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Abstract

Recent years have witnessed a substantial amount of work on developing
bounds on the throughput of product form closed queueing networks. The
research has mostly been directed towards networks where each node is either a
single server fixed-rate type, or a delay (infinite server type).

This paper presents some simple means of extending the above work.

First, a new means of obtaining bounds on the throughput of networks with
multiserver nodes is presented. Second, efficient bounds on the mean queue

lengths forming at the nodes in such networks are obtained.



1. Introduction:

The performance of computer systems can be evaluated by modeling them as
closed queueing networks. The evaluation is done by analyzing the queueing
network model for the desired measures of performance, typically under
equilibrium conditions. The Product Form (PF) assumption is often used here
for reasons of tractability. Quite often, situations arise where exact
solutions of these queueing networks may not be required. This is especially
the case when many alternate configurations are to be evaluated. In such
cases, one would like to obtain approximate solutions fairly quickly. This
has motivated research on obtaining bounds on the performance measures of
queueing networks [4,7,10,11,12,13,14,16]. Most of the research has been on
obtaining bounds on throughput for networks where each node in the network is
either a fixed-rate node or a delay (infinite server) node. Recently there
has been some work on developing throughput bounds for networks where the
nodes are allowed to exhibit load-dependent behaviour [10,12].

This paper addresses two problems related to bounding performance
measures. First, a simple means of obtaining throughput bounds for networks
with multiserver nodes is developed; these bounds appear to be tighter than
those reported earlier. Second, a method for obtaining bounds on the mean
queue lengths forming at the nodes in such networks is presented.

In Section 2, a few preliminaries are presented. Section 3 develops the
bounds on the throughput for networks with multiserver nodes, and Section 4

presents a scheme for obtaining the bounds on mean queue lengths.



2. Preliminaries

Let M denote the number of nodes in a network, and N the customer
population. Let um(n) be the average service rate at node m, when there are n
customers present at that node, including, if any, the one receiving service.
For fixed-rate nodes we have u (n) = uy and for delay nodes, up(n) = neup.

Now consider a network where the nodes can have a service rate function
of the form:

up(n) = nep /(ap + bpn), ap, by 2 0. (2.1)

Note that if the parameter a_ = 0, this equation characterizes the behaviour

m
of a fixed-rate node, and if the parameter bm = 0, this equation characterizes
the behaviour of a delay node. Let Vo be the mean number of visits made by a

typical customer to node m, and define

Ly = bm'vm/“m' (2.2)

and

The values L and I are for convenience referred to as the 'fixed rate load'
and the 'delay load', respectively, at node m. Let L (respectively, I) denote
the total fixed rate load (respectively, delay load) over all nodes. The
total load on the network is then L + I. Let p, (respectively, o) De the
ratio of the fixed rate load (respectively, the ratio of the delay load) at
node m, to the total load. In the following discussion, unless otherwise

specified, the index for any summation is over the range 1 through M. Hence,

L = ] Ly (2.4a)
m

I = 11, (2.4b)
m

pp = Lp/(L+D), (2.4¢)

oy = Ip/(L+D). (2.4d)

Set
bp = Pp * p- (2. 4e)



Further, define the sequence of terms {S;}, i = 1,2,...,N, by

s; = 1 oi7lee . (2.5)
m

A sequence of increasingly tighter upper and lower bounds on the
throughput of networks in which nodes can exhibit load-dependent behaviour of
the form considered in equation (2.1), can then be obtained using the terms S
[12]. These are referred to as Successively Improving (SI) bounds of
increasing 'levels'. The level one upper and lower bounds on the throughput
use the terms S1 through SZ‘ the level two bounds use the terms S1 through S3,
and so on. These bounds are obtained as closed form expressions. For example,
if we let u denote the node with the largest load, the level three upper SI

bound on the throughput, A*(N), is obtained by the expression

XN = 2N/[(Le1)(1 ¢ (N=1)ay + SRT(TN)], (2.6)
where

T = ((N=1)ag#1)2 + 4L (N=1) (N=2) (@ +(N=3)ap/Dy_3) ], (2.7a)
with

% = Sy, (2.7)

a = 83 = agSy, (2.7¢)

ay = Sy = ay53 = %S, (2.7d)
and

Dy-g = 0.5:[1 + (N=T)p, + SQRT([(N=1)p,=112+4(N-1)S,)]. (2.7e)



3. Throughput Bounds for Networks with Multiserver nodes:

Consider a network where any node with load-dependent behaviour is either
a delay node, a multiserver node, or a node with rate function as given by
equation (2.1). When multiserver nodes are present, exact analysis of the
network requires O(MNZ) computation for obtaining the throughput. Two of the
bounding techniques which have been proposed recently [10,12] can be used to
obtain throughput bounds for networks with multiserver nodes in O0(M) time.

3.1 Previous work:

The technique proposed by Srinivasan [12] would apply, in general, to
include in the network any node whose service rate is a concave non-decreasing
function of its queue length such as, for example, multiserver nodes and flow
equivalent centers [2]. Following this technique, in the case of networks with
multiserver nodes, each multiserver node m would be replaced by a node having
a parametrized rate function as given by (2.1), with a suitable choice of
values for the parameters an and bm. Using a result shown in [15] it is
possible to show that the bounds obtained on the throughput of the resulting
network properly bounds the throughput of the original network.

In a recent paper, Shanthikumar and Yao [10] obtain a lower bound on the
throughput for networks with multiserver nodes. This uses some results
developed by them on likelihood ratio ordering and its preservation under
convolution. This bound is obtained as follows: suppose we are given a
network where each load-dependent node m has a service rate um(n) which is a
non-decreasing function of the queue length. Let N be the smallest integer

such that wp(n;) = max py(n); let ap = ny - 1, and set a = L ay. Now consider
n21 m

a new network where each load dependent (non-delay) node m with rate Hp(n) is

replaced by a single server fixed rate node with rate u; = max um(n).
n21



If a < N, then Shanthikumar and Yao show that the throughput of this new
network at population N-a is a lower bound on the throughput of the original
network at population N. Since the new network consists only of fixed rate
nodes, existing bounding techniques are used in turn to obtain a lower bound
on the throughput of this network, which gives the desired lower bound. We
shall refer to this lower bound on throughput as the SY bound. The method is

effective where N-a is not very small.

3.2 A bounding scheme:

An alternate approach to obtain bounds on the throughput of networks with
multiserver nodes is now presented. Consider a network of M nodes with nodes 1
through M=1 being fixed rate nodes, having mean number of visits Vpe and
service rate Mo m=1,...,M=1. Let node M be a multiserver node with K
parallel servers, with mean number of visits VMo and service rate uM(n)
defined as follows:

uM(n) = Nuys N § K; (3.1a)
and
uy(n) = Kuy, n > K. (3.1b)
Now suppose that node M is replaced by a set of J nodes indexed M,..,M+J-1,
each having a mean number of visits Ve Set the service rate at node M to be

equal to KuM, and set the service rates at nodes M+1 through M+J=1 to all be

equal to kuM, where k is some value much larger than K and such that

14 @D 1= (3.2)
KUM kuM HM

Then it can easily be shown that a flow equivalent center [2] M1,
obtained by aggregating these J nodes, has a service rate “M1(“) such that
w1 () < uy(n), n 2 1.
Hence, to obtain a lower bound on throughput we replace the MD' node by a
set of J fixed rate nodes with service rates as specified above. For this

network, the 'loads' are then given, in terms of the original network



parameters, by
I..m = Vm/um, m=1,..,M=1,
LM = KVM/uM,
Ly = kvy/uy, m=M+1,..,M+J-1.

The total load for this network is thus

c
L}
—
o~
[
a8
+

(J=1) + (K/K) *Lys

The terms Si, i=1,..,t+1, required to compute a level t bound are then
given by

Mo L
Sy = (m21p; )+ (I=1)(k/KYepy,

where Pm is as defined by equation (2.4c). Hence, although J=1 extra nodes
were introduced, the increase in computational effort is just about five more
arithmetic operations for each S1 term.

A result established in [15] shows that decreasing (respectively,
increasing) the service rate of a node in networks of the type considered here
decreases (respectively, increases) the throughput. Since the flow equivalent
center M1, resulting from the aggregation of the J fixed rate nodes has a
service rate bounded from above by the service rate of the multiserver node it
replaces, it follows that the throughput of the resulting network with M+J=1
nodes is less than the throughput of the original network. The resulting
network of fixed rate nodes is bounded for the throughput using the approach
outlined in section 2, and the resulting lower bound on the throughput for
this network is clearly a lower bound for the throughput of the original
network. The lower bound so obtained is henceforth referred to as the lower SI
bound.

In general, for a network with more than one multiserver node, a new

network is constructed where each multiserver node is replaced by a set of



fixed rate nodes as outlined above. The computational effort required to
calculate the S1 terms for this network is just a little more than that
required to calculate S; terms for a network with only M fixed rate nodes.
Example 3.1:

Consider a network with 4 multiserver nodes and with customer population
20. Let vy = 0.1, m=1,..,4, and let yy(n) = n, n < 4, and up(n) = 4, n > 4, for
m=1,..,4. The actual throughput of this network is 32.660.

Using the technique of Shanthikumar and Yao, the SY bound is obtained by
first constructing a network of fixed rate nodes, each with rate Hp = 4, Since
all rates are the same, it is easy to obtain a lower bound on the throughput
which in fact is the actual throughput of this network. This value is obtained
at a customer population of 8, and is equal to 29.091.

Now using the approach outlined in this paper, a lower SI bound is
obtained as follows: each multiserver node is replaced by a set of 50 nodes,
with service rates in each set as follows: 1 node at rate 4, and 49 nodes with
rate 65.333. The level 5 lower SI bound on this resulting network is 30.09.

An upper bound on the throughput for this network is given by considering
all nodes to operate at their maximum rate. This upper bound is 34.783.

Table 3.1 summarizes the bounds obtained for this example.

THROUGHPUTS

Population ———
Actual SY bound | SI lower bound Upper bound

20 32.660 29.091 30.090 34,783

Table 3.1: Bounds obtained for example 3.1,

In some instances, a tighter upper bound for networks with multiserver

nodes may be obtained along lines as suggested in [12]. For example, suppose



it can be estimated, apriori, that the mean queue length at a multiserver
node, m, with K parallel servers would be less than K. Then instead of
obtaining an upper bound by replacing the multiserver node by a fixed-rate
node operating at the maximum service rate of the multiserver node, a node
with a service rate function of the form given by equation (2.1) could be
considered with suitably chosen parameter values for a, and bm.

Example 3.2:

Consider a network with 11 nodes, of which the first seven are fixed rate
nodes. Nodes 8 and 9 are multiserver with 4 parallel servers each while nodes
10 and 11 are multiserver nodes with 5 parallel servers each. The mean number
of visits to each node is 1. The service rates Hpe M = 1,..47 are 1/21, 1/20,
1/20, 1/15, 1/10, 1/8, and 1/8. The service rates for the multiserver nodes 8
through 11 are given by the functions

(1) wp(n) =n oy, n S 45 pp(n) =4 Wp» N > 4, for m = 8,9.

(11) wp(n) = n wp, n S 55 wp(n) =5 ppy, n > 5, for m = 10,11,
The values for T for m=8 through 11 are, respectively, 1/80, 1/40, 1/90, and
1/95.

The SY bound is obtained as before and is shown in Table 3.2, which also
indicates the actual throughput of this network along with the other bounds.

The lower SI bound on throughput is obtained here as follows: Node 8 is
replaced by 41 nodes, one with rate 1/20 and 40 with rate 1/1.5 each; node 9
is replaced by 41 nodes, one with rate 1/10 and 40 with rate 1/0.75 each; node
10 is replaced by 41 nodes, one with rate 1/18 and 40 with rate 1/1.8 each;
node 11 is replaced by 41 nodes, one with rate 1/19 and 40 with rate 1.9 each.

As before, a simple upper bound, termed UB1 in Table 3.2, is obtained by
letting nodes 8 through 11 work at their maximum rate throughout. An glternate
upper bound, termed the upper SI bound, is also shown. This is obtained by

letting nodes 8, 10, and 11 operate throughout at their maximum rate. Node 9



is replaced by a node with a rate function of the form given by equation
(2.1). The values for ag, and by here were set at 0.888 and 0.028
respectively. These values ensure that the rate function for the multiserver
node 9 is properly bounded from above by the rate function of the replacing
node. From Table 3.2, it is seen that this results in an improved bound. The

bounds are presented at population values of 20, 30, and 40.

THROUGHPUTS
Population
Actual | SY bound | SI lower UB1 SI upper
20 0.0344 0.0233 0.0318 0.0389 0.0385
30 0.0400 0.0359 0.0378 0.0427 0.0425
4o 0.0428 0.0403 0.0409 0.0448 0.0u448

Table 3.2: Bounds obtained for example 3.2.



4, Bounds on mean queue lengths:

Techniques now exist for obtaining reasonably tight bounds on throughput
with relatively low computational effort compared to that required for exact
analysis. This suggests the possibility of achieving good bounds on the mean
queue lengths which form at the nodes. Needless to say, these bounds should‘
require little computational effort compared to that required to obtain the
exact values.

In section 4.1, some bounds are presented which are very easy to evaluate
once bounds on the throughput have been obtained. These bounds appear
adequate for nodes which do not experience very high utilizations (e.g., over
80%). For nodes with high utilizations, an alternate bounding scheme is
developed in section 4.2, This latter method is based on an application of
the convolution algorithm [1] and requires a relatively larger number of
arithmetic operations to obtain the mean queue length bounds. The discussion
below is restricted, for simplicity, to networks with fixed rate nodes., It is
easily extended to networks with delay nodes, load dependent centers of the

form given by (2.1), and networks with multiserver nodes.

4,1 A set of simple bounds on mean queue length:

For networks with only single server fixed-rate nodes nodes, the mean

queue length at a fixed-rate node, m, is given as [3]:
N
QN = I LK A(NK), (4.1)
k=1

where

A(N,k) = X(N) ... A(N=k+1), (4.1a)
and A(K) is the throughput of the network with population K. It is shown in
[15] that for the kind of networks considered here,

AK) > A(K=1); K> 0.

10



Hence

N
QN ¢ I LI

k=1
1= (U, ()Y
= Up(N) ==mmmmmemmmna- (1.2)
1 = Up(N)
where
Up(N) = LyA(N), (4.3)

is the utilization of node m. Let X(N) denote an upper bound on A(N) and let
Um(N) = Lp Y(N) denote the corresponding upper bound on the utilization at

node m. Then it is easily seen that

Qu(N) < Op(N)  =oscmeoceccone- . (4.4)

Let L, denote the load at the node with the highest load. As the network
population increases, the network begins to behave like an open network with
mean arrival rate 1/Lu. For this corresponding open network, any node m with
load Ly < L will experience a mean queue length Qp = Um/(1 - Um) where U, =
Lm/Lu would be the utilization of this node in the open network. Hence, as N
becomes large the upper bound on mean queue lengths, as given by equation
(4.4) would begin to get increasingly closer to the exact value for these
nodes. For the node(s) with load Lu' for large N, an upper bound is given by

QN = 1/k (N = [ Qp(N) (4.5)
méu

where k denotes the number of nodes with load L, and Qm(N) is a lower bound on

(V) -

A lower bound on Qp(N) is given by Theorem 4.1:

"



Theorem 4.1:

In a closed PF network with only single server fixed rate nodes and delay
nodes, the mean queue length, Qm(N), at a fixed rate node m with network
population N, is bounded from below by f(U,(N)), where

(N=1) (1 = U (D)) + 1
£(Ug(N)) = Up(N) ¢ =emeemcmomaemannanea (4.6)
2
(N=1) (1 - Um(N)) + 1.,
A proof of Theorem 4,1 is given in [12]. Hence, with appropriate bounds

on the utilization U (N), at node m, equation (4.6) yields a lower bound on

Q ().

4,2 Obtaining tighter bounds on mean queue lengths:

Although the bounds presented in Section 4.1 are easy to evaluate, they
can be quite loose for nodes which have high utilizations. It is, however,
possible to obtain an exact closed form expression for the mean queue lengths
in terms of a throughput with some additional computation. This is achieved
by means of the Convolution algorithm [1]. For ease of presentation, only
networks with fixed rate servers are considered here.

The Convolution algorithm for a network T with M fixed rate single server
nodes gives an expression for the normalizing constant g(N,M) as

g(N,M) = g(N,M=1) + Lyg(N=1,M). (4.7)
The throughput for this network, A(N), is then given as

A(N) = g(N=1,M)/g(N,M). (4.8)

Suppose it is desired to obtain bounds for the mean queue length at some
designated node. Without loss of generality, let this be node M. The mean
queue length at this node is given as [3]

N

WN) = T Lyk g(N-k,M)/g(N,M) . (4.9)
k=1

Now consider an augmented network T(M) with M+1 nodes where nodes 1 through M

12



have the same loads as in T and node M+1 has a load Ly. Let A(M)(N) be the
throughput of this augmented network. Lemma 4.1 then obtains an expression

for QM(N) in terms of A(M)(N).

Lemma 4.1
Given a network, T, of M single server fixed rate nodes, the mean queue

length at the MED node, Qu(N) is given by

M . Ly

Qy(N) : (4.10)

NG Ly
where A(M)(N) is the throughput of the network T augmented by one additional
node, M+1, with load Ly.

The normalization constant of the augmented network, T(M), is given by

g(N,M#1) = g(N,M) + Ly g(N=1,M=1), (4.11)
and the throughput of T(M) is

A(MI(N) = g(N=1,Me1) /g (N, MHT). (4.12)
By repeated application of (4.11) in equation (4.12), we get
g(N=1,M) + Ly g(N=2,M) + ... + La'1g(0,M)

M - —-
gIN,M) + Ly g(N-1,M) + ... + Lig(0,M)

1+ Qy(N=1)
= A(N) eeecceceeee-, (4.13)
where the last equality is obtained using equations (4.8) and (4.9).
From the Mean Value Analysis algorithm [9], an expression relating Qy(N)

with Qu(N=1) can be obtained as:
Q =
MON) = AN Ly« A(N) Ly qy(y-1). (4.14)

Substituting the expression for QM(N-1) resulting from (4.14) into

equation (4,13), and simplifying, the desired result in obtained. o

13



In general, in order to use the approach outlined above, a new augmented
network is to be constructed for each fixed rate node with a distinct load,
for which mean queue length bounds are desired. This augmented network should
then be analyzed, using a bounding technique, to obtain bounds on its
throughput. Equation (4.10) should then be used to obtain the bounds of the
mean queue length.

Suppose the SI bounding technique is used. Assume that level three
bounds on the throughput have been obtained. This means that the terms Si'
for i = 2, 3, 4 must have been calculated, where Si is defined by equation
(2.5). Now, to obtain mean queue length bounds for a node, n, n < M, with

load Ln, the augmented network with M+1 nodes is constructed. The values of

(n)

the relative utilizations p,

,m=1, ..., M#+1, for this augmented network,
are given by

Pm
prgn) = ococeew . L m = 1, ee ey M+1o

m!
L+L,
Let
M+1
s« T pihY, 1 -2, i, b (4.15)
i=1
= (8y *+ o)1+ ot (4.16)

Hence the terms Sin) are easy to evaluate, given the values for Si and the
relative utilizations. A level three upper bound on the throughput of the
augmented network is then given by equation (2.7) where the terms ay, ¢, and

a, are replaced by ué“), a%“), and aén). The terms a§n) are defined as

i=1
aén) . S(n)2 - s(?21-j“j’ i =0,1,2.
j=0

Using this upper bound on A(M)(N) in equation (4.10), an upper bound on
the mean queue length at node n is obtained.
The use of the bounding techniques developed in this section is

illustrated below with a few examples. In each case, the approach taken is to

14



use bounds developed in Section 4,1 for nodes with lower utilizations, and use
the bounds from Section 4.2 for nodes with higher utilizations. The basis for
determining the bounding scheme to be used was arbitrarily set as follows:
from the upper bound on throughput, the upper bound on the utilizations at the
nodes was determined using equation (4.3). Nodes with this upper bound value
less than, or equal to, 0.80 were evaluated for their mean queue length bounds
by the method of Section 4.1, while the other nodes used the method of Section
4,2, The SI bounding technique was used in all test cases, and level 5 bounds
were used to calculate the throughput bounds.

For comparison, the exact values were also evaluated. The test cases
were run on an AMDAHL 5860 running the MTS. The time taken by the exact

analysis and the bounding technique were recorded in each case.

Example 4.1:

This example is taken from [4]. There are fixed rate 50 nodes with loads
as follows: 1 node at 20, 2 nodes at 19, 5 nodes at 18, 5 nodes at 15, 5
nodes at 10, 8 nodes at 7, 8 nodes at 5, 8 nodes at 4, 8 nodes at 2, for a
total load of 417. The bounds were evaluated at a network population of 50.
The exact analysis required 9 milliseconds while the bounding technique
required 2 milliseconds. Table 4.1 compares results for some of these nodes.
For comparison purposes, bounds were evaluated for all 50 nodes, even though

some nodes had identical loads.

Example U4.2:

The second example here is a very unbalanced network with fixed rate 20
nodes, and loads as follows: 2 nodes at 30, 1 node at 17, 3 nodes at 14, 1
node at 12, 2 nodes at 11, 1 node at 10, 2 nodes at 8, 1 node at 7, 2 nodes at

5, 3 nodes at 4, 1 node at 3, and 1 node at 1 for a total load of 212. Table

15



4,2 compares results for some of the nodes. The comparisons were made for a
population of 45, The exact analysis required about 3.3 milliseconds while

the bounding technique required about 0.7 millisecond of CP time.

Load at node Exact Lower bound Upper bound
20 5.181 4,484 5.691
19 4,027 3.531 4.329
18 3.207 2.464 3.749
15 1.781 1.544 1.923
10 0.753 0.701 0.781
7 0.431 0.409 0.443
5 0.274 0.262 0.281
4 0.208 0.200 0.213

Table 4.1: Mean queue length bounds for example 4.1

Load at node Exact Lower bound Upper bound
30 18.540 16.650- ----;étgg;---
17 1.228 1.145 1.308
14 0.831 0.796 0.875
12 0.637 0.617 0.667
10 0.480 0.468 0.500
8 0.350 0.344 0.364
7 0.294 0.289 0.304
b 0.149 0.147 0.154

Table U4.2: Mean queue length bounds for example 4.2

16



It is important to note that in many instances, it may not be necessary
to evaluate mean queue lengths at all nodes. (This is certainly true if many
nodes have the same loads). It is especially in such cases that a bounding
technique would have an edge over the exact analysis methods such as the MVA
algorithm which would have to compute these mean queue lengths for all nodes,
in any case, and for all intermediate population values. In the examples
above, many nodes had the same load and it was not necessary to evaluate mean
queue length bounds for more than one such node. This would have
substantially improved on the time performance of the technique. This was not
done so that a better comparison could be made, in general, between the times

taken for the exact analysis and the bounding technique.
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5. Conclusions:

A new method of obtaining bounds on the throughput of closed queueing
networks with multiserver nodes has been presented. The bounds are expressed
in terms of the bounds obtained for a network of fixed rate and delay nodes
which is constructed by replacing every multiserver node in the original
network by a set of fixed rate nodes. The bounds obtained are fairly tight,
easy to evaluate, and compare very favorably to bounding techniques presented
earlier for such networks. A simple, but effective means of obtaining bounds
on the mean queue lengths that form at the nodes in such networks has also

been presented.
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