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1   Introduction 

1.1   Gene Expression Levels 

Biological databases can be used to define groups of related genes that will be referred to 

as gene sets, or pathways.  We can study individual gene expression levels to determine 

whether a pathway contains active genes, and what exactly these genes are
1
.  But there 

are a few obstacles that arise when trying to determine exactly which genes are active.  

Biological processes in cells often affect sets of genes in unison
2
, and conducting analysis 

on a single gene-by-gene basis does not account for any sort of correlation between 

genes.  A simple case could be that the rise in the expression level of one gene leads to a 

rise/decline in the expression of another.  But it is also likely that much more complicated 

correlation structures exist within pathways.  When analyzing gene sets, it is likely we 

will obtain different results if the data are correlated as opposed to being independent.  It 

is important that any method used is robust to different correlation structures. 

 A second obstacle is the difficulty that arises with multiple hypothesis testing.  

Often microarray data consists of a large number of genes, but only a small sample size 

of expression levels for each gene
1
.  This creates a relatively big potential for falsely 

discovering genes to be significant that are not, in fact, significant.  A typical approach to 

regulate this would be to simply pre-determine the type I error rate (or a significance 

level) to an acceptable level, say .05.  This seems logical on a per-comparison basis, but 

issues arise when large-scale multiple hypothesis testing uses this approach.  For 
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instance, take a gene set with 1000 genes, none of which are actually significant.  Simply 

by chance we would expect to falsely discover 50 significant genes.   

Another common approach would be to correct the type I error rate for multiple 

hypothesis testing.  A good example is the Bonferroni correction, which would 

effectively use a per comparison significance level of our type I error rate divided by the 

number of tests.  In the previous example, our new per comparison significance level 

would be .00005.  This method is far too conservative, and has little power in rejecting a 

false null hypothesis
3
.  The type I error rate is controlled well, but it is controlled at the 

expense of the type II error rate (false negative rate).  A proper test for this sort of data 

must focus on regulating the type I error rate while maintaining high power in order to 

detect significant genes.   

 

1.3 False Discovery Rate 

Table 1 gives some insight into the multiple-hypothesis testing problem 

 

Table 1: Possible Results From ‘n’ Hypothesis tests 

 Failed to Reject H0 Reject H0 Total 

H0 True True Negatives (TN) False Positives (FP) n0 

H0 False False Negatives (FN) True Positives (TP) n1 

 Negatives (N) Positives (P) n 

 

Using the uncorrected, per comparison, type I error threshold described above, the false 

positive rate is regulated such that: 

P( FPi > 0 ) ≤ α  

1 ≤ i ≤ n. 

 

More simply put, each FPi is a binary variable, either equal to zero, or one (it was either a 

false positive or not).  The individual probability that it was a false positive is less than α 

for each FPi.  Using the corrected, per comparison, type I error threshold, the false 

positive rate is regulated such that: 
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α* 
= α / n 

P( FPi > 0 ) ≤ α* 

1 ≤ i ≤ n. 

 

This is a much more conservative method when the number of hypotheses tests, n, 

becomes large. 

 Another proposed method for regulating false discoveries is to control the false 

discovery rate (FDR).  Benjamini and Hochberg
4
 were among the first to implement the 

FDR method, and described an approach such that:    

E[ FP / P ]  ≤ α. 

Simply put, this method requires that the expected proportion of false discoveries is less 

than some threshold, α.  While there are a variety of different ways to implement an FDR 

procedure, we will only focus on an FDR controlling algorithm based on that used in 

Benjamini & Hochberg (1995)
4
. After retrieving a set of P-values from n hypothesis tests, 

rank them p1 ≤ .. pi ..≤ pn.  A check value, Ci , is then calculated for each pi: 

Ci = q * i / n. 

where q is some set significance level for the FDR procedure.  We then compute: 

K = max{1 ≤ k ≤ n : pi ≤ Ci}. 

and reject the null hypothesis for the first K genes in the ordered set of P-values.  This 

method is robust in that it maintains high power, while ensuring a low false positive rate
3
.  

 

  

2   Exploration of Enrichment Scores 

2.1   The Maxmean 

One area of interest was simply to determine whether or not a pathway contains active 

genes.  Many approaches begin by computing a two-sample t-statistic, zi, for each gene.  

The z-values can then be used to form some enrichment score for each pathway.  The 

enrichment score is then compared against some predefined cutoff to determine whether 

the pathway is active (significant)
1
.  In Gene Set Analysis (GSA), Efron and Tibshirani

1
 

use an approach they call the maxmean.  In a given gene set, they first compute zi for each 
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gene.  The maxmean then sums the positive components of the zi and the negative 

components of the zi.  Then the positive and negative sums are “averaged” by dividing 

them by the entire number of genes in the gene set.  The maxmean enrichment score is 

then set equal to the maximum of the absolute value of these positive and negative 

averages.  The exact formula takes the form: 

max

zi

i=0

k

∑
k

: zi > 0,

zi

i=0

k

∑
k

: zi < 0

 

 
  

 
 
 

 

 
  

 
 
 

. 

For example, If there were 20 genes, with 1 score of -1.5, and 19 scores of .1, the score 

would be equal to 19(.1)/20 = .095 since it is larger than 1(1.5)/20 = .075.  The authors 

claim that this approach is robust by design in that it does not allow a few large positive, 

or negative, scores to dominate.  For a much more detailed description of the maxmean 

approach refer to Efron and Tibshirani (2007) pages 3-6, and 16-17
1
. 

 

2.2  Proposed Enrichment Scores 

We decided to test the maxmean method against a few ideas of our own.  After testing a 

variety of approaches, we decided to focus on two enrichment scores that could contend 

with the maxmean.  The first method was simply to use the square of the zi to see how it 

compared with the maxmean, which uses the un-squared Z-values.  By squaring the Z-

values we hoped to inflate the differences between the treatment and control groups, 

making it easier to detect significant pathways.  

Our second approach was a little more complicated.  We wanted to compare the 

maxmean method against the P-values corresponding to the Z-values.  We transformed 

the P-values with the intent to inflate the differences between the treatment and control 

groups.  We tried several transformations, and settled on one method that worked best.  

We first calculated the two-sided P-value for each zi statistic, then adjusted the P-value 

using the following method: 

 

pi = 2Φ(− | zi |)  

e
log p i( )

. 
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However, to find comparable methods to the maxmean, we had to implement a 

“maxmean twist” on each of our methods.  We did this by setting our enrichment scores 

equal to: 

max

zi

2

i=0

k

∑
k

: zi > 0,
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2.3 Simulation Setup  

To set up our experiment we wanted to have gene expression levels for 20 genes and 40 

samples for each gene.  We generated this data from an i.i.d. normal sample, N(0,1).  We 

set up our data in a matrix such that there were 20 rows, one for each gene, and 40 

columns, one for each sample of each gene.  The first 20 columns were considered to be 

our treatment group, with the second twenty columns considered to be our control group.  

In order to simulate a certain set of genes, L, to be “active” genes, we added a treatment 

(or signal) to the first L genes in the treatment group.  We varied the number of active 

genes, L, between 2, 5, 10, 15, and 19.  We also varied the signal added to the active 

genes between .1, .25, .5, 1, and 1.5.  In any given scenario, we can then calculate a t-

statistic, zi, for each of the 20 genes.  We replicated this process 10,000 times to ensure 

accurate results. 

For each enrichment score method, we developed a predetermined cutoff for 

significance based at the 95% confidence level.  We can form the null distribution of each 

enrichment score by adding a treatment of zero.  Since there were 10,000 replications, we 

generated the data with a treatment of zero and order-ranked the test statistics.  By chance 

(at the 95% confidence level) we would expect about 500 of the 10,000 pathways to be 

falsely identified as having significant genes. For each of our methods, we used the 9,500 

largest statistic as our cutoff value to determine what we would declare significant once 

we added a treatment across a specific number of genes. 
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2.4  Results 

When we add the signal to a large number of genes in the treatment group, the maxmean 

method always seems to work better than our suggested methods.  When the signal is 

large (1.5), all methods seems to work well in consistently determining all 10,000 

pathways to contain significant genes.  However, our methods appear to become 

comparable when we use a signal around .5 and number of treated genes (L) is small.  

The results if we hold the signal constant at .5, and .25, while varying L, can be seen in 

Figure 1. 

Figure 1: Comparing Methods that Determine 

Significant pathways. 

 

We can see that our methods do slightly better with a signal of .5, but certainly not 

enough to claim that they are better than the maxmean.  When using a signal of .25, our 

methods become comparable for L equal to 2 or 5, but the maxmean does far better as L 

grows.  While our methods were comparable to the maxmean under some circumstances, 

we were not able to find a method that consistently did significantly better in any of the 

scenarios varying the signal and value of L. 
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3   Detecting Active Sub Pathways 

3.1   Our Adjusted P-Value 

Our early exploration only focused on determining whether or not a gene set contained 

active genes.  The larger area of interest is making sure we can consistently detect all of 

the actually active genes, while not falsely detecting inactive genes.  FDR approaches 

mainly focus on low false discovery, but this may lead to too conservative estimates of 

what actually is significant.  We decided to focus on a method that adjusted the t-statistic, 

effectively adjusting the P-values.  We calculated our zi according to: 

Zi

α =
λ 1− λ)n( )[ ]

1

2
−α 

 
 

 
 
 

Yi − X i[ ]
ˆ σ pooled

. 

where λ = .5, Y is the treatment group, X is the control group, and n is the total number 

of samples (twenty in the treatment group, twenty in the control group).  The pooled 

variance equals 

  

) σ pooled

2 =
1

n − 2
X ij − X i( )2

+ Yij −Yi( )2

j=1

(1−λ )n

∑
j=1

λn

∑
 

 
 
 

 

 
 
 
. 

When α is set to zero in this equation, the first equation gives the regular t-statistic.  

When α is varied (0 ≤ α ≤ .5) the t-statistic gets slightly adjusted. We focused on varying 

α between 1/12, 1/6, 1/4, and 1/3 to test different adjustments.  From the t-statistic we 

determine our one-sided P-value using: 

Pi

α =1− Φ(Zi

α )  

 

3.2   Simulation Setup and Measures 

We set up our sample data in the exact same way as described before, generating data on 

20 genes and 40 samples using i.i.d. normal data with mean zero and variance one.  We 

used the same treatments (signals) and varied the number of genes treated (L) using the 

same values.  We then calculated the zi, using our new adjusted method, and used these to 

calculate our adjusted P-values.   

 We were also interested in testing our methods on correlated data.  We 

implemented a simple correlation structure where Z1, Z2, … Z20 is distributed such that: 
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This will illustrates twenty gene expressions for one individual with correlation ρ.  To do 

this, we first generated U1, U2, …U20 ~ i.i.d. N(0,1) and a single Z ~ N(0,1) .  After 

setting ρ, the desired correlation, we generated our sample data according to: 

  

1− ρ
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Z1, …, Z20 represent 20 sample expression levels for one individual.  We repeated this 20 

times to achieve 20 sample expression levels for 20 individuals to make up our control 

data.  This process was then repeated to obtain 20 samples of 20 individual for our 

treatment data.  Once again, a signal was added to the first L genes of the treatment data 

to simulate active genes.  This whole procedure was replicated 10,000 times. 

 Consider active genes to form some group, C.  Then inactive genes can be 

grouped into C
C
, the complement of C, such that | C ∪ C

C 
|= 20, the total number of 

genes in the sample.  For genes in C (active), we expect low P-values close to zero.  P-

values for genes in C
C
 (inactive) are expected to converge to a value of .5.  Ideally, we 

would like 

Pi

α − 0( )2

i∈C

∑ + Pi

α − .5( )2

i∈CC

∑ . 

to equal zero.  We want to choose our estimated C, ˆ C , in order to minimize the equation.  

For our purposes, minimizing the above equation is the same as minimizing: 

Pi

α − .25( )
i∈C

∑ . 

This equation is minimized when we only include genes with adjusted P-values less than 

or equal to .25 in our ˆ C .    

 In a real world example, we are unsure of how many, and which genes, in a gene 

set are actually active.  With our simulated data, we do know this.  It is simple to 
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determine which genes in ˆ C  are correctly chosen, and which are not.  To measure the 

performance of methods estimating ˆ C  we decided to calculate F1 scores.  An F1 score is 

computed using the precision and recall of a test.  The precision is computed by the 

number of correct results divided by the total number of significant results returned.  The 

recall is computed by the number of correct results divided by the total number of results 

that are actually significant.  The actual F1 score is then computed using the harmonic 

mean of precision, p, and recall, r. 

p =
ˆ C ∩ C

ˆ C 
   , r =

ˆ C ∩ C

C
   ,   F = 2 *

p * r

p + r
. 

A precision of one means that all genes in ˆ C  (discoveries) are in fact true discoveries, 

but says nothing about the number of false negatives.  A recall of one means that all 

active genes were discovered, but says nothing about the number of false discoveries.  

The F1 score takes into account both type I and type II errors, and F1 scores close to one 

indicate that the method is accurate in keeping both of these low. 

  

3.3   Determining αααα  

 We first need to determine which α is most effective at obtaining high F1 scores.  I will 

consider a scenario to be a specific signal being added to a specific number of genes (L).  

We tested five different signals (1.5, 1, .5, .25, .1) and five different values for L (19, 15, 

10, 5, 2) giving us 25 scenarios to test for each method.  The two main things we are 

concerned with are the F1 score, and the estimated ˆ C .  By replicating each scenario 

10,000 times and taking the mean for each of these values we expect to obtain 

dependable results.   

 We begin by observing the results from uncorrelated data (equivalent to ρ = 0).  

Figure 2 shows the results of a few scenarios to get a better idea of how our different α’s 

perform with regards to the F1 score (for now, disregard FDR). 
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Figure 2: Comparing Values of αααα 

 Uncorrelated Data 
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The first thing to note is that when L is high, and the signal is high, all values of α give 

comparable results.  Also, for small values of L and smaller signals, none of the α’s stand 

out distinctly from the rest.  The biggest differences occur when L is high and the signal 

is low, and when L is low and the signal is high.  When L is high and the signal is low, α 

= 1/12 gives the highest F1 values.  When L is low and the signal is high, α = 1/3 gives 

distinctly higher F1 values than the others.  No values of α stand out as being the best 

across the board from these results. 

 Next we focus on the correlated data, generated from the simple structure 

previously described.  We can compare across methods, at set correlations, to determine 

which α performs best.  Figure 3 compares the performance of different values of α 

holding correlation constant at .2.  

Figure 3: Comparing Values of αααα 

Correlation = .2 
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It is clear that the same trends still hold from the uncorrelated data, but the F scores are 

becoming much more similar for different values of α.  The biggest differences are still 

found when L is high and the signal is low (α = 1/12 being the best), as well as when L is 

low and the signal is high (α = 1/3 being the best).  It is also clear that F scores at higher 

signals have fallen across all values of L, while F scores at low signals seem to be less 

effected.  To see if these trends hold, we tried a higher correlation.  Figure 4 compares the 

performance of our α’s using a correlation of .8. 
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Figure 4: Comparing Values of αααα 

Correlation = .8 

 

 



 14 

These results indicate that there is little to no difference in the effectiveness of the 

different α’s.  Another interesting thing to note is that our F scores for low signals 

increase slightly with correlated data, while F scores for high signals drop more rapidly.  

According to these results, as data becomes more highly correlated the value of α seems 

to matter less, as all values report similar F scores. 

  When we look at the reported magnitude of ˆ C  (the number of genes we declare 

active) we find a different story. We would like the magnitude of ˆ C  to be close to L, the 

actual size of the active set.  For simplicity, we can focus on α = 1/3 and α = 1/12.  

Figure 5 shows the results for L = 5, and L = 2 (For now, disregard the FDR methods). 

Figure 5: Estimating | ˆ C | 

Uncorrelated Data  

 

This suggests that α = 1/3 tends to be more conservative in its estimate of the size of the 

active pathway.  At L = 2, there are only two significant genes, but α = 1/12 consistently 

estimates the magnitude of ˆ C  between 4 and 5, while α = 1/3 always estimates around 
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two.  For high signals and L = 5, α = 1/3 estimates right around 5, while α = 1/12 is once 

again over-estimating the active set.  We can check to see if this pattern holds for the 

correlated data.  Figure 6 shows the estimates of ˆ C  using highly correlated data. 

Figure 6: Estimating | ˆ C | 

Correlation = .8 

 

 We note that, for these values of L, both α’s are overestimating the active set, however α 

= 1/3 is still a more conservative estimate. 

 We have focused on lower values for L because we are more concerned in 

analyzing gene sets in which just a few genes are actually active, as opposed to nearly the 

entire set.  At low values of L, α = 1/12 reported better F scores at low signals.  However, 

it is also reporting a very large estimated active set, especially when we take correlation 

into account.  Considering that correlation likely exists in an actual data set, we decided 

that to use α = 1/3. 
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To evaluate the performance of the adjusted P-value method in more complicated 

correlation structures, we designed a simulation with different levels of correlation 

among the active and inactive sets. We considered high correlation in the active set, with 

lower correlation in the inactive set.  To do this, we randomly generated a network of 

gene interactions, given in Figure 7. We set the partial correlation of connected genes in 

the network in the set of first “L” genes to 0.6, and set the partial correlation of the 

remaining connected genes to the lower level of 0.2.  In other words, instead of setting 

the entire active and inactive sets to be correlated, we only allow genes connected by an 

“edge” to be related. 

Figure 7: Correlation Adjacency Matrix 

 
Note: Zero corresponds to the first expression level, One to the second, and so on 
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If two genes are connected in the graph, their expression levels would be correlated given 

the expression levels of the remaining genes in the graph.  For instance, since zero and 

one are connected in the picture above, our first and second expression levels will be 

correlated in the sample data (for both the treatment and control).  Since zero is not 

connected to two, their expression levels are only correlated through other genes in the 

graph.  Using this correlation structure we, again, generated 40 sample expression levels 

for each of 20 genes from an i.i.d. Normal distribution with mean zero and variance one.  

We used the same setup for treating genes to create an active set as described before. 

 The simple correlation structure described before very noticeable changed the 

performance of our method.  In certain scenarios the method performs better with 

correlated data than uncorrelated, and in certain scenarios it performs much worse.  But 

this is a much more complicated structure, which we are more likely to see in actual test 

data.  We would like our method to be robust to correlation structures, such as this, to 

confirm that our method will be effective in practice.  Figure 8 shows the performance of 

our adjusted P-value method comparing F scores for uncorrelated and data generated 

using this new correlation structure.   

Figure 8: Partial Correlation vs. Uncorrelated 
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In all scenarios the uncorrelated and correlated data provide almost identical results. It is 

quite obvious that this new correlation structure is having little to no effect on the 

performance of our F scores, and the adjusted P-value method is robust to these sorts of 

correlation structures.  

 

3.4   Comparing With FDR 

The next step is to compare the adjusted p-value method (α = 1/3) to the Benjamini-

Hochberg FDR algorithm previously described.  First, a threshold for the FDR procedure 

should be determined.  FDR, as mentioned before, works to ensure a low false positive 

rate.  Since precision measures the proportion of the discoveries that are actually correct, 

we would expect the FDR procedure to maintain high precision.  Setting too strict of a 

threshold will increase the precision, but at the expense of the recall.  Figure 2 (page 10) 

shows F scores for thresholds of .1 and .2 using uncorrelated data.  In some scenarios a 

threshold of .2 seems to give slightly better results, but with a low L both thresholds 

perform fairly equally. 

Figures 3 and 4 (pages 11-13) show F scores for the FDR methods using 

correlated data.  One interesting observation is that the simple correlation structure has 

the same effect on this method as on the adjusted P-values.  With high correlation, the F 

scores for high signals drop quickly, especially with small L, while F scores for lower 

signals actually get slightly better.  Figures 3 and 4 do not seem to provide conclusive 

data that either of the two thresholds is better than the other.  Overall, F scores for a 

threshold of .2 appear to be slightly better, but we can compare magnitude of the 

estimated active set to show that it may still be beneficial to use a threshold of .1.   

As stated before, we are more concerned with smaller values of L, as well as 

correlated data.  In Figure 4, where L = 2 with high correlation, the F scores for both 

FDR thresholds appear almost identical.  Figure 6 (page 16) shows the estimated active 

set for low L and high correlation.  As discovered with our method, FDR is over-

estimating the active set for small values of L.  The lower threshold, .1, provides slightly 

more conservative estimates of the active set while retaining a comparable F score.  For 

this reason, we will compare our adjusted p-value method to the FDR method at a 

threshold of .1. 
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 By the nature of our set up, there are a few scenarios where we can expect the 

methods to differ in effectiveness.  When L is large there is a very small chance to 

identify false positives.  Thus, most genes identified as active will automatically be in the 

active set, meaning that precision will always be high.  The F score will then differ 

mainly due to the recall.  At high signals, this should not matter because, as we have 

seen, both methods do very well at high values of L and high signals.  At low signals, 

however, the FDR may be too conservative in identifying anything, and this would lower 

the recall.  We expect our method to do better for scenarios with large L and small signal. 

 When L is small, the chance for identifying false positives arises simply because 

the set contains more inactive genes.  At high signals we would still expect both of our 

methods to do well in identifying the truly active set, giving both methods a high recall.  

Since FDR focuses on avoiding false positives, it will still have high precision.  Our 

method may not have as high a precision, meaning the FDR method will do better in 

these scenarios. 

 The interesting scenarios are those that have medium to small active sets (2, 5, 

10), as well as mid to low signals (.5, .25, .1).  There is the potential for false positives, as 

well as the potential that the FDR will be too conservative to find active genes.  By fixing 

the signal, and altering L we can see the results best.  Figure 9 shows comparisons across 

all 25 scenarios using uncorrelated data with α = 1/3 and the FDR threshold set to .1 to 

test these predictions.    
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Figure 9: Adjusted P-values and FDR 

Uncorrelated Data 
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Our previous assumptions appear correct.  FDR works best for large signals, but our 

method seems to be doing better for lower signals.  More importantly, in the scenarios 

that we were unsure of, the adjusted P-values consistently do better than FDR.  In fact, 

when the signal is dropped below 1, FDR never has higher F scores than our P-values.  

Figure 9 makes it clear that there are very few scenarios in which FDR does better than 

our method on uncorrelated data.   

 From what we have seen in previous analysis, the correlation structure appears to 

affect both methods in a similar fashion.  As more correlation is introduced, we expect F 

scores for higher signals to drop, and for lower signals to rise.  Figure 10 shows our 

results for correlations of both .2 and .8.  As more correlation is introduced the F scores 

are consistently dropping at higher signals.  At lower signals, the added correlation helps 

the adjusted P-value F scores slightly, but helps FDR much more.  As correlation is 

added, the methods begin to become equally effective with regards to F values. 

 

Figure 10: Adjusted P-values and FDR 

Correlation = .2 
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Correlation = .8 

 

 

 

As seen in Figures 5 and 6 (pages 15-16), FDR is consistently more conservative when 

estimating the active set than the adjusted P-values.  We would expect the FDR method 

to be more conservative, but it is possible that this method of FDR is too conservative, 

and may be ineffective in realistic settings. 

 

4 Analysis of Yeast Gene Expression Data  

Ideker et al (2001)
5
 integrated gene expression and protein level data to study significant 

signaling and metabolic pathways in yeast Saccharomyces cerevisiae. They reported 

interactions among genes and proteins in different pathways along with information on 

the estimated correlation among genes in the network. The authors also grouped the 

genes into subnetworks (pathways) based on their biological functions.   

In this study, the mRNA expression levels of yeast genes are measured in 9 

different strains of yeast, each including a different perturbation in one of the genes in the 

Galactose Utilization pathway. For each perturbation, two samples of data are available. 

The first set of samples represents the expression levels of genes in cells grown in 

presence of galactose (gal+), while the second set includes expression levels for cells 
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grown in absence of galactose (gal--), where the main source of carbon is raffinose.  Here 

we consider the genes in two of the pathways recognized by Ideker et al (2001), namely 

rProtein Synthesis and RNA processing.   

 We analyzed the expression levels using the FDR approach as well as our 

adjusted P-value method.  The rProtein Synthesis and RNA processing pathways consist 

of 28 and 78 genes, respectively.  The FDR approach was very conservative, only 

discovering one significant gene in each pathway.  Our method, however, discovered 13 

significant genes in each pathway.  Table 2 summarizes the result from the adjusted p-

value method, listing the genes with the smallest P-values first. 

 

Table 2: Test Data Results 

 rProtein Synthesis RNA Processing 

Rank   

1 RPL10*
 

RPL42B* 

2 RPP1A SRM1 

3 RPP2B NOP1 

4 RPS22A RPS28B 

5 RPP1B LYS9 

6 OYE2 DED1 

7 RPL18B CIN4 

8 RPP0 RPS28A 

9 RPS17A GCN3 

10 RPS24B HOM3 

11 RPL5 TEF2 

12 RPS24A TIF5 

13 RPL18A MTH1 

* Denotes that FDR also found this gene to be significant. 

 

 Interpreting these results can be a bit difficult, as we are unsure of how many 

genes are truly active.  In our sample data we determined the active set, so we knew 

which genes we should be declaring active, but we do not know this here.  The FDR 
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approach is conservative, but it could be true that there are very few, if any, active genes 

in each pathway.  We can gain a little more information by observing the spatial 

arrangement of each pathway.  We would hope that the genes we found to be active will 

be near each other in this arrangement, indicating a relationship.  Figure 10 shows the 

arrangement of each pathway, with the genes we found to be active highlighted in red. 

 

Figure 10: The rProtein Synthesis  

and RNA Processing Pathways 
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In the RNA Processing pathway there appears to be two clusters of genes, one in 

the middle and one at the bottom, that we considered active.  There are a few gaps 

between some of the genes within the clusters, though, which may weaken the argument 

that those genes are the true active set.  We see a much more interesting pattern within 

the rProtein Synthesis Pathway.  We see that we declared RPL18A, RPL18B, RPS17A, 

RPS24A, and RPS24B all to be active, and that they are all controlled by the same 

transcription factor.  Further, most of the other genes declared active are clustered near 

these five genes.  While we cannot say for sure that these genes are truly active, we know 

that they are closely related, and if one of them is active it is more likely that the rest are 

active as well.   

 

 

 



 26 

5   Conclusions and Future Work 

With our simulated data, the adjusted P-value method always works comparable to, and 

in many cases preferable to, the FDR approach.  With the test data, we found the FDR 

procedure to be very conservative in reporting genes as active, while the adjusted P-value 

method shows the opposite behavior.  While some of our results from the test data seem 

promising for our method, it is difficult to claim that the adjusted P-values perform better 

than FDR.  It would be interesting to investigate such a huge discrepancy more 

systematically. 

 Some approaches to FDR account for correlation structures using data 

permutations.  To do these permutations effectively, however, there must be a large 

number of genes in a pathway.  Since our simulated data only focused on pathways of 

twenty genes, we were not able to properly compare our method permutation-based FDR 

methods.  It is possible that more complicated methods of FDR will perform better than 

the Benjamini-Hochberg (1995) method that we compared our method to.  It would be 

beneficial to simulate data with much larger pathways in order to make this comparison. 

 We do believe that we might be able to improve the adjusted P-value method.  

When deciding which alpha (1/12, 1/6, 1/4, 1/3) works best, it was clear that which 

worked best depended on which scenario we looked at.  Sometimes alpha = 1/12 worked 

better, and sometimes alpha 1/3 worked better.  It may be beneficial to adaptively 

estimate alpha according to the data we are looking at.  Namely, we would like to 

perform some re-sampling technique in order to determine alpha based on the correlation 

structure of the data.  This should improve our method, and might be necessary to make it 

competitive with permutation-based methods of FDR. 

 

6   Acknowledgments 

I would like to thank Drs. Moulinath Banerjee, George Michailidis, and Ali 

Shojaie of the Department of Statistics at University of Michigan for their invaluable 

guidance and help in designing the methods, and furthering my understanding of the 

complex concepts involved. 

 



 27 

References 

 

1
Efron, B. and Tibshirani, R. (2007). On testing the significance of sets of genes. Annals 

of Applied Statistics, 1(1):107–129. 

 

2
Subramanian, A. and Tamayo, P. Mootha, V. K. and Mukherjee, S. and Ebert, B. L. and 

Gillette, M. A. and Paulovich, A. and Pomeroy, S. L. and Golub, T. R. and Lander, E. S. 

and Mesirov, J. P. (2005). A knowledge-based approach for interpreting genome-wide 

expression profiles. PNAS. 102, pg 15545-15550. 

 

3
Storey, J. (2010) False discovery rates. In International Encyclopedia of Statistical 

Science, Lovric M (editor) 

  

4
Benjamini, Y., Hochberg, Y. (1995) “Controlling the false discovery rate: a practical and 

powerful approach to multiple hypothesis testing” Journal of the Royal Statistical 

Society, Series B (Methodological) 57 (1): 125–133. 

 

5
Ideker, T., Thorsson, V., Ranish, J., Christmas, R., Buhler, J., Eng, J., Bumgarner, R., 

Goodlett, D., Aebersold, R., and Hood, L. (2001). Integrated Genomic and Proteomic 

Analyses of a Systematically Perturbed Metabolic Network. Science, 292(5518):929. 


