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Abstract

Polling systems find application in a wide variety of real-world
systems, for example, in telecommunication systems and material
handling systems, and there is continued interest in the analysis of
polling systems for their performance. In this paper, we present a
very promising technique to obtain mean waiting times for
continuous-time polling systems which use the exhaustive and gated
service disciplines. The technique enables the analysis of polling
systems which have a mix of these service disciplines. Thus, some
nodes could adopt the exhaustive service discipline while the other
nodes use the gated service discipline. The technique also allows the
user to obtain the mean waiting time at select nodes without having to
obtain all the mean waiting times simultaneously.



A polling system is a queueing system in which a single server services M nodes. The server
cycles around the system, visiting each node in turn, and attends to the waiting customers using
some prespecified service discipline. Real-world applications which are modeled and analyzed
using polling systems can be found, for example, in telecommunication and material handling
systems, and there is continued interest in developing new algorithms and applications for polling
systems. An excellent survey of the research done on polling systems can be found in Takagi
(1990).

A number of service disciplines have been studied, which determine the service strategy
adopted by the server at a node. The most commonly studied service disciplines are i) the
exhaustive service discipline, where the server continues to serve all customers at the node until
there are no more customers at the node, ii) the gated service discipline, where the server only
serves those customers present at the node at the instant the node is polled, and iii) the k-limited
service discipline in which the server serves at most k customers during a visit to that node.
Several variants of these strategies have been proposed and studied in the past.

In this paper we present a new and powerful technique for the analysis of continuous-time
polling systems, which we term the Individual Station (IS) technique. The IS technique allows us
to determine the mean waiting time at one or more select nodes without having to obtain mean
waiting times at all the nodes, simultaneously. We develop the following new results: a) We
provide an iterative algorithm to determine the exact mean waiting times for the asymmetric,
continuous-time, exhaustive and gated service polling systems. b) We next present an algorithm
which computes mean waiting times very rapidly without recourse to iteration. The mean waiting
time at a node is determined, in an explicit form (through the solution to a system of six equations
or less), and requires O(M2) operations per node. The algorithm is numerically exact for polling
systems with upto seven nodes. We demonstrate that for polling systems with an arbitrarily larger
number of nodes, the solution of this system of equations results in mean waiting time estimates
very close to the exact values, with errors less than 0.0025%, even when utilizations approach 1.
For the exhaustive service polling system with more than seven nodes, we also show that the mean
waiting time obtained from the algorithm bounds the exact numerical value from below. If mean
waiting times need to be computed even more accurately, they can be obtained with very little
additional effort, simply by solving a slightly larger system of equations (say, a system of seven
equations). ¢) We obtain the mean waiting times for a polling system which allows mixed service
strategies, wherein some of the nodes are served using the exhaustive service discipline, while the
other nodes are served using the gated service discipline.



1. Literature Review

There is a considerable amount of literature devoted to polling systems analysis, and the reader
is referred to the paper by Takagi (1990) for a comprehensive survey of the work done in this area.
We will briefly review some of the papers most pertinent to our work.

A number of numerical techniques have been proposed for computing the mean waiting times
for the exhaustive and gated polling systems. Levy (1991) classifies these techniques as

a) The buffer-occupancy equation method (Cooper and Murray 1969, Cooper and Murray 1970,
Eisenberg 1972, Hashida 1972, Konheim and Meister 1974, Rubin and Demoraes1983,
Kleinrock and Levy 1988, and Takagi 1986),

b) The station-time equation method (Aminetzah 1975, Humblet 1978, Ferguson and Aminetzah
1985, and Baker and Rubin 1987),

¢) Carsten, Newhall and Posner's method (1977),

d) Swartz's method (1980), and

e) Sarkar and Zangwill's method (1989).

Most of the above methods require the solution of large sets of linear equations (either M2 or
M3 equations). The algorithm of Sarkar and Zangwill, however, obtains the mean waiting times
by solving a system of M linear equations, thereby requiring only O(M3) operations.

Swartz (1980) develops an iterative procedure for analyzing the discrete-time exhaustive
service system, in which time is slotted in fixed intervals. Although this procedure does not
guarantee an upper bound on the number of iterations required, it converges rather quickly when
the utilization of the server is not very close to 1. Levy (1989, 1991) discusses the complexity of
this algorithm, and the rate at which it converges. Levy (1991) observes that Swartz's method can
be used to calculate the mean waiting time at a station independently of the mean waiting times at
other stations. This is in contrast to the other methods which solve for all M mean waiting times,
simultaneously. Levy shows that the method forms a contraction mapping and, therefore, the
number of iterations it requires is logarithmic in the accuracy required. Levy concludes that "for a
wide range of parameters, the method is the most efficient method known today for computing the
expected delay in polling systems," and that it is desirable to apply this approach to polling systems
other than the discrete-time exhaustive service system.

The iterative algorithm we present in this paper (for the continuous-time exhaustive and gated
service polling systems) is similar to Swartz's approach for the discrete-time exhaustive service
system. It can, therefore, be shown to share the above property of logarithmic convergence.



We first consider the exhaustive service system, and derive the expression for the mean waiting
time in Section 2. In Section 3, we present the iterative algorithm, using the IS technique. We
next develop the algorithm which requires O(M?2) operations to obtain the mean waiting time at a
node. Section 4 presents a number of computational results for the two algorithms. These results
serve to illustrate both the speed of convergence of the iterative algorithm, and demonstrate the
accuracy of the second algorithm. In section 5, we extend the results of sections 3 and 4 to the
gated service system. In section 6, we show how the IS technique easily extends to handle polling
systems in which some of the nodes adopt the exhaustive service discipline while the others adopt
the gated service discipline. Section 7 presents a summary and discusses ways in which the IS
technique could be further extended.

2. The Model for the Exhaustive Service Polling System

We present most of the notation that will be used in the paper. Unless otherwise specified, it is
implicit that the index for any summation is over the range 1 through M. It is also implicit that the
index is i) reset to 1 if it becomes M+1, and ii) reset to M if it drops down to 0. We adopt the
convention that an empty product equals 1.

A single server serves requests from customers at the M nodes, according to the exhaustive
service discipline. Customers arrive at each node according to independent Poisson processes with
rate A, at node m. The service time of a customer at node m is an independent random variable,
having finite mean by, and second moment b{?. The Laplace Stieltjes Transform (LST) of the
service time is denoted by B (.), and the LST of the busy period (Cooper 1981) induced by a
single customer at node m is denoted by Nm(.). The time taken by the server to switch between
nodes m and m+1 is a random variable with mean s, second moment s, variance Var(Sy,), and
LST om(.). The traffic intensity at node m is denoted by pm = Ambm, and p = ¥m pm denotes the
server utilization. For the polling system to be stable, we require p to be less than one. The sum
of the mean switchover times is denoted by s = ¥m s, . We are interested in obtaining the mean

waiting time, Wp,, at node m, for m=1,...,.M.

Let z = (z,...,zm), and let Fp(z) denote the probability generating function for the number of
customers present at each node at the instant the server polls node m. The first and second factorial

moments of the number of customers present at node m when the server polls the node are given
by fm and {2, respectively, where

0%Fn(2)

f = 0@ g g oy e, @.1)

aZm



If we can obtain the first and second factorial moments of the number of customers present at
node m when the server polls that node, then the mean waiting time is obtained as (Takagi 1986):

£2) Ab®
Wn = A o (2.2)
2Amfm 2(1-pm)

Obtaining these moments is not straightforward, since the generating function Fy(.) is
expressed, recursively, in terms of the generating function Fy,_;(.). It is well known (see for
instance, Takagi 1986) that the generating functions are related by the following expression:

Fna(zie.zm) = Fu(zt,. o Zmo Min(Ckem AeAzi))Zmes- - ,2M) Om(Tk (Me—Aizi). (2.3)

This equation forms the starting point for the IS technique. We initially obtain an expression
which expresses Fiy(.) solely in terms of functions of input parameters. We then differentiate the
resulting expression twice and use equation (2.2) to obtain the mean waiting times. The technique
we develop below, computes W,. The mean waiting times at the other nodes are obtained in an
identical manner. We first define a recursive (nested) function, Y,(j) as follows:

Ym(o) = Zm; m=1 seee ’M’ (243)
V() = Ml Y G-I+ Y, Didcnie®1), §>0, m=1,.., M. (2.4b)
k<m k>m
Let
Gm(i) = Gm( 2 [xk_lk’Yk(j)] + 2 D"k—)"k’Yk(j+1)])’ .] 2 01 m= 17'°"M° (25)

k<m k>m
We can now cast equation (2.3) in the following form:
Fi(11(0),...,yM(0)) = Fm(11(0),...,yM-1(0),7m(1)) om(0).

Recursively expressing Fp(.) in terms of Fy_,(.), and Fym-,(.) in terms of Fm_(.), and so on, we
obtain:

F,(11(0),....ym(0) =  Fi(ya(D),... m(D) [T om(0).
m

We now continue to recursively express F,(11(G),...,ym()) in terms of Fy(y1G+1),...,ym(G+1)), for
j 2 1, and this results in the following expression for F,(y1(0),...,ym(0)):

n-1
F,(71(0),....ym(0) = F,(n@),.... ym(m) [ | (H omci)) (2.6)
j=0 \m

It can be shown (refer Cooper 1969, and Eisenberg 1972, for example), that limp—secY1(n) = 1.
Hence, letting n — oo in equation (2.6), we obtain:



j=0 m

F(y1(0),...,1m(0)) = I1 (1'[ om(i)) @.7)

We now have an equation for F, that is only in terms of (complex) functions of the Om(j) values.

Differentiating equation (2.7) once and twice with respect to z;, and setting z = 1, we obtain:

fi = XY G hen,  and (2.82)
0 m :
2) v ¥ 920m() . aGmU)
0 = 2+3 Y Zrba - Y ¥ (5F0) bt (2.80)
FO m ! =0 m
Let
. .

V) = A oD, W) = WD w9

5 = —Pm (2.10)
1-Pm

We obtain yr,(j) and yi2(j), for j > 0, by differentiating equation (2.4b) once and twice with
respect to z;, and then setting z equal to 1, to get:

Un@) = Sml[ ), wiG-1) + X wi@], j>0, and (2.11a)

k<m k>m

VAG) = 8ul Y, QG-+, w&go)h [Y wiG-D+ Y w12 j>0. @2.11b)

k<m k>m (1" ) k<m k>m

In a similar manner, from equation (2.5) we obtain, for j > 0:

90m(j)

3z =1 = sml > vk + Z\Vk(i+1) 1, and 2.122)
! k<m k>m
a m ] : . .
a°z om0y = sl 3y @i+ Ty @D ] + AL Y wii)+ 3 wiG+l) 1% 2.12b)

k<m k>m k<m k>m

Hence, from equations (2.8a) and (2.12a), interchanging the order of summations, we obtain

o= Y [ 2wl + X wGHD) 1. (2.13)
m j=0 k<m k>m
Observation 1: a) The term y(0) = Xka—zzk l,=1 =X, when k=1; it is equal to zero otherwise.
1
b) The term y(@(0) = 0 for all k. [ ]

Based on Observation 1a), we can rewrite equation (2.13) as



= Dsmy LW = s 2w = s oY v (214
m =0 k 0 k k j=0
Let
Xk = 2o vk(). (2.15)

To evaluate xi, we use Observation 1a) once more. From equation (2.11a), we obtain:

X _ }.1+512k¢1 Xk» m = 1,
" Om Zk;tm Xk otherwise.
We add 8, xp, to both sides of the above equation, and divide both sides of the resulting identity

by (14dy,). Next, we use the following facts: a) 8,,/(1+8m) = Pm, and b) 1/(1+8y) = (1-pm).

This results in the following expression for xp,:

(1-p)A, +p12k Xk m = 1,
Xn =
Pm Zk Xk» otherwise.
We now sum xp,, over all m, to get:
Yiexe= AR (2.16)
1-p
From equations (2.15) and (2.16), we thus obtain:
1—-
£, = s 2.17)
1-p

We can now obtain 2 using an approach similar to that used to obtain f;. From equations (2.8b),
(2.12a), and (2.12b), we obtain the following expression for f?):

= 243 Y (sl T vOH+ T v@G+D] + VarSm) [ T wic) + Y, v+ 1%).

=0 m k<m k>m k<m k>m
Let yx = Zj: . y@)j). Interchanging the order of summation wherever possible in the above

equation, and using Observation 1b) to note that y@(0) = 0 for all k, we get:

- . . 2
D = 24+ Y smd vk + 2 VarSm) 2, [ 2 wkl) + 2w+ 15 (2.18)
m k m =0 k<m k>m
Similar to the approach used to determine Ym x,, we obtain Ym yn, after some algebra, as
Amb® &
Zym = X Y w20, 2.19)
m m (1—P)P,%1 j=1 "



From equation (2.11a), for m=1,...,M-1,
[¥ v+ T wD* = [T W) + YamaG+) + D wiG+D) 12

k<m k>m k<m k>m+1
i +1
s VAN IS Von (1) (2.20)
8m+1 pm+1

For m=M, from equation (2.11a):

2')
(Y wi®? = A% j=0, and [Xw®® = “;——S— i>0. (2.21)
k<M kM 1

Hence, from equations (2.18) through (2.21), we obtain:

D2 fagY o v + 3 O $ oy 2 ) L Ve, 2.22)
1

m (1 m =1 m Pnm

We can rewrite equation (2.22) as

= f+s) bl v2G) + Zvar(sm-l) 2‘%210) + A2Var(Sy).  (223)

m (1" ) m J- m Pm J_

It is now convenient to define two terms, X,(j) and @ (n), as follows.

: Yn@) _ Am9¥m()
xm(]) = —)—;l—'— = )'1 821 y and (224&)
Pm(n) = Y, A Am(-0). (2.24b)
j=n+1

From equations (2.23) and (2.24), we get an expression for @ given below as Lemma 2.1.

Lemma 2.1:

@ = +x22<pm<0>(s

b2
Amb(2 Var(S;n-l) ) + A2 Var(Sm). "

m pm
From Lemma 2.1 and equation (2.17), we obtain the main result of this section, stated as:

Theorem 2.2: The mean waiting time at node 1 for the exhaustive service system is:

s 1-p, Om(0)  Amb@ 1p Mb®  1p
S + Var(Sp-1) + Var(Sy) ).(2.25)
219 %(1 popm( 2 Snp) * (2<1 ) 2s(1-py) )

W_




The expressions for the mean waiting times at the other nodes can be obtained in a similar
manner, simply by renumbering the indices. Thus, obtaining the mean waiting times reduces to
computing the term @ (0), since the other terms are just input data. In the following section, we
develop the two algorithms to compute @n,(0).

3. Computing ¢p(0) for the exhaustive service system

The two algorithms we present in this section differ in computing ¢,(0) as follows. The first
algorithm iteratively computes x2 (j), starting with j = 1 until the terms approach 0. In the second

algorithm, we only compute % 2(j) for j=1,...,M-1, and then solve a system of equations as
pute Xn J y

explained subsequently.

We first present a simple expression for recursively computing Xm(j). From equations (2.11a)

and (2.24a), after some elementary algebra, we obtain:
(1) = SM; Am(1) = (Xm+1(1)/pm+1)8m7 m=1,.... M-1, (3.12)
and forj> 1,

MG = CuG-1/pr = mG-D)8W; X = (U1 (Pt = XmG-1))8m, m=1,...M-1. (3.1b)

Algorithm 1:

0. Setj =1, and compute ¥m(j), m=1,...,M, using equation (3.1a). Initialize ¢y(0) = xr%l(j) form
=1,...,M. Choose a tolerance value €.

1. Setj=j+l.

2. Compute Yn(j), using equation (3.1b), and set ¢, (0) = ¢, (0) + X,%(i), m=1,...M. If xn() <
€ for all m, stop. Otherwise go to step 1.

3. Obtain the mean waiting time at node 1, using equation (2.25).

Algorithm 1 is executed for each node whose mean waiting time is desired. Since computation
of @,(0) only needs the terms p, and &y, = pr/(1-prm), We can compute the mean waiting time for,
say, node 2 simply by using a temporary variable, f,, to store permuted py, values. To compute
W), we just set P = Pm+1, m=1,...,M, and (re)compute new J, values using the Py, values.

For Algorithm 2, we need to define some additional terms, I'y,, m=1,...,M. Let

M

TM = II8n and Tm = Cma+ O k@ 1<m<M, where (32)
m k=m
. m_l .

kD = 3§, and k= 8, ZKO}I), m=1,. M (3.3)

j=i-1



Intuitively, K denotes the sum of all possible combinations of i unique Jy terms, such that 8,
is in every one of these combinations. The term I, denotes the sum of all possible combinations
of m unique &y terms, plus the sum of all possible combinations of m+1 unique Jy terms + ... +
the sum of all possible combinations of M unique 8y terms. (There is, of course, only one
combination of M unique & terms.) Note that all the ', terms, m=1,...,M, are strictly positive.
Lemma 3.1 shows that the sum of I'y,, m = 2,...,M is less than one. The proof of Lemma 3.1

easily follows by induction on M, and it is omitted here.

Lemma 3.1:
(1—2rn) H(l ~pm) = 1-p. n
n=2

The next lemma, Lemma 3.2, expresses Ym(j) in terms of Yy (j—n), for n>0. The proof of

Lemma 3.2 follows by induction on the number of nodes and is omitted. Although Lemma 3.2
requires the definition of an additional variable, 6(), we remark that this variable is needed only to

establish some initial conditions. It is not used subsequently. The variables 6() are defined

recursively as follows:

00 = 8,  andfori>1, 6O = x5, gi-n),

Lemma 3.2:

An@ = X AmG" Ther j2M, m=1,.M, with (3.4)
n=1
Xm() = iXm(]—n) Tan + 09 [T(148,), j<M, m=2,..M, (3.5a)
n=1 n=m+1
xG) = ixgm) g 290+l> (1+5n) j<M. (3.5b)
m=j+2 n-m+1
]

We now show how Lemma 3.2 enables us to obtain the mean waiting time at a node. To
clarify the technique that we subsequently develop for the general case, we first consider the
special case for M=3 nodes. It will be convenient to define:

B = D Am(Am(G-n). (3.6)
=M
Note that



M-1
Om(D) = Fn(m) + Y, Xm()Xm(-1). 3.7)
=

We remind the reader that we are interested in computing @, (0).
3.1. Algorithm 2: The special case of M=3 nodes

For this case, we have from Lemma 3.2,
Bu® = X220 = Y [[2%mG-D) + T3 xm(-2))°
=3 =3

<]

¥, (T2 22G-1) + I3 x2(-2) + 2C2l3xmG-Dxem(-2)]
=3

T3 %2(2)+T5 8a(0) + I (RAMD+XA ) + T3 Bm(0) + 202 33m(1Xin(2) + 2020 3im(1).

The term @, (1) is, in turn, obtained from another application of Lemma 3.2 as:

00

Bm(1) = 23xm<i>xm0—1> = Y [T2 XmG-1) + T3 Xm-2)] xmG-1)
= =3

= T2 22(2) + T2 $n(0) + Ta)xm(1)xXm(2) + T3 Frm(1)
This results in two equations in the two unknowns, $n(0) and §m(1). Solving for $y,(0), we get:

5.(0) - A2 (T3 + T3+ AT TH/(LTe) + (DTG + Un(DAn@T2DYATy)
" 1-T2- ['2- 2I'2T5/(1-Ty) S

To compute r(0), from equation (3.7) we add 2 (1)+x 2(2) to $n(0), and simplify the result to get

X2(2) + 12D TS + 2%m(1) xm(2) T2 T3/(1-T3)
1-T2-T2-2I3T5/(1-T) '

Om(0) = x2(1) + (3.8Db)
Note that for three nodes, I'; and I's are computed very simply as I's = 816,03, and I, =I'3 +
0102 + 8283 + 8381. Note, too, that we only compute I'; and '3 once, since these terms are

permutation-invariant. However, for each node for which mean waiting times are desired, we
must compute the Ym(1) and Xn,(2) terms, m=1,...M, after permuting the node indices as
mentioned earlier. We can directly substitute the expression for ¢n(0), obtained from equation

(3.8b), in equation (2.25) to obtain the mean waiting time.

10



3.2. Algorithm 2: The general case

For an arbitrary number of nodes, using a similar approach as in section 3.1, we can show that
¢m(0) is obtained by solving the following system of equations:

M-=2 M-i
Bm(0) = b(0) + Frn(0) 2 T242 Y @ Y, Tn Cai, (3.92)
n=2 i=1 n=2
M—k-1
Bn(K) = b + Y, Fm@laskn, M-22k>0. (3.9b)
n=1-k

In equation (3.9b), we adopt the convention that $y(—n) = Pp(n), n 2 0. In general, to obtain
the $,(0) values for a system with M nodes, we first need to evaluate I, from n=2 upto n=M.

The terms by, (k) in the above equations are data and are obtained as follows:

M-1 k
bm(0) = D, gZ(n), bu(k) = D, Am(M=1-k+n) g(0), k=1,.,M:2, (3.10)
n=1 n=1
where gm(n) is computed, recursively, from
M-1
gnm = Y, Xm(M-l-kn) T (3.11)
k=n

We remind the reader that in order to compute the mean waiting time at a node, the by (n) terms
have to be computed for each m. Computing the by, (n) terms from equations (3.10) and (3.11)
would require O(M?2) effort for each m, and hence it would require O(M3) operations to determine
all the coefficients.

However, as we now show, it is not necessary to evaluate all the bp(n) terms. This is based
on the fact that the I';, terms converge to 0 very rapidly. For example, suppose we make the
reasonable assumption that the value of I'; is maximized, for any n>2, when the &y, values are all
the same. Under this assumption, the largest possible for 8,, would result when p approaches 1
and, since all py, values are equal to p/M, 8, would approach 1/(M-1). Since I, is the sum of all
possible combinations of n unique &y terms plus the sum of all possible combinations of n+1
unique 8 terms + ... + the sum of all possible combinations of M unique Oy terms, this, in turn,

implies that the largest possible value for I';, would be zM (M)( )l We know that the sum

= -1
i=0 (M)(M— ) ( ‘M'ILT)M » and that limM—-)w(l + M—_T)M =e. This, in conjunction

with Lemma 3.1, leads us to the following observation:

11



Observation 2. The terms I', decrease at an exponential rate with increasing n. For n 2 2, the

magnitude of I'y, is on the order of % |

Based on the above observation, instead of solving the system of equations specified by (3.9),
we consider solving a reduced system of equations, ignoring terms involving I, for all k greater
than some n. We ran a number of experiments, with values of p ranging from 0.3 to 0.996, and
with the number of nodes ranging from 3 to 50. In all cases, the value of I's was found to be less
than 0.000015. Based on these results, we concluded that it was reasonable to consider solving a
reduced system of equations in which all terms involving I'n, n 2 8, were disregarded. Thus, we

set L = min(M,7), and content ourselves with solving the following system of equations:

L L-2 L-i :
Bm(0) = b(0) + Pn(0) X, T242 Y G D, Tn Tnvis (3.12a)
n=2 i=1 n=2
Lk-1
Pm(k) = bnk) + 2 @ m(M) s, L-2>2k>0, with (3.12b)
n=1-k

L-1 k
bn(®) = 3, g2@),  buk) = X xm(M-l-kn) gn(@), k=1,..L-2, and (3.13)
n=1 n=1
L-1
gn®) = Y, Xm(M—1-k+n) Tis. (3.14)
k=n
We will refer to Algorithm 2 with L = min(M,7), as Algorithm 2 at "level 7." Note that
Algorithm 2 at level 7 returns the exact numerical solution if the number of nodes is 7 (or less).

We can rewrite the system of equations given by (3.12) as Bx = b, where, for Algorithm 2 at level
7, X = (@m(0),...,8m(5)), and b = (by(0),...,bm(5)). The matrix B is presented in Figure 3.1.

n 0 1 2 3 4 5

0 1-3702 2F6 Mlun 235 alwa 230 Falnes 250 Talned 230 Talnes
1 T, 1-T; T T T T

2 T —(T24T%) 1-Ts T T 0

3 T4 _(T'3+Ts) —(T+Tg) 1-T; 0 0

4 Ts ~(T4+T) —(T3+T7) T, 1 0

5 T _(Ts+T) T, T T, 1

Figure 3.1. The Matrix, B, for the system of equations at level 7

12



Lemma 3.3. The solution to the system of equations specified by (3.12) through (3.14) will
result in a lower bound on the exact value of $,(0), when M > L.

Proof: The original system of equations (equations 3.9a and 3.9b) is in the form AGpm =bp,
where A is an M-1 x M-1 matrix consists of terms involving I'ys. It follows easily, from Lemma
3.1, that the matrix A is an M-matrix, i.e., a matrix that is diagonal-dominant, with it's off-
diagonal elements non-positive. It is well known (Fiedler and Ptak 1962) that the inverse of such a

matrix is positive. Let the inverse be denoted by A-1. We also know that the vector by, is
positive, and so we know that the true solution ¢ = A-1by, > 0.

Note that the matrix is an (M-1) x (M-1) square matrix and that it's row indices are 0,...,M~2.
Let us denote the true solution by the vector (;) where x denotes the first L-1 elements $,(0)

through §p,(L~2), and y denotes the elements $,(L-1) through §p,(M-2). Analgously, let G: 2)

denote the vector by, obtained from equation (3.10), where bl denotes elements bm(0) through
bm(L~2), and b2 denotes elements by, (L-2) throu gh by,(M-2). Denote by B, the square submatrix
consisting of the first L-1 columns and rows of A, and let C denote the matrix consisting of all the
remaining elements in the first L-1 rows of A. Thus, Bx + Cy = bl. Since matrix A is an M-
matrix, we know that the matrix C is nonpositive, and so we must have Bx = b! + (-Cy) > bl.
Since we know that B-1 is positive (because A-! is positive) the solution to x = B-Ib! represents
a lower bound on the true solution. Furthermore, equation (3.13) only computes a lower bound
(say, b,) on the true value of bl. Thus, the resulting x is a lower bound on the exact solution. W

For L = min(M,7), the expression for &,(0) can be obtained in a more explicit form as

follows. We first exploit the structure of matrix B, to express (i), i=2, ... ,5, only in terms
Pm(0) and P, (1) as follows:
Om() = umi+ Vi Pm(0) + w; Pu(1), i=2,...,5, (3.15)
where
+I50 bm(3) + umo(I'; + Tg)

Um,2= (bm(2) bm(3)

bm(4)r7)/Aa Un,3 =

1-I'7 1-I5
Um,4 =bm(4) + um2(C3+417) + up 30y, Um,5=bm(5) + um 2’4 +um 33 +up 412, (3.16a)
g+
vo = (3 + T——27 L T5Iy)/A, V3 _Tatvaly + T)
1-I"7 1-I77 .
vg4 =I5+ V2(F3+F7) + V3r2, vs=T¢+ vol'y + v3l3 + V4F2, (3.16b)
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I‘6+I‘2F7 I‘3+I‘5 + w2(F2+1"6)

wy = ([p+T4+(T34Ts) +I7(C4+T6))/A, wa =

1-T : 1-T
wy = 4+l + wo(I'3+77) + wal'p, ws = s+I7+wol s+ wsl's+wyelp, (3.16¢)
and
A = 1-Ts-T2+ r6£§if%ﬁ T3+ Ty). (3.17)

We now express $m(1) in terms of $,(0), (refer to the second row of Figure 3.1), and this gives:

Bm(l) = _C_n_lg_EQ’ where (3.18)
Cm = bm(1) + Tqum,2 + T'sum3 + Teuma + T7um s, (3.192)
a = Ip+Iyve+ F5V3 + r6V4 + [Myvs, and (3.19b)
a1 = 1-T3+T4wg +Tsw3 + Tgwy + I7ws). (3.19¢)

From equations (3.15) through (3.19c), we obtain the solution for §,(0) presented below,

after some simplification, as Lemma 3.4.

Lemma 3.4. For Algorithm 2 at level 7, ¢,(0) is obtained as

TyT
M1 bm(O)-Z(bm(l)Fz+bm(2)I'3—bm(3)14r7—-um‘zva_cm 3_?)
om0 = Y, x.2G) + I (3.20)
- 1 iruz I2+T? Lilr | 2p_a?
& A 2 a;

We can, of course, simplify the denominator of equation (3.20) somewhat further. We have
left it in the current form to indicate how the numerator and denominator are related. (If we replace
bm(n) by I'ny; for all the terms within the paranthesis in the numerator we obtain the terms within

the paranthesis in the denominator of the equation.)

If M < 7, then some of these terms are not computed. For example, if M = 4, then A =1, and
we only compute up i, v; and w; for i=2, and set the terms involving I's, I's and I'7 = 0, in
equation (3.20). Similarly, for M=3, up;, vi, and w; = 0 for all i, ¢ = by(1), a9 =172, a1 =1~
I3, and by(2) = 0 (note that k ranges only from 1 through M-2 in equation 3.10). Thus, for M=3:

bm(0) + 2bm(DIHI/(1-T3)
1-T?-T2-2r&/(1-Ty)

Pm(0) = (3.21)
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From equations (3.10) and (3.11), by(0) = g2(1) + g2(2) = (Xm(2)T2 + xm(1)T3)2 +
(tm(2)T3)2, and by(1) = %m(2) (Am(2)T2 + xm(1)[3). If we substitute these values in equation
(3.21), we obtain the same expression for $,(0) as in equation (3.8a).

Algorithm 2:

0. Initialization: Compute a) 8, m=1,...,M (equation 2.10); b) I[';, n = 2,...,L, (equation (3.3);
¢) A (equation 3.17); d) v; and w;, i =2, ..., L-2, (equations 3.16b and 3.16c); and €) ap and
a1 (equations 3.19b and 3.19¢). Evaluate the denominator of equation (3.20).

1. For every node, k, whose mean waiting time is desired, renumber the nodes so that node k is
node "1", node k+1 is node "2", ...., and execute steps 2 and 3.

2. For each m=1,...,M, do steps a) through d).
a) Compute ¥n(), j = 1,...,M-1, (equation 3.1).
b) Compute by(), j = 1,...,L-2, using (equation 3.13).
¢) Compute up,;, i=2,...,L-2, (equation 3.16a), and cy, (equation 3.19a).
d) Compute ¢n(0) (equation 3.20).
3. Obtain the mean waiting time using equation (2.25).

The computational complexity of Algorithm 2 is obtained as follows. Evaluating I'; requires
O(M?) operations, regardless of the level L. The rest of the computations in Step 0 requires O(1)
time. These computations are incurred regardless of the number of nodes being evaluated. Step 2
requires O(M?2) operations each time it is carried out. The major computational effort in this step
arises from steps 2a) and 2d). Hence, the overall computational effort is O(M?) for each node that
is evaluated for its mean waiting time.

In terms of storage requirements, the algorithm only needs one 2-dimensional array of size M—
1 x M-1 to store the ¥n(j) terms, and several one-dimensional arrays of size M or less.

Computational Remark: If M is large, then there can be significant savings in computation if
we make use of equations (3.15) and (3.18) as follows. From equation (3.1), we obtain

YEMAm20) = PrdidiM (xm(’)wmu 1>J2

m(0 (i1
o 58+ Sa0vaionn 235 ettt

Bm1(0)

52 B

(1)
Om

1]

pmi{ Fm(0)(1 +3 ) + 28y 2(M- 1)) (3.22)

15



The term @, (1) is obtained, from equation (3.18), as Pm(1) = (cm + 2Pm(0))/2;. Thus, once
we compute $m(0), we directly obtain $n+,(0) with just a few arithmetic operations, from
equations (3.18) and (3.22). We can carry this approach further as follows. The term §p1(1) is
obtained, similar to equation (3.22), as

m m(2
Prna(1) = pm2+1[¢m(l)(1+'8'12—)+w‘@‘£")‘

+ XmM=D) [ Xm(M-1)/8n + xm(M—Z)]] (3.23)
m Om

We compute $,(2) from equation (3.15), and use it in equation (3.23) to evaluate $p4,(1).
Having computed $p4,(0) and P41(1) , we obtain §42(0) using equation (3.22) once again. It
is, of course, possible to carry this idea further. Thus, we can compute §p43(0) if we know
Pm+2(0) and P4,(1). Note that, in order to compute Fp4,(1), we must compute Py41(2), and so
on. The savings in computation become insignificant after some time. In our implementation of
Algorithm 2, we compute $n,(0), for m = 1, 4, 7, ..., from equation (3.20), and then compute
Pm(0) form=2,3,5,6,8,9, ... using the above approach. We can show that this approach still

results in a lower bound on the exact mean waiting times. |

The next section on computational experience demonstrates the accuracy of Algorithm 2 at level
7. We remind the reader that Algorithm 2 at level 7 obtains the exact mean waiting times if M<7.

4. Computational Experience

We conducted a number of experiments with randomly generated networks, to test the
performance of the two algorithms. We were interested in determining a) the execution times for
Algorithm 1, and b) the execution times and accuracy of Algorithm 2. We varied the number of
nodes from 3 to 50, and the server utilization, p, from 0.30 to 0.996. We report on some
experimental results in this section, which appear to best represent the performance of these
algorithms. The code was implemented in Pascal and the experiments were conducted on an IBM
9021-720 running the MTS operating system.

The iterative algorithm was terminated as soon as the largest Xm(j) value obtained during an
iteration dropped below 0.0001. Based on extensive comparisons with exact results, we found
that this termination criterion gave accurate results. (The results were accurate upto 4 decimal
places, and resulted in a percentage error of less than 0.0001%.) We observed that Algorithm 1
typically ran very quickly when the value of p was less than 0.90. We also observed that
Algorithm 2 was uniformly extremely accurate and obtained mean waiting times very quickly. We
ran Algorithm 2 at level 6 for p < 0.90, and this always gave the exact results (accurate upto 6
decimal places). For p =0.99, we ran Algorithm 2 at level 7, and the mean waiting times obtained
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from Algorithm 2, when compared to the corresponding exact mean waiting times, had a maximum
percentage deviation of less than 0.0025% for all the experiments we conducted. At this point, we
must emphasize that if even greater accuracy is required, then we only have to set L = min(M,3),
and solve the "level 8" algorithm (this will involve the following additional computations: a one-
time computation of the terms vg and wg, and subsequent computations of by, (6) and up ).

In Table 1, we report on the maximum number of iterations and the running time of Algorithm
1, and the accuracy and running times for Algorithm 2. The results are reported for the following
values of p: 0.30, 0.50, 0.75, 0.90, and 0.99, for M = 12, 24, 48 and 96 nodes. For each
example considered, the algorithms were executed to obtain the mean waiting time for: a) 25% of
the nodes, b) 50% of the nodes, ¢) 75% of the nodes, and d) 100% of the nodes. As expected, the
execution time for Algorithm 1 increased in a linear manner with the number of nodes that were
evaluated for mean waiting times. The execution time for Algorithm 2 was measured as the sum of
two components: the time taken to complete the initialization phase, and the time taken for the
second phase, namely to compute the mean waiting times. As expected, the initialization time, for
a given p and M, was the same regardless of the number of nodes evaluated while the execution
time for the second phase grew in a linear manner with the number of nodes evaluated (subject to
insignificant variations in CPU times). Table 1 reports the execution times for these two phases.

Table 1 indicates the growth of the execution times for the two algorithms grow with increasing
values for p and M. Interestingly enough, Algorithm 1 uniformly appears to take roughly the same
number of iterations for a given p, regardless of the number of nodes. In general, Algorithm 1
performs very well, so long as p is about 0.75 or less. For higher values of p, the performance of
Algorithm 1 steadily degrades. Since it consistently takes about 28 to 35 iterations for p = 0.90,
and since each iteration requires O(M) operations, this suggests that if p < 0.90 and M is larger
than around 40, Algorithm 1 would require less than O(M2) operations to compute ¢n(0),
m=1,...,M, and, therefore, require less than O(M2) operations to find the mean waiting time at a
node. This also suggests that if Algorithm 1 is used to compute all the mean waiting times, it
would probably outperform an O(M3) algorithm that computes all the mean waiting times, for large
values of M (say, for M > 40), and p < 0.90.

Algorithm 2, of course, does not depend on the value of p, but on the other hand, it requires
more time for increasing values of M. As far as the accuracy of Algorithm 2 is concerned, it never

gave an error greater than 0.0022%. We emphasize that this is a percentage difference, namely
that the relative error is multiplied by 100. We ran Algorithm at level 6 for p < 0.99, and it gave

the exact values for the mean waiting times (correct to 4 decimal places) every time. (This explains
the marginal increase in the execution time observed for p = 0.99.) As expected, from Table 1,
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the observed growth in CPU time required by Algorithm 2 is of O(M3)to compute the mean
waiting times at all nodes , and of O(M2) to compute the mean waiting time at a single node.

Table 1. Performance of Algorithms 1 and 2.

Algorithm 1 " __Algorithm 2
M p Max. # |Tot.cpu |cpu time/ )I Max. Tot. cpu Initializn. | cpu time/
iterations | time (ms) | node (ms)| error (%) | time(ms)! | time(ms)? node(ms)
0.30 5 10.04] 0.84 || 0.0000 15.62 2.55 1.09
0.50 7 11.68] 0.97 || 0.0000 15.67 2.61 1.09
12 ]0.75 14 17.60 1.47 | 0.0000 15.64 2.54 1.09
0.90 35 35.71 298 || 0.0000 15.54 2.64 1.08
0.99 | 368 316.55] 41.66 || 0.0005 16.43 2.60 1.15
0.30 5 48.51 2.02 0.0000 95.53 10.17 3.56
0.50 7 55.54 2.31 0.0000 95.20 ) 10.33 3.54
24 10.75 13 76.00] 3.17 || 0.0000 9479 | 10.14 3.53
0.90 34 146.87 6.12 || 0.0000 95.48 | 10.28 3.55
0.99 | 356 1,242.421 51.77 || 0.0022 99.76 | 10.37 3.72
0.30 4 275.48 5.74 || 0.0000 675941 60.71 12.82
0.50 6 305.16] 6.36 | 0.0000 675.41 1 60.74 | 12.81
48 10.75 13 392.82 8.18 | 0.0000 673.31 | 60.62 12.76
0.90 31 649.13] 13.52 || 0.0000 676.33 | 60.74 | 12.82
0.99 | 331 4,738.711 98.72 || 0.0018 691.15 ] 61.28 13.12
0.30 4 1,894.481 19.73 || 0.0000 |5,081.83 ] 437.11 | 48.38
0.50 6 2,002.55] 20.86 || 0.0000 ]5,106.79 | 438.07 | 48.63
9% ]0.75 11 2,293.96| 23.90 || 0.0000 }5,080.99 | 44098 | 48.33
0.90 28 3,235.45| 33.70 || 0.0000 |5,127.91] 439.43 | 48.84
0.99 | 302 18,212.95] 189.72 || 0.0000 |5,158.67 | 440.15 | 49.15

We present some examples to give the reader some feel for actual numerical values. These

examples also serve to illustrate the accuracy of Algorithm 2 at level 7, since all of them have very
large p values. In one example with 12 nodes, we set p = 0.996. The percentage error for the

largest deviation found in this example, was equal to 0.0016%.

1 Algorithm 2 was always run at level 6 for p < 0.99.
2 Initialization Time is incurred regardless of the number of nodes evaluated for their mean waiting times.
3 Excluding the initialization time
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Example 1. The number of nodes = 5, with arrival rates 0.2, 0.8, 0.4, 0.2, and 0.1. The mean
service times are 0.5, 0.5, 0.4, 1.0 and 1.2, and the second moments of the service times are 0.5,
0.5, 0.3, 2.0, and 2.9. The mean switchover times are 0.5, 0.5, 0.4, 1.0, and 1.2. The variances
of the switchover times are equal to their means. For this problem, p = 0.98.

The mean waiting times are W1 = 121.0880, W, = 80.7446, W3 = 113.3191, W4 = 107.7545,
Ws = 118.3033.

Example 2. The number of nodes = 7, with arrival rates 0.2, 0.6, 0.4, 0.2, 0.1, 0.1, and 0.1.
The service times have means 0.5, 0.5, 0.4, 1.0, 0.6, 0.6, and 1.1, and second moments 0.3,
0.3,0.2, 1.5, 0.8, 0.8, and 1.8. The mean switchover times are 0.5, 0.5, 0.8, 1.0, 0.6, 0.6, and
1.1. The variances of the switchover times are equal to their means. For this problem, p = 0.99.

The mean waiting times are Wy = 283.0562, W, = 220.2503, W3 = 264.4854, W4 = 251.7250,
W5 =295.7516, Wg = 295.7251, W7 = 279.8502.

Example 3. The number of nodes = 10, with arrival rate equal to 0.75 at node 1, and 0.2 at all
the other nodes. The mean service times are by = 0.50, by = ... = bs = 0.40, bg = by = bg = 0.3,
and bg = bjg = 0.2. The second moments of the service times are as follows: 0.5 at node 1, 0.3 at
nodes 2 through 5, 0.2 at nodes 6 through 8, and 0.05 at nodes 9 and 10. The mean switchover
times are 0.5 at node 1, 0.2 at nodes 2 through 5, 0.3 at nodes 6 through 8, and 0.5 at nodes 9 and
10. The variances of the switchover times are 0.25 at node 1, 0.15 at nodes 2 through 5, 0.20 at
nodes 6 through 8, and 0.25 at nodes 9 and 10. The value of p = 0.955.

The mean waiting times obtained by Algorithm 2 matched the exact mean waiting times (correct to
4 decimal places). The mean waiting times are W = 28.8749, W, = 42.5150, W3 = 42.5305, W4
= 42.5481, W5 = 42.5684, W¢ = 43.5228, W7 = 43.5544, Wg = 43.5905, Wy = 44.5781, and
Wio = 44.6425.

Example 4. The number of nodes = 12, with A; = 0.01 i, i = 1,...,12. The mean (second
moment) of the service time is equal to 1.60 (2.00) at odd-numbered nodes. The mean (second
moment) of the service time is equal to 1.00 (1.50) at even-numbered nodes. The switchover

times have identical means and identical variances at all nodes, and they are, respectively, 0.50 and
0.25. The p value for this example is 0.996.

(Algorithm 1 required over 1200 iterations to converge to the exact values.) Comparing the exact
mean waiting times with the mean waiting times obtained by Algorithm 2, the largest deviation
from the exact mean waiting time occurred at node 1. At node 1, the exact mean waiting time is
924.8319. The corresponding mean waiting time obtained by Algorithm 2 was 924.8174. This
resulted in an absolute deviation of 0.0145, and a percentage deviation of 0.0016%.
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Example S. The number of nodes = 24. A; = 0.4 for nodes 1 and 13, A; = 0.20 for nodes 2 and
14. For all other nodes, A; = 0.01. The mean (second moment) of the service time is equal to
0.80 (2.00) at odd-numbered nodes, and equals 0.50 (1.50) at even-numbered nodes. The mean

switchover times are all equal to 0.50, and the variances of the switchover times are all equal to
0.25. The value of p =0.97.

The mean waiting times are 173.8729 at nodes 1 and 13, and 230.1439 at nodes 2 and 14. The
mean waiting times at nodes 3 through 12 range from 253.6835 to 254.5273. The mean waiting
times at nodes i and i+14 are identical (upto 4 decimal places) for i=1,...,10. The mean waiting
times obtained by Algorithm 2 matched the exact mean waiting times upto 4 decimal places.

Example 6. The number of nodes = 48. A; = 1.50 for nodes 1 and 2, 1.00 for nodes 3 and 4,
0.50 for nodes 5 through 10, 0.45 for nodes 11 through 22, 0.30 for nodes 23 through 34, and
0.20 for all other nodes. The mean (second moment) of the service time is 0.05 (0.05) at all

nodes. The mean and variance of the switchover times are equal to 0.10 and 0.08, respectively, at
all nodes. The value of p = 0.99.

The exact mean waiting times at nodes 1 through 4 were W = 269.6124, W, = 269.6075, W
= 276.8928, and W4 = 276.8912. At nodes 5 through 10, W; ranged from 284.1779 to
284.1786. Atnodes 11 through 22, W; ranged from 284.9075 to 284.9103. At nodes 23 through
34, W; ranged from 287.0966 to 287.1007. At nodes 35 through 48, the mean waiting times
ranged from 288.5583 to 288.5627. The mean waiting times obtained by Algorithm 2 were
compared with the exact mean waiting times. The largest absolute deviation from the exact mean
waiting time occurred at node 34. The exact mean waiting time at node 34 was 287.1007, while
the mean waiting time obtained by Algorithm 2 was 287.0962, resulting in an absolute error of
0.0045, and a percentage deviation of about 0.0016%.

In all these examples, the mean waiting times for nodes with identical characteristics are very
nearly equal. This indicates that for systems where many nodes have similar characteristics (as is
usually the case for large systems), it may be more appropriate, at least during the design stage of
the network when many alternate configurations may need to be considered, to evaluate mean
waiting times only for some select few nodes. For instance, in example 7, it may be adequate to
evaluate the mean waiting times at nodes 1, 3, 5, 23, and 35. It is especially in such situations that
the IS technique has a distinct advantage over other techniques where all nodes have to be
evaluated simultaneously.
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4.1. Comparison with the algorithm of Sarkar and Zangwill

We compared the execution times for Algorithms 1 and 2 with the execution time for Sarkar
and Zangwill's algorithm (the S&Z algorithm). Before we present the results, we make the
disclaimer that while we tried to implement the S&Z algorithm as efficiently as possible, there is
always a possibility that one could improve its implementation even further. The same disclaimer
holds for the implementations of Algorithms 1 and 2. (Note that if Algorithm 2 is used to compute
the mean waiting times at all nodes, it is an O(M3) algorithm, as is the S&Z algorithm.) We ran the
S&Z algorithm using the same data that was used to generate Table 1. The algorithm was run on
the same IBM 9021-720. The S&Z algorithm was coded in Fortran, which made it easier to call
LINPACK (a library of subroutines for solving linear systems of equations, written in Fortran).

The execution times for the three algorithms are presented graphically in Figures 4.1 through
4.4, for M = 12, 24, 48, and 96, respectively. These figures show the increase in execution times
of the Algorithms 1 and 2, with the number of nodes that are evaluated for their mean waiting
times. Since the execution time of Algorithm 1 increases with p, for each M, we present the
execution times of Algorithm 1 for p = 0.50, 0.75 and 0.90. We do not present the execution time
of Algorithm 1 at p = 0.99, since it is relatively very large. Unlike Algorithm 1, Algorithm 2 and
the S&Z algorithm do not depend on p. Therefore we do not present the execution times of
Algorithm 2 and the S&Z algorithm for different p values; the execution times presented are the
averages of the execution times for the different p values.

Based on these figures, Algorithm 2 would be preferred over the S&Z algorithm if mean
waiting times are desired at less than about 60% of the nodes. Algorithm 2 takes about 60% more
time than the S&Z algorithm, to evaluate all the mean waiting times, using a single computer.
However, it is noted that Algorithm 2, following the initialization phase, computes the mean
waiting times for individual nodes independently. Therefore, using Algorithm 2, one could obtain
mean waiting times at all nodes faster than the S&Z algorithm if another process was spawned on a
similar computer, once the initialization phase ends. The two processes could work in parallel,
each computing mean waiting times at, say, half the nodes, reducing the execution time for the
second phase of Algorithm 2 by half. The developments in distributed computing makes such an
approach very feasible.

The performance of Algorithm 1 steadily improves (for p < 0.90) as the number of nodes

increase, relative to the performance of the other two algorithms. For M = 96 nodes, Algorithm 1
computes all the mean waiting times faster than the S&Z algorithm even at p = 0.90. This agrees

with an earlier observation we made about the relative efficiency of Algorithm 1 as compared to an
O(M3) algorithm for large M and p less than 0.90.
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Figure 4.1: Execution times for M = 12 nodes
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Figure 4.2: Execution times for M = 24 nodes
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Figure 4.4: Execution times for M = 96 nodes
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S. The Gated Service Polling System

The analysis for the gated service polling system is very similar to the analysis for the
exhaustive service polling system. As before, we obtain the mean waiting times at the nodes, after

computing the first and second factorial moments of the number of customers present at the node
when the server polls it. The mean waiting time is given in terms of fr, and f2) as (Takagi 1986):

f( 1+pm
fm A )

As before, we first obtain f; and f2). To compute these terms, we require a redefinition of the

S

Wn = (5.1)

N

recursive funtion  as follows:
Ym(0)
Tm()

Zm, m=1,...M, (5.2a)

B Y [ - MwG-DI + Y - Mw@]), j>0, m=1,...M.  (5.2b)

k<m k>m

The term o (j) is still defined by equation (2.5), with the redefined ¥y, terms. Proceeding exactly

as before, we obtain:

Fi(11(0),....m(0) = I1 (H om(j>) (5.3)
=0 \m
Equations (2.8), (2.9), and (2.12) still hold. Equation (2.11), however, is modified as follows:
V) = pm[ X WiG-1 + 3, wi@], >0, and (5.42)
k<m k>m
YOG = pul Y VOG-D+Y, yRO] + @ [ Y wi-1) + X wie@I% j>0.  (5.4b)
k<m k>m k<m k>m

Following a similar analysis as used to obtain f; for the exhaustive service case, we get

f ll (5.5)
1-p
The term f3) is given by the same expression as for the exhaustive service case:
. . 2
(@ = 2 Sm 2 yi + 2 Varsm Y [ S + 3 wiied 7, (5.6)
=0 k<m k>m
where
kmb< ) =
2 ¥m = 2 - Z v.2G). (5.7)
m m — m j-— '
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However, unlike the exhaustive service case, where [ szm yi() + me Yi(+1) ]2

depended on node m+1 (refer to equation 2.20), for the gated service case we observe, from
equation (5.4a), that this term simply evaluates to Y, (j+1). Hence, equation (5.6) is rewritten as:

Amb@® &, Var(Sp) ~ . ..
@ = 245y 0 Y26 4 Y V) 3400 (58
m (l_p)pm j=1 m pm j=1
Define, as before, the terms Y (j), @m(n), and P, (n) as
. Ym()) A OYm(3)
= T = T (5.9)
Xm() A A 0z,
o = X An@nG-0)  ad Ful®) = Y Am(XmlG-1). (5.10)
j=n+1 =M
The expression for f? for the gated service polling system is given below as Lemma 5.1.
Lemma 5.1:
s Amb®  var(Sp)
@ = 2+22Y on0) (1- o ), n
m P Pm Pm
From Lemma 5.1, and equations (5.1) and (5.5), we obtain:
Theorem 5.2: The mean waiting time at node 1 for the gated service polling system is:
1+ 0) Amb@ 1-
W= 5B gy, B (L R yis,y). (5.11)
l_p m pm
[ |
5.1. Computing ¢n,(0) for the gated service system
As before, we present two algorithms for computing ¢, (0). Let
Om = Pm/(1+pm). (5.12)

Similar to the exhaustive service case, the Yy (j) terms are computed using the following

expression, which is obtained from equations (5.4a) and (5.9):
ML) = pus; %m(1) = Amer(D/8ms1)Pm, m=1,... M-1, (5.13a)
and for j > 1,

M) = (Xl(j"l)/al - Xl(j—z))PM§ Xm() = (Xmﬂ(j)/smﬂ - Xm+1(i-1))Pm, m=1,...,M-1.(5.13b)
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The iterative algorithm to compute @, (0) is identical to the one we developed for the exhaustive
service case, and so we do not repeat it here. The algorithm which computes @,,(0) by solving a

system of equations is also very similar to the corresponding one for the exhaustive service case.
Some differences, however, exist, which we clarify here. Define the terms k) and Q, as:

kD = pp, m=1,..M; k)= ppy 2 K("l) (5.14)
_1-.
M .
M = IPm and Qn = Qua+ 2 x® 1<m<M. (519
m k=m

Intuitively, Qy, for example, denotes the sum of all possible combinations of unique py, terms
taken singly (i.e., p1+...+pm) + the sum of all possible combinations of 2 unique py, terms + ... +
the sum of all possible combinations of M unique pp, terms The terms, I, are defined as:

L = Q, ad T, = (D 2( 2) O n=2..M. (.16
m=n
Defining the terms 0,(j) as follows:

Om(D) = pm,  OMG) =0, j>1, (5.17a)
Om() = pm(emﬂ(j)/smﬂ = 9m+1(i—1)), m>1, j=1,. ,M-1, (5.17b)
0.G) = !I\I{I_zem, j=1,...M-1, (5.17¢)

we can obtain an expression for Yn,(j) in terms of ¥ m(j—n) stated below as Lemma 5.3. The proof

of Lemma 5.3 is by induction on M, and is omitted.

Lemma 5.3
M
L@ = D, AmG-n) T, izM, (5.18)
n=1
with
Xm() = iXmG‘n) In + 0n(), jsM-1 (5.19)
n=1

Note that the I, terms in equation (5.18) for the gated service polling system range from n=1,

through M, as opposed to the corresponding equation (3.4) for the exhaustive service polling
system, where the I, terms range from 2 through M. Based on equation (5.18), we can derive the

following system of equations for obtaining ¢, (0):
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M M-1 M-
Bu0) = bn(0) + P(0) D, T242 Y, ¢ D, T T, (5.202)
n=1 i=1 n=1
' M-k
Bn) = bn(®) + Y, Fm@Tnx, M-12k>0, (5.20b)
' n=1-k
M k
bm(0) = Y, g2(n), bu(®) = ), Am(M-1-k+n) gn(m), k=1,..M-1, (5.21)
n=1 n=1
where gn(n) is computed, recursively, from
M
gn(m) = D, Am(M-1-k+n) T, (5.22)
k=n

As before, in equation (5.20b) we use the convention that $p(-k) = P (k).

This system of equations is, once again, of the form A@p = by, and can be solved for the

mean waiting times. For the gated service polling system with M nodes, we have M equations in
M unknowns, namely, the §n(k)s, k=0,...,M-1. As before, the terms I', decrease at an
exponential rate with n. However, we were unable to prove that by ignoring terms involving I,

say, for n 27, we would obtain a lower bound on the mean waiting time.

For the gated service polling system, we observe that if we only consider terms upto I,
ignoring terms involving I'y, for n 2 7 (the resulting solution is termed the solution to Algorithm 2
at "level 6"), excellent results are obtained if we also disregard all Q; terms for n 27, in computing
the I'"'s. Lemma 5.4 presents the level 6 system of equations. It may be observed that they are
strikingly similar to the level 7 equations for the exhaustive service polling system. Also, note that
Algorithm 2 executed at level 6 returns the exact numerical results for a system with upto 6 nodes.

Lemma 5.4. For Algorithm 2 at level 6, ¢n,(0) is obtained as

3T
M Bn(©)=2(bn(D + bn(@)Ts - ba(3) * L umavah - oy
om0 = Y, x,2G) + —4 . (5.23)
1- ¥T2+2|I2+T2- - v3A- -
n=1 1-Ts a1

where

Cm = bp(l) +3up 2+ Tquns3 + Fsupg + Deupm,s, (5.24a)
ag = I’y +T3vy+T4vy+ vy + Tgvs, (5.24b)
a1 = 1-@y+ 3wy +Taws +swy +Tgws), and (5.24¢)
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\ s+ T
A = 1-r4-(r1+r5>————51 rl § T +Te). (5.24d)
—16

The terms u;, vj, and w;, fori= 2,...,5 are given below:

[s+I4I0 bm(3) + up 2T + T
1z = (b + b L b @T/A, gy =onDt ima Tt D)
1—1‘6 1-Tg
U4 = bn(4) + um2(T2+T6) + um3l', Um,5=bm(5) + um,2I'3 + U 302 + umal'1. (5.25)
v= (I + Fsm + T4l6)/A, v3 = Lyt vala+Ts)
1-T's 1-Tg
vq = T4 + vo(T'+T6) + v3ly, vs =I5+ vol'3 + valp + val'1. (5.26)
s+ [+ + wo (T 4T
Wy = (CHTHT TS TIE | rymyeTo)a,  ws =2 at Wa1tls)
1-Tg 1-T's
wy = 345 + wy([p+1g) + wal'y, ws =4+ + wal's + wal'y + wal'1. (5.27)

5.2. Computational Experience

Both Algorithm 1 (the iterative algorithm) and Algorithm 2 performed strikingly similar to the
corresponding algorithms for the exhaustive service case. We do not report on their performance
here. To get some feel for numerical values, we revisit some of the examples given in section 4,
and present the results obtained. We present the results for Examples 3 through 6 of section 4.
These are the examples with a relatively large number of nodes, and high utilizations. For the
gated service system, we can again make use of the "Computational Remark" in section 3. For all
cases reported, we ran Algorithm 2 at level 6.

Example 3 revisited. Both algorithms obtained the following mean waiting times: W; =
58.9669, W, = 46.2956, W3 = 46.2918, W, = 46.2874, Ws = 46.2822, Ws = 45.4192, W1 =
45.4182, Wg = 45.4171, Wy = 44.5587, W1 = 44.5788.

Example 4 revisited. The mean waiting times ranged from 916.6964 at node 1 to 1061.0240
at node 11. Algorithm 2 obtained the exact mean waiting times (correct to 4 decimal places). In

fact, it obtained the exact mean waiting times even at level 3.

Example 5 revisited. The mean waiting times ranged from 235.8342 at node 24 to 309.7431
atnode 1. Algorithm 2 obtained the exact mean waiting times (correct to 4 decimal places).

Example 6 revisited. The mean waiting times ranged from 291.2991 at node 48, to 310.0504
at node 2. Algorithm 2 obtained the exact mean waiting times (correct to 4 decimal places) in
861.59 milliseconds.
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6. Polling systems with a mix of gated and exhaustive service disciplines

In this section, we present the iterative algorithm for a polling system in which some of the
nodes may be serviced according to the exhaustive service discipline, while other nodes may be
served using the gated service discipline. The development of an algorithm similar to Algorithm 2,
for this case, is left as a topic for possible future research.

The analysis, again, proceeds in a manner similar to the analysis for either the pure exhaustive
service polling system, or for the pure gated service polling system. Let G denote the set of nodes
using the gated service discipline, and E denote the set of nodes using the exhaustive service
discipline. As before, we obtain the mean waiting times at the nodes, after computing the first and

second factorial moments of the number of customers present at the node when the server polls it.
The mean waiting time at a node, m, is given in terms of the f,,, and f2 as:

£2) ) Amb(2)
m  An mlm ~Pm ‘

To compute f) and f@), we redefine the recursive funtion y as follows:

lYm(O) = Ip, M= 1$-~-,M, (6.23)

Ym()) = |3m( z [lk—lk’Yk(]'—l)] + z [)‘k_)‘k'YkG)])v _] > O, me G, (62b)
k<m k>m

Yol = M Y, a-MenG-1)] + Y dew@®]),  j>0, meE. (6.2¢)
k<m k>m

The term 6,(j) is still defined by equation (2.5), with the Ym terms as defined above.
Proceeding exactly as before, we obtain:

o

Fi(11(0),...,ym(0)) = II (H omo')) (6.3)

O \m

Using the same definitions as before, equations (2.8), (2.9), and (2.12) still hold. Equation
(2.11) is modified as follows. Forj> 0,

Va®) = pm [ wiG-1) + Y wi@)l, m e G, (6.42)
k<m k>m

Vod) = Bn[ X wiG-1 + Y, wi@], m € E, (6.4b)
k<m k>m

YA =pm[ X v PG-D+ Y, w RG] +And® [ ¥, wicG-1) + Yw(: me G,  (6.40)

k<m k>m k<m k>m
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{Z VG- + > wi®]% meE, (6.4d)

(1‘ m)3 k<m k>m

VA =8u[ Y, w@G-1)+ Y, w@G§)] +
k<m k>m

Following a similar analysis as used to obtain fy for either the pure exhaustive service case, or
the pure gated service case, we get

fi = 7\,1—5-—, ifnodele G, and f; = klsm, ifnode 1 € E, (6.5)
1-p 1-p
The term f3) has an identical expression as the one for either the pure exhaustive or the pure gated
case:
D=8+ sn X v+ X Vatw) Y [T v+ Y v+ (6.6)
m k m =0 k<m k>m
where
2 ©o
2¥m = 2 “‘2 > v.20. 6.7)
m m " Pm J=1

Unlike either the pure exhaustive service case, or the pure gated service case, we must now
take care when substituting for the term [szm vi() + Zk>m \Vk(i+1)]2- For the pure gated
service case, we used equation (5.4a) to write this term as wm(j+1)/pm, and we can still do that

here. For the pure exhaustive service case, we used equations (2.20) and (2.21) to set this term
equal to Wm+10+1)/pm +p for j > 0. However, this assumes that node m+1 also uses the

exhaustive service discipline, which may no longer be true for the system we are conSIdermg
Nevertheless, we can still simplify this term for m e E,as [ 2k<m V() + 2k>m \yk(1+1)]

[Win() + Wim(j+1)/8,,], where Om = pm/(1-pm). Therefore, if we let

- Ym(j) 6.8

Xm(J) ;\'1 9 ( . )

on® = X %20, ad  EO0) = Y [tul) GO (69)
j=1 i=0

from equations (6.6) and (6.7) we obtain Lemma 6.1:

Lemma 6.1:

@
0 = +7Lzsz (1 ppz O+ X 000 4 1 T VarSm a0,

meG Pm meE

From Lemma 6.1 and equations (6.1) and (6.5), we obtain:
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Theorem 6.2: The mean waiting time at node 1 for the polling system with the mixed service

discipline is:
1+ Pm(0) ?»m Amb® 1- Var(Sm)Pm(0
1- m Pp meG Pm meE
if nodele G, (6.10a)
b(z) -
=31 +2 Om(0) kmz 1-p YarCn)on®) ,  $ var(§,)Em(0)
1-p (1- Pl)Pm 28(1-p1) | meG Pm meE
Mb(%)
+ s if nodel € E, (6.10b)
2(1-py)

|
6.1 Computational Experience:

We report on some of the numerical results for the mixed service discipline system. We use
the data presented in examples 2 through 4, from section 3.

Example 1 revisited. The same data applies as before except that nodes 1, 3, and 4 use the
gated service discipline, while nodes 2 and 5 use the exhaustive service discipline. The mean
waiting times are Wy = 139.5932, W, = 76.1434, W3 = 147.2045, W4 = 152.6066, W5 =
111.6857.

Example 2 revisited. Nodes 1, 3, and 6 use the gated service discipline, while the other nodes
use the exhaustive service discipline. The mean waiting times are W; = 340.1163, W, =
216.5708, W3 = 358.8866, W4 = 247.5317, W5 = 290.8190, Wg = 327.9425, W7 = 275.1886.

Example 3 revisited. Nodes 1, 2, 3, 6, and 9 use the gated service discipline, while the other
nodes use the exhaustive service discipline. The mean waiting times are W1 = 59.3568, W =
46.6172, W3 = 46.6183, W4 = 39.7035, W5 = 39.6888, W¢ = 45.7251, W7 = 40.5487, Wg =
40.5423, Wy = 44.8510, W1 = 41.4468.

7. Summary and Conclusions

We have presented a powerful technique, which we term the Individual Station (IS) technique
for obtaining the mean waiting time at one or more nodes in a continuous-time polling system
which uses either the pure exhaustive service discipline, the pure gated service discipline, or a
system with a mix of both disciplines. The primary advantage of the IS technique is that one can
now obtain the mean waiting time for a select subset of the nodes in the polling system. The
techniques developed in the past require the simultaneous computation of the mean waiting times at
all nodes. We developed two efficient algorithms, one based on an iterative approach (Algorithm
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1), and the other based on solving a small system of equations of size 6 or less (Algorithm 2), to
obtain the mean waiting times. Algorithm 2 requires O(M2) operations to find the mean waiting
time at a node. In this paper, Algorithm 2 was developed only for the pure exhaustive, and the
pure gated service systems.

We presented a number of compuational results for the pure exhaustive service polling system,
the pure gated service polling system, and the mixed service polling system. The computational
results suggest that the iterative algorithm requires roughly the same number of iterations for a
given value of p, for any number of nodes. This also appears to suggest that the iterative
algorithm would probably perform better than an O(M3) algorithm in computing the mean waiting
times at all nodes, so long as p is less than 0.90.

Algorithm 2 does not depend on the value of p for its execution time. This algorithm is exact
for the exhaustive service (gated service) system with 7 (6) nodes. However, it performs
remarkably accurately in computing the mean waiting times. We experimented with p values very
close to 1, and found that the maximum percentage error from the exact mean waiting time was less
than 0.0025%. (For all practical purposes, this would characterize the algorithm as an exact
algorithm.) These errors could be reduced even further, if needed, with little increase in
computational effort, simply by executing the algorithm at a higher level (i.e., for the exhaustive
service system, this would involve solving a system of 7 equations, instead of a system of six
equations).

The IS technique would be especially useful when evaluating several alternative system
configurations in the preliminary design stages of, say, a computer network, where the analyst is
usually interested in obtaining very accurate measures of performance only for a select few nodes
in the network.

There are a number of topics which remain to be explored, on applications of the IS technique.
It would be of interest to consider applying the IS technique to other polling systems such as, for
example, the nondeterministic polling system (Srinivasan 1991a, Boxma and Weststrate 1989).
We have recently developed an iterative algorithm (Srinivasan 1991b) to determine waiting time
variances for the polling systems considered in this paper.!

1 The author thanks K.G. Murty and R. Saigal for their helpful comments.
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