 3.748 28.870

3 MACNESS 1.180(3.1) 3.730(-0.5) 26.659 (-7.7)

Boxma & Meister | 1.176 (2.7) 3.639 (-2.9) 23.519(-18.5)

* The mean waiting times have been averaged over corresponding pairs of queues.
Errors are indicated in parantheses.

Table 15: Comparison of mean waiting times obtained by MACNESS
with simulation, and with technique of Boxma and Meister.

N=5, A1 =24 =0.05, A2 =75 =1/12, A3 = 0.15; Service time distributions
exponential with identical means. All switchover times equal to 0.2.

Utilization (P)
Node Method
0.25 0.50 0.75

Simulation 1.146 3.858 21.405

1 MACNESS 1.184 (3.3) 3.564(-7.6) 22.253(4.0).
Boxma & Meister | 1.183(3.2) 3.615(-6.3) 23.214 (8.5)
Simulation 1.077 3.064 15.320

2 MACNESS 1.079(-0.2) 2.906(-5.2) 15.540(1.4)
Boxma & Meister | 1.082(-0.5) 2.892(-5.6) 14.857(-3.0)
Simulation 1.050 3.113 15.574

3tob MACNESS 1.047(-0.3) 2.726(-12.4) 13.210(-15.2)

Boxma & Meister | 1.048(-0.2) 2.651 (-14.8) 12.070 (-22.5)

* The mean waiting times have been averaged over corresponding groups of queues.
Errors are indicated in parantheses.

Table 16: Comparison of mean waiting times obtained by MACNESS
with simulation, and with technique of Boxma and Meister.

N=5, Al = .. = A5 =0.15; Service time distributions exponential with
b3 =b4 = b5, bl = 5b3, b2 = 2b3. All switchover times equal to 0.2.
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