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ABSTRACT

The use of queueing network models to analyze the performance
of computer systems is widespread. Typically the analysis
requires certain assumptions to be made. Even under such
assumptions, the exact analysis of these models for the
performance measures could be quite time consuming, especially
when various alternate configurations of the system are to be
evaluated. In some situations, bounds on the performance may
often be adequate. This issue of obtaining reasonable bounds
has hence been the subject of some discussion and a number of
bounding techniques have been proposed over the past few years.
In this paper we present a bounding technique for networks with
a single class of customers that appears to be more effective
than techniques previously reported.



1. Introduction:

A computer system is evaluated by estimating its performance under various
patterns of demand on the system. Queueing network models are typically used
here with a view to obtaining equilibrium analytic solutions for predicting the
performance under various configurations. Each node in the network represents a
service facility where customers queue up for, and receive, service. The exact
solution of these queueing networks is, however, infeasible unless certain
assumptions are made. These assuniptions give rise to a certain class of networks
known as Product Form (PF) networks, or separable networks. For these PF
networks, it is possible to obtain equilibrium performance measures with
relatively less effort.

Quite often, situations arise where exact solutions of these queueing
networks may not be required. This is especially the case when many alternate
configurations are to be evaluated. Similarly, if the workload parameters are
not known with reasonable accuracy, as is often the case in the design phase of
a system, obtaining exact solutions may be unnecessary. In such cases, one would
like to obtain approximate solutions fairly quickly. Needless to say, the errors
incurred as a result of an approximate solution technique should be bounded, if

possible.

1.1 Previous work:

Recent years have witnessed a substantial amount of work on developing
techniques for bounding the performance measures of queueing networks for PF
networks with a single class of customers [3,4,7,11,13,14,15]. These bounding
techniques are applicable when each node in the network is either single server
fixed-rate type or is a delay (infinite server) type. The bounds obtained are
for the cycle time (the mean system residence time) of a job, and the throughput

of the system (number of job completions by the system in unit time). The input



parameters required for the calculation of these bounds are the loads at the
various nodes. The load at a node is defined as the mean service time demand
from the node by a job.

Some results have recently been obtained for networks with multiple
customer classes [5,6,7]. Results have also been obtained for networks with load
dependent nodes and with a single class of customers [10,12]. The latter results
depend, however, on bounds obtained for networks consisiting only of fixed rate
and delay nodes, and whose behaviour closely approximates the behaviour of the
network with the load dependent nodes. In this paper, we restrict attention to
PF networks with fixed rate and delay nodes, and a single class of customers.

A bounding technique which applies to a larger class of networks than those
considered here is the Asymptotic Bound Analysis (ABA) [2]. The bounds obtained
by this analysis are very loose. The Balanced Job (BJ) bounds analysis [15]
obtains tighter bounds than those obtained by-the ABA. However, these bounds are
also often quite loose. The ABA and BJB techniques do not provide a trade-off
between computational effort and accuracy for the bounds. Further, bounds
obtained here for networks with delay nodes are poor.

The Performance Bound Hierarchies (PBH) [U4] and the Generalized Quick
Bounds (GQB) [14] are both based on the Mean Value Analysis (MVA) algorithm [9].
Both these techniques obtain a sequence of improving bounds (referred to as
bounds of increasingly higher 'levels') on cycle time and throughput. The GQB
technique, however, cannot handle delay nodes, and does not appear to perform
significantly better than the BJB technique. A technique based on the MVA
algorithm and utilizing some properties of the relation between the throughput
and the degree of multiprogramming is presented in [3]. The convolution
algorithm of Buzen [1] is used to develop the Convolutional Bound Hierarchies
[(13]. This bounding technique seems appropriate only for networks with a small

number of customers and a relatively large number of nodes. All these techniques



are basically recursive in nature.

A technique which presents some closed form expressions for the bounds is
given by Kriz [7]. This technique is based on the MVA algorithm. A number of
computational formulae are presented by this author. However, these formulae
generally perform well only as the network population becomes large (at which
stage the networl: begins to behave like an open network).

Although the PBH technique gives a better set of bounds than these above
mentioned schemes, it requires considerable computational effort to produce
increasingly tighter bounds.

Exact analysis for the type of networks we consider here takes O(MN)
computations, where M is the number of nodes and N the number of customers. The
bounds we obtain take O(M) time to compute and use the MVA algorithm to develop
a sequence of improving upper and lower bounds with only a marginal increase in
computational effort for each set of bounds in the sequence. These bounds are
shown to be tighter than the BJ bounds and compare quite favorably with the PBH
technique for networks with a single class of customers. In the case of networks
consisting of only fixed rate nodes, the first few bounds obtained are shown to
be tighter than corresponding PBH bounds. Moreover, in general these
successively improving bounds (SIB) can usually be obtained with considerably

less computational effort than the PBH bounds.

2. Preliminaries

We first consider networks where all nodes are fixed-rate nodes. The
analysis extends directly to include delay nodes, and this is shown in section
3. In the following discussion, unless specified otherwise, the index for any
summation is over the range 1 through M. Implicit in the discussion is the
understanding that we are considering populations of N 2 2.

From the MVA algorithm, the mean residence time, wm(N), at a fixed rate



node m, with N customers in the system, is obtained as
W (N) = Lp(1 + Q (8-1)), (2.1)
where L is the load at node m and Qm(K) represents the mean queue length that
would form at node m with K customers in the system.
The cycle time W(N) for a given request is the sum of the mean residence

times at all nodes and is given by

WN) = ] Lp(1 + Qu=1)) = L{1 + § (Ly/L)Q,(N-1))
m m
= L(1 + e(n-1)]), (2.2)
where
L = [ Ly
m
o(N-1) = ] pyQ,(N-1), (2.3)
m
with
pm = Lm/L' » (2.“)

The term p, is defined as the relative utilization at node m.

A straightforward application of Little's rule [8] yields an expression for
the mean queue length for any single server fixed-rate center m as (also refer
(4] for a similar expression) :

Lp(1 + Q(N-1))
Qm(N) = N === o (2-5)
L (1 + ¢(n-1))
Setting, for notational convenience,
Dp = 1+ ¢(K), (2.6)

we can rewrite equation (2.5) as

Qq(N-1) = ¢(N-1)
Qq(N) = Npy + Npp(====mmmmmmmmmeee ). (2.7)

From equations (2.7) and (2.3),

o(N-1) = (N=1) T p2 + ((N=1)/Dy_p) Y (N-2), (2.8)
m



where

YI(N-2) = ] p2 (Qp(N-2) - ] ppQu(N-2)). (2.9)
m n

As a first step, we obtain a simple set of upper and lower bounds on ¢(N-1)
(and hence, on the cycle time) which we show are better than the BJB bounds. We
term these bounds as level 1 bounds. These bounds are obtained by noting that
the term Y!(K) is non-negative for any K 2 0. To see this, we make use

of a property which we call the 'partial correspondence' property:

Definition 2.1:

Given a sequence X = {x_}, m=1,...,M, such that

Xy 2 XM- 1 2 .o 2 X% 20,

then a sequence Y = {ym}, m=1,...,M, is said to have a Partial
Correspondence with X, denoted as Y(PC)X, if for some k, 1 & k $ M,

0o 2 Yk :>= 0; yk_1’t-n,y1 s Oa

Lemma 2.1

—— —

Given two sequences X={xi}, and Y={yi}, i = 1,..,m, such that

[\

Xp 2 Xpoq 2 .00 2 X, 2% 20,

Y(PC)X
I oxg s 1,
i

and

% X; ¥ 2 0,

then,
z Xiz Yi 2 (E Xiyi)(z XJ-)2
i i j

Proof :

An alternate statement of the required inequality is to show that :



I x3(---=-- - 1) 20 (A1)

where o = ] x;y;. Since ] x; $ 1, it must be true that
i i

i 1 J

So,

>
=
—
[}
[}
|
|
—
~—
w
o

¥i
Hence, I xx( === - 1) 2 0 for all x,. (A2)
i a

In view of (A2) and the fact that a 2 0 and Xy 2 0, there exists
some m £ n such that o £ ¥i for all i 2 m.

We therefore have to consider two cases: (i) where all terms in the
sum in Equation (A2) are non-negative, that is, a S yq» and (ii) not all
terms are non-negative, that is vy <a < Ype

Case (i) is trivial: all the terms in the summation in Equation

(A1) are non-negative. We consider Case (ii). Here we choose k in

Equation (A2) such that Y S @ S Y. Then, from (A2),

k n
0 < Z 5% ( yj/a - 1) = .Z xx; ((y/a=1) + . I oxex;(yj/a -1)
i i=1 i=k+1
k n
s L oxx(yyza=1) + 1 xx(y;/a-1)
i=1 i=k+1
k n
pS z Xixi( yi/a -1 ) + z Xixi( yl/a -1 )
i=1 i=k+1

where the first (respectively second) inequality follows from the fact
that (yi/a - 1) S 0 (respectively 2 0) for all i £ k (respectively i >

k). This final inequality is the same as (A1), so we are done.

From the lemma, we have the following corollary which shows that the term



Y'(K) 2 0, for K 2 0.

Corollary 2.1

L2 QuK) 2 (I py QuK)(] p}); K2 0 (2.10)
m m i

Proof:
The mean queue length at node i with K customers in the system can be

expressed as [2]:
K
Q(K) = I p} G(k-n)/G(K); K> 0, (2.11)
n=1

where G( ) is a normalizing constant.
In Lemma 2.1, let x;=p;, and yi=Qi(K), i=1,2,...,M. The nodes can be
ordered so that 0 £ p, $ p, S . S py» and from equation (2.11), we then get

Q,(K) s ... g QM(K),irlwhich case, (2.10) follows from Lemma 2.1.

u]
Let
- i
S; = L pp» (2.12)
m
and define
Ay = N/Dy_q. (2.13)
Here, AN can be thought of as the throughput of a system with total load
L =1, and with population N, Note that A, =1, and AN 2 1; N2 1.
Theorem 2.1 :
Let u = node with maximum load. Then, the term ¢(N-1) is bounded by :
(N=1)S, s ¢(N=1) S ¥ = (T1 + T2)+0.5 (2.14a)
where
T1 = ((N-1) Py 1), with Py = Lu/L, (2.14Db)
and
T2 = SQRT(T12 + U4(N-1)S,) (2.14e)
Proof:

From equations (2.8), (2.12) and (2.13),



¢(N-1) = (N=1)S, + Ay_q Y'(N-2). (2.15)
Clearly, AN-1 2 0. From Corollary 2.1, Y!(N-2) is non-negative. Hence the
term (N-1)S, is a lower bound on ¢(N-1). For the upper bound, note that

YrN-2) = ] 2 (Qu(N-2) - T ppQ(N-2))
m n

S (py = Sz) #(N-2). (2.16)
It is clear that p, 2 S,. Noting that Dy_, =1+ ¢(N-2), it 1s seen that

the term ¢(N-2)/DN_2 < ¢(N-1)/DN_1. Hence we can write

o(N-1) s (N=1)8, + (N=1)(6(N=1)/Dy_q) * (py=S,). (2.17)
The above equation is a quadratic in ¢(N-1), whose solution gives the

desired bound.

It can be seen from equations (2.14a,b,c) that the solution of this
quadratic requires about 11 operations, given that S, and p, have already been
computed.

It is easy to show that the bounds developed above are tighter than the BJ

bounds. This is expressed as:

Corollary 2.2:

The level one SI bounds on cycle time and throughput are tighter than the

corresponding BJ bounds.

Proof :

We only need to show that the level 1 bounds on cycle time obtained by
the SIB technique are tighter than the BJ bounds. A simple application of
Little's rule will then show that the level 1 bounds on the throughput
obtained by the SIB technique are tighter than the BJ bounds.

The bounds on cycle time obtained by the BJB analysis are:

L + (N=1)-L, S W(N) s L+ (N=1) L, (2.19)



where Lu is the load at the node with the highest loading, and Ly is the

average load among all the nodes, i.e., L, = } L /M.
m

In view of equations (2.17) and (2.19), we need to show that
(i) LE 2 (N-1)La, and (ii) Lys (N-1)Lu.
A Lemma proved in [10] gives the following inequality with two
increasing sequences {xi}, {yi}, i=1,..,n:
L X;y; % x ly; where x = (1/n) zxi
i i i
Now, to show (i), let Xj =¥ = pj. Then
2
i

Lef 2 paleg = 0,
1 1

where p, = (i/m) 3 pp- Hence LE = Le(N-1)) pé 2 L-(N-1)-pa = (N-1)-La.
m m

(ii) From Equation (2.14) we have,

2y = ((-1)p, -1) + S@RT[((N-1)p, =1)2 + 1g]

Since, p, 2 ) p;, hence we have (N-1)pu 2 £. So we can write
m

2p s ((-1)py =1) + S@RT[((N-1)p, -1)2 + 4(N-1)p,,]

((=-1)p, =1) + s®T[((N-1)p, +1)2] = 2(N-1)p,.

Hence,

A

Ly § (N-1)Lp, = (N=1)L,.

u]
In concluding this section, it is remarked that the paper by Kriz has used
the idea of obtaining 'square root' bounds on throughputs for networks with delay
nodes. When delay nodes are absent, however, these square root bounds reduce to

the BJ bounds.



3. Successively Improving Bounds:

In the above analysis, the level one bounds required the computation of the
terms S, and L, and these computations needed about 3M operations. We now
express the term Y!(N-2) as the sum of a set of non-negative terms. This will
enable a sequence of improving bounds to be obtained with some additional
computational effort. These improving bounds are termed bounds of increasing
levels. Each higher level requires an additional Si term to be computed. Thus,
the level 2 SI bounds require the terms S, and S,;, the level 3 bounds require
the terms Si’ i=2,..,4, and so on. Each of these terms takes about 2M operations
to compute. Given that the terms Sj, j=2,¢,i, have been computed for some i,
our objective here is to compute as tight a bound as possible with these terms.

Equation (2.5) is first rewritten, using (2.13) as

Qm(N) = Ppry t PpAy Qm(N-1). (3.1)

Define, for N 2 O,

falN) = Qu(N), (3.2a)

and _ _
e2an = o (e17T ) - T oo 2T 0); 1> 0. (3.2b)
n

To obtain the expansion of the term Y!(N-2), we use Lemmas 3.1 and 3.2.

Lemma 3.1:

—

Consider the function f;(K) as defined by equations (3.2a and 3.2b). Let
£1(K) = (£1(K)}, and p = {py}, m = 1,..,M. Then, for i, K 2 0,
(a) f£r(K) (pC) p, (3.3a)

(®) Y') = T o £3(K) 2 0. (3.3b)
m

A proof of Lemma 3.1 is given in Appendix A.
The terms Yi(K) are functions of the mean queue lengths at population K.
Note that Yi(o) = 0, Lemma 3.2 now expresses Yi(K) as comprising of (i) a term

involving only the relative utilizations Pp» M=1,..,M, and (ii) a term

10



involving the mean queue lengths at population K-1, and the throughput at
population K. A proof of Lemma 3.2 is given in Appendix B.
Lemma 3.2:

The term fé(K) can be recursively defined, for i 2 0, K 2 1, as

eh) = kel « a £1Y k-1,
and hence,

YLK) = T o fiK) = K g + 2 YI(R-1), K 2 15 (3.4)
where . "

a; = YH(1) 2 0. (3.5)

From Lemma 3.1 and equation (3.2), noting that Qm(1) = pp» We can derive an

expression for a; as follows:

- 0 -
ay % pmfm(1) S,

o) Dogfa(t) = I p2 £3(1) = 8, [ ppfS(1) = S5 =8, a,
m m m

and in general,

i-1
ai = Si+2 - ) Si+1_j(1j, i Z 1. (3-6)
J=0
Now, define
i
M g = Mg, K21 20. (3.7a)
n=0

=1, 1< 0. (3.7b)

Theorem 3.1 obtains an expression for Dy in terms of the ai's and the A's.

Theorem 3.1:
The term DK can be written, for K > 1 2 0, as
i o1
Dk =1 +KS, + 321 (K=3) a5 Mg jop + Y T(K-1=1) Ag g (3.8)
which can also be written, using equation (3.7b), as
i .
Dy = 1+ [ (K=§) oy Ay 5_q * YI(K-1-1) ny . (3.8a)

J=0

"



Proof':
From equations (2.6) and (2.15), we have
DK = 1 + KSZ + AK YI(K-1)0 (309)
The proof now follows by a repeated application of equation (3.4) in

equation (3.9). ‘ o

Theorem §;2=
o(K)/K 2 ¢(K=1)/(K=1). (3.10)

Proof:

From equation (3.8), noting that AK,j-1 > AK-1,j-1’ for K 2j 20,

K-1 K-2
0(K) =KS, + 1 (K=J) oy Mg joq 2KS; + [ (K=J) oy Mgy joq
J=1 J=1
Hence,
®(K) K=2 s
J _
—_——— 2 SZ + z (-"-) [ 1 AK‘1 -_1. (3.11)
K j=1 K J »J -
co . K-j K-j-1
Now, it is clear that for K > j > 0, we must have -E- 2 -E-f-' Hence the

inequality in equation (3.11) gives
#(K) K-2
——=- 2 S, + 1 [-===- a; Ag_q s = mmeeee-
- K-1,j-1 '
K j=1 K=1 J N K=1

where the last equality follows from equation (3.8), with K-1 in place of K, and

with i taken as K-2.
a

A lower bound on the term Yi+1(K-i-1) in equation (3.8) is given by Theorem 3.3.

Theorem 3.3:

The term Y3*1(K) 2 YI(X) oj,q/a55 3, K20. (3.12)

A proof of Theorem 3.3 is given in Appendix C. From this theorem, we have

the following:

12



Corollary 3.1:

aj+1/aj 2 ai+1/di, J 21izo0, (3-13)

Proof':

From Theorem 3.3 for K = 2, and using equation (3.4), we get

o1 .
0 5 W2 ay - V() oy
2 - 2 1
= . - yJt . - .+ == It .
(20‘3+1 + b yI*e(1)) a5 (2 g * B ) 0341
= (Z/Dl) (aj+2 Gj = aj+1 ® Qj+1).
Since D, 2 0, this implies
aj+2/aj+1 > a\]-+1/aj- (3.14)
A repeated application of the above inequality gives the desired result.
a
Theorem 3.4:
For X > i >0,
i K-i-1 af
Dy 2 1 +KS, + ] (K-3)ay Mg joq + (K-1) Mg g (-—--—7 ————— ) ===-.  (3.15)
j=1 1+(K-1-1)ao 44

Proof:

From equations (3.8) and (3.12), we get for K > i 20,

o~

+
- O Hei=el) wmme=
Dg 21 +KS, + [ (K=day Ag joq * Mg 3 YO(K-1-1) .

1 J a

J o
Noting that (a) Y°(K) = ¢(K) = Dg = 1, and (b) hg 4 = Mg j=1 * Mg-y» We can
1 H

rewrite the above equation, for K > i, as

(K=3)ag b g+ b goq M- iPgogq (1 = ==mmm ) :
1 Dg-1-1 %

Dg 2 1 +KS, +
J

LI e Mt

Now, using a level one lower SI bound on DK-1-1 in the denominator of the

last term, and noting that AK-iDK-i-1 = K-i,
i K-i-1
Dg 21+ KS, + L R=3dag Mg joq + (K1) g jq (smmmmmmmmmn Jaj s 120,
j=1 1+(K-1-1)ao

13



From equation (3.14), for i > 0, Of4q 2 aizlai_1. Using this in the inequality

obtained above gives the desired result.

3.1 The sequence of improving upper and lower bounds:

In general, let ¢3(N—1) (respectively, ¢}1(N-1)) denote the level n upper
SI bound (respectively the level n lower SI bound) on ¢(N-1). We first obtain

the secquence of upper SI bounds.

3.1.1 The upper bounds:

We first develop a tighter level one upper bound on ¢(N-1) than was
obtained in Section 2, This is obtained as follows: From equations (2.6),
(2.8), (2.16) and (3.10),

o(N=1) & (N=1)8, + (N=1) + (p,=S;) + =====-==---- (3.16)

1 + no(N-1)
where

n (N=2)/(N=1). (3.17)

Equation (3.16) is a quadratic in ¢(N-1). Its solution is given by ¢‘1‘(N-1),

where
0. 5
o (N=1) = (T +T2) » === (3.18)
n
where
Tt = (N-2) p, = 1, (3.18a)
and
T2 = SQRT (T1% + U4(N-2)S,), (3.18Db)

with n as defined by (3.17).
It is clear that since n < 1,
n ¢(N-1) o(N=1)
------------ { mmmmm—————, (3.19)
1 +1n ¢(N-1) 1+ ¢(N=-1)
Hence use of equation (3.,16) gives a tighter bound on ¢(N-1) than the bound
obtained using equation (2.17). Corollary 3.2 shows that this bound is tighter

than the level 2 PBH bound. (Note that both bounds need to compute the term S,).

14



Corollary 3.2:

The level 1 upper SI bound given by equation (3.16) is tighter than the level

2 PBH upper bound for networks without delay nodes.

Proof':
The level one upper SI bound, ¢?(N-1), is obtained using equation (3.16).
This equation can be rewritten after some elementary algebra as
Sy + (N=2)py ¢3(N=1)/(N-1)
$J(N=1) = (N=1) (====m==mmmmmmmomoomeeeeeeee ) . (3.20)
1+ (N=2) ¢{(N-1)/(N=1)
Let 8Y(N-1) denote the level two PBH bound on ¢(N-1). When delay nodes are

absent, this is obtained as (equation (18) in [4])
B3 (N=1) = (N=1) (=======-mmmeammm ) . (3.21)

Comparing equations (3.20) and (3.21), it is easily seen that ¢?(N-1) <
87 (N-1) if ¢J(N-1) S (N-1)p,. Noting that (N=1)p, is the BJ bound on ¢(N-1),

this is obvious from Corollary (2.2). a
The sequence of upper SI bounds on ¢(N-1), is given by Theorem 3.5.

Theorem 3.5:

The level n upper bound on ¢(N-1) is given, for N-1 2 n, by

0.5
op(N=1) = === (T1 + T2(n)), (3.22)
n
where
T = (N-2)p, - 1, (3.22a)
T2(n) = SQRT (T12 + 4(N-2)(S, - o(N-1,n-1))), (3.22b)
and
i j=1 N=2-m
o(N-1,1) = ] (pySy49=Sysp) T =-=--- . (3.22¢)
j=1 m=0 DN_3

with 5&-3 being a level one upper bound on Dy_s,
A proof of Theorem 3.5 is given in Appendix D.

15



For example, a level three upper bound is given using o¢(N-1,2) in equation

(3.22b) where

N-3  N-2
o(N=1,2) = ( (pyS,=S3) + (p;S5=8,)==== ) ==--.
Py-3 Dy-3

3.1.2 The lower bounds:

Theorem 3.4 is now used to develop a sequence of lower bounds on ¢(N-1).

Theorem 3.6 develops the bounds. A proof of Theorem 3.6 is given in Appendix E.

Theorem 3.6:

The level n lower bound on ¢(N-1) is given, for N-1 2 n 2 1, by

2 (N=1) = (T1 + T2(n))/2n, (3.23)
where
1 = ((N-2)s, - 1), (3.23a)
T2(n) = SQRT[T1% + W(N-2)(s, + (N-2)B(N-1,n-1))], (3.23b)

and

B(N'1,i) = 0; 1i=0,

i-1 j N-1-m i N-1-m a;  (N-i-2)
B(N-1,i) = o I ===+ q (n ----- ) (1 4 = mmmmmeeeee )i 10, (3.23¢)
J=1 m=2 DN_1_m m=2 DN-1-m ai_1 1+(N-l-2)ao

with 5N-1-m = 1+¢(N-1-m) where ¢(N-1-m) is an upper bound on ¢(N-1-m).

Empty products are assumed here to have a value of unity in equation
(3.23c). The level two lower SI bound obtained by setting i=1 in equation
(3.23c) is tighter than the level three PBH bound as Corollary 3.3 shows (note

that both bounds require the terms S, and S,):

Corollary 3.3:

For networks without delay nodes, the level two lower SI bound on DN-1 is

tighter than the level three PBH bound on Dy.¢, for N > 3.

A proof of Corollary 3.3 is given in Appendix F.

16



For example, a level three lower bound is given by using B(N-1,2) in

equation (3.23b). Here, B(N-1,2) is given from equation (3.23c) as
BIN-1,2) = a7 + a,((N=3)/Dy_3)(1 + =====meumm- - ),
1+ (N=1)S, o

with 5&_3 being given by a suitable upper bound on DN-3'

Operationally, we can first calculate the upper bound on ¢(N-1) using
equation (3.22); call it E(N;1). Now, to calculate the lower bound on ¢(N-1)
using equation (3.23), we need the terms ¢(N-1-m). These are easily calculated

using Theorem 3.2 which gives ¢(N-1-m) $ ¢(N=1)«(N-1-m)/ (N-1).

The performance of the SIB technique is now illustrated with an example,
comparing the level three SI bounds with the level four PBH bounds. 1In
addition, a comparison is made with the bounds developed by Kriz: the formulae
used here are those recommended by Kriz, and use equation 26(a) in [7] for the
upper bound on cycle time (this is the BJ bouﬂd since there are no delay
servers), and the tighter of the bounds computed using equations 26(b) and 27 in
(7], for the lower bound on cycle time. Table 3.1 tabulates the results. It is

seen here that the SIB technique compares favorably with the other techniques.

Example 3-1: This is the example presented in [4] to illustrate the PBH
technique. There are 50 nodes with loadings as follows: 1 node at 20/417, 2 at
19/417, 5at 18/417, 5at 15/417, 5at 10/417, 8 at 7/417, 8 at 5/417, 8 at 4/417,
and 8 at 2/417. All nodes are single server fixed rate nodes. Table 3.1

presents the upper and lower bounds obtained using the SIB technique (SI up, SI
dn), the PBH technique (PB up, PB dn), and the bounds obtained by Kriz (Xr up,

Kr dn), at various population levels.
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=

SI up PB up KR up Exact KR dn PB dn SI dn

—— — — — — —— —— — — —

10 1.279 1.280 1.432 1.278 1.180 1.278 1.278

20 1.632 1.639 1.911 1.619 1.380 1.615 1.616
40 2.4543 2,467 2.871  2.376 1.931 2.337 2.346
60 3.349 3.364 3.830 3.197 2.882 3.090 3.106
80 4,274 4,288 4,789 4,057 3.839 3.859 3.878

Table 3~1 Bounds on cycle time for example 3.1

The bounds were computed for population values from 1 to a 100. The total
time taken by the SIB and PBH techniques, (including computation of S,, S, and
S,) for obtaining these bounds at these populations, were measured. The
calculations were made using an AMDAHL 5860 system running MTS. The SIB
technique took a total of 6 milliseconds to obtain the bounds. The PBH
technique took 15 milliseconds. In order to avoid unnecessary computation and_
any overheads in operation, the SIB formulae, as also the PBH formulae given by
(3.27) were implemented without the use of recursion. These times appear to

conform with the analysis of operation counts which is made in section 4.

3.2 Terminal Driven Systems:

When interactive systems are modeled by queueing networks, typically a delay
node is used to represent the time spent by users thinking between interactions
with the system. The average think time is represented here as Lo the load at the
delay node. The BJB formulae here are not as simple as for the case with no delay
nodes, and require an additional O(N) computation. The PBH technique develops a
hierarchy of bounds for terminal driven systems. Bounds are also developed by
Kriz for terminal driven systems.,

SIB has a direct extension for terminal driven systems: consider the equation
for mean queue lengths at the nodes. When a delay center is present, this can

be written as
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= Npp (-m=mmmozmomoeeee- ) (3.24)
T TepQn(N-1)

M
where p. = Lp/(L, + L), and L = ) L
m=1

m .

Comparing equations (3.24) and (2.5), it is seen that all the bounds we had
derived earlier would apply here too, if we replace every occurrence of P by Sm,
for m = 1,..,M, and replace the Si terms by ;i = 2 Emi. No additional operations
are needed here. |

Example 3.2 compares the performance of the level 3 SIB technique with the
level 4 PBH technique and the Kriz bounds.

Example 3.2:

This is the same example as given in [U4] to demonstrate PBH for networks with
delay nodes. The network is basically the same as example 3.1 with an additional
delay node with a load of 4000/417. Table 3.2 shows upper and lower cycle time
bounds at various population levels. The exact cycle times are also given.

N SIB PBH Kriz Exact Kriz PBH SIB3B
up up up Down Down Down

20 10.648 10.648 10.686 10.648 10,611 10.648 10.648
40 10.716 10.720 10. 802 10.715 10.652 10.715 10.715
80 10.885 10.959 11.110 10.883 10. 744 10.880 10.882
120 11.132  11.418 11.566 11.118 10. 851 10.096 11.104
160 11.525 12.156 12,244 11.466 10.976 11.376 11.396
200 12.196 13.162 13.202 12.004 11.123 11.731 11.764

Table 3.2 : Bounds on cycle times for example 3.2
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The bounds were computed for a range of population values from 1 to 200,
and the total time taken by the SIB and PBH techniques when run on the AMDAHL
5860 machine, were compared. The SIB technique took 14 milliseconds to obtain
the bounds, while the PBH technique took 37 milliseconds to obtain the bounds.

It can be observed that the level 3 upper bound of the SIB technique gives

noticeably better results than the other two techniques in this case.

4, Computational Effort:

The bounding technique outlined above produces a sequence of increasingly
tighter bounds. The computational effort required to produce these bounds is,
further, usually less than that required of the PBH bounds. To illustrate this
point, we analyze the number of operations required by both techniques. Suppose
we compare the level three SI bounds with the level four PBH bounds. Both
techniques, here, require computation of the terms upto S, as an initial step.
Given that these terms have been computed, for each population level, N, the
number of arithmetic operations for the two techniques are as follows:

(a) The SIB technique requires about 14 operations to compute a level one
upper bound on DN-3 (refer equation 3.18), which is used for both the upper and
the iower bounds on Dy_4. Assuming that (1) the square root operation counts as
one operation, and (ii) given N, evaluating N~i for any i > 0 counts as one
operation, the upper bound on ¢(N=-1) then requires about 27 additional
operations, (refer equation 3,22) and the lower bound about 22 additional
operations (refer equation 3.23) for a total of about 63 operations.

(b) The PBH technique proceeds as follows: the level i PBH upper or lower
bound on the cycle time is given by f(i,1,N), where

f(j=1, p+1, N=1)
£(j,p,N) = Sp + (N=1) =eeccccccccccccccenx ’ (4.1)
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with some boundary conditions when j=0 in both cases. (It may be noted that
computing a level i PBH bound on cycle time at population N requries computation
of a level i~-1 PBH bound at N-2, and so on upto a level 1 PBH bound at
population N-i+1). A level i PBH bound requires (i+1) (i+2)/2 function
evaluations of the form given by (4.1) for each of the upper and lower bounds at
each population value. Of these, i+1 evaluations are at the boundary condition
which requires only about 3 arithmetic operations. All other function
evaluations require about 4 arithmetic operations at least when delay nodes are
present, as can be seen from equation (4.1). This does not however, include the
operations necessary to index into the array f, in order to evaluate f(j,p,n).
For example, to compute f(j,p,n), it is required to set the indices j=1, p+1,
and N-1 to determine the location of the desired functions f(j-1, p+1, N-1) and
f(j-1, 1, N-1). Hence, the calculation of the level four bounds requires about
10xl4 + 5x3 = 55 operations for each upper and lower bound, for a total of about
110 operations per population value without considering these indexing
operations.

Thus, the PBH level four bounds require about twice as many arithmetic
operations as the SI level three bounds do, even if the indexing operations, as
described above, are disregarded in calculating the bounds. (If the setting of the
indices are considered, each function evaluation other than those at the boundary
condition, requires about 3 additional operations). Further, the PBH bounds
require computation which increase as the square of the level. The SI bounds at
higher levels require, on the other hand, about 10 additional operations in total
for each additional level (plus some one time operations to calculate the required
a terms). It is noted, though, that while the SI bounds are thus more efficient to
compute than the PBH bounds, the sequence of PBH bounds ultimately converge to the

exact solution while the SI bounds, as described above, do not.
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5. é.’l alternate set 31_”_ lower bounds:

In this section, an alternate means of obtaining a sequence of lower bounds
is presented. These bounds require additional computational effort compared to
those presented in section 3. The effectiveness of these bounds are demonstrated
with a few examples.

From equations (3.8) and (3.12), and using equation (3.7) to set

hg,i = Mg Ag-1,1-1

i 04 41 .

21 +KS, + J (K-j)a; A 4 mmome YE(K=1-1) A

Dg 2 2t 3oy Mg, 3-1 DA,
\]=1 ai
i ‘ Os
i+

=14 KS; + ] (K=i)ay Mg joq * =m==- M Y (K-1-1) Mg=1,1-1 (5.1)

j=] O.i

From equation (3.8a), with K=1 in place of K, and i-1 in place of i, we get

for K>1i21,
: i-1
Mgy, -1 Y (K=1=1) =Dy = 1 - j§0 (K=3-Day Mgy j-q- (5.2)

So, from (5.1) and (5.2), for K 2 i 2 0,

i 04 41 i-1
21 +KS, + ) (K=jday Ay 54 * ==== A [Dp_q = 1= 1 (K=3=DasAe_q 5_q] (5.3)
DK = 2 j TK,j-1 K t¥K-1 . jK=1,j-14° :
J=1 ai J=0

In the right hand side of (5.3), since the term in the square bracket is non-
negative for all values of i, it can contribute to a tighter lower bound on Dg-

Since AK DK-1 = K, we can rewrite (5.3) after some elementary algebra as

a; i-1 o o
i+l . i+1 i+1 .

Dg 21 + K(ao + =——-) ..2 (K=3=1) (----aj - °‘j+1) AK,j =g ====; 120 (5.4)
oy j=0 o4 o4

Noting, from Corollary 3.1, that the term (O‘i+1/°‘i)°‘j 2 %341 for j £ i, the
bounds are obtained now by suitably bounding the terms Ak and A j*
’
To illustrate, the level 3 bound is obtained as follows: Equation (5.4)

with i=1 gives
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a, LPY o,
Dy 2 1 + Klag + ===) = (K=1) (===-- - o) Ag = = A (5.5)
%4 oy &1
Thus, setting Ay_q = (N-1)/DN_2, a level 3 lower bound on Dy_, (and hence W(N))

is given by

a, (N-1) g oy
Dy-1 2 1+ (N=1)(ag + ==) = ===== [ (N=2) (==-=- - ) + ==]. (5.6)
@ Dy ay a4

Equation (5.6) can use a level 3 SI bound or a level 4 PBH lower bound on
DN-2‘ We now present a few examples which compare the lower bound obtained using
equations (5.4) with the PBH lower bound and the bound obtained using the
formulae given by Kriz[7]. The bound obtained by the Asymptotic Bound Analysis
(ABA) is also presented for comparison.

In the following examples, the bound obtained using (5.4) is termed SIB-nA,
where n is the level. This equation is used in conjunction with the PBH
technique to illustrate the effect of a hybrid of the two techniques as followé:
As we remarked earlier, computing a level n PBH bound at population K in turn
computes a level n-1 PBH bound at population K-1, a level n-2 PBH bound at
population K-2, and so on till a level 1 PBH bound at population K-n+1. Now,
suppose we wish to compute the SIB-nA lower bound on DK' For this we would
compute the Sj terms for j=2,*,n+1. With these Sj terms, we can compute a level
n+1 PBH upper bound on AK, and this in turn would directly obtain PBH upper
bounds on the terms XK-1’"'AK-n' Some of these bounds may now be used in
equation (5.4) to obtain the SIB-nA lower bound. (The use of equation (5.4) in

this manner could also be interpreted as a possible extension of the PBH

technique.)

Example 5.1:
Example 3.1 is now reworked to illustrate SIB-3A. Table 5.1 shows the

comparisons at various population levels.
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N Exact SIB-3A PBH Level 4 Kriz ABA
10 1.278  1.278 1.278 1,180 1.000
20 1.619 1.617 1.615 1.380  1.000
40 2.376 2.354 2.337 1.931  1.918
60  3.197 3.130 3.090 2.882  2.878
80  4.057 3.920 3.859 3.839  3.836
90 k4,497 4,324 4,246 4,315 4,314

Table 5.1 Lower Bounds on 2N-1 for example 5.1.

Example 5.2

There are 25 nodes in this example with loads as follows: 1 at 40/575, 2
at 35/575, 3 at 30/575, 5 at 25/575, 5 at 20/575, 5 at 18/575, and 4 at 15/575.
The level 5 SI bound based on equation (5.6) (termed SIB-5A) and the level 6 PBH

bound is used here. The comparisons are made in Table 5.2.

N Exact SIB=5A  PBH Level _6_ Kriz ABA

10 1.404 1.404 1.404 1.360 1.000
20 1.886 1.885 1.883 1.760 1.391
30 2.408 2.396 3.389 2.089 2,087
4o 2.974 2.930 2.913 2.783 2.783
50 3.581 3.479 3.450 3.478  3.478

Table 5.2:  Lower Bounds on Dy-1 for example 5.2

Example 5.3:

There are 15 nodes in this example with loads as follows: 1 node at
20/192, 2 at 18/192, 2.at 17/192, 2 at 15/192, 2 at 14/192, 2 at 10/192, 2 at
7/192, and 2 at 5/192, Table 5.3 tabulates the results. The level 3 SI bound

based on equation 5.6, and the level 4 PBH bound is used here.
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N Exact  SIB-3A  PBH Level 4  Kriz  ABA

10 1.716 1.715 1.714 1.60 1.042
20 2.568 2.556 2.546 2,267 2.083
30 3.463 3.416 3.393 3.134  3.125
40  4.392 4,286 4,247 4,170 4,167
50  5.351 5.208 5.208 5.209 5.208

Table 3.3: Lower Bounds on Dy_, for Example 3.3

It may be noted from these examples that the Kriz bounds obtained are usually

just a little better than the ABA bounds.

6. Conclusion:

A new means of obtaining bounds for closed single chain, separable networks
has been developed. These are successively improving bounds in the sense that
increasingly tighter bounds can be obtained, although at the expense of increased
computation, These bounds are termed as bounés of increasing levels. The bounds
obtained are computationally efficient. The SI bounds were compared with those
obtained by other techniques through a number of examples to illustrate the
effectiveness of the SIB technique. It was shown that for networks without
delay nodes, the bounds at lower levels produced by the SIB technique are
tighter than those obtained by the PBH technique with about the same degree of
computational effort. At higher levels, the SIB technique requires much less
computational effort than the PBH technique to obtain bounds. (although it may
not produce comparable bounds at higher levels as it does not approach the exact
solution.)

Finally, in section 5, it was indicated how the SIB and the PBH technique
could be used in conjunction to obtain lower bounds on the cycle times. These
cycle time bounds appear to be better than the bounds obtained by either of the

techniques in isolation.
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Appendix A

Proof of Lemma 3.1:

Lemma 3.1:

Consider the function fé(K) as defined by equation 3.2. Let fi(K)={fé(K)L
and p={p}, m = 1,...,M. Then, for i, K 2 0,
ta) £i(k) (PC) p, (A1)

() Yi) =1 o, £1k) 2 0 (42)
m

Proof:
Proof by induction on i,
For clarity we drop the subscript K since this will not affect the proof.
For i=0, the proof is obvious since f& = Q- Assume that for some i 2 1,

£3(PCYp, § = 1,0uusi, and ¥i = § o £l 2 0,
m

In other words,

exists a number k1 2 k such that;

B 2 oo 207 2 Joppfn 2 oes 2 04 2 05 fi qyeunfy S 0, (A3)

Lemma 2.1 shows that

Io2el 27 p2 7 o gl
m m n

Hence,

e oot = Doep® (£ = I oepfy) 2 0.
m m n

Also, from (A3), it is clear that
oulth = Y 2 w2 gtk 2 0,

i.e.
S FA
M =

eee 2 fkjlﬂ 2 0;
and hence £1*1(pc) . o
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Appendix B

Proof 92 Lemma 3.2:

Lemma 3.2:

The term f;(K) can be recursively defined, for i 2 0, k 2 1, as

el) = k e+ eI (k-1), (B1)
and hence

YhK) = T fi) = Kap ¢ YT (-1, K21, (B2)
where . i

a; = Y1) 2z 0.
Proof:

Proof by induction on i.
For i = 0, the proof is obvious from equations (2.7) and (3.1) (note that
YO(K) = ¢(K)).
Assume that the result holds for some i 2 1. We need to show the result
holds for i + 1.
From equation 3.2,
i+l _ i - i
£ (K) = py [ £7(K) E ppfr(K)).
Using (B1) to substitute for £1(K) and fl(k) yields
. . . L
£11k) = o [kel() + a2 k-1) - T oy (K £1(1) +a £1T (k-1))]
n
- i - i
= K py(£2(1) g pp (1))

+ g opg (E31(k-1) - T p eitT(k-1)),
n

and hence, from equation (3.2),
el ) = keI () + o £1*2(k-1). (B3)
Further, from (B3),

) = T p it k) = k Y1) ¢y Y2 (k1) o
m
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Appendix c

Proof 9{ Theorem 3.3

Theorem i;i

Proof:

ey 2 YD) a5,y 5 d.k20

Proof by induction on k:

For k = 1, the result is obvious, since

() = a,
(1) o

Assume the result holds for same k-1.

| 31 (k- - J (k-
. %pmfm (k 1)aj mefm (k 1)aj+1 2 0.

Hence, from equation (3.3),
1 . i 41 ) .
ke - Pkag,, = %pmfmJ (Kay = 1 ppf (Kayg

m

= kszf‘mJ"‘1(1)aj [T S aj(zme{fmj+1(k_1) - Yj+1(k"1)})

= Klpopfyl (Magyy = ====- a5, (Iog?{Ed (k=1) = Y (k=-1)})
m Dy-1 m

k 3 s
= ----- [Iog?(egd* (k=1)ay = £ I (k=D)ay, )
Dy m
-8, 1o (£ 0" (k=D oy (k=1)ay )]
m
= o [Tog?(enk=1) = I o8l (k=D)],
Dy m n

where

o e e
Bplk=1) = £ (k=1)oy = £ (k=1)ay

(c1)

.. If we can show gj(k)(PC)p for all k, where gj = {g%}, m=1,...,M, we are

done.
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Note that from equations (3.2b) and (C1),

gak=1) = pp(Fd(k=1) = ¥I(k=1))a; - £l(k=1)ay,,

asp (3 (k-1) (1 - 3 ) - Yk=1) ).

[}

Also, since

ZOngnj(k-1) 2 0 by inductive assumption, at least one of the 8n S 2 0,
n

It is known that fj(PC)p. Here, if for any two nodes m, n, we have both

r3, £J 20, then p, 2 p, implies £, 2 £.J . This in turn implies that
~ %41 541
£ k=1 (1= =222 )z e d (k=) (1= =222 ).
Pm Pn%

Hence if there are nodes my, n,, such that g%1(k-1) 2 0, and 3%1(k-1) 20,

then p . 2 p,q implies g%1(k-1) 2 3%1(k-1). Thus, gj(k) (PC) p, and we are done.
o
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Appendix D

Proof of Theorem 3.5:

Theorem 3.5:

The level n upper bound on ¢(N-1) is given, for N-1 2

2 n, by
0.5
oa(N=1) = === (T1 + T2(n)), (D1)
n
where
T = (N--2)pu -1, (D1a)
T2 = SQRT (T12 + 4(N-2)(S, - o(N-1,n-1))), (D1b)
i j=1 N~2-m
o(N-1,1) = ] (pySj4178y4p) T ====-- , (D1e)
J=1 m=0 DN_3

with 5&_3 being a level one upper bound on DN-3'
Proof:
We can express the term ) p;Qm(N-2) from equation (2.9) as
% Pm Qu(N-2) = p (N=2) - r%(pupm - p2)Q,(K),
and using equation (3.1) repeatedly, this gives

% Pm Qq(N=2) = p 6(N-2) - AN-2(pyS2=83) = Ayoo g(pupm-p;)mem(N-3)

= Pu¢(N'2) - )\N_2(pusz'33) - )‘N-ZAN-3(puS3-S") = AN-Z)‘N-:’; Z(pupm-p,ﬁ)p;lQm(N-U),
m
and so on to get

i
% P2 Qu(N-2) 2 p ¢(N-2) -j§1(pqu+1-Sj+2) My-p,j-10 1 S N-2. (D2)

Hence, from equations (2.8) (2.9) and (3.7), noting that for k > 0, A =

k/Dk_1,

i
O(N=1) § (N-1)S, + ====- ( (py=s,) o(N=2) - 7§

(pqu+1'SJ+2) I === ).
Dy-2 3=

Since ¢(N-2)/DN_2 S ne(N=1)/(1+n¢(N=1)), (n is given by equation (3.17)),
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o(N=1) § (N=1)8, + (N=1)(p,=8,) ========= -
1+n¢(N=1)
N-1 i j=1 N=2-m
----- I (pySjsq=Sjup) T ===---.
Dy-p  J=T m=0 Dy-p-3

Since Dy_, =1 + ¢(N=2) S 1 + n¢(N=1), and DN-m-3 s Dy-3 for m>0, we can write

n ¢(N=1) N-1
¢(N=1) £ (N=1)S, + (N=1)(p,=S;) ==--====-- - eemeeeeee o(N=1,i), (D3)
1+n¢(N=-1) 1+n¢(N=-1)
where
i j=1 N=2-m
o(N-1,1) = [ (pySy4q=854) T ===--- . (D¥)
Jj=1 m=0 DN_3

‘Equation (D3) is a quadratic in ¢(N-1) if we replace Dy-3 in (DY4) by its

level one upper bound.
Since the terms (p,S;,1=Sj,4o)y 1 2 0, are all non-negative,

o(N-1,i) is an increasing function of i and hence bounds of higher levels are.

increasingly tighter.
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Appendix E

Proof of Theorem 3.6:

Theorem 3.6:

The level n lower bound on ¢(K) is given, for K 2 n, by

$1(K) = (T1 + T2(n))/2n, (E1)
where
T = ((k-1)s, - 1), (E1a)
T2(n) = SQRT(T12 + 4(K-1)(S, + (K-1)8(K,n=1), (E1b)
and :

B(K,i) = 0; 1i=0,

i-1 j K-m i K-m g (K=i=1)
BK,) = oy M ===+ ay (1 _----- ) (1 + === - “——eeeee- ); 10, (Ele)
J=1 m=2 Dp_. m=2 Dy_n 5.1 1+(K-i-1)ao
and Bk-m is a suitably chosen upper bound on DK-mf
Proof':
A bound on the term Dy as given by (3.15) is
i K-i-1 af
Dy 21 +KS, + [ (K=3)ay Ay joq + (K=1) Ag 4 4 (-----7 ----- ) ==--.  (E2)
j=1 1+(K-1-1)ao 4.1
The term (K-j)AK j=1 in the above equation is rewritten as follows:
’
J=1 J=1
(K-J)AK,J"1 = (K'J) m )\K_n = (K"J) I (K'n)/DK_n_1
n=0 n=0
J=1 J
= K I (K-n—1)/DK_n_1 =K 1T (K-m)/Dg_p-

n=0 m=1

K(K-1) J K-m

= - weoees H -'--.

D K_ 1 m=2 D K_m

Hence, from equation (E2) and (3.10),

K(K=1) i J K-m af (K=i=1) i K-m
o(K) 2 KS, + ===—=-- (I o T =m== 4 moom commeeeee 1 =---- )
Dg-q  d=1 ~m=2 Dp_p aj_q 1+(K=i=1)a, m=2 Dy_



2 KS, + ==-ccccccecoa-- B(K,1i), (E3)
1+((K=1)/K)¢(K)
where
i-1 i K-m i K-m a;  (K=i-1)
BK,) = ] oy Moz tay (M zmmem ] (14 men e ). (EW)
j=1 m=2 Dy_p m=2 Dy_p 31 1+(K-i-1)ao

and Bk-m is a suitably chosen upper bound on Dgem®
Equation (E3) is a quadratic in ¢(K) whose solution gives the desired

result.
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Appendix F

Proof of Corollary 3.3:

Corollary 3.3:

For networks without delay nodes, the level two lower SI bound on DN-1 is

tighter than the level three PBH bound on Dy-1 for N>3.

Proof:

Let ¢%(N-1) denote the level two lower SI bound on ¢(N-1) and e%(-1)
denote the corresponding level three lower PBH bound.
From equation (3.15) with i=1, setting K=N-1, we get
(N-2)(N-3)a§/aO
¢(N'1) 2 (N'1)Sz + AN_1(N'2)G1 + AN_1 """"""" ’
and using Theorem 3.2 this gives, with n=(N=2)/(N-1),
(N'1)(N'2)a1 (N'3)a1/Sz
o(N=1) 2 (N=1)S, + ====emeeeee- (1 4+ =memcmmeees ) . (F1)
1+n¢(N=1) 1+(N-3) 8,
The solution to this quadratic in ¢(N=1) gives the bound ¢%(N-1).

For notational ease, we omit the argument (N-1) on ¢} and 9% to get

) (N=1) (N=2) g (N=3)ay /S,
¢z = (N=1)§, + =m=mmmozeees (14 mmmmmemeees ) . (F2)

83 = (N=1)  =mmmmmemmmee ). (F3)
1+(N’2)Sz

We now prove that ¢} > e} by contradiction,
Suppose that ¢l s 6. Then from (F2), this implies that
(N'1)(N'2)a1 (N'3)a1/Sz

6l 2 ¢} 2 (N-1)5, + =mmmmmmmmmmnn (1 4 wmemmmmenee ) (F4)
1 + nol 1+ (N=3)8,

Equation (F3) can be rewritten after some elementary algebra, as

34



(N-1)(N-2)a1
BT = (N=1)8, + ====-===mamm- (F5)
1+(N-2)S,
From equations (F4) and (F5), we get

(N=1) (N=2) oy (N=1) (N=2) o ( (N=3)a1/S,

and cancelling out common items, we get
1 1 (N-3)a1/s2

--------- el G R (F6)
14(N=2) S, 1406t 1+(N=3)8,

Expressing e% in equation (F6) using equation (F5), and after some straight

forward manipulation, this gives the inequality
(N=2)2 2 ====- + 2(N=-3)(N=2). (FT7)

This last inequality is clearly a contradiction for N 2 4, and hence the

result follows.
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