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Abstract

Integrating Parsing and Word Alignment in Syntax-Based Machine

Translation

by

Victoria L. Fossum

Chair: Steven P. Abney

Training a state-of-the-art syntax-based statistical machine translation (MT) sys-

tem to translate from a source language into a target language requires a large parallel

corpus of example sentences in the source language translated into the target language

by a human; a word alignment (word-to-word correspondence between each source-

target sentence pair); and a parse tree (syntactic representation) of each sentence

in the source language, target language, or both. From these resources, the string-

to-tree syntax-based MT system used in this thesis [34, 33] acquires rules governing

the process of translating a source string into a target parse tree. After training,

these rules are used to translate previously unseen source sentences into the target

language.

The parallel corpora used to train current state-of-the-art systems are too large

for manual annotation; instead, word alignment and parsing must be performed auto-

matically. There are two problems with current approaches to automatic word align-

ment and parsing. First, both processes introduce errors that propagate through the

pipeline. Improving the accuracy of either process can therefore improve translation
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quality. Second, the two processes are typically performed independently. Since each

process produces constraints that can be used to guide the other, we can improve

the accuracy of both processes by integrating them more closely. Word alignment

and parsing jointly determine the set of translation rules acquired by a system dur-

ing training, so it is desirable to optimize them both in order to produce the best

translation rules possible.

In this thesis, we address these two problems as follows. First, we recombine the

output of multiple parsers, improving parse and translation quality. Second, we use

features of the word alignment to correct parse errors. Third, we use features of the

parse trees to correct word alignment errors, improving alignment and translation

quality. Fourth, we integrate word alignment and parsing by producing n-best lists

of candidates for each process, and discriminatively reranking (word alignment/parse

tree) pairs to optimize the quality of the extracted translation rules.

Our results demonstrate that integrating word alignment and parsing improves

the accuracy of each process, and in some cases improves translation quality relative

to a state-of-the-art syntax-based MT system.
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Chapter 1

Introduction

1.1 Motivation

Machine translation (MT) is the process of translating from one language to an-

other automatically. Machine translation systems must answer the following question:

given a sentence f in some source language (such as Chinese or Arabic), what is the

most likely translation e of that sentence in some target language (such as English)?

In order to produce a correct translation, machine translation systems must succeed

in two areas: first, they must choose the correct words in the target language; and

second, they must output those words in the correct order.

If natural language were unambiguous (as, for example, programming languages

are designed to be), there would be only one possible interpretation of the source sen-

tence, and only one possible translation of that source sentence in the target language.

Unfortunately for our purposes, natural language is rife with ambiguity. Many words

have multiple possible meanings (lexical ambiguity), and many sentences have multi-

ple possible grammatical interpretations (syntactic ambiguity). Moreover, ambiguity

is not necessarily preserved across languages; constructions that are unambiguous in

one language may be ambiguous in another.
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In order to handle the ambiguity inherent in natural language, the human brain

relies upon a sophisticated database of world knowledge. Using such word knowledge,

humans are able to quickly and accurately select the most likely interpretation of a

sentence. In the absence of such world knowledge, a machine translation system can

use probabilistic inference in order to resolve ambiguity. Such a system is called a

statistical machine translation system. These systems must learn, through exposure

to many examples of translations from the source language to the target language,

the types of constructions that occur in both languages; the frequencies with which

such constructions occur; and the translational correspondences between them.

Because the set of patterns that a system must acquire in order to adequately

model translation is so vast, it is infeasible for a human to describe the set of such

patterns explicitly and completely. Instead, statistical machine translation systems

must acquire such patterns automatically from a large parallel corpus consisting of

sentences in the source language and their translations in the target language. The

factors that distinguish different approaches to statistical machine translation include:

the type of patterns acquired from such a parallel corpus during training (the transla-

tion model); the methods used to associate probabilities with each pattern (parameter

estimation); and the way in which the patterns are applied to unseen source sentences

during testing to produce the most likely target translations (decoding).

In word- or phrase-based translation models, the fundamental pattern, or unit

of translational correspondence, consists of a word or multiple words in the source

language; a word or multiple words in the target language; and a word-to-word corre-

spondence between them. In syntax-based translation models, the fundamental unit

of translational correspondence is modified to consist of a tree rather than a word or

phrase in the source language, the target language, or both. Depending on whether

syntactic trees are used on the source side, the target side, or both, we refer to the

system as tree-to-string, string-to-tree, or tree-to-tree.
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Whatever the type of translational correspondence being modelled, all statistical

translation systems face the following question: how can such patterns, or rules, be

acquired automatically from a parallel corpus of source-target sentence pairs? In

other words, given a set of sentences in the source language and their translations

in the target language, how can we determine translational correspondences within

a sentence pair? Nearly all statistical machine translation systems rely upon a word

alignment, or an explicit word-to-word correspondence, between words in each source-

target sentence pair in order to learn these translational correspondences. In addition,

syntax-based systems require a syntactic analysis, or parse tree, of each source sen-

tence, target sentence, or both. Using these word alignments and parse trees, the

system can extract patterns of translational correspondence that can later be used to

translate unseen sentences.

Figure 1.1 illustrates an example source-target sentence pair, word alignment, and

target parse tree, along with the translation rules extracted from this sentence pair.1

Each rule’s right hand side denotes the foreign string to which this rule applies; each

rule’s left hand side denotes the English tree that results from this rule’s application.

The rule:

allows an English subtree with a root node IN and a child node “from” to be

translated to the Chinese word ,,,. Rules can contain variables as well as lexical

items on both the left and right hand sides. For example, the rule:

contains a variable, x0, that appears on the left and right hand sides of the rule.

The variable x0 is co-indexed on the left and right hand sides of the rule to indicate

a translational correspondence. The left hand side of the rule specifies an English

tree fragment containing a node x0:PP, where x0:PP can be any PP. The right hand

side of the rule specifies a Chinese sequence of words x0 ñññ���, where x0 must be a

translation of the English PP.

1We describe rule extraction in detail in Chapter 1, Section 1.2.5.
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Figure 1.1: Example Alignment and Extracted Translation Rules

IN

from

→ ,,,
Because word alignments and syntactic parse trees define the fundamental unit

of translation for a syntax-based system, it is crucial that these annotations be as

accurate as possible. Unfortunately, because current state-of-the-art systems require

hundreds of thousands or even millions of parallel sentence pairs of training data, it

is infeasible to produce these annotations manually. Instead, they must be generated

automatically. There are two problems with the way that automatic word align-

ment and parsing are currently performed in state-of-the-art syntax-based statistical

machine translation systems.

The first problem is that automatic word alignments and automatic parse trees are

prone to errors; these errors then cause the system to extract potentially incorrect

rules of translational correspondence. In some cases, these errors may cause the

system to infer a translational equivalence that simply does not exist between the

two languages. In other cases, the effect is more subtle: these errors may force the

system to extract rules that are not incorrect, but which fail to identify minimal units
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of translational correspondence. These rules incorporate unnecessarily large amounts

of context, and thus have limited applicability to unseen sentences at test time.

Figure 1.2 illustrates an error in Chinese-English word alignment, and the effect

it has upon the translation rules extracted by a syntax-based machine translation

system. In Figure 1.2, the dotted link between “needs” and ñññ��� is incorrect. The

largest rule in this set:

VP

VBZ

starts

PRT

RP

out

PP

x0:IN NP

NP

DT

the

NNS

needs

x1:PP

→ x0 x1 ������ ñññ���

can be applied to Chinese strings containing the Chinese translation of an English

IN; the Chinese translation of an English PP; and the Chinese words ������ ñññ���. If

a Chinese sentence matches this context exactly, it can be translated to the English

subtree shown on the left hand side of the translation rule. This rule includes more

context than, for example, the following rules extracted from the correct alignment

shown in Figure 1.1:

VP

VBZ

starts

PRT

RP

out

x0:PP

→ x0 ñññ��� PP

x0:IN x1:NP

→x0 x1

NP

DT

the
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→ x0 NNS
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→ ������
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Figure 1.2: Incorrect Alignment Link and Extracted Translation Rules

which cover the same Chinese and English data but are more modular, can be

applied in more contexts, and reflect truly minimal units of translational correspon-

dence.

Errors in English parse trees can create similar problems for rule extraction. As

with alignment errors, parse errors can cause the system to extract translational cor-

respondences that are incorrect. In other cases, parse errors may cause the system

to extract rules that are not incorrect, but that fail to reflect minimal units of trans-

lational correspondence. To illustrate, Figure 1.3 displays an example sentence pair

with a correct English parse tree, and the extracted rules. By contrast, Figure 1.4

illustrates an error in the English parse tree (the PP headed by “compared” should

actually modify the English VP headed by “increased”, and not the English NP “74

percent”), and the effect it has upon the extracted rules. The largest rule in the set

extracted from this incorrect English parse:
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VP

VBG

having

VP

VBN

increased

PP

IN

by

NP

NP

CD

74

x0:NN

x1:PP

→ x1 ������ x0 ÔÔÔ���ǑǑǑ
can only be applied to Chinese sentences whose context exactly matches the right

hand side of the rule. This rule specifies more context than, for example, the following

rules extracted from the correct English parse tree shown in Figure 1.3:

VP

VBG

having

VP

VBN

increased

x0:PP x1:PP

→ x1 ������ x0 PP

IN

by

NP

CD

74

x0:NN

→ x0 ÔÔÔ���ǑǑǑ
which are more modular, can be applied in more contexts, and reflect truly mini-

mal units of translational correspondence.

Whether they are extracted because of alignment errors or parse errors, translation

rules which contain incorrect translational correspondences or which require excessive

amounts of context in order to be applicable can ultimately produce translations of

sub-optimal quality when applied during testing. In order to quantify the overall

impact of parse and alignment quality upon translation rule quality, we extract a gold-

standard set of rules by applying the minimal rule extraction algorithm described in

Galley et al. [34] to a parallel Chinese-English corpus with gold alignments and gold

English parse trees. We then extract rules from the same corpus using two different

sources of automatically produced alignments (GIZA++ with union symmetrization

and GIZA++ with refined symmetrization)2 and the Collins parser [17], and compute

the precision, recall, and f-measure of the extracted rules against the gold-standard

rule set.3 Table 1.1 illustrates that errors introduced by an automatic parser cause

2For more details on alignment models and symmetrization heuristics, please refer to Chapter 1,
Section 1.2.3.

3For more details on how to compute rule f-measure, please refer to Chapter 1, Section 1.2.9.
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Parse
gold Collins

P R F P R F

Alignment

gold 100.0 100.0 100.0 73.3 76.0 74.6
GIZA++

56.0 65.6 60.4 44.0 54.5 48.7
refined
GIZA++

63.6 52.3 57.4 50.7 44.2 47.2
union

Table 1.1: Impact of Alignment and Parse Tree Quality on Precision, Recall, and
F-Measure of Extracted Syntax-Based Translation Rules

a significant decrease in rule f-measure, from 100.0% using the gold parses to 74.6%

using the automatic parses. Errors introduced by an automatic aligner cause an even

greater decrease in rule f-measure (from 100.0% using gold alignments to 60.4% or

57.4% using automatic alignments). Using both automatic parses and automatic

alignments (the settings under which we typically train a statistical MT system)

causes rule f-measure to drop to 47.2%. Thus, improving parse and alignment quality

has significant potential to improve the quality of extracted translation rules, and

thereby also the quality of syntax-based translation.

The second problem with current approaches to word alignment and parsing for

syntax-based statistical machine translation systems is that word alignment and pars-

ing are performed independently of each other. Since each process produces con-

straints that can potentially be used to guide the other, we can expect to improve

the accuracy of each process by integrating them more closely. For example, the

PP-attachment error made by the English parser in Figure 1.4 can be corrected using

the bilingual word alignment. Since PP-attachment is ambiguous in English, but not

in Chinese, the word alignment provides an additional constraint upon the English

syntactic analysis which can be used to disambiguate the PP-attachment in English.

Similarly, the presence of the incorrect alignment link “needs”-ñññ��� in Figure 1.2

can be corrected using the English parse tree. Since “starts out” and “needs” are
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syntactically distant from each other in the English parse tree (meaning that, if one

traverses the tree from “starts out” to “needs”, many constituents must be visited

along the way), and syntactically distant nodes in the English parse tree are unlikely

to be aligned to the same Chinese word, we can infer that the link from “needs” to

the Chinese ñññ��� is likely to be incorrect.

In this thesis, we address the problems of word alignment and syntactic parsing

within the context of string-to-tree syntax-based machine translation. Specifically,

we address the following questions:

• How can we improve the accuracy of syntactic parsing?

• How can we improve the accuracy of word alignment?

• How can we use each process to constrain the other?

• What is the impact of improving parsing and word alignment accuracy upon

syntax-based machine translation?

We answer these questions as follows. First, we improve upon the accuracy of

state-of-the-art constituent parsers by recombining the output of multiple parsers

(Chapter 2). Second, we show that word alignments can be used to improve parsing

accuracy by using bilingual Chinese-English word alignment features to identify and

correct syntactic parsing errors in English prepositional phrase attachment (Chapter

2). Third, we show that parses can be used to improve word alignment precision by

using syntactic features to identify and delete incorrect word alignment links (Chap-

ter 3). Fourth, we integrate word alignment and parsing by producing n-best lists

of candidates for both word alignment and parsing, and discriminatively reranking

(word alignment, syntactic parse tree) pairs to optimize the quality of the extracted

translation rules (Chapter 4). We evaluate the impact of these improvements upon

alignment quality, parse quality, and syntax-based translation quality.
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Our results demonstrate that integrating word alignment and syntactic parsing

can indeed improve the accuracy of each process, and in some cases leads to an im-

provement in translation quality relative to a state-of-the-art syntax-based statistical

machine translation system.

1.2 Background

1.2.1 Statistical Machine Translation

The goal of any statistical machine translation system is to answer the following

question: given a sentence f in the source language, what is the most likely translation

e of that sentence in the target language, argmaxe[P (e|f)]?

In the noisy channel model of machine translation, we decompose P (e|f) as follows

using Bayes’ Rule, which allows us to estimate each component model separately:

P (e|f) = P (f |e)× P (e)
P (f)

. Since P (f) is fixed for any given source sentence f , we can

eliminate it from consideration. We are now left with:

argmax
e

[P (e|f)] = P (f |e)× P (e)

P (f |e) is the translation model, P (e) is the language model, and searching over

the space of possible target translations to compute argmaxe P (e|f) is the decoding

problem.

In practice, most statistical MT systems do not actually optimize the quantity

P (f |e) × P (e). Instead, they model the posterior probability P (e|f) directly, and

incorporate the language model P (e) and the translation model P (e|f) as features h

with weights λ in a log-linear model which can be used to score each (e, f) pair:

P (e|f) =
exp[

∑M

m=1 λm × hm(e, f)]
∑

e′ exp[
∑M

m=1 λm × hm(e′, f)]
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This formulation allows additional features besides the translation model and lan-

guage model to be incorporated into the score of each (e, f) pair in a straightforward

way. The feature weights λi of each feature hi can be set discriminatively to optimize

translation quality.

Language Models

Typically, the probability P (e) of each possible English translation is modelled

according to an n-gram language model:

P (eI
1) =

I
∏

i=1

P (ei|ei−1, ei−2, ...ei−n)

Syntax-Based Translation Models

In syntax-based models, the basic unit of translation consists of a tree fragment

in one language; either a sequence of words or a tree fragment in the other lan-

guage; and a word alignment between them. The benefits of incorporating syntax

into MT are twofold: first, it facilitates the use of linguistically motivated syntax to

guide the translation process, and second, it facilitates the modelling of long-distance

re-ordering patterns. Syntax-based systems may parse the data on the target side

(string-to-tree), source side (tree-to-string), or both (tree-to-tree).

1.2.2 Syntax-Based Statistical Machine Translation

String-to-Tree Syntax-Based Models

Galley et al. [34, 33] describe the syntax-based MT system which is the platform

for all experiments in this thesis. Formally, this model can be thought of as a gen-

eralization of a synchronous context-free grammar (SCFG), in which a context-free

grammar (CFG) generates not one, but two output strings. We can equivalently

represent the rules shown in Figure 1.1 using SCFG notation:
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IN → {from, ,,,} PP → { PP

IN

of

NP0

, NP0} NP → { NP

PRP
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JJ

own

NN
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, ýýý)))}
PP → { PP

IN0 NP1

, IN0 NP1} NP → { NP

NP0 PP1

, PP1 NP0} NP → { NP

DT

the

NNS0

, NNS0}

NNS → {NNS

needs

, ������} VP → { VP

VBZ

starts

PRT

RP

out

PP0

, PP0 ñññ���}
Where two non-terminal symbols are co-indexed, those two symbols are transla-

tional equivalents of each other, and must be expanded simultaneously when applying

an SCFG rule during generation.

For reference, Figure 1.5 illustrates the process by which an English tree and

foreign string are generated under this model; Figure 1.6 illustrates how to apply

these translation rules to an input foreign string during translation to construct an

output English tree.

Tree-to-String Syntax-Based Models

Yamada and Knight [104] propose a tree-to-string model which applies the follow-

ing operations to nodes in the source parse tree: child re-ordering, inserting words

at a node, and translating leaf nodes. The parameters for each of these probabil-

ity models are estimated directly from a bilingual corpus using EM (in contrast to

the string-to-tree model of Galley et al. [34], in which the bilingual corpus is auto-

matically word-aligned before translation rules are extracted). Re-orderings in the

Yamada and Knight [104] model are restricted to child re-orderings, and are therefore

not as powerful as the re-orderings allowed by Galley et al. [34, 33].

Huang et al. [38] and Liu et al. [66] present tree-to-string models. The model

presented in Huang et al. [38] admits a linear-time dynamic programming decoding
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Figure 1.5: Example Generation
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Bottom-Up Decoding of Foreign String to English Tree Rule to Apply Next
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Figure 1.6: Example Decoding
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algorithm, which is more efficient than the polynomial-time CKY-based decoding

algorithm of the string-to-tree model described by Galley et al. [34, 33].

While decoding is more efficient in the tree-to-string models of Huang et al. [38]

and Liu et al. [66] than in the string-to-tree model used in this thesis [34, 33], the

string-to-tree model has an advantage over tree-to-string models in that it is typi-

cally more important to enforce syntactic constraints in the target, or output, lan-

guage, than in the source, or input, language, since the source language is presumably

syntactically well-formed. String-to-tree models are better able to enforce syntactic

constraints in the target language, which can result in more fluent translations.

Tree-to-Tree Syntax-Based Models

The ITG (Iterative Transduction Grammar) formalism proposed by Wu [103] and

the Multi-text Grammar formalism proposed by Melamed [75] cast translation as a

sychronous parsing problem in the source and target languages. Chiang [13] proposes

hierarchical phrase-based translation, which is a synchronous grammar formalism that

extends the phrase pairs of phrase-based translation systems to hierarchical phrase

pairs by substituting variables for phrase pairs that appear within other phrase pairs.

While these formalisms make use of syntactic structures in both languages, Wu

[103] and Chiang [13] use a formal syntax that is not linguistically motivated, but

rather induced by the structure of the parallel data. By contrast, the system of Galley

et al. [34, 33] directly incorporates linguistically motivated syntactic structure in the

target language.

In tree-to-tree formalisms that do make use of linguistically motivated syntax

[75, 67], the task of inducing a synchronous grammar during training is significantly

more expensive from a computational perspective than in the case of string-to-tree

or tree-to-string systems. Furthermore, because such systems rely on parse trees

in both languages, they are much less robust to parse errors than string-to-tree or

tree-to-string systems.
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Figure 1.7: Syntax-Based Statistical Machine Translation Pipeline

In this thesis, we focus on improving parse and alignment quality for a string-

to-tree syntax-based machine translation system [34, 33]. Figure 1.7 illustrates the

stages of this MT pipeline.

In order to clarify the role of alignment and parsing in such a system, we first describe

each component of this system in detail.

1.2.3 Word Alignment

A word alignment is a word-to-word correspondence between words in a source

sentence f and the target translation of that sentence, e:

• Word Alignment: A word alignment A for a sentence pair (e, f) is a set of

pairs (ei, fj) denoting indices of words ei ∈ e and fj ∈ f that are aligned.

Figure 1.8 illustrates an example word alignment.
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starts out from the needs of its own country

,,, ýýý))) ������ ñññ���
FROM OWN-COUNTRY NEEDS STARTS-OUT

Figure 1.8: Word Alignment

IBM Models

Brown et al. [7, 8] first introduced the concept of a word alignment when they laid

the foundation for statistical machine translation with the word-based IBM models

for translation, and presented techniques for estimating parameters for these models.

Word alignments were introduced to facilitate parameter estimation of the IBM trans-

lation models. For IBM Model 4, the generative process by which a target sentence

t of length n produces a source sentence s of length m is parameterized as follows:

• Fertility: For each word ti in the target sentence, select a fertility φi. This

fertility is an estimate of how many words in the source sentence are likely to

be “generated” by target word ti, and is conditioned on the word type ti.

• Fertility of the Null Word: For the null word t0, select a fertility φ0. This

fertility is an estimate of the number of “spurious” words appearing in the

source sentence (words that have not been generated by any particular word

in the target sentence, but rather, appear as an artifact of translation), and is

conditioned on the sum of the fertilities φ0...φn determined in the previous step.

∑n

i=0 φi = m, the length of the source determined in the previous step.
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• Translation: For each word ti in the target sentence, translate it into one

or more words sj...sk in the source language. This translation probability is

conditioned on the word type ti.

• Distortion: For each source word that has been generated by a target word ti,

select a position j for that source word in the source sentence. This distortion

probability is conditioned on positions i and j; sentence lengths n and m, and

the positions of all other words sk that have also been generated by the target

word ti.

Given this parameterization of P (s|t) in terms of fertility probabilities, translation

probabilities, and distortion probabilities, we need to estimate these probabilities

from a bilingual corpus of source and target sentence pairs. In a bilingual corpus we

can observe the target and source sentences, but not the intermediate steps in the

generative process described above. In order to estimate the probabilities needed for

Model 4, Brown et al. [8] introduce the concept of a word alignment a between s and

t.

The problem of estimating the fertility, translation, and distortion probabilities

in an unsupervised manner can be solved using the Expectation-Maximization (EM)

algorithm [12]. During the E-step, one calculates a probability distribution over word

alignments using the current model parameter values, and during the M-step, one

re-estimates the model parameter values using the current probability distribution

over word alignments.

In practice, computing the exact IBM Model 4 parameters from a large parallel

corpus using EM is intractable, so Brown et al. [8] introduce a set of successively

simpler models, Models 1-3, which are meant to be computed in series, so that the

results of Model 1 are used to initialize parameter values for Model 2, and so on.

Models 1 and 2 can be computed exactly, but Models 3 and 4 require the following

approximations: during the M-step, the model parameter values are re-estimated
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using only the most likely word alignments according to the current model. Also, the

search space of alignment links is restricted to 1-to-many links in the source-to-target

direction in order to render the search problem tractable. Vogel et al. [101] propose

an alternative approach to the distortion model of IBM Model 4 using a Hidden

Markov Model (HMM). In the HMM model, the placement of each source word sj

is conditioned not upon absolute positions, but upon the relative position of sj with

respect to the previously placed source word.

Most current state-of-the-art statistical machine translation systems rely upon

word alignments to define an inital translational correspondence between the source

and target sentences. IBM Model 4 (in its open-source implementation, GIZA++

[85]) remains the predominant approach to word alignment to date. We use GIZA++

word alignments as our baseline in all translation experiments in this thesis.

Symmetrization Heuristics

IBM Models 1-4 [7, 8] and the HMM model based on Vogel [101] form the basis

of the open-source GIZA++ word alignment software [85] which is perhaps the most

widely used statistical alignment algorithm in the current MT literature. Because

of an asymmetry in the generative process of the IBM Models that was introduced

to render the search over the space of alignments tractable, a single target word ti

can generate multiple source words sj , but the converse is not true: a single source

word sj cannot be generatd by multiple target words ti. Thus, the model permits

one-to-one and one-to-many alignments in the target-to-source direction, but does

not permit one-to-many alignments in the source-to-target direction.

To remedy this asymmetry, allowing for one-to-many source-to-target alignments

and many-to-many alignments, a standard approach in the alignments literature is

to run IBM Models 1-4 twice, once in the source-to-target direction and once in

the target-to-source direction, then combine the two sets of alignments using one of
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several possible “symmetrization” heuristics. Och and Ney [85] present three such

heuristics for combining two alignments A1 and A2 to form a symmetrized alignment

A:

• intersection(A1, A2) : A = A1 ∩ A2

• union(A1, A2) : A = A1 ∪ A2

• refined(A1, A2): (See Algorithm 1)

Algorithm 1: Refined Alignment Symmetrization

input : A source-to-target alignment A1 and a target-to-source alignment
A2

output: A symmetrized alignment A, where (A1 ∩ A2) ⊆ A and
A ⊆ (A1 ∪A2)

Initialize A = A1 ∩A2;
Consider each link (ei, fj) ∈ (A1 ∪A2);
if (ei /∈ A) ∧ (fj /∈ A) then

Add link (ei, fj) to A;
end

else if ((ei, fj) has a horizontal neighbor (ei−1, fj) or (ei+1, fj), or a vertical
neighbor (ei, fj−1) or (ei, fj−1), that is already in A), and (A ∪ (ei, fj) does
not contain any links with both horizontal and vertical neighbors) then

Add link (ei, fj)toA;
end

1.2.4 Parsing

Syntactic parsing is the task of assigning a syntactic tree structure t to a sentence s.

An example parse tree is shown in Figure 1.9. In statistical parsing, the parameters of

the parsing model P (t|s) are learned automatically from a training corpus consisting

of sentences and their associated syntactic trees. The parser can then determine the

most likely tree structure t̂ = arg maxt P (t|s) for an unseen sentence s according to

the probabilities learned during training.
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Figure 1.9: Parse Tree

In Chapters 3 and 4 of this thesis, we use constituent parsers (specifically, the

Collins Model 3 parser [17] as implemented by Soricut [97]) in all parsing and string-

to-tree machine translation experiments. In the Collins parsing Model 3 [17], every

non-terminal label is lexicalized (augmented with the head child dominated by that

node, and the part of speech tag of the head child). The generative model proceeds

top-down as follows: first, the root node is generated, then the head child, then all

children nodes to the left of the head child (conditioning on the root node and the

head), and then all children nodes to the right of the head child (conditioning on the

root node and the head). Then, each child node is processed recursively, stopping

when lexicalized pre-terminals have been generated. Decoding proceeds in a bottom-

up fashion using a CKY-style algorithm [16, 43, 106].

In Chapter 2, Section 2.2, we experiment with combining the output of multiple

constituent parsers (specifically, the Bikel parser [4]; the Berkeley parser [88]; the

Collins parser [17]; the Charniak parser [10]; and the Stanford parser [44]).

Parse Binarization

The parse trees appearing in the Penn Treebank [72], upon which most modern

statistical parsers are trained, tend to have a flat structure, with each node having a
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potentially very large number of children. This flatness makes it difficult for syntax-

based rule extraction to extract minimal units of translational correspondence. To

alleviate this problem, the parse trees are binarized before rule extraction according

to one of two methods:

• head-out binarization: A deterministic method of binarizing parse trees in

which each node is binarized to the left if the head is the first child, and to the

right otherwise.

• EM binarization: A probabilistic method of binarizing parse trees in which

both left and right binarizations are considered for each node, and the binariza-

tion for each node that maximizes the likelihood of the training data is selected.

Word alignments are used to restrict the space of binarizations explored [102].

1.2.5 Rule Extraction

We now examine in detail the role that word alignment and parsing play in the

syntax-based machine translation pipeline. Galley et al. [34] present an algorithm for

extracting syntax-based translation rules from a source sentence, a target tree, and

a word alignment. While familiarity with the details of the rule extraction algorithm

is not a prerequisite for reading the rest of this thesis, we describe and illustrate each

step of the algorithm here for completeness.

Consider the alignment shown in Figure 1.8 and parse shown in Figure 1.9. The

alignment A, target parse tree T , and source sentence f together form a graph (Figure

1.10) that we refer to as an alignment graph. The goal of syntax-based rule extraction

is to extract patterns of translational equivalence by decomposing this graph into a

set of target subtrees and their corresponding source substrings. Each (target subtree,

source substring) pair then constitutes a translation rule.
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Figure 1.10: Alignment and Parse Graph

To facilitate the description of the rule extraction algorithm, Galley et al. [34]

introduce the following definitions:

• span: The span of a node n in an alignment graph G includes the indices of all

words in f that are reachable from n. In Figure 1.11, each node in the graph is

annotated with its span (shown as a subscript).

• closure: The closure of the span of a node n in an alignment graph G is defined

by the indices of the first and last words in f that are reachable from n. For

example, closure(0− 1, 2− 4) = (0− 4).

• complement span: The complement span of a node n in an alignment graph

G is the union of spans of all nodes n in G that are neither ancestors nor

descendants of n. In Figure 1.11, each node in the graph is annotated with its

complement span (shown as a superscript).

• frontier node: A frontier node n ∈ G is a node for which the closure of the

span of n and complement span of n do not overlap:
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Figure 1.11: Alignment and Parse Graph with Spans (Subscript) and Comple-
ment Spans (Superscript). Each frontier node n, for which closure(span(n)) ∩
complementspan(n) = ∅, is indicated by a box.
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closure(span(n)) ∩ complementspan(n) = ∅

In Figure 1.11, there are 4 frontier nodes: the root node VP, the node IN

dominating “from”, the node PP dominating “of its own country”, and the

node NP dominating “its own country”.

• frontier graph fragment: A frontier graph fragment of a graph G is a sub-

graph G′ of G of which the root node n, and all sink nodes, are frontier nodes. In

Figure 1.11, there are 4 frontier graph fragments, each one rooted at a frontier

node.

The set of translation rules extracted from an alignment graph is defined by the

set of frontier graph fragments, which contain target subtrees and their aligned source

words. Galley et al. [34] outline a linear-time algorithm for computing this set of

rules, which they refer to as the minimal rule set:

• Compute the frontier set F of the alignment graph. In Figure 1.11, the nodes

in the frontier set are indicated by a box.

• For each node n ∈ F , compute the minimal frontier graph fragment rooted

at that node as follows: starting from n, expand n as long as n has one or

more child which is not in F . When no more expansions can be made, the

frontier graph fragment rooted at node n has been identified. In Figure 1.11,

the expansion of the frontier graph fragment rooted at the VP continues until

the frontier nodes IN and PP are reached, producing the following frontier graph

fragment:
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VP

VBZ

starts

PRT

RP

out

PP

IN NP

NP

DT

the

NNS

needs

PP

• Each frontier graph fragment forms the left hand side of a minimal rule. The

right hand side of each rule includes all foreign words within the closure of the

span of the root node. Since the span of the VP in Figure 1.11 is (0-4), the

entire foreign string is included in the right hand side of the rule:

,,, ýýý))) ������ ñññ���
• For each frontier graph fragment, replace each sink node that is in F with a

variable; replace the foreign words aligned to that sink node with a co-indexed

variable. In the frontier graph fragment rooted at VP in Figure 1.11, the sinks

nodes IN and PP are in F , so each one is replaced by a variable, and the

foreign words aligned to each of those nodes are replaced by the same co-indexed

variable:

VP

VBZ

starts

PRT

RP

out

PP

IN NP

NP

DT

the

NNS

needs

PP

→ ,,, ýýý))) ������ ñññ��� ⇒ VP

VBZ

starts

PRT

RP

out

PP

x0:IN NP

NP

DT

the

NNS

needs

x1:PP

→ x0 x1 ������ ñññ���
The extracted set of minimal translation rules (shown in Figure 1.12) corresponds

exactly to the set of frontier graph fragments.
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Figure 1.12: Alignment and Parse Graph with Frontier Nodes and Extracted Minimal
Rules

PP

IN

of

x0:NP

→ x0 NP

PRP

its

JJ

own

NN

country

→ ýýý)))
⇒

PP

IN

of

NP

PRP

its

JJ

own

NN

country

→ ýýý)))
Figure 1.13: Alignment and Parse Graph with Example of Extracted Composed Rule

In order to allow rules to include larger amounts of context, Galley et al. [33]

introduce the notion of composed rules, which can be constructed by composing two

or more minimal rules to form a single rule. For the alignment graph with minimal

rules shown in Figure 1.12, an example of a composed translation rule formed by

combining two minimal rules is shown in Figure 1.13.

1.2.6 Parameter Estimation

Rule probabilities are calculated based on relative frequency estimation over the

training corpus, and normalized based on the root node of the left hand side (target

tree) of the rule, as in a standard CFG: the normalized probability pr(r) of a rule r

is given by count(r)
count(left-hand-side root node of r)

.
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1.2.7 Tuning with Minimum Error Rate Training

In addition to the translation model described above, the syntax-based machine

translation pipeline also relies upon a target language model and an array of sec-

ondary features whose weights must be tuned discriminatively on a tuning set. In

all experiments in this thesis, we tune all feature weights using Minimum Error Rate

Training [85] in order to maximize BLEU score [87], the standard metric for transla-

tion quality.4

1.2.8 Decoding

The decoder used in our machine translation experiments uses the grammar of

source-string-to-target-tree rules described above, and a CKY-based chart parsing

algorithm to essentially parse the source language input string, producing a target

language tree as output. As in monolingual CKY parsing, each item in the chart is

labelled with its span in the source language, as well as the non-terminal label of the

root node of its target language subtree. As in monolingual parsing, the weighted

CFG must be binarized where possible to achieve optimal efficiency during decoding.

There are two important differences between monolingual CKY parsing and bilin-

gual CKY-style translation decoding, however. The first is that, after the weights

assigned to each rule by the translation model, the next most important feature used

during decoding is the score assigned by an n-gram target language model to each

partial translation. To facilitate the integration of the language model during de-

coding, each item is also labelled with the leftmost and rightmost boundary words

spanned by its target language subtree. Because these additional annotations create

a larger search space of possible items, cube pruning [37] is used to render the search

space tractable while minimizing the number of search errors.

4We discuss BLEU score in more detail in Chapter 1, Section 1.2.9.
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The second important difference between monolingual parsing and bilingual trans-

lation decoding is that in the bilingual case, cross-lingual reorderings may create sit-

uations in which two words whose spans are adjacent in the source language may be

translated to two items which are not adjacent to each other in the target language.

In this case, both items must be maintained and scoring of the partial transation

by the n-gram language model must be delayed until the partial translations for the

intervening target language items have been generated. Thus, the choice of binariza-

tion schemes for the weighted CFG is extremely important to the efficiency of the

decoder. To minimize the number of cases where the target-language items are not

contiguous, ITG-style synchronous binarization [107] is used.

1.2.9 Evaluation Metrics

We review existing evaluation metrics for alignment, parse, and translation quality,

and introduce a new metric for translation rule quality.

Alignment Metrics: AER and Weighted Fully-Connected F-Measure

AER Alignment Error Rate (AER) [85] is the most widely used metric of align-

ment quality, but requires gold-standard alignments labelled with “sure/possible”

annotations to compute. Given a hypothesized alignment A, a gold-standard set of

sure alignment links S, and a gold-standard set of possible alignments P , AER is

computed as follows:

Precision(A) =
|P ∩A|

|A|

Recall(A) =
|S ∩ A|

|S|

AER(A) = 1−
|P ∩ A|+ |S ∩A|

|S|+ |A|
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Balanced F-Measure In many cases, there is no distinction between “sure” and

“possible” alignment links in the gold-standard alignment G. In this case, the most

widely used metric is balanced f-measure:

Precision(A) =
|G ∩A|

|A|

Recall(A) =
|G ∩A|

|G|

f -measure(A) =
2

1
precision(A)

+ 1
recall(A)

Weighted Fully-Connected F-Measure Fraser and Marcu [32] show that im-

provements in AER or balanced f-measure do not necessarily correlate with improve-

ments in BLEU score. They propose two modifications to f-measure: varying the

precision/recall tradeoff, and fully-connecting the alignment links before computing

f-measure.

To vary the precision/recall tradeoff, Fraser and Marcu [32] introduce a param-

eter α which controls the relative contribution of each measurement to the overall

f-measure. F-measure of an alignment A for a particular value of α can be computed

as follows:

f -measure(A) =
1

α
precision(A)

+ 1−α
recall(A)

To more accurately reflect the impact of each alignment link upon a downstream

phrase- or syntax-based MT system, Fraser and Marcu [32] introduce the concept of

fully-connecting an alignment before computing its f-measure. To “fully-connect” an

alignment A means to perform the following steps. First, process each word ei in e:

• For each word ei in e, let freachable(ei) be the set of all words fj in f that are

reachable from ei by traversing arbitrarily many alignment links. For example,

in Figure 1.14, freachable(“needs′′) = {������,ñññ���}.
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Figure 1.14: Before and After Fully-Connecting an Alignment
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• Add an alignment link ei, f
′
j to A for each word f ′

j ∈ freachable(ei). In Figure

1.14, “needs” is already aligned to every word in freachable(“needs”), so we do

not need to add any links to A.

Then, perform the analogous procedure for each word fj in f :

• For each word fj in f , let ereachable(fj) be the set of all words ei in e that are

reachable from fj by traversing arbitrarily many alignment links. For example,

in Figure 1.14, ereachable(������) contains “needs”, since ������- “needs” ∈ A,

but ereachable(������) also contains “starts” and “out”, since those words can be

reached from ������ by first traversing the link ������-“needs”, then traversing

the link “needs”-ñññ���, and finally traversing the links ñññ���- “starts” and ñññ���-“out”.

• Add an alignment link e′i, fj to A for each word e′i ∈ ereachable(fj). In Figure

1.14, we must add “starts”-������ and “out”-������ to A, since “starts” and “out”

∈ ereachable������ but ������-“starts” /∈ A and ������-“out” /∈ A.

In Figure 1.14, the fully-connected version of the alignment shown includes the links������-starts and ��� ut. Given a hypothesized set of alignment links A and a gold-

standard set of alignment links G, we define A+ = fullyConnect(A) and G+ =

fullyConnect(G), and then compute:

Precision(A+) =
|G+ ∩ A+|

|A+|

Recall(A+) =
|G+ ∩ A+|

|G+|

f -measure(A+) =
2

α
precision(A+)

+ 1−α
recall(A+)

For phrase-based Chinese-English and Arabic-English translation tasks, Fraser

and Marcu [32] obtain the closest correlation between weighted fully-connected align-
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ment f-measure and BLEU score using α=0.5 and α=0.1, respectively. We use

weighted fully-connected alignment f-measure as the training criterion for link dele-

tion, and to evaluate alignment quality on training and test sets.

Parse Metrics: F-Measure over Labelled Constituents

F-measure over labelled constituents as defined by the PARSEVAL guidelines is

the standard metric of parse evaluation [5]. The f-measure of a parse p with respect

to a reference parse g is defined as follows. Each parse is converted into a set of

constituents with a syntactic label and a span indicating the minimum and maximum

indices of words dominated by the subtree rooted at that constituent. Then, f-measure

is computed over these labelled constituents as follows:

f -measure(p) =
2

1
precision(p)

+ 1
recall(p)

where precision(p) = |p∩g|
|p|

and recall(p) = |p∩g|
|g|

Rule Metrics: F-Measure over Extracted Translation Rules

We introduce a rule f-measure metric for translation rule quality. To compute rule

f-measure in a string-to-tree syntax-based machine translation system, we require a

hypothesized alignment A, target parse tree p(e), and source string f . We then

extract a set of minimal string-to-tree translation rules H from (A, parse(e), f) as

described in Section 1.2.5. We extract a gold-standard set of translation rules G from

a gold-standard alignment, gold-standard target parse, and the source string; this is

our reference set. We then compute precision, recall, and f-measure over the rule set

H as follows:

f -measure(H) =
2

1
precision(H)

+ 1
recall(H)
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where precision(H) = |H∩G|
|H|

and recall(H) = |H∩G|
|G|

Figure 1.15 illustrates an example computation of rule f-measure. The size of the

hypothesized rule set, |H|, is 4, while the size of the gold-standard rule set, |G|, is 9.

The number of matching rules, |H ∩ G|, is 3: R2, R3, R4. The precision of H is 3
4

and the recall of H is 3
9
, resulting in a rule f-measure of 6

13
, or approximately 0.45.

Translation Metrics: BLEU

BLEU (Bilingual Evaluation Understudy) [87] is the standard metric for trans-

lation evaluation. BLEU measures n-gram precision of the hypothesized translation

against a set of multiple reference translations. Since shorter hypothesized trans-

lations contain fewer n-grams than longer ones, it is easier for shorter sentences to

achieve a high n-gram precision. To combat this, BLEU also includes a brevity

penalty, which penalizes hypothesized translations for being too short with respect to

the reference translations. To compute BLEU, one converts the hypothesized transla-

tion into a set of n-grams, typically for values of n up to 4. The precision precisionn

of the hypothesis over these n-grams can then be computed against a gold-standard

set of reference translations.

BLEU can then be computed from these n-gram precisions as follows:

BLEUN = brevity-penalty ∗ N

√

√

√

√

N
∏

n=1

precisionn

1.3 Thesis Outline

In this thesis, we present several methods for improving the accuracy of word

alignment and syntactic parsing within the context of string-to-tree syntax-based

machine translation:
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Hypothesized Rules Gold-Standard Rules
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→ x0 x1 ������ ñññ��� R2: IN

from

→ ,,,
R2: IN
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→ ,,, R3: PP

IN
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x0:NP

→ x0

R3: PP

IN

of

x0:NP

→ x0 R4: NP

PRP

its

JJ

own

NN

country

→ ýýý)))
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PRP

its

JJ

own

NN

country

→ ýýý))) R5: PP

x0:IN x1:NP

→x0 x1

R6: NP

x0:NP x1:PP

→ x1 x0

R7: NP
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x0:NNS

→ x0

R8: NNS
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→ ������
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starts
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out

x0:PP

→ x0 ñññ���
Figure 1.15: Computing Rule F-Measure
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• We present a novel method for combining the output of multiple parsers by con-

verting each parse into a set of context-free productions, then recombining those

context-free productions to form a potentially new parse tree. While an existing

method that recombines constituents achieves the highest parse accuracy, our

method of recombining context-free productions results in better translation ac-

curacy in a downstream string-to-tree syntax-based machine translation system

[28].

• We show that automatically produced bilingual Chinese-English word align-

ments can be used to resolve syntactic ambiguity in English [27].

• We present a novel algorithm that uses automatically produced parses to im-

prove the precision of word alignments by identifying and deleting alignment

links that violate syntactic constraints. We demonstrate that these more highly

precise alignments result in a significant gain in machine translation accuracy

in syntax-based translation [29].

• We present a method for reranking (parse, alignment) pairs that allows parses

and alignments to inform and constrain each other simultaneously.

• We investigate the relationship between rule f-measure and translation quality.
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Chapter 2

Improving Parsing Accuracy

Errors in English parse trees impact the quality of syntax-based MT systems

trained using those parses. Frequent sources of error for English parsers include PP-

attachment ambiguity, NP-bracketing ambiguity, and coordination ambiguity. One

way to improve the accuracy of a parser is to combine the output of multiple parsers;

insofar as the errors made by each parser are independently distributed, the consensus

combination tends to achieve a higher accuracy than the best individual parser. An-

other way to improve the accuracy of a parser is to incorporate an additional source

of information (other than the features on which the parser was trained).

In this chapter, we present two ways to improve parse quality in English. First,

in Section 2.2, we combine the output of multiple statistical parsers, achieving the

highest reported parse accuracy on a standard testing section of the Wall Street Jour-

nal. We examine problems with existing methods for parse combination, proposing

a) an efficient, linear-time algorithm for selecting the parse with highest expected

f-measure from an n-best list, and b) a novel method for combining multiple parses

by converting each parse in an n-best list into a set of context-free productions, then

recombining those productions to form a combined parse. We examine the impact

of each method of parse combination upon both parse accuracy and syntax-based

machine translation. Second, in Section 2.3, we use automatically generated bilin-
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gual Chinese-English word alignments to resolve syntactic ambiguity in English. We

show that, using these word alignments, we can resolve PP-attachment ambiguity (a

frequent source of parse error in English) with an accuracy that is better than that

of the baseline Collins parser.

2.1 Background

Syntactic parsing is the task of assigning a syntactic tree structure t to a sentence

s. In statistical parsing, the parameters of the parsing model P (t|s) are learned

automatically from a training corpus consisting of sentences and their associated

syntactic trees. The parser can then determine the most likely tree structure t̂ =

arg maxt P (t|s) for an unseen sentence s according to the probabilities learned during

training.

A common source of errors for parsers is syntactic ambiguity, or the existence of

more than one possible syntactic structure for a particular sentence. Frequently occur-

ring types of syntactic ambiguity in English include prepositional phrase attachment,

noun phrase bracketing, and coordination ambiguity.

VP

VP

saw

NP

NP

him

PP

IN

with

NP

DT

a

NP

telescope

VP

VP

saw

NP

him

PP

IN

with

NP

DT

a

NP

telescope

NP-attachment VP-attachment

Figure 2.1: PP-attachment ambiguity in English

Figure 2.1 illustrates an example of PP-attachment ambiguity in English. Given the

phrase “saw him with a telescope”, should the PP “with a telescope” modify the noun
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phrase “him” (indicating that the man in question was in possession of a telescope

at the time of the sighting), or the verb phrase “saw” (indicating that the man was

observed through the lens of a telescope)? The leftmost syntactic structure represents

attachment of the PP to the NP; the rightmost, attachment to the VP.

Errors in English parse trees negatively impact the quality of syntax-based MT

systems trained using those parses. Quirk et al. [89] show that, in dependency treelet

translation, BLEU scores on English-German and English-Japanese experiments de-

grade as the amount of training data used to train the source dependency parser

decreases.

In the string-to-tree syntax-based MT system used in our experiments [34, 33], the

quality of translation rules extracted from each English parse tree and bilingual word

alignments deteriorates as the quality of the parses and word alignments decreases.

For example, Figure 2.2 illustrates the impact of parse errors upon the translation

rules extracted from an actual Chinese-English sentence pair. By contrast, Figure

2.3 illustrates the rules extracted from a correct English parse. The rules extracted

from the correct English parse can be applied in more general contexts than the rules

extracted from the incorrect English parse.1

In this chapter, we explore two ways to improve the accuracy of constituent

parsers, with the ultimate goal of improving the accuracy of a downstream syntax-

based machine translation system. In Section 2.2, we combine the output of multiple

constituent parsers. In Section 2.3, we incorporate an additional source of information

into monolingual English parsing: the information contained in automatic bilingual

Chinese-English word alignments. The primary contributions of this work are as

follows:

1In some instances, it may be advantageous to incorporate larger amounts of context into a
translation rule, but the decision to include more context where necessary should be a principled
one, not a default action forced upon the rule extraction algorithm by the training data.
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Figure 2.2: Parse with PP-Attachment Error and Extracted Translation Rules

• We present an efficient, linear-time algorithm for parse selection that maximizes

expected f-measure

• We propose a novel method for parse hybridization that recombines context-free

productions instead of constituents

• We show that bilingual word alignments can be used to resolve English syntactic

ambiguity

2.2 Combining Constituent Parsers of English

Combining multiple classifiers has been shown to improve accuracy on a variety

of tasks in NLP (such as POS tagging [99, 1], PP-attachment ambiguity [1], word-

sense disambiguation [22, 21] and machine translation [93]). To the extent that errors

are independently distributed, the combined classifier can achieve a higher accuracy

than the best individual classifier. The output of multiple individual parsers can be

combined in two ways:
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Figure 2.3: Parse with Correct PP-Attachment and Extracted Translation Rules

• Parse Selection: Selecting the best parse from the output of the individual

parsers.

• Parse Hybridization: Constructing the best parse by recombining sub-sentential

components from the output of the individual parsers.

Combining the 1-best output of multiple parsers via parse selection or parse hy-

bridization has been shown to improve f-measure over the best individual parser

[35, 94]. Parse selection is a more conservative way to combine the output of individ-

ual parsers, in that it can do no better than selecting the best individual parse but no

worse than selecting the worst individual parse. Parse hybridization can potentially

create new parses that do not appear in the list of individual parses being combined,

and can create parses that are much better than the best individual parse or much

worse than the worst individual parse. Because parse hybridization explores a larger

space of possible combined parses than parse selection, parse hybridization achieves

a higher f-measure in our oracle experiments (see Table 2.1).
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System wsj-dev wsj-test ce-dev ce-test
Parse Selection: Minimum Bayes Risk

Baseline: Charniak 1-best 90.6 91.5 84.9 84.2
Oracle n=1: 94.1 95.0 90.1 89.4

Parse Hybridization: Constituent Recombination

Baseline: Charniak 1-best 90.6 91.5 84.9 84.2
Oracle n=1: 98.0 98.3 96.3 96.2
Parse Hybridization: Context-Free Production Recombination

Baseline: Charniak 1-best 90.6 91.5 84.9 84.2
Oracle n=1: 95.4 95.9 92.1 92.0

Table 2.1: Oracle Results for Parse Selection and Parse Hybridization

2.2.1 Parse Selection

Parse selection is the problem of selecting the best parse from an n-best list of

candidates. In order to compute a consensus selection over the list of candidate parses,

it is necessary to devise an objective function that measures the extent to which the

parsers “agree” with each candidate parse.

Related Work

Henderson and Brill [35] perform parse selection by maximizing the number of

matched constituents between the selected parse and the set of parses being combined

. Given an n-best list of parses to combine, they first convert each parse into a set

of constituents labelled with their spans. For each parse pi, they then compute the

number of matched constituents |pi ∩ pj | between pi and all parses pj in the n-best

list. The score of each parse pi is then given by
∑

pj
|pi ∩ pj |. They return the parse

with maximum score.

The parse selection approach of Henderson and Brill [35] has two problems. First,

they maximize a metric of parse similarity (the number of matched constituents) that

is different from the standard metric used to evaluate parse quality (PARSEVAL, or

f-measure over labelled constituents) [5]. The f-measure of parse pi with respect
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to a reference parse pj is defined as follows. Each parse is converted into a set of

constituents with a syntactic label and a span indicating the minimum and maximum

indices of words dominated by the subtree rooted at that constituent. Then, f-measure

is computed over these labelled constituents as follows:

f -measure(pi) =
2

1
precision(pi)

+ 1
recall(pi)

where precision(pi) =
|pi∩pj |

|pi|
and recall(pi) =

|pi∩pj |

|pj |

Since f-measure, and not the number of matched constituents, is the metric by which

parse quality is evaluated, it would be preferable to optimize f-measure directly. F-

measure is equivalent to the number of matched constituents divided by the average

number of constituents in pi and pj:

f -measure(pi) =
|pi ∩ pj |
|pi|+|pj|

2

We present an efficient, linear-time algorithm for parse selection that optimizes

this criterion directly.

The second problem with the parse selection approach of Henderson and Brill [35]

is that computing
∑

pj
|pi ∩ pj | for each parse pi requires O(n2) time, where n is the

number of parses in the n-best list, since each parse pi must be compared, pairwise,

against each parse pj. To combat this inefficiency, we present a method for computing

the expected f-measure of each parse pi in time that is linear, rather than quadratic,

in the number of parses.

Our Work

We improve upon existing methods for parse selection in two ways. While the

parse selection method of Henderson and Brill [35] requires O(n2) time to select the

parse with maximum expected number of matched constituents ; here, we present
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an efficient O(n) time algorithm for selecting the parse with maximum expected f-

measure within the Minimum Bayes Risk (MBR) framework. We also generalize this

method to combining k-best outputs from multiple parsers, rather than only 1-best

outputs from multiple parsers.

An Efficient Linear-Time Algorithm for Selecting the Parse with Maximum

Expected F-Measure

If we knew the true f-measure of each parse relative to the gold-standard parse,

we could simply select the parse with the highest f-measure from our n-best list.

In general, of course, we do not know the true f-measure of each parse in our n-

best list when performing parse selection. In the absence of the true f-measure, we

can instead use a Minimum Bayes Risk approach to minimize the expected loss in

f-measure. In the Minimum Bayes Risk framework, although the true gold-standard

parse is unknown, we assume that the individual parses in the n-best list form a

reasonable distribution over possible gold-standard parses.

We compute the expected f-measure of each parse pi as follows:

expected f(pi) =
∑

pj

f(pi, pj) · pr(pj)

where f(pi, pj) is the f-measure of parse pi with respect to parse pj and pr(pj) is

the prior probability of parse pj .

We estimate the probability pr(pj) of each parse pj as follows: pr(pj) = pr(parserk)·

pr(pj|parserk), where parserk is the parser generating pj . We set pr(parserk) accord-

ing to the proportion of sentences in the development set for which the 1-best output

of parserk achieves the highest f-score of any individual parser, breaking ties ran-

domly; this is a measure of the accuracy of each parser relative to the others.
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When n = 1, pr(pj|parserk) = 1 for all pj; when n > 1 we must estimate

pr(pj|parserk), the distribution over parses in the n-best list output by any given

parser. We estimate this distribution using the model score, or log probability, given

by parserk to each entry pj in its n-best list:

pr(pj|parserk) =
eα×scoreparserk

(pj)

∑n

j′=1 eα×scoreparserk
(pj)

We tune α on a development set to maximize f-score. A low value of α creates a

uniform distribution, while a high value concentrates probability mass on the 1-best

entry in the n-best list. In practice, tuning α produces a higher f-score than setting α

to the value that exactly reproduces the individual parser’s probability distribution.

After selecting a value of α for each parser that maximizes f-measure on the

development set, we can then apply our method to an unseen list of n-best parses at

test time to select the parse pi with highest expected f-measure relative to the n-best

list.

Computing exact expected f-measure requires O(n2) operations per sentence,

where n is the number of parses being combined. If f-measure were a linear function

of the constituents appearing in each parse, we could compute expected f-measure in

O(n) time by indexing each parse by the constituents it contains, and then iterating

over constituents rather than iterating over parses to compute f-measure for each

parse [24]. Unfortunately, f-measure is not a linear function of the constituents of a

parse, but precision and recall are. Thus, we can compute expected precision and

expected recall for all parses in the n-best list in O(n) time. Algorithm 2 illustrates

how to compute expected precision in O(n) time, and 3 illustrates how to compute

expected recall in O(n) time.
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Using these exact expected precision and expected recall scores, which can each be

computed in linear time, we can then compute an approximate expected f-measure

as follows:

approximate expected f(pi) = 2×precision(pi)×recall(pi)

( 1
precision(pi)

+ 1
recall(pi)

)

Essentially, our approximation computes the harmonic mean of expected precision and

expected recall, while the exact method computes the expectation of the harmonic

mean of precision and recall. This approximate expected f-score can be computed for

all parses in O(n) time, and in practice, this approximation is very close to the true

expected f-score.
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Algorithm 2: Linear-Time Expected Precision

input : A list P of parses p to combine, and a probability pr(p) associated
with each parse p

output: Expected precision of each parse p in P

for p ∈ P do

expected-precision(p) = 0;
for c ∈ p do

occurrences(c) = ∅;
end

end

for p ∈ P do

for c ∈ p do

occurrences(c) = occurrences(c) ∪ p;
end

end

for c ∈ C do

sum(c)← 0;
for p ∈ occurrences(c) do

sum(c) = sum(c) + pr(p);
end

for p ∈ occurrences(c) do

expected-precision(p) = expected-precision(p) + sum(c);
end

end

for p ∈ P do

expected-precision(p) = expected-precision(p)
|p|

;

return expected-precision(p);

end
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Algorithm 3: Linear-Time Expected Recall

input : A list P of parses p to combine, and a probability pr(p) associated
with each parse p

output: Expected recall of each parse p in P

for p ∈ P do

expected-recall(p) = 0;
for c ∈ p do

occurrences(c) = ∅;
end

end

for p ∈ P do

for c ∈ p do

occurrences(c) = occurrences(c) ∪ p;
end

end

for c ∈ C do

sum(c)← 0;
for p ∈ occurrences(c) do

sum(c) = sum(c) + pr(p)
|p|

;

end

for p ∈ occurrences(c) do

expected-recall(p) = expected-recall(p) + sum(c);
end

end

for p ∈ P do

return expected-recall(p);
end
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Extending Parse Selection from 1-best to k-best Outputs from n Parsers

We extend this method from the 1-best output of multiple parsers to the n-best

output of multiple parsers as follows: we compute the weight of each constituent by

summing pr(parserk) ·pr(pj |parserk) over all parses pj generated by parserk in which

the constituent appears.

2.2.2 Parse Hybridization

Parse hybridization is the problem of recombining sub-sentential components from

an n-best list of candidate parses. While parse selection cannot create any new parses

that do not already appear among the individual parses, parse hybridization can

recombine parts of the individual parse trees to produce an entirely new parse.

Related Work

In addition to their method for parse selection described above, Henderson and

Brill [35] also propose a method for parse hybridization called constituent voting in

which they convert each parse into constituents with syntactic labels and spans, and

weight each constituent by summing pr(parserk) over all parsers k in whose output

the constituent appears. They include all constituents with weight above a threshold

t = n
2
, where n is the number of input parses, in the combined parse.

While the constituent voting scheme of Henderson and Brill [35] performs better

than their parse selection scheme in terms of f-measure of the resulting combined

parse, there are two problems with their approach.

First, because constituent voting is not constrained by a context-free grammar,

it is possible for the combined parse to contain context-free productions that have

not been seen in any of the individual parses. Since the combined parse is evaluated

on the basis of f-measure, which looks only at constituents but not at context-free

50



productions, this property of constituent voting does not negatively impact parse f-

measure, but it can pose a problem for downstream applications that rely upon the

well-formedness of the combined parses. To illustrate, Figures 2.4 and 2.5 contrast

the output of the Charniak parser with the output of constituent recombination on a

sentence from WSJ section 24. Henderson and Brill [35] acknowledge this shortcom-

ing:

In general, [constituent voting] does not ensure that all the productions
in the combined parse are found in the grammars of the member parsers.
There is a guarantee of no crossing brackets but there is no guarantee
that a constituent in the tree has the same children as it had in any
of the [n] original parses. One can trivially create situations in which
strictly binary-branching trees are combined to create a tree with only
the root node and the terminal nodes, a completely flat structure. This
drastic tree manipulation is not appropriate for situations in which we
want to assign particular structures to sentences. For example, we may
have semantic information (e.g. database query operations) associated
with the productions in a grammar. If the parse contains productions
from outside our grammar the machine has no direct method for handling
them (e.g. the resulting database query may be syntactically malformed).

Second, their method produces a parse tree with maximum precision over labelled

constituents; it does not allow the user to tune the tradeoff between precision and

recall of the combined parse. Since precision and recall both affect the f-measure of

the combined parse, it would be preferable to be able to tune this precision-recall

tradeoff.

To allow the user to tune the tradeoff between precision and recall in the com-

bined parse, Sagae and Lavie [94] propose an extension of the constituent voting

scheme called reparsing. In the reparsing framework, rather than simply selecting all

constituents with a weight greater than threshold t = n
2
, they tune t on a develop-

ment set to maximize f-measure. (A high threshold results in high precision, while

a low threshold results in high recall.) They populate a chart with all constituents

whose weight meets the threshold, and use a CKY-style parsing algorithm to find the
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“heaviest” tree, where the weight of a tree is the sum of its constituents’ weights.

Parsing is not constrained by a grammar; any context-free production is permitted.

Thus, this method still suffers from the same problem as [35] in that the combined

parses may contain context-free productions not seen in the individual parsers’ out-

puts. While this failure to preserve the structure of individual parses does not affect

parse f-measure, it may hinder downstream syntax-based applications.

To remedy the problem with constituent recombination wherein the combined

parse may contain context-free productions that have not been seen in any of the

individual parses, we propose a novel method for parse hybridization called context-

free production recombination. In this framework, we convert each parse into a set of

labelled context-free productions (with each constituent annotated with its syntactic

label and span) instead of constituents. We then recombine context-free productions

to produce a combined parse tree. This approach guarantees that no new context-free

productions will be created in the combined parse, and thereby better preserves the

syntactic structures of the individual parses. In the example sentence from WSJ Sec-

tion 24 referenced above, our context-free production recombination method produces

the output shown in Figure 2.6.

Our Work

While constituent recombination [35, 94] gives a significant improvement in f-

score, it has the potential to create context-free productions that have not been seen

in the output of any of the individual parses. To combat this, we recombine context-

free productions instead of constituents, producing trees containing only context-free

productions that have been seen in the individual parsers’ output. We extend these

parser combination methods from 1-best outputs to n-best outputs.

52



Recombining Context-Free Productions Instead of Constituents

To ensure that all context-free productions in the combined parses have been seen

in the individual parsers’ outputs, we recombine context-free productions rather than

constituents. We convert each parse into context-free productions, labelling each con-

stituent in the production with its span and syntactic category and weighting each

production by summing pr(parserk) · pr(pj|parserk) over all parses pj generated by

parserk in which the production appears. We then create a parse forest containing

these context-free productions, and use the Tiburon tree transducer toolkit [73] to

return the heaviest tree (where the weight of a tree is the sum of its context-free

productions’ weights). We optimize f-score by varying the tradeoff between precision

and recall using a derivation length penalty, which we tune on a development set. By

subtracting higher(lower) values of this length penalty from the weight of each pro-

duction, we can encourage the combination method to favor trees with shorter(longer)

derivations and therefore higher precision(recall) at the constituent level.

Extending Parse Hybridization from 1-best to k-best Outputs from n

Parsers

We extend this method from the 1-best output of multiple parsers to the n-best

output of multiple parsers as follows: we compute the weight of each constituent by

summing pr(parserk) ·pr(pj |parserk) over all parses pj generated by parserk in which

the constituent appears.

2.2.3 Methods

Parsing Experiments

Table 2.2 illustrates the data sets used in our parse combination experiments.

All parsers were trained on the standard WSJ training sections (02-21). We eval-
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Figure 2.4: Output of Charniak Parser
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Figure 2.5: Output of Constituent Recombination

uate parse accuracy using two different corpora: the WSJ (sections 24 and 23 are

the development and test sets, respectively), and an excerpt of English text from

the LDC2007T02 Chinese-English parallel corpus [3] (the development and test sets

contain 400 sentences each).

Table 2.3 illustrates the 5 parsers used in our combination experiments and the

f-scores of their 1-best output on our data sets. We use the n-best output of the

Berkeley, Charniak, and Soricut (a re-implementation of the Collins Model 3) parsers,

and the 1-best output of the Bikel and Stanford parsers.

Results of each method of parse combination are shown in Tables 2.4, 2.5, and

2.6. On both test sets, constituent recombination (Table 2.5) achieves the largest

gain in parse f-measure (+1.0 points on WSJ test and +2.3 points on Chinese-English

test), followed by context-free production combination, then parse selection, though

the differences in f-measure among the combination methods are not statistically
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Figure 2.6: Output of Context-Free Production Recombination

Genre Train Tune Test
WSJ train + WSJ 02-21[72] WSJ 24[72] WSJ 23[72]
WSJ tune/test (39,832 sent.) (1346 sent.) (2416 sent.)
WSJ train + WSJ 02-21[72] LDC2007T02[3] excerpt LDC2007T02[3] excerpt
newswire tune/test (39,832 sent.) (400 sent.) (400 sent.)

Table 2.2: Data Sets Used in Parser Combination: Parsing Experiments

significant. Increasing the n-best list size from 1 to 10 improves parse selection and

context-free production recombination, though further increasing n from 10 to 25 or

50 does not, in general, help. These diminishing gains in f-score as n increases reflect

the diminishing gains in f-score of the oracle parse produced by each individual parser

as n increases (Table 2.1). The Chinese-English test set f-measure gets a bigger boost

from combination than the WSJ test set f-score, perhaps because the best individual

parser’s baseline f-score is lower on the out-of-domain data.

Parser
wsj ce

dev test dev test
Berkeley[88] 88.6 89.3 82.9 83.5
Bikel–Collins Model 2[4] 87.0 88.2 81.2 80.6
Charniak[11] 90.6 91.4 84.7 84.1

Soricut–Collins Model 2[97] 87.3 88.4 82.3 82.1
Stanford[44] 85.4 86.4 81.3 80.1

Table 2.3: F-Measure of 1-best Output of Individual Parsers
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Parse Selection: Minimum Bayes Risk

System
wsj-dev wsj-test ce-dev ce-test

P R F P R F P R F P R F
best individual

91.3 89.9 90.6 91.8 91.0 91.4 86.1 83.4 84.7 85.6 82.6 84.1
parser
n=1 91.7 90.5 91.1 92.5 91.8 92.0 87.1 84.6 85.8 86.7 83.7 85.2
n=10 92.1 90.8 91.5 92.4 91.7 92.0 87.9 85.3 86.6 87.7 84.4 86.0

n=25 92.1 90.9 91.5 92.4 91.7 92.0 88.0 85.4 86.7 87.4 84.2 85.7
n=50 92.1 91.0 91.5 92.4 91.7 92.1 88.0 85.3 86.6 87.6 84.3 85.9

Table 2.4: Precision, Recall, and F-score Results from Parse Selection

Parse Hybridization: Constituent Recombination

System
wsj-dev wsj-test ce-dev ce-test

P R F P R F P R F P R F
best individual

91.3 89.9 90.6 91.8 91.0 91.4 86.1 83.4 84.7 85.6 82.6 84.1
parser
n=1 92.5 90.3 91.4 93.0 91.6 92.3 89.2 84.6 86.8 89.1 83.6 86.2
n=10 92.6 90.5 91.5 93.1 91.7 92.4 89.9 84.4 87.1 89.9 83.2 86.4

n=25 92.6 90.5 91.5 93.2 91.7 92.4 89.9 84.4 87.0 89.7 83.4 86.4

n=50 92.6 90.5 91.5 93.1 91.7 92.4 89.9 84.4 87.1 89.7 83.2 86.3

Table 2.5: Precision, Recall, and F-score Results from Constituent Recombination

Parse Hybridization: Context-Free Production Recombination

System
wsj-dev wsj-test ce-dev ce-test

P R F P R F P R F P R F
best individual

91.3 89.9 90.6 91.8 91.0 91.4 86.1 83.4 84.7 85.6 82.6 84.1
parser
n=1 91.7 91.0 91.4 92.1 91.9 92.0 86.9 85.4 86.2 86.2 84.3 85.2
n=10 92.1 90.9 91.5 92.5 91.8 92.2 87.8 85.1 86.4 86.2 84.3 86.1

n=25 92.2 91.0 91.6 92.5 91.8 92.2 87.8 85.1 86.4 87.6 84.6 86.1

n=50 92.1 90.8 91.4 92.4 91.7 92.1 87.6 84.9 86.2 87.7 84.6 86.1

Table 2.6: Precision, Recall, and F-score Results from Context-Free Production Re-
combination
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Syntax-Based Machine Translation Experiments

Train Tune Test 1 Test 2

ara-eng train (small)
ara-eng tune ara-eng test 1 ara-eng test 2

newswire newswire newswire
(170,863 sent.) (1178 sent.) (1298 sent.) (765 sent.)

Table 2.7: Data Sets Used in Parser Combination: Syntax-Based MT Experiments.
Contents of Each Data Set Listed in Appendix A, Tables A.1 and A.2.

To examine the impact of parse quality upon syntax-based machine translation,

we first retrain the Berkeley, Charniak, and Soricut parsers on the concatenation

of the Wall Street Journal Portion of the Penn Treebank [72] and 25,000 manu-

ally parsed sentences taken from the English sides of the following parallel newswire

corpora: the Chinese-English corpus LDC2007T02[3], the Arabic-English corpora

LDC2005E85[51], LDC2006E36[56], LDC2006E82[58], and LDC2006E95[60].

Using the retrained Berkeley, Charniak, and Soricut parsers, we parse the English

side of an Arabic-English parallel corpus (ara-eng train (small))2 We combine the

n-best outputs of these 3 individual parsers using each of the 3 combination methods

described above: MBR parse selection, constituent recombination, and context-free

production recombination. We then train a syntax-based Arabic-English string-to-

tree translation system using the output from each of the individual parsers and each

of the combination methods in turn, tune the MT system parameters using data set

ara-eng tune3, and compare the resulting BLEU scores on two held-out test sets: Test

1 (ara-eng test 1 newswire)4 and Test 2 (ara-eng test 2 newswire)5. Data sets and

sizes are listed in Table 2.7.

Tables 2.8, 2.9, and 2.10 illustrate the results of performing string-to-tree syntax-

based MT experiments using various configurations of the MT system. In Table

2See Appendix A for contents of data set.
3See Appendix A for contents of data set.
4See Appendix A for contents of data set.
5See Appendix A for contents of data set.
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Parser Rules Binarization BLEU score

Dev Test 1 Test 2

Individual Parsers

Berkeley minimal – 51.3 49.1 45.7
Charniak minimal – 50.8 48.8 46.2

Soricut–Collins model 3 minimal – 50.3 47.8 45.1

Combined Parses

MBR minimal – 51.3 49.0 45.9
Constituent minimal – 51.1 48.7 45.9
Recombination
CFG Production minimal – 51.7 49.0 46.3

Recombination

Table 2.8: BLEU Scores Using Parser Combination in Arabic-English Syntax-Based
MT with Minimal Rules and No Binarization

Parser Rules Binarization BLEU score

Dev Test 1 Test 2

Individual Parsers

Berkeley composed head-out 52.7 48.7 45.8
Charniak composed head-out 52.2 49.3 46.9
Soricut–Collins model 3 composed head-out 51.7 48.4 45.3

Combined Parses

MBR composed head-out 51.7 48.6 45.6
Constituent composed head-out 52.0 49.0 47.2
Recombination
CFG Production composed head-out 53.0 49.0 47.9

Recombination

Table 2.9: BLEU Scores Using Parser Combination in Arabic-English Syntax-Based
MT with Composed Rules and Head-Out Binarization
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Parser Rules Binarization BLEU score

Dev Test 1 Test 2

Individual Parsers

Berkeley composed em 51.8 48.6 47.3

Charniak composed em 52.8 49.2 47.3

Soricut–Collins model 3 composed em 51.1 48.1 45.1

Combined Parses

MBR composed em 52.0 48.8 45.8
Constituent composed em 52.0 48.7 46.9
Recombination
CFG Production composed em 52.6 49.7 47.4

Recombination

Table 2.10: BLEU Scores Using Parser Combination in Arabic-English Syntax-Based
MT with Composed Rules and EM Binarization

2.8, we present the results of training a syntax-based string-to-tree MT system using

minimal rules only and no composed rules6, and without binarizing the parse trees

after combination.7 In Table 2.9, we present the results of an MT experiment using

composed rules and head-out binarization. In Table 2.10, we use composed rules and

em-binarization.8.

In all configurations tested, our method for parse hybridization by recombining

context-free productions achieves the highest BLEU score of all three parse combi-

nation methods. Our method achieves a BLEU score that is equivalent to or better

than that achieved by the best baseline parser (Berkeley or Charniak) in all configu-

rations tested, though the gains in BLEU score due to parser combination are small

(+0.1 points relative to the Berkeley parser using minimal rules and no binariza-

tion, +1.0 points relative to the Charniak parser using composed rules and head-out

binarization, and +0.1 points relative to the Berkeley parser using composed rules

6For more details about minimal and composed rules, please refer to Chapter 1, Section 1.2.5.
7For more details about parse binarization for syntax-based machine translation, please refer to

Chapter 1, Section 1.2.4.
8This configuration represents the one used to produced state-of-the-art MT results, though it

is possible that in order to achieve the best possible results with em-binarization, it is necessary to
use a larger training corpus than the one used in our experiments.
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and em-binarization. From these results, we conclude that, while the constituent

recombination method of Henderson and Brill [35] and Sagae and Lavie [94] achieves

the highest parse f-measure, our method for parse combination by context-free pro-

duction recombination outperforms constituent recombination when used to train a

downstream syntax-based machine translation system.

While the results of our parse combination experiments show that both parse

selection and parse hybridization improve the f-measure of the combined parse rela-

tive to the best individual parse, the results of our syntax-based machine translation

experiments show an inconclusive relationship between parse f-measure and BLEU

score. The best performing method for parse combination in terms of parse f-measure

was constituent recombination, while the best performing method in terms of BLEU

score was context-free production recombination. None of the methods for parse

combination, however, led to a consistent increase in BLEU score across all the sys-

tem configurations we explored. Thus, we conclude that, while previous researchers

have found that degrading parse quality results in a degradation in BLEU score, the

converse is not necessarily true—improving parse quality over a state-of-the-art con-

stituent parser does not necessarily improve BLEU score, at least for the string-to-tree

syntax-based system used in our experiments.

2.2.4 Summary of Contributions

In our work on parsing combination, we have presented:

• An efficient, linear-time algorithm for selecting the parse with maximum ex-

pected f-measure from an n-best list of candidates, using a Minimum Bayes

Risk approach

• A novel method for parse hybridization that recombines context-free produc-

tions, instead of constituents, thereby better preserving the structure of the
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individual parsers and producing better-quality translations in a downstream

syntax-based MT system

In the next section, we address an alternative way to improve the accuracy of

a state-of-the art constituent parser: incorporating bilingual word alignments as an

additional source of knowledge that can be used by the parser to resolve syntactic

ambiguity.

2.3 Using Bilingual Word Alignments to Resolve

English Syntactic Ambiguity

Frequent sources of error for English parsers include PP-attachment ambiguity,

NP-bracketing ambiguity, and coordination ambiguity. Not all ambiguities are pre-

served across languages. We examine a common type of ambiguity in English that is

not preserved in Chinese: given a sequence “VP NP PP”, should the PP be attached

to the main verb, or to the object noun phrase? We present a discriminative method

for exploiting bilingual Chinese-English word alignments to resolve this ambiguity

in English. On a held-out test set of Chinese-English parallel sentences, our method

achieves 86.3% accuracy on this PP-attachment disambiguation task, an improvement

of 4% over the accuracy of the baseline Collins parser (82.3%).

An example of ambiguous PP-attachment in English is shown in Figure 2.7: the

PP “from reporters” can modify the VP “answered” or the NP “questions”.

61



VP

VP

answered

NP

NP

questions

PP

IN

from

NP

reporters

VP

VP

answered

NP

questions

PP

IN

from

NP

reporters

NP-attachment VP-attachment
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Figure 2.8: Resolving PP-attachment ambiguity using Chinese-English word align-
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As long as syntactic ambiguities are not preserved across languages, we can use

bilingual word alignments to disambiguate the construction. For example, in Chi-

nese, PP’s generally appear directly before the head that they modify. Thus, PP-

attachment ambiguity is not preserved from English to Chinese. Given the bilingual

word alignments shown in Figure 2.8, we can deduce that the ordering of constituents

on the Chinese side is “VP PP NP”, indicating that the PP modifies the NP in Chi-

nese, and presumably therefore in English as well.

2.3.1 Related Work

PP-Attachment Disambiguation

Most previous work in PP-attachment disambiguation for English, whether unsu-

pervised [36, 91] or supervised [6, 20], has focused on monolingual information such as

relationships among the lexical heads of the VP (“answered”), NP (“questions”), and

PP (“from”) constituents, as well as the lexical head of the NP dominated by the PP

(“reporters”). The statistical parsers of Charniak [10] and Collins [17] implement a

variety of monolingual lexical and structural features to resolve syntactic ambiguities

while constructing parse trees.

In contrast to these approaches, our approach uses bilingual word alignments to

resolve PP-attachment ambiguity in English. In this respect, our approach is simi-

lar to that of Schwartz et al. [95], who leverage Japanese-English parallel bitext to

improve the resolution of PP-attachment ambiguity on monolingual English text. In

keeping with the approaches of Hindle and Rooth [36] and [91], Schwartz et al. [95]

estimate the probability of each possible attachment decision as follows: they first

identify unambiguous instances of PP-attachment in English text, then compute the

relative frequency of each attachment decision using these instances, conditioned on

the verbs, nouns, and prepositions (or some subset thereof) appearing in the ambigu-

ous construction. They subsequently use these statistics, computed over unambiguous
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instances, to estimate the probability of a PP attaching to an NP or VP in unseen

(potentially ambiguous) English text.

Schwartz et al. [95] differs from the other unsupervised approaches in that the au-

thors use bilingual information to identify unambiguous instances of PP-attachment.

Specifically, they exploit the fact that PP-attachment is strictly unambiguous in

Japanese by parsing both sides of a Japanese-English parallel bitext into LF, aligning

nodes in the LF, and using the PP-attachment decision dictated by the Japanese

side to infer the correct attachment decision on the English side. The authors eval-

uate their approach in two MT applications: English-Japanese and English-Spanish

translation. They compare against a baseline method of PP-attachment ambiguity

resolution that does not make use of the relative frequency statistics collected from the

bilingual Japanese-English corpus. Their method improves Japanese-English transla-

tion quality but decreases Spanish-English translation quality, as measured by human

evaluation.

Our work differs from that of Schwartz et al. [95] in several ways. First, because

they evaluate their PP-attachment method only indirectly (by measuring its impact

on English-to-Japanese and English-to-Spanish MT tasks), and not directly (by mea-

suring the improvement in accuracy on the PP-attachment task), it is difficult to con-

clude from their results how effective their method is at improving PP-attachment

accuracy (especially since their results in MT were mixed, with English-Japanese

translation quality improving but English-Spanish translation quality worsening). In

contrast, we evaluate our method directly on a PP-attachment task, and obtain a sta-

tistically significant gain of 4.0% in accuracy over the baseline Collins parser. Second,

their method is unsupervised but requires a large parallel English-Japanese bitext in

order to obtain reliable statistics of relative frequency for each set of lexical items; in

contrast, our method is supervised but requires only a few hundred sentences of par-

allel English-Chinese bitext with manual parses on the English side during training.
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Finally, Schwartz et al. [95] implement hard cutoffs based on lexical associations,

while we use a variety of features whose weights are learned discriminatively; thus

our method appears to be more easily applicable to other problems in monolingual

syntactic ambiguity resolution besides PP-attachment.

Bilingual Corpora for Monolingual Analysis

Yarowsky and Ngai [105] use bilingual word alignments to project part-of-speech

taggers and NP-bracketers across languages; Hwa et al. [40, 39] extend this work

to project syntactic dependency analyses across languages. Our work is similar to

these approaches in that we use bilingual word alignments to induce a syntactic

correspondence between languages; however, our focus is not on inducing analyses in

the target language of the projection. Instead, we induce a syntactic correspondence

from the source to the target language, then use that projection to resolve ambiguities

in the syntactic analysis on the source side.

Burkett and Klein [9] parse both sides of a parallel English-Chinese bitext to

generate a k-best list of English parses and a k-best list of Chinese parses, then

rerank the k×k-best list of English/Chinese parse tree pairs using the score assigned

to each tree by the baseline parser; features of the word alignment; and features

measuring structural correspondence between the English and Chinese trees in each

pair. They obtain improvements in monolingual parse accuracy for both English and

Chinese relative to state-of-the-art baseline English and Chinese parsers, and they

obtain gains in translation quality when training a syntax-based MT system using

the reranked trees. Our approach is different from that of Burkett and Klein [9] in

that we do not rerank a k-best list of parses; instead, we restrict ourselves to repairing

common sources of attachment errors in English parses (specifically, PP-attachment).
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2.3.2 Our Work

The main contribution of this work is the use of Chinese-English bilingual word

alignments to resolve PP-attachment ambiguity in English. Specifically, we address

the following binary classification problem: given a “VP NP PP” sequence in English,

should the PP be attached to the VP or the NP? To answer this question, we consider

all instances of “VP NP PP” sequences in a bilingual corpus for which we have

automatic Chinese-English word alignments, automatic English parses, and gold-

standard English parses. In the following sections, we discuss two instances of PP-

attachment ambiguity and present features of the automatic word alignment that can

be used to determine whether the PP should be attached to the VP or the NP. We

then describe our procedure for training a perceptron classifier using these features,

and compare the accuracy of our classifier on this PP-attachment task against the

accuracy of the PP-attachment decisions made by the baseline Collins parser.

2.3.3 Bilingual Alignments and PP-attachment Ambiguity

Figure 2.7 illustrates a case where the correct attachment site of the PP (“from

reporters”) is the NP (“questions”). To determine the correct attachment site for the

English PP using the word alignments as a guide, we proceed as follows:

• Project tags: Wherever there is a VP NP PP sequence in the English parse

tree, each node dominates a span of English words, and each English word is

aligned with zero or more Chinese words. Label each of those aligned Chinese

words with the category of the associated English node: “VP”, “NP”, or “PP”.

Figure 2.8 gives an example; the resulting projected tag sequence on the Chinese

side is “VP VP PP PP NP”.

• Merge identical tags: Merge adjacent labels in the Chinese tag sequence if

they are identical, and ignore any words that have not received a projected
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tag. In Figure 2.8, the final merged tag sequence is “VP PP NP”. If a Chinese

word receives more than one projected English tag, create a new hybrid tag

combining the English tags for that word (for example, if the English VP and

NP project onto the same Chinese word, that word receives a tag of “VP/NP”.)

• Determine Chinese PP-attachment site: As a general rule, PP’s in Chinese

modify the head directly following them, so the Chinese tag sequence “VP PP

NP” implies NP-attachment for the PP. We use a perceptron to learn such rules,

predicting NP- versus VP- attachment.

• Deduce English PP-attachment site: Assuming that the PP-attachment

dependency relation is preserved across languages, we can infer that the English

PP should most likely be attached to the English NP.

Figure 2.9 illustrates a case where the correct attachment of the PP is to the main

verb instead of to the object noun. In this case, tag projection proceeds as above;

the resulting projected Chinese tag sequence is “NP PP VP”, thus indicating that

the PP modifies the VP (Figure 2.10).

There are two stages involved in disambiguating PP-attachment correctly. First,

a parser must correctly label and bracket the main VP, object NP, and PP. Second,

the parser must correctly choose an NP or VP attachment site for the PP. Since the

latter problem is the focus of this work, we limit the scope of our classification task

to those instances where the base VP, NP, and PP constituents have been labelled

and bracketed correctly by the automatic parser. 9

In order to identify whether these constituents have been bracketed correctly, we

refer to the gold standard parses. We then put the gold-standard parses aside, and

return to the following problem: given a sequence “VP NP PP” that the automatic

9Note that relaxing this restriction would affect our absolute performance numbers, but it would
have no effect on our performance relative to the Collins parser: the Collins parser by definition fails
on any case we have excluded.
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parser has correctly labelled and bracketed, build a classifier that uses features of

the automatic parse and the automatic bilingual word alignment to predict whether

the PP should be attached to the VP or to the NP. To measure the accuracy of our

classifier, we compute the percentage of correct attachment decisions, and compare

this against the percentage of correct attachment decisions made by the baseline

automatic parser.

2.3.4 Methods

Data Sets

Our training and test sets consist of bilingual Chinese-English sentence pairs that

have been automatically parsed on the English side using the Collins parser [17],

manually parsed on the English side to produce the gold-standard parses, and auto-

matically word-aligned using GIZA++ with refined symmetrization [85]. GIZA++ is

trained on 10M sentence pairs, but the total size of our PP-attachment data sets is 800

sentence pairs excerpted from LDC2007T02[3], from which we extract 300 instances of

potentially ambiguous PP-attachment. We train and test our PP-attachment binary

classifier on these 300 instances using 10-fold cross-validation.

Features

In addition to the feature collinsParserAttachment, which is the attachment

decision made by the baseline Collins parser, our feature set includes two types of

features: lexical and alignment-based.

Lexical Features

• englishPrepositionHead: the lexical head of the English PP (In Figure 2.10,

this is “in”.)
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• projectedChinesePrepositionHead: the Chinese word or words aligned to

the lexical head of the English PP.

Alignment-Based Features

• projectedChineseTagSequence: the sequence of part-of-speech tags after

projection from English to Chinese (In Figure 2.10, this is “NP PP VP”.)

• projectedChineseTagSeqLength: the number of tokens in the sequence of

part-of-speech tags after projection from English to Chinese (In Figure 2.10,

this is 3.)

• initialChineseTag: the initial tag in the projected Chinese sequence

• projectedChineseTagAfterFirstPP: the tag immediately following the first

occurrence of a PP in the projected Chinese sequence (In Figure 2.10, this is

“VP”.)

• projectedFinalChineseTag: the final tag in the projected Chinese sequence

• splitNP: whether or not the English NP tag was split into discontinuous tags

on the Chinese side during projection

• splitPP: whether or not the English PP tag was split into discontinuous tags

on the Chinese side during projection

• splitVP: whether or not the English VP tag was split into discontinuous tags

on the Chinese side during projection

Discriminative Training

We train a perceptron for binary classification [92] to solve the PP-attachment

problem using the features described in Section 2.3.4. We initialize the weights w of
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all features h to 0, and the bias b to 0. We make multiple passes over the training

data. For each sentence pair in the training data, we represent the sentence pair as

a vector x, where xi is the value of feature hi for the sentence pair. Our predicted

attachment yhyp is NP-attachment if w·x+b > 0 and VP-attachment otherwise. If our

predicted attachment yhyp matches the gold-standard attachment decision ygold, then

the example is correctly classified and we proceed to the next example. Otherwise, the

example is incorrectly classified and we update the weights so that w′ = w + ygold×x

and the bias so that b′ = b + ygold. We stop training when the number of incorrect

classifications no longer decreases on the training set. After training, we return the

average weight vector over all iterations of training, following Collins [19].

2.3.5 Results

After training a binary perceptron classifier, we apply our classifier during test-

ing to instances where the automatic parser has correctly identified “VP NP PP”

sequences, and we predict the attachment site of the PP using the features described

in Section 2.3.4 and the learned weights.

Due to the limited size of our data set (we use 800 sentence pairs of parallel

Chinese-English text), we train and test our classifier using 10-fold cross-validation.

We extract 300 instances of “VP NP PP” sequences from 800 sentences of parallel

data, and divide this set of 300 instances into 10 sets of 30 instances each. We train

on 9 of the sets, and measure accuracy on the held-out set. We then average the test

set accuracy over all 10 iterations of cross-validation.

We measure the accuracy of our method by classifying each instance of “VP NP

PP” appearing in the test set as either attachment to the NP or attachment to the

VP, and compare the accuracy of our method against the Collins parser baseline

(Table 2.12). Our method achieves an average accuracy of 86.3% on held-out test

sets in 10-fold cross validation, compared to 82.3% for the baseline Collins parser
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Data Total
Correct Incorrect %Correct

Set Instances

train 152 128 24 84.2%
test1 71 55 16 77.5%
test2 59 49 10 83.1%

Table 2.11: PP-Attachment Accuracy of Baseline Collins Parser

Method % Correct PP-Attachment

Collins parser 82.3%
Perceptron classifier 86.3%

Table 2.12: PP-attachment Accuracy of Perceptron Classifier vs. Baseline Collins
Parser

(Table 2.11). This improvement in accuracy of 4% is statistically significant under a

paired t-test (p=0.015).

To determine the relative contribution of each type of feature to the accuracy

of the classifier, we perform feature ablation: we remove each type of feature from

consideration in turn, and measure the impact upon classifier accuracy relative to

the accuracy achieved using all feature types. Table 2.13 illustrates the impact of

removing each feature type upon the classifier accuracy; features are listed in the

order of greatest impact upon classifier accuracy.

2.3.6 Conclusion

In our work on combining constituent parsers, we have explored existing methods

for parser combination and examined their impact upon parse quality and translation

quality. We have presented a novel algorithm for parse hybridization by recombining

context-free productions.

While an existing method (recombining constituents) results in the highest parse f-

measure of the methods explored, our method (recombining context-free productions)

produces trees which better preserve the syntactic structure of the individual parses,
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Features % Accuracy

All Features 86.3

-projectedChinesePrepositionHead 84.7
-splitVP 85.3
-splitNP 85.3
-splitPP 85.3
-englishPrepositionHead 85.7
-finalChineseTag 85.7
-projectedChineseTagAfterFirstPP 86.0
-initialChineseTag 86.0
-projectedChineseTagSequence 86.3
-projectedChineseTagSeqLength 86.3

Table 2.13: Feature Ablation: Accuracy of PP-Attachment Classifier with Individual
Features Removed

thereby achieving higher BLEU scores in our Arabic-English syntax-based translation

experiments. We have also presented an efficient linear-time algorithm for selecting

the parse with maximum expected f-measure.

In our work on resolving structural ambiguities in English, we have presented a

method for English PP-attachment disambiguation using automatic bilingual Chinese-

English word alignments, achieving an improvement in accuracy of 4.0% over the

baseline statistical parser. Our results validate our hypothesis that bilingual informa-

tion can help to resolve monolingual ambiguities as long as the ambiguities are not

preserved across languages.

2.4 Summary of Contributions

In this chapter, we have presented two ways to improve upon the accuracy of a

state-of-the-art constituent parser: first, by combining the output of multiple parsers,

and second, by incorporating bilingual word alignments as a feature in resolving

syntactic ambiguity. The primary contributions of this work are the following:
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• An efficient, linear-time algorithm for selecting the parse with maximum ex-

pected f-measure from an n-best list of candidates, using a Minimum Bayes

Risk approach

• A novel method for parse hybridization that recombines context-free produc-

tions, instead of constituents, producing better BLEU scores in a downstream

syntax-based MT application

• A result validating the hypothesis that bilingual Chinese-English word align-

ments can be used to resolve a common source of syntactic ambiguity in English
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Chapter 3

Improving Word Alignment Accuracy Using

Parsing

Word alignments that violate syntactic correspondences interfere with the ex-

traction of string-to-tree transducer rules for syntax-based machine translation. We

present an algorithm for identifying and deleting such word alignment links. We

train a state-of-the-art syntax-based machine translation system on these corrected

alignments, and obtain gains in both alignment quality and translation quality in

Chinese-English and Arabic-English translation experiments relative to a baseline

system trained on GIZA++ union alignments.

3.1 Background

Automatic word alignment typically constitutes the first stage of the statistical

machine translation pipeline. GIZA++ [85], an implementation of the IBM [8] and

HMM [101] alignment models, is the most widely-used alignment system. Because of

an asymmetry in the IBM alignment models, one-to-many alignments are permitted

in the target-to-source direction but not in the source-to-target direction. To remedy

this asymmetry, the alignment models are run twice, once in the source-to-target and
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once in the target-to-source directions, and the two sets of unidirectional alignments

are combined, or symmetrized, using heuristics. GIZA++ alignments with union

symmetrization have been used in the state-of-the-art syntax-based statistical MT

system described in Galley et al. [33] and in the hierarchical phrase-based system

Hiero [14]. GIZA++ alignments with refined symmetrization have been used in state-

of-the-art phrase-based statistical MT systems [86]; variations on the refined heuristic

have been used by [46] (diag and diag-and) and by the phrase-based system Moses

(grow-diag-final) [45].

GIZA++ union alignments have high recall but low precision, while intersection

or refined alignments have high precision but low recall.1 There are two natural

approaches to improving upon existing GIZA++ alignments, then: deleting links

from union alignments to improve precision, or adding links to intersection or refined

alignments to improve recall. In this work, we delete links from GIZA++ union

alignments to improve precision.

The low precision of GIZA++ union alignments poses a particular problem for

syntax-based rule extraction algorithms [90, 33, 38, 66]: if an alignment link violate

syntactic correspondences between the source and target languages, it forces the rule

extraction algorithm to extract rules that are large in size, few in number, and poor in

generalization ability. Figure 3.1 illustrates this problem: the dotted line represents an

incorrect link in the GIZA++ union alignment. Using the rule extraction algorithm

described in Galley et al. [34], we extract the rules shown in the leftmost column

(R1–R4). Rule R1 is large and unlikely to generalize well. If we delete the incorrect

link in Figure 3.1, we can extract the rules shown in the rightmost column (R2–R9):

Rule R1, the largest rule from the initial set, disappears, and several smaller, more

modular rules (R5–R9) replace it.

1For a complete discussion of alignment symmetrization heuristics, including union, intersection,
and refined, refer to Chapter 1, Section 1.2.3.
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Figure 3.1: Impact of incorrect alignment links upon extraction of tree-to-string trans-
ducer rules. Using all alignment links yields rules R1–R4. Deleting the dotted align-
ment link yields rules R2-R4 as before; rule R9 instead of rule R1; and additional
rules R5-R8.
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In this work, we present a supervised algorithm that uses these two features of

the extracted syntax-based translation rules (size of largest rule and total number

of rules), as well as a handful of structural and lexical features, to automatically

identify and delete incorrect links from GIZA++ union alignments. We show that

link deletion improves alignment quality and translation quality in Chinese-English

and Arabic-English MT, relative to a strong baseline. Our link deletion algorithm is

easy to implement, runs quickly, and has been used by a top-scoring MT system in

the Chinese newswire track of the 2008 NIST evaluation. The primary contributions

of this work are as follows:

• We present a supervised algorithm for identifying and deleting incorrect links

from an existing alignment, using syntactic features

• We demonstrate that link deletion improves alignment quality and translation

quality

• We show that link deletion is easy to implement, runs quickly, and requires only

100-200 sentences of training data

3.1.1 Related Work

Discriminative Methods for Word Alignment

In recent years, discriminative methods for alignment have rivalled and in some

cases surpassed the accuracy of unsupervised methods [65, 42, 98, 78, 47, 2, 31].

However, except for Fraser and Marcu [31], none of these advances in alignment

quality has improved the translation quality of a state-of-the-art system. We use a

discriminatively trained model to identify and delete incorrect links, and demonstrate

that these gains in alignment quality lead to gains in translation quality in a state-of-

the-art syntax-based MT system. In contrast to the semi-supervised LEAF alignment

algorithm of Fraser and Marcu [31], which requires 1,500-2,000 CPU days per iteration
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to align 8.4M Chinese-English sentences (anonymous, p.c.), link deletion requires only

450 CPU hours to re-align such a corpus (after initial alignment by GIZA++, which

requires 20-24 CPU days).

Syntax-Based Word Alignment

Several recent works incorporate syntactic features into alignment. May and

Knight [74] use syntactic constraints to re-align a parallel corpus that has been

aligned by GIZA++ as follows: they extract string-to-tree transducer rules from

the corpus, the target parse trees, and the alignment; discard the initial alignment;

use the extracted rules to construct a forest of possible string-to-tree derivations for

each string/tree pair in the corpus; use EM (expectation-maximization) [23] to select

the Viterbi derivation tree for each pair; and finally, induce a new alignment from the

Viterbi derivations, using the re-aligned corpus to train a syntax-based MT system.

May and Knight [74] differs from our approach in two ways: first, the set of possible

re-alignments they consider for each sentence pair is limited by the initial GIZA++

alignments seen over the training corpus, while we consider all alignments that can

be reached by deleting links from the initial GIZA++ alignment for that sentence

pair. Second, May and Knight [74] use a time-intensive training algorithm to select

the best re-alignment for each sentence pair, while we use a fast greedy search to

determine which links to delete; in contrast to May and Knight [74], who require 400

CPU hours to re-align 330k Chinese-English sentence pairs (anonymous, p.c.), link

deletion requires only 18 CPU hours to re-align such a corpus.

Lopez and Resnik [69] and DeNero and Klein [25] modify the distortion model of

the HMM alignment model [101] to reflect tree distance rather than string distance;

Cherry and Lin [12] modify an ITG aligner by introducing a penalty for induced

parses that violate syntactic bracketing constraints. Similarly to these approaches,
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we use syntactic bracketing to constrain alignment, but our work extends beyond

improving alignment quality to improve translation quality as well.

3.2 Methods

We propose an algorithm to re-align a parallel bitext that has been aligned by

GIZA++ (IBM Model 4), then symmetrized using the union heuristic. We then train

a syntax-based translation system on the re-aligned bitext, and evaluate whether the

re-aligned bitext yields a better translation model than a baseline system trained on

the GIZA++ union aligned bitext.

3.2.1 Link Deletion Algorithm

Our algorithm for re-alignment (shown in Algorithm 4) proceeds as follows. We

make a single pass over the corpus. For each sentence pair, we initialize the alignment

A = Ainitial (the GIZA++ union alignment for that sentence pair). We represent the

score of A as a weighted linear combination of features hi of the alignment A, the

target parse tree parse(e) (a phrase-structure syntactic representation of e), and the

source string f :

score(A) = λ · h(A, parse(e), f)

We define a branch of links to be a contiguous 1-to-many alignment. In Figure 3.1,

the 1-to-many alignment formed by {ýýý)))-its, ýýý)))- own,ýýý)))-country} constitutes

a branch, but the 1-to-many alignment formed by {ñññ���-starts,ñññ���-out,ñññ���-needs}

does not, since the English words “starts, “out, and “needs” to which the foreign

word ñññ��� is aligned are not contiguous in the English sentence; instead, the words

“from the”, which are not aligned to ñññ���, intervene between “out” and “needs”,

creating a discontinuity on the English side.
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We define two alignments, A and A′, to be neighbors if they differ only by the

deletion of a link or branch of links. We consider all alignments A′ in the neighborhood

of A, greedily deleting the link l or branch of links b that maximizes the score of the

resulting alignment A′ = A \ l or A′ = A \ b. We delete links until no further increase

in the score of A by deleting another link or branch of links is possible. While using

a dynamic programming algorithm would likely improve search efficiency and allow

link deletion to find an optimal solution, in practice, the greedy search runs quickly,

and improves alignment quality.

3.2.2 Features

In this section, we describe the features hi(A, parse(e), f) used to score each align-

ment A.

Syntactic Features

We use two features of the string-to-tree transducer rules extracted from A,

parse(e), and f according to the rule extraction algorithm described in Galley et

al. [34]:

• ruleCount: Total number of rules extracted from A, parse(e), and f . As Fig-

ure 3.1 illustrates, incorrect links violating syntactic brackets tend to decrease

ruleCount; ruleCount increases from 4 to 8 after deleting the incorrect link.

• sizeOfLargestRule: We define an internal node to be any node in the target

parse tree that is not a terminal node. We measure the size of a target parse

tree by counting the total number of internal nodes it contains. The feature

sizeOfLargestRule measure the size of the single largest rule extracted from

A, parse(e), and f . In Figure 3.1, the largest rule in the leftmost column is

R1, which has a total of 9 internal nodes: VP, PRT, PP, NP, NP, VBZ, RP,
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Algorithm 4: Link Deletion Algorithm

input : An initial alignment Ainitial from which to delete links; an
alignment Aprotected ⊆ Ainitial specifying which links in Ainitial to
protect from deletion

output: An alignment Afinal, where Afinal ⊆ Ainitial and Afinal ⊇ Aprotected;
a target parse parse(e); and a source string f

A = Ainitial;
score(A) = λ · h(A, parse(e), f);
neighbors(A) = FindNeighbors(A);
while neighbors(A) 6= ∅ do

for A′ ∈ neighbors(A) do

score(A′) = λ · h(A′, parse(e), f);
end

Â = arg maxA′∈neighbors(A) score(A′)

if score(Â) > score(A) then

A = Â;
neighbors(A) = FindNeighbors(A);

end

else

return A;
end

end

FindNeighbors(A)
neighbors(A) = ∅;
for l ∈ A do

A′ ← A \ l;
neighbors(A) = neighbors(A) ∪A′;

end

foreach branch of links b ∈ A do

A′ ← A \ b;
neighbors(A) = neighbors(A) ∪A′;

endfch

return neighbors(A);
end
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DT, and NNS. The largest rule in the rightmost column is R9, which contains 4

internal nodes: VP, VBZ, PRT, and RP. Thus, the value of sizeOfLargestRule

decreases from 9 to 4 after the deletion of the incorrect link ñññ���- needs.

Structural Features

• wordsUnaligned: Total number of unaligned words. In Figure 3.1, 2 English

words (“the”, “of”) and 0 Chinese words are unaligned, so the value of this

feature is 2.

• 1-to-many Links: Total number of links for which one word is aligned to

multiple words, in either direction. In Figure 3.1, the links {ñññ���-starts,ñññ���-out,ñññ���-needs} represent a 1-to-many alignment. 1-to-many links appear

more frequently in GIZA++ union alignments than in gold alignments, and

are therefore good candidates for deletion. The category of 1-to-many links

is further subdivided, depending on the degree of contiguity that each link

exhibits with the other links participating in the 1-to-many link. This feature

is motivated by the observation that, in a manually aligned Chinese-English

corpus, 82% of the Chinese words that are aligned to multiple English words

are aligned to a contiguous block of English words; similarly, 88% of the English

words that are aligned to multiple Chinese words are aligned to a contiguous

block of Chinese words [26]. Thus, if a Chinese word is correctly aligned to

multiple English words, those English words are likely to be adjacent to each

other, and if an English word is correctly aligned to multiple Chinese words,

those Chinese words are likely to be adjacent to each other. Each link in a

1-to-many alignment can have 0, 1, or 2 adjacent links. For example, consider

the 1-to-many alignment in Figure 3.1 between the Chinese word ñññ��� and the

English words “starts”, “out”, and “needs”:
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– zeroAdjacentLinks: In Figure 3.1, the link ñññ���-needs has 0 adjacent

links.

– oneAdjacentLink: In Figure 3.1, the linksñññ���-starts andñññ���-out each

have 1 adjacent link—namely, each other.

– twoAdjacentLinks: In Figure 3.1, the link ýýý)))-own has 2 adjacent

links, namely ýýý)))-it and ýýý)))-country.

Lexical Features

• highestLexProbRank: A link ei-fj is “max-probable from ei to fj” if p(fj|ei) >

p(fj′|ei) for all alternative words fj′ with which ei is aligned in Ainitial. In Figure

3.1, it happens that p(������ |needs) > p(ñññ���|needs), so ������-needs is max-

probable for “needs”. The definition of “max-probable from fj to ei” is analo-

gous, and a link is max-probable (nondirectionally) if it is max-probable in either

direction. The value of highestLexProbRank is the total number of max-

probable links. The conditional lexical probabilities p(ei|fj) and p(fj|ei) are es-

timated using frequencies of aligned word pairs in the high-precision GIZA++

intersection alignments for the training corpus.

History Features

In addition to the above syntactic, structural, and lexical features of A, we also

incorporate two features of the link deletion history itself into Score(A):

• linksDeleted: Total number of links deleted from Ainitial thus far. At each

iteration, either a link or a branch of links is deleted. This feature serves as a

constant cost function per link deleted.
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• stepsTaken: Total number of iterations thus far in the search; at each iteration,

either a link or a branch is deleted. This feature serves as a constant cost

function per step taken during link deletion.

3.2.3 Constraints

In addition to the features described in Section 3.2.2, we also introduce two fixed

constraints upon each alignment.

Protecting High-Precision Links from Deletion

GIZA++ refined links have higher precision than union links. For example, on a

400-sentence-pair Chinese-English data set, GIZA++ union alignments have a pre-

cision of 77.3 while GIZA++ refined alignments have a precision of 85.3. Because

refined alignment links have higher precision and are therefore more likely to be cor-

rect than union links which are not in the refined set, we do not consider any refined

links for deletion.

Given the higher precision of refined alignment links as compared to union links,

a natural question to ask is: why not train a syntax-based MT system on the refined

links instead of the union links? The problem is that, while refined links have higher

precision than union links, they also suffer from lower recall. Because the refined

links are a subset of the union links, they are, by definition, less dense. This sparsity

allows rule extraction to extract many more rules from refined links than from union

links. Unfortunately, these additional rules tend to be incorrect rules (i.e. rules

that do not appear in the gold set) more often than not, resulting in a higher rule

recall but lower rule precision when using refined alignment links. To quantify the

difference in rule precision, recall, and f-measure between the rules extracted from

GIZA++ union and refined alignments, we compare the rules extracted from each

alignment on a set of 400 Chinese-English sentences. We find that GIZA++ union
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alignments have higher rule precision (50.5) than GIZA++ refined alignments (44.2),

while GIZA++ refined alignments have higher rule recall (54.1) than GIZA++ union

alignments (44.2) (Table 3.4). To see how GIZA++ refined alignments compare to

GIZA++ union alignments for syntax-based translation, we compare systems trained

on each set of alignments for a Chinese-English translation task.2 Union alignments

result in a test set BLEU score of 41.2, as compared to only 37.0 for refined. Thus,

in this work, we seek a set of alignment links that is a subset of the union set but a

superset of the refined set, hoping to improve upon the precision of union links while

avoiding the drop in recall suffered by refined links.

Deleting Links Between Common English-Chinese Word Pairs

In our Chinese-English corpora, the 10 most common English words (excluding

punctuation marks) include {a,in,to,of,and,the}, while the 10 most common Chinese

words include {êêê,444,óóó,ZZZ,{{{}. Of these, {a,and,the} and {êêê,{{{} have no explicit

translational equivalent in the other language. These words are aligned with each

other frequently (and erroneously) by GIZA++ union, but rarely in the gold standard

alignment. We delete all links in the set {a, an, the} × {{{{, êêê} from Ainitial as a

preprocessing step. The direct impact upon alignment f-measure of deleting these

links is small; on Chinese-English Data Set A, the f-measure of the baseline GIZA++

union alignments on the test set increases from 63.4 to 63.8 after deleting these links,

while the remaining increase in f-measure from 63.8 to 75.1 (shown in Table 3.3) is

due to the link deletion algorithm itself.

3.2.4 Discriminative Training Using Averaged Perceptron

We set the feature weights λ using a modified version of averaged perceptron learn-

ing with structured outputs [19]. The training algorithm is described in Algorithm 5.

2Chinese-English task A, described in Section 3.3.
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Following Moore [77], we initialize the value of our expected most informative feature

(ruleCount) to 1.0, and initialize all other feature weights to 0. During each training

epoch, or pass over the discriminative training set, we “decode” each sentence pair

by greedily deleting links from Ainitial in order to maximize the score of the resulting

alignment using the current settings of λ.

We construct a set of candidate alignments Acandidates for use in reranking as

follows. Starting with A = Ainitial, we iteratively explore all alignments A′ in the

neighborhood of A, adding each neighbor to Acandidates, then selecting the neighbor

that maximizes Score(A′). When it is no longer possible to increase Score(A) by

deleting any links, link deletion concludes and returns the highest-scoring alignment,

Apredicted.

In general, Agold /∈ Acandidates; following Collins [18] and Charniak [11] for parse

reranking and Liang et al. [64] for translation reranking, we define Aoracle as align-

ment in Acandidates that is most similar to Agold according to weighted fully-connected

alignment f-measure.3 We update each feature weight λi towards the oracle alignment

as follows: λi = λi + hAoracle

i − h
Apredicted

i . Updating towards the oracle alignment is

referred to as local updating, since the changes made to each feature weight are likely

to be small; updating towards the gold alignment is referred to as bold updating,

since the changes made to each feature weight are likely to be large. Liang et al. [64]

report that, for translation reranking, local updates outperform bold updates [64].

Following Moore [77], after each training pass, we average all feature weight vectors

seen during that pass, and decode the training set using the vector of averaged feature

weights. When alignment quality stops increasing on the training set, perceptron

training ends. The weight vector returned by perceptron training is the average over

the training set of all weight vectors seen during all iterations; averaging reduces

overfitting on the training set [19].

3We discuss alignment similarity metrics in detail in Chapter 1, Section 1.2.9.
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Algorithm 5: Discriminative Training with Averaged Perceptron

input : A set s of training sentences; an initial alignment Ainitial for
each sentence in s; a gold-standard alignment Agold for each
sentence in s; a set of feature functions h; a learning rate eta

output: A vector of feature weights λ for each feature function in h

Initialize feature weights λ;
foreach training epoch do

foreach sentence si ∈ s do

A = Ainitial;
score(A) = λ · h(A, parse(e), f);
push(PriorityQueue, (A, score(A)));
Candidates = ∅;
while PriorityQueue 6= ∅ do

A = pop(PriorityQueue);
Candidates = Candidates ∪ A;
neighbors(A) = FindNeighbors(A);
for A′ ∈ neighbors(A) do

score(A′) = λ · h(A′, parse(e), f);
push(PriorityQueue, (A′, score(A′)));
Candidates = Candidates ∪A′;

end

end

Apredicted = arg maxA′∈Candidates score(A′);
Aoracle = arg maxA′∈Candidates Similarity(A′, Agold);
if Apredicted 6= Aoracle then

foreach feature hi ∈ h do

λi = λi + η ∗ (hi(Aoracle)− hi(Apredicted));
endfch

end

endfch

endfch

return λ;
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3.3 Experimental Setup

3.3.1 Data Sets

We evaluate the effect of link deletion upon alignment quality and translation

quality for two Chinese-English data sets, and one Arabic-English data set. Each

data set consists of newswire text, and contains a small subset of manually aligned

sentence pairs. We divide the manually aligned subset into a training set (used

to discriminatively set the feature weights for link deletion) and a test set (used to

evaluate the impact of link deletion upon alignment quality). Table 3.1 lists the source

and the size of the manually aligned training and test sets used for each alignment

task.

Using the feature weights learned on the manually aligned training set, we then

apply link deletion to the remainder (non-manually aligned) of each bilingual data

set, and train a full syntax-based statistical MT system on these sentence pairs. After

minimum error rate training to set feature weights [84] on a held-out tuning set, we

evaluate translation quality on a held-out test set. Table 3.2 lists the source and the

size of the training, tuning, and test sets used for each translation task.

3.3.2 Evaluation Metrics

While Alignment Error Rate (AER) and balanced f-measure are standard metrics

in the alignments literature, Fraser and Marcu [32] show that improvements in AER

or balanced f-measure do not necessarily correlate with improvements in BLEU score.

They propose two modifications to balanced f-measure: varying the precision/recall

tradeoff using a parameter α which can be tuned according to the language pair, and

fully-connecting the alignment links before computing f-measure.4

4We discuss the procedure for fully-connecting an alignment in Chapter 1, Section 1.2.9.
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Weighted Fully-Connected Alignment F-Measure

Given a hypothesized set of alignment links H and a gold-standard set of alignment

links G, we define H+ = fullyConnect(H) and G+ = fullyConnect(G), and then

compute:

f -measure(H+) =
1

α
precision(H+)

+ 1−α
recall(H+)

After full connection, the alignment shown in Figure 3.1 would also include the

links ������-starts and ������-out. Fully connected alignments are the alignments that

are effectively perceived by both phrase-based and syntax-based machine translation

systems, and therefore evaluating over fully-connected alignments more accurately

reflects the quality of alignments for machine translation purposes. 5

For phrase-based Chinese-English and Arabic-English translation tasks, Fraser

and Marcu [32] obtain the closest correlation between weighted fully-connected align-

ment f-measure and BLEU score using α=0.5 and α=0.1, respectively. We use

weighted fully-connected alignment f-measure as the training criterion for link dele-

tion, and to evaluate alignment quality on training and test sets.

Rule F-Measure

To evaluate the impact of link deletion upon rule quality, we compare the rule

precision, recall, and f-measure of the rule set extracted from our hypothesized align-

ments and a Collins-style parser against the rule set extracted from gold alignments

and gold parses.6

5For a detailed discussion of various alignment evaluation metrics, including Alignment Error
Rate and balanced f-measure, please refer to Chapter 1, Section 1.2.9.

6For a detailed explanation of rule f-measure, please refer to Chapter 1, Section 1.2.9.
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Language Train Test

Chinese-English A
LDC2007T02[3] LDC2007T02[3]

(400 sent.) (400 sent.)

Chinese-English B
LDC2006E86 newswire[59], LDC2006E86 newswire[59],

LDC2006E93 web[62] LDC2006E93 web[62]
(1500 sent.) (1500 sent.)

Arabic-English
LDC2006E86 newswire[59], LDC2006E86 newswire[59],

LDC2006E93 web[62] LDC2006E93 web[62]
(1500 sent.) (1500 sent.)

Table 3.1: Data Sets Used in Alignment Link Deletion: Alignment Experiments.

Language Train Tune Test 1 Test 2
Chinese-English A chi-eng A train chi-eng A tune chi-eng A test

–(small) newswire newswire
(329,031 sent.) (878 sent.) (919 sent.)

Chinese-English B chi-eng B train chi-eng B tune chi-eng B test
–(large) newswire newswire

(395,055 sent.) (1,482 sent.) (1,463 sent.)
Arabic-English ara-eng ara-eng ara-eng test 1 ara-eng test 2

train (large) tune newswire newswire test newswire
(6,561,091 sent.) (1,178 sent.) (1,298 sent.) (765 sent.)

Table 3.2: Data Sets Used in Alignment Link Deletion: Translation Experiments.
Contents of Each Data Set Listed in Appendix A, Tables A.1 and A.2.

BLEU

For all translation tasks, we report case-insensitive NIST BLEU scores [87] using

4 references per sentence.

3.3.3 Experiments

Starting with GIZA++ union alignments, we use perceptron training to set the

weights of each feature used in link deletion in order to optimize weighted fully-

connected alignment f-measure (α=0.5 for Chinese-English and α=0.1 for Arabic-

English) on a manually aligned discriminative training set. We report the (fully-

connected) precision, recall, and weighted alignment f-measure on a held-out test set
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after running perceptron training, relative to the baseline GIZA++ union alignments.

Using the learned feature weights, we then perform link deletion over the GIZA++

union alignments for the entire training corpus for each translation task, as described

in Section 3.2.1. Using the resulting alignments, which we refer to as “GIZA++ union

+ link deletion”, we train a syntax-based translation system similar to that described

in Galley et al. [33]. After extracting string-to-tree translation rules from the aligned,

parsed training corpus, the system assigns weights to each rule via relative frequency

estimation with smoothing. The rule probabilities, as well as trigram language model

probabilities and a handful of additional features of each rule, are used as features

during decoding. The feature weights are tuned using minimum error rate training

[85] to optimize BLEU score on a held-out development set. We then compare the

BLEU score of this system against a baseline system trained using GIZA++ union

alignments.

In order to compute weighted fully-connected alignment f-measure, we need to

choose a value for α, the parameter determining the relative importance of precision

and recall when computing f-measure. Choosing a high value for α favors precision;

choosing a low value, recall. To determine which value of α is most effective as

a training criterion for link deletion, we set α=0.4 (favoring recall), 0.5, and 0.6

(favoring precision), and compare the effect on translation quality for Chinese-English

data set A.

3.4 Results

For each translation task, link deletion improves translation quality relative to a

GIZA++ union baseline. For each alignment task, link deletion tends to improve

fully-connected alignment precision more than it decreases fully-connected alignment

recall, increasing weighted fully-connected alignment f-measure overall.
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3.4.1 Chinese-English

On Chinese-English translation task A, link deletion increases BLEU score by 1.3

points on tuning and 0.8 points on test (Table 3.3); on Chinese-English translation

task B, link deletion increases BLEU score by 1.4 points on tuning and 0.5 points on

test (Table 3.3), relative to the baseline system.

3.4.2 Arabic-English

On the Arabic-English translation task, link deletion improves BLEU score by

0.8 points on tuning, 0.2 points on test set 1, and 0.6 points on test set 2 (Table

3.3) relative to the baseline system. Note that the training criterion for Arabic-

English link deletion uses α=0.1; because this penalizes a loss in recall more heavily

than it rewards an increase in precision, it is more difficult to increase weighted

fully-connected alignment f-measure using link deletion for Arabic-English than for

Chinese-English. This difference is reflected in the average number of links deleted

per sentence: 4.2 for Chinese-English B (Table 3.3), but only 1.4 for Arabic-English

(Table 3.3). Despite this difference, link deletion improves translation results for

Arabic-English as well.

3.4.3 Varying the Relative Contribution of Precision and Re-

call to Alignment F-Measure

On Chinese-English data set A, we explore the effect of varying α in the weighted

fully-connected alignment f-measure used as the training criterion for link deletion.

Using α=0.5 leads to a higher gain in BLEU score on the test set relative to the base-

line (+0.8 points) than either α=0.4 (+0.7 points) or α=0.6 (+0.7 points), confirming

that, for our Chinese-English translation experiments, precision and recall should be

assigned equal importance when optimizing alignment f-measure during training.
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Lang. Alignment P R α F
Links

Grammar BLEU
Del./
Sent Size Dev Test1 Test2

Chi-Eng A GIZA++ union 54.8 75.4 0.5 63.4 – 23.4M 41.8 41.2 –

Chi-Eng A
GIZA++ union

79.6 71.2 0.5 75.1 4.8 59.7M 43.1 41.9 –
+ link deletion

Chi-Eng B GIZA++ union 36.6 66.3 0.5 47.2 – 28.9M 39.6 41.4 –

Chi-Eng B
GIZA++ union +

65.5 59.3 0.5 62.2 4.2 73.0M 41.0 41.9 –
link deletion

Ara-Eng GIZA++ union 35.3 84.1 0.1 73.9 – 52.4M 54.7 50.9 38.2

Ara-Eng
GIZA++ union +

52.7 79.8 0.1 75.9 1.4 64.9M 55.6 51.1 38.7
link deletion

Table 3.3: Results of link deletion. Weighted fully-connected alignment f-measure is
computed on alignment test sets (Table 3.1); BLEU score is computed on translation
test sets (Table 3.2). The average number of links deleted per sentence and the
resulting grammar size is shown in each case.

3.5 Discussion

3.5.1 Size of Discriminative Training Set

To examine how many manually aligned sentence pairs are required to set the fea-

ture weights reliably, we vary the size of the discriminative training set from 200-1500

sentence pairs while holding test set size constant at 1500 sentence pairs; run percep-

tron training; perform link deletion on a held-out test set; and record the resulting

weighted fully-connected alignment f-measure on the test set. Figure 3.5.1 illustrates

that using 100-200 manually aligned sentence pairs of training data is sufficient for

Chinese-English; a similarly-sized training set is also sufficient for Arabic-English.

While link deletion requires manually aligned data for discriminative training, the

amount of such data required to achieve optimal performance with link deletion is

minimal (100-200 sentences).
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(a) Effect of discriminative training set size on link dele-
tion accuracy for Chinese-English B, α=0.5
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(b) Effect of discriminative training set size on link dele-
tion accuracy for Arabic-English, α=0.1

Alignment Parse
Rule

Precision Recall F-measure Total Non-Unique

gold gold 100.00 100.00 100.00 12,809

GIZA++ union Collins 50.5 44.2 47.2 11,021

GIZA++ union + Collins
47.5 53.2 50.2 13,987

link deletion, α=0.5

GIZA++ refined Collins 44.2 54.1 48.6 15,182

Table 3.4: Rule Precision, Recall, and F-Measure of Rules Extracted from 400 Sen-
tence Pairs of Chinese-English data
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3.5.2 Effect of Link Deletion on Extracted Rules

Link deletion increases the size (as measured by the number of rules) of the

extracted grammar. To determine how the quality of the extracted grammar changes,

we compute the rule precision, recall, and f-measure of the GIZA++ union alignments

and various link deletion alignments on a held-out Chinese-English test set of 400

sentence pairs. Table 3.4 indicates the total (non-unique) number of rules extracted

for each alignment/parse pairing, as well as the rule precision, recall, and f-measure

of each pair. As more links are deleted, more rules are extracted—but of those, some

are of good quality and others are of bad quality. Link-deleted alignments produce

rule sets with higher rule f-measure than either GIZA++ union or GIZA++ refined.7

3.6 Summary of Contributions

In this chapter, we have shown how syntactic features of a parse tree can be used

to identify and delete incorrect links from a word alignment. We have presented a link

deletion algorithm that improves the precision of GIZA++ union alignments without

notably decreasing recall. In addition to lexical and structural features, we use syntax-

based features of the rules extracted from an alignment and a parse to identify and

delete incorrect links. While the majority of existing previous work in alignments has

not led to an improvement in translation quality, our method results in consistent

improvements in translation quality over a state-of-the-art syntax-based MT system.

Our algorithm runs quickly, and is easily applicable to other language pairs with

limited amounts (100-200 sentence pairs) of manually aligned data available.

The primary contributions of this work are the following:

7For details on how to compute rule f-measure, please refer to Chapter 1, Section 1.2.9.
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• An algorithm for identifying and deleting incorrect alignment links from an

existing source-target word alignment, using syntactic features of the target

parse tree

• Results demonstrating that link deletion requires only 100-200 sentences of man-

ually aligned data for discriminative training

• Improvements in both alignment quality and translation quality relative to a

GIZA++ union baseline in a state-of-the-art syntax-based machine translation

system on both Chinese-English and Arabic-English translation tasks

97



Chapter 4

Using Parsing and Word Alignment to Improve

Accuracy of Both Processes Simultaneously

English parses and bilingual word alignments each play a crucial role in the string-

to-tree syntax-based machine translation pipeline. By improving the accuracy of au-

tomatic parsing and automatic word alignment, we can improve the quality of string-

to-tree translation rules extracted from those parses and alignments, and therefore

potentially improve the quality of translations output by a system trained on those

parses and word alignments. In this chapter, we explore the optimization of parses

and alignments simultaneously, allowing each to constrain the other. Specifically, we

present an approach to discriminatively reranking n-best lists of parses and m-best

lists of alignments to select the (parse, alignment) pair that leads to the optimal set

of extracted translation rules.

4.1 Background

Parsing and word alignment jointly determine the quality of translation rules ex-

tracted from the training data by a syntax-based machine translation system. Typ-

ically, these two processes are performed independently of one another. In Chapter
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2, we discussed ways to improve English parse quality using constraints imposed by

fixed word alignments. In Chapter 3, we discussed ways to improve bilingual word

alignment quality using constraints imposed by fixed parses.

In this chapter, we address the following question: how can we improve upon parse

and alignment accuracy simultaneously (i.e. holding neither one fixed, but allowing

both to vary)? Ideally, we could search the space of parses and alignments jointly–

this would allow each process to completely inform the other. In practice, jointly

conducting a search over possible parses and possible word alignments would create a

prohibitively large search space. To restrict the search space, we perform parsing and

word alignment independently, then use the n-best or m-best output of each process

as an approximation to the space of possible candidates explored by each process.

We then consider all n × m combinations of parses and alignments from these two

lists, and rerank these (parse, alignment) pairs for each sentence.

Since our ultimate goal is to improve translation quality, we would prefer to select

the (parse, alignment) pair for each sentence that results in the highest BLEU score; in

practice, the length of the experimental cycle required to train a syntax-based machine

translation system on a large amount of data prevents us from optimizing BLEU

score as an objective function during discriminative training. In lieu of BLEU score,

we must rely upon intrinsic metrics of parse and alignment quality. The standard

metric for parse quality is f-measure over labelled constituents; the standard metric

for alignment quality is f-measure over alignment links. Neither parse f-measure nor

alignment f-measure, however, directly measures the suitability of a (parse, alignment)

pair for syntax-based machine translation.

To optimize the quality of the (parse, alignment) pair with respect to its use in a

syntax-based translation, we maximize rule f-measure, which we compute by extract-

ing a set of string-to-tree translation rules from the hypothesized (parse, alignment)
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pair, and computing f-measure of that rule set against the rule set extracted from the

gold parse and gold alignment.1

4.1.1 Related Work

While the 1-best automatic parse or alignment for a particular source-target sen-

tence pair may be sub-optimal for translation, a better parse or alignment often

appears within the n-best space of parses or alignments explored by the automatic

parser or aligner. By restricting a machine translation system to operating on the

1-best parse and alignment only, we risk excluding potentially superior parse and

alignment candidates from consideration.

There has been considerable recent work in looking beyond the 1-best parses,

word alignments, and even strings (for languages which require some pre-processing,

such as Chinese, which must be segmented, or Arabic, which must be morphologically

analyzed) when training a machine translation system. Recent work in this area is

categorized in Table 4.1 according to whether the authors explore a 1-best, an n-best

list, or a forest of candidates for parses, alignments, or strings in the source or target

languages of the training data.

Venugopal et al. [100] widen a synchronous context-free grammar based machine

translation pipeline by extracting string-to-tree translation rules in two different ways:

first, from an m-best list of alignments and a 1-best parse; and second, from a 1-best

alignment and an n-best list of parses. In each case, they define a probability distribu-

tion over the list of multiple parses or alignments, and weight each extracted rule by

its fractional count according to this distribution. With these improved estimates of

rule probabilities, they obtain an increase in BLEU score on a Chinese-English speech

corpus translation task. They achieve greater gains in BLEU score from deepening

1For more details on computing rule f-measure, please refer to Chapter 1, Section 1.2.9.
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the size of the alignments m-best list than from deepening the size of the parse n-best

list.

Mi and Huang [76] extract tree-to-string translation rules over a parse forest and

1-best alignments. Extracting rules from a forest is preferable to extracting them

from an n-best list because a forest contains exponentially many parses, while an n-

best list contains only those n parses which have been explicitly enumerated. Mi and

Huang [76] achieve a significant improvement in BLEU score on a Chinese-English

translation task.

Dyer et al. [15] extract phrase-based translation pairs not over a single source

string f , but rather, over a lattice of n-best possible analyses of the source string.

This approach is applicable to translation tasks where there is some ambiguity in

the source string, either because it was produced by a speech recognition system or

because it is written in a language that requires some pre-processing step such as

segmentation (e.g. Chinese) or morphology (e.g. Arabic). Dyer et al. [15] obtain

an improvement in BLEU score in both phrase-based and hierarchical phrase-based

translation systems for both Chinese and Arabic.

Burkett and Klein [9] rerank an n × n list of pairs of (English parses, Chinese

parses) by inducing a tree-node-to-tree-node alignment between the English and Chi-

nese parse trees, and selecting the pair of parses that exhibits the highest degree of

tree isomorphism. They obtain an increase in English parse f-measure, Chinese parse

f-measure, and BLEU score on a Chinese-English translation task using a string-to-

tree syntax-based system.

Liu et al. [68] extract phrase pairs from a matrix, rather than n-best list, of

alignments. An alignment matrix is somewhat analogous to a parse forest in that a

matrix represents exponentially many possible alignments in polynomial space, and

therefore provides the potential to extract new alignments that have not been seen

in any of the entries in the n-best list from which the matrix was constructed. By
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Authors Alignments
Parses Strings

Source Target Source Target
Venugopal et al. [100] n-best – n-best 1-best –
Mi and Huang [76] 1-best forest – – 1-best
Dyer et al. [15] 1-best – – n-best –
Liu et al. [68] matrix – – 1-best 1-best
Burkett and Klein [9] 1-best n-best n-best – –

Table 4.1: Survey of Recent Work in Exploring Multiple Alignments, Parses, or
Strings in Training a Machine Translation System

taking advantage of shared substructures and local interactions among alignment links

in this matrix, the authors can better estimate probabilities over alignments. They

obtain an increase in BLEU score on several English-to-foreign and foreign-to-English

phrase-based translation tasks.

With the exception of Venugopal et al. [100], none of the above methods considers

both n-best parses and m-best alignments. Even Venugopal et al. [100] do not consider

multiple alignments and multiple parses at the same time, due to prohibitive time

and memory constraints; instead, they fix the size of the alignment m-best list to

1 while optimizing over n-best parses, then fix the size of the parse n-best list to

1 while optimizing over m-best alignments. In this chapter, we explore the space of

n-best alignments and m-best parses simultaneously. We avoid the prohibitively large

grammar problem that Venugopal et al. [100] face by propagating multiple alignments

and multiple parses only long enough to determine which (parse, alignment) pair leads

to the extraction of an optimal set of rules. After that point, we discard all other

alignments and parses, resulting in a grammar size that is comparable to the baseline

strategy of using the 1-best alignment and 1-best parse.

Another shortcoming of the above methods is that none of them directly optimizes

the quality of the translation rules extracted from alignments or parses. In this

chapter, we use a method for discriminatively reranking (parse, alignment) pairs that

optimizes rule f-measure directly.
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4.1.2 Our Work

We present an algorithm for selecting the best (parse, alignment) pair from an

n × m-best list of (parse, alignment) pairs. We define the best (parse, alignment)

pair to be the one whose extracted translation rules have the highest translation rule

f-measure with respect to the gold standard translation rule set. For each sentence in

a bilingual corpus, we discriminatively rerank a list of (parse, alignment) pairs using

a handful of features designed to measure the quality of the parse, the quality of the

alignment, and the degree to which the parse and the alignment are compatible with

each other.

The primary contributions of this work are twofold: first, the use of joint fea-

tures of the parse and alignment to rerank multiple parses and multiple alignments

simultaneously ; and second, the use of rule f-measure as an evaluation metric during

discriminative training.

4.2 Methods

We create an n-best list of parses by running an implementation of the Collins

parser (Model 3) [97] in n-best mode. We create an m-best list of alignments for

each sentence pair in our data set as follows. Following a similar procedure to that

of Venugopal et al. [100] [100], we first run GIZA++ in 50-best mode in the source-

to-target and target-to-source directions; symmetrize the alignments using the union

heuristic; and assign each alignment a probability

pr(aunion) = pr(asource-to-target)× pr(atarget-to-source)

where pr(asource-to-target) and pr(atarget-to-source) are given by GIZA++. Then, we

select the top m-scoring symmetrized alignments from the list, after filtering out du-
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plicate alignments. We score each (parse, alignment) pair using a linear combination

of features h and their weights λ:

score(parse(e), A) = λ · h(parse(e), A)

During training, we set the feature weights to maximize rule f-measure using a dis-

criminative training set for which we have gold-standard parses and gold-standard

alignments. During testing, we rerank an n×m - best list of (parse, alignment) pairs

for each sentence.

4.2.1 Features

In this section, we describe the features hi used to score each (parse, alignment)

pair (pi, ai).

Parse-Based Features

• parserProb: The probability assigned to a parse pi by the original parser. The

probabilities of all n parses in the n-best list are normalized to sum to one.

• parseInverseRank: The rank of a parse pi in the n-best list is its position, i,

in the n-best list. The inverse rank is 1
i
.

• constituentProb: This feature measures agreement at the constituent level

among parses in the n-best list. The probability of each labelled constituent in

the parse tree is computed by summing, for each constituent ci, the probability

pr(pj) assigned by the parser to parse pj for all parses pj in which constituent

ci occurs.
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Extracted Rules:
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PRT

RP
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x0:IN NP
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NNS

needs

x1:PP

→ x0 x1 ������ ñññ���
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→ x0

R4: NP

PRP
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JJ

own

NN

country

→ ýýý)))
Figure 4.1: Example (Parse, Alignment) Pair and Extracted Rules
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Alignment-Based Features

• alignerProb: The probability assigned to an alignment ai by the original word

aligner. The probabilities of all m alignments in the m-best list are normalized

to sum to one.

• alignmentInverseRank: The rank of an alignment ai in the m-best list is its

position, i, in the m-best list. The inverse rank is 1
i
.

• linkProb: This feature measures agreement at the link level among alignments

in the n-best list. The probability of each link li in the parse tree is computed by

summing, for each constituent li, the probability pr(aj) assigned by the aligner

to alignment aj for all alignments aj in which link li occurs.

• unalignedForeignWords: Total number of unaligned foreign words.

• unalignedEnglishWords: Total number of unaligned English words.

• oneToMany Links: We define a one-to-many alignment link to be a link

between words ei and fj such that ei, fj , or both ei and fj are aligned to at

least one other word in the sentence. In Figure 4.1, the links {ýýý)))-its, ýýý)))-

own,ýýý)))-country} form a one-to-many alignment. We count the total number

of links participating in such a one-to-many alignment.

• nonMonotonicityJumpCount: To measure non-monotonicity in an align-

ment, we sort all links i, j in ascending order first by their English positions,

and second by their foreign positions. For each English word ei aligned to foreign

word fj , if English word ei+1 is aligned to a foreign word f ′
j where j′ ≤ j, then

we define this to be an instance of non-monotonicity. In Figure 4.1, the English

word “out” is aligned to a Chinese word ñññ��� at position 3 in the Chinese sen-

tence, while the adjacent English word “from” is aligned to the Chinese word,,,
at position 0 in the Chinese sentence. This represents a non-monotonic jump.
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The feature nonMonotonicityJumpCount counts the number of times such

a instance occurs in an alignment.

• nonMonotonicityJumpSize: With non-monotonicity defined as above, the

feature nonMonotonicityJumpSize counts the magnitude of each non-monotonic

jump in the alignment. In Figure 4.1, the non-monotonicity occurring from

“out” to “from” has a jump size of 3, since there is a distance of 3 between ,,,
and ñññ��� in the Chines sentence.

• eOneToManyDiscontinuityCount: A frequently occurring problem with

GIZA++ Model 4 alignments is that a single English word is aligned to one or

more foreign words that are not adjacent to each other. This type of discon-

tinuity occurs rarely in the gold data and is often an indication of a spurious

alignment link. In Figure 4.1, the one-to-many alignment ñññ���-”starts”, ñññ���-

”out”, and ñññ���-”needs” exhibits a discontinuity between “out” and “needs”.

The feature eOneToManyDiscontinuityCount counts the number of times

that such a discontinuity occurs.

• eOneToManyDiscontinuitySize: With one-to-many discontinuities defined

as above, the feature eOneToManyDiscontinuitySize counts the magnitude

of such discontinuities (e.g. the magnitude of the gap between each non-adjacent

foreign word aligned to the same English word). In Figure 4.1, the discontinuity

in the one-to-many alignmentñññ���-”starts”,ñññ���-”out”, andñññ���-”needs” has

a size of 2, since there are 2 intervening words between “out” and “needs”.

• fOneToManyDiscontinuityCount: This feature is analogous to eOneToMany-

DiscontinuityCount, except computed in the reverse direction.

• fOneToManyDiscontinuitySize: This feature is analogous to eOneToMany-

DiscontinuitySize, except computed in the reverse direction.
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• conditionalLinkProbability: We estimate the conditional probability that

English word ei is aligned to foreign word fj , given that the words co-occur in

the same sentence pair, from a large, automatically aligned bilingual corpus.

We compute this conditional link probability for each link appearing in an

alignment, and the value of the feature is then the average conditional link

probability over all links in the alignment.

• logLikelihoodRatio: The log likelihood ratio of a pair of aligned words ei, fj

measures the degree of association between those words than can be expected

based on the probabilities of their co-occurrence in a bilingual sentence corpus.

The log likelihood ratio of words ei, fj is defined as follows:

LLR(ei, fj) = c(ei, fj)× log
pr(fj|ei)

pr(fj)
+

c(¬ei, fj)× log
pr(fj)|¬ef

pr(fj)
+

c(ei,¬fj)× log
pr(¬fj|ei)

pr(¬fj)
+

c(¬ei,¬fj)× log
pr(¬fj|¬ei)

pr(¬fj)

To compute the value of this feature for a given alignment, we sum the log

likelihood ratio for all aligned word pairs (ei, fj) in that sentence pair.

Joint Parse- and Alignment-Based Features

• ruleCount: Total number of rules extracted from A, parse(e), and f . In Figure

4.1, the value of ruleCount is 4.
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• maxRuleSize: The size, measured in terms of total non-terminal nodes in the

target parse tree, of the single largest rule extracted from A, parse(e), and f .

In Figure 4.1, the value of maxRuleSize is 9.

• crossingForeignBrackets: In monolingual parsing, the span of a node in a

parse tree specifies the indices of words in the yield of the parse tree that are

dominated by the subtree rooted at that node. A crossing bracket occurs when

the span of a constituent in the hypothesized tree overlaps with the span of a

constituent in the reference tree, where neither constituent dominates the other.

Where bilingual word alignments are present, we can define the foreign span of

a node in an English parse tree by first adjoining all foreign words as children

of the English words to which they are aligned, and then computing the span

in the foreign sentence for all nodes in the English parse tree. The number of

cases where the foreign span of a node in the English parse tree overlaps with

the foreign span of a sibling node in the English parse tree is the number of

crossing foreign brackets. In Figure 4.1, there is a crossing bracket between the

VBZ node dominating “starts” and the PRT node dominating “out”, since the

foreign span of “starts” is 3-4 and the foreign span of “out” is also 3-4, so these

two nodes are siblings with overlapping foreign spans. There is another crossing

bracket between the PP headed by “from” and the PRT node, since the foreign

span of the PP is 0-4, which overlaps with the foreign span of the PRT node,

3-4.

• reorderings: After adjoining each foreign word to the English leaf node(s) to

which the foreign word is aligned and annotating each node in the English tree

with its span in the foreign string, we observe that there may be nodes in the

English tree whose foreign spans do not overlap, but rather, are reordered with

respect to the English ordering. Certain reordering patterns appear regularly
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in the gold standard data; other reordering patterns may be irregular and may

indicate that the parse and alignment are not compatible. In Figure 4.1, there

is a reordering between the children of the NP dominating “the needs of its own

country”: the foreign span of the NP dominating “the needs” is 2-4, while the

foreign span of the PP dominating “of its own country” is 1-2.

4.2.2 Discriminative Training

Averaged Perceptron

We set the feature weights λ using a modified version of averaged perceptron

learning with structured outputs [19]. We initialize all feature weights uniformly to 1.

During each pass over the discriminative training set, we score each (parse, alignment)

pair in the n ×m-best list of candidates for that sentence according to the current

weight settings. We select the highest-scoring (parse, alignment) pair as our model

hypothesis. In general, the gold (parse, alignment) pair is not a member of the n×m-

best list of candidates; following Collins [18] and Charniak [11] for parse reranking

and Liang et al. [64] for translation reranking, we define the oracle (parse, alignment)

pair as the element in the list of candidates that is most similar to the gold (parse,

alignment) pair. We use rule f-measure as a similarity metric. We update each feature

weight λi towards the oracle as follows: λi = λi + h
(parse(e),A)oracle

i − h
(parse(e),A)predicted

i .

Following Moore [77], after each training pass, we average all feature weight vectors

seen during that pass, and decode the training set using the vector of averaged feature

weights. When alignment quality stops increasing on the training set, perceptron

training ends. The weight vector returned by perceptron training is the average over

the training set of all weight vectors seen during all iterations [19].
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4.2.3 Linear Regression

As an alternative to discriminative training, we also use linear regression to set

our feature weights.

4.3 Experimental Setup

We evaluate the effect of (parse, alignment) pair reranking upon alignment quality;

parse quality; and rule quality for an Arabic-English newswire data set. The data

set (Table 4.2) contains a small subset of 2248 manually parsed and manually word-

aligned sentence pairs. We divide the manually parsed and word-aligned subset into

a training set (used to discriminatively set the feature weights for (parse, alignment)

pair reranking) and a test set (used to evaluate the impact of reranking upon rule

f-measure). Using the feature weights learned on the manually parsed, manually

aligned training set, we then rerank (parse, alignment) pairs for each sentence in the

remainder (non-manually-annotated) of the bilingual data set.

Train Test
LDC2009E82[63] excerpt LDC2009E82[63] excerpt
(2008 sent.) (240 sent.)

Table 4.2: Data Sets Used in (Parse, Alignment) Pair Reranking

To evaluate the impact of link deletion upon rule quality, we compare the rule f-

measure of the rule set extracted from our hypothesized alignments and a Collins-style

parser against the rule set extracted from gold alignments and gold parses.

4.4 Results

Table 4.3 illustrates the results of oracle reranking experiments, in which we select

the (parse, alignment) pair with the highest rule f-measure from our n×m-best list
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for varying values of n and m. The baseline strategy is to select the 1-best parse and

1-best alignment, which achieves a rule f-measure of 39.0 on our 240-sentence test

set. Increasing parse n-best size to 10 and alignment m-best size to 100 results in an

oracle rule f-measure of 44.9 (or +5.9 points relative to the baseline), but increasing

n to 50 and m to 100 produces an oracle rule f-measure of 47.0 (an additional 2.1

points). Further increasing parse n-best size to 50 and alignment m-best size to

1000 results improves oracle rule f-measure only slightly, to 47.7 (an additional +0.7

points). Because little gain in rule f-measure is obtained by increasing nxm-best list

sizes beyond 10 parses and 100 alignments, we use an n-best size of 10 and an m-best

size of 100 in our experiments.

Method Parse n-best size Alignment m-best size
Rule F-Measure
Training Test

Baseline 1 1 37.1 39.0
Oracle Reranking 10 10 42.2 44.9
Oracle Reranking 10 100 45.0 47.0
Oracle Reranking 50 1000 45.9 47.7

Table 4.3: Results of Oracle (Parse, Alignment) Pair Reranking Experiments on 2248
Sentences of Arabic-English Parallel Data. Baseline strategy is to select the 1-best
alignment produced by the automatic aligner (GIZA++ union) and the 1-best parse
produced by the automatic parser. Oracle criterion is rule f-measure.

We divide our 2248-sentence data set into a training set (2008 sentences) and a

held-out test set (240 sentences), and report rule f-measure on each data set after

reranking. Table 4.4 illustrates our results. Setting feature weights via discriminative

training, we observe an improvement in rule f-measure of +1.8 points on the training

set and +1.4 points on the held-out test set. Setting feature weights via linear regres-

sion, we observe an improvement in rule f-measure of +1.4 points on the training set

and +1.2 points on the held-out test set.
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Method Parse n-best size Alignment m-best size
Rule F-Measure
Training Test

Baseline 1 1 37.1 39.0
Perceptron 10 100 38.9 40.4
Linear Regression 10 100 38.5 40.2

Oracle Reranking 10 100 45.0 47.0

Table 4.4: Results of (Parse, Alignment) Pair Reranking with 100-best Alignments
and 10-best Parses. Objective Function is Rule F-Measure. Training set is 2009
sentences and test set is a held-out set of 239 sentences of Arabic-English parallel
data. Baseline strategy is to select the 1-best alignment produced by the automatic
aligner (GIZA++ union) and the 1-best parse produced by the automatic parser.
Oracle criterion is rule f-measure.

4.5 Summary of Contributions

In this chapter, we have presented a method for discriminatively reranking a list

of n-best alignments and m-best parses in order to select the best (parse, alignment)

pair. We achieve a modest gain in rule f-measure of +1.4 points relative to the baseline

on a held-out test set. The primary contributions of this work are the following:

• The use of joint features of the parse and the alignment to rerank (parse, align-

ment) pairs

• The use of rule f-measure as an objective function to optimize during discrimi-

native training
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Chapter 5

Conclusion

Parsing and word alignment are crucial stages of the syntax-based machine trans-

lation pipeline. There are two problems with the way that parsing and word alignment

are typically performed in state-of-the-art syntax-based MT systems.

The first problem is that automatic word alignments and automatic parse trees are

prone to errors; these errors then cause the system to extract potentially incorrect

rules of translational correspondence. In some cases, these errors may cause the

system to infer a translational equivalence that simply does not exist between the

two languages. In other cases, the effect is more subtle: these errors may force the

system to extract rules that are not incorrect, but which fail to identify minimal units

of translational correspondence. These rules incorporate unnecessarily large amounts

of context, and thus have limited applicability to unseen sentences at test time.

The second problem with current approaches to word alignment and parsing for

syntax-based statistical machine translation systems is that word alignment and pars-

ing are performed in isolation of each other. Since each process produces constraints

that can potentially be used to guide the other, we can expect to improve the accuracy

of each process by integrating them more closely.
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In this thesis, we have examined ways to improve the accuracy of both parsing and

word alignment for syntax-based MT by integrating these processes where possible.

The primary contributions of this thesis are as follows:

• We have presented a novel method for combining the output of multiple parsers

by converting each parse into a set of context-free productions, then recombin-

ing those context-free productions to form a potentially new parse tree. While

an existing method that recombines constituents achieves the highest parse

accuracy, our method of recombining context-free productions results in bet-

ter translation accuracy in a downstream string-to-tree syntax-based machine

translation system [28].

• We have shown that automatically produced bilingual Chinese-English word

alignments can be used to resolve syntactic ambiguity in English [27].

• We have presented a novel algorithm that uses automatically produced parses to

improve the precision of word alignments by identifying and deleting alignment

links that violate syntactic constraints. We have demonstrated that these more

highly precise alignments result in a significant gain in machine translation

accuracy in syntax-based translation [29].

• We have presented a method for reranking parse, alignment pairs that allows

parses and alignments to inform and constrain each other simultaneously.
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5.1 Future Work

5.1.1 Using Bilingual Word Alignments to Improve Parsing

Accuracy

In our work on using bilingual Chinese-English word alignments to resolve syntac-

tic ambiguity in English, we limit our investigations to a particular type of common

syntactic ambiguity in English (namely, PP-attachment). In order to make a suffi-

ciently large impact upon parse quality to affect the performance of a downstream

syntax-based machine translation system, we would need to extend this approach

beyond PP-attachment to handle other types of syntactic ambiguity as well.

5.1.2 Using Parsing to Improve Word Alignment Accuracy

In our work on using features of the extracted syntax-based translation rules to

identify and delete incorrect links from an existing word alignment, we find that such

features are effective in both increasing alignment quality and increasing translation

quality of a downstream syntax-based translation system. Our results demonstrate

that these constraints are useful when trying to improve upon an existing alignment

with high recall and low precision (such as GIZA++ union) [85]. However, we suspect

that our features are not as useful when trying to improve upon an existing alignment

with balanced recall and precision (such as GIZA++ refined) [85], and therefore the

ability of our algorithm to improve upon an existing alignment may depend upon the

precision/recall balance of the existing alignment.

116



5.1.3 Using Parsing and Word Alignment to Improve Accu-

racy of Both Processes Simultaneously

When trying to improve upon an existing alignment with balanced recall and

precision (such as GIZA++ refined), it turns out that a set of syntactic constraints

based on features of the extracted rules that is similar to that used in Chapter 3 is

not very effective.

In general, we find that is easier to improve upon the quality of the baseline 1-

bests alignments or parses by generating new, potentially better alignments or parses

(such as in parse combination or alignment link deletion) than by reranking from an

n-best list of alignments or parses.

We also find that it is easier to improve upon alignment quality by reranking from

an n-best list than it is to improve upon parsing quality. State-of-the-art parsing

accuracy is higher, when measured in parse f-measure, than state-of-the-art alignment

accuracy, when measured in alignment f-measure. In addition, the quality of each

entry in an n-best list seems to drop off far more quickly as n increase for a state-of-

the-art parser than for a state-of-the-art aligner.

In light of these observations, we believe that in lieu of reranking an n-best list,

a more fruitful approach would be recombining parses and alignments to allow new,

potentially unseen combinations of parses and alignments to be explored.

5.1.4 A New Evaluation Metric: Rule F-Measure

While rule f-measure seems to be a step in the right direction in the sense that it is

a more direct measure of the impact of an alignment or parse upon translation quality

than either alignment f-measure or parse f-measure, we did not observe a clear corre-

lation between rule f-measure and BLEU score. Moreover, in its current, most basic

formulation, rule f-measure is difficult to use as an objective criterion in discriminative
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training because it increases in a step-like manner as the quality of alignments and

parses increases. In comparison, alignment f-measure and parse f-measure increase

more smoothly as the quality of alignments or parses increases. Perhaps a less strict

version of rule f-measure (such as one that rewards partial matching on rules, or one

that collapses fine-grained syntactic labels into a more coarse-grained set of labels to

increase the number of matches) would prove both easier to optimize during discrim-

inative training because of its greater sensitivity to small differences in alignments

and parses, and might potentially correlate more closely with BLEU score.
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Data Sets
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Language Name Sentence Pairs Source

ara-eng train (small) 170,863 LDC2005E46[50]
LDC2004T17[71]
LDC2006E93[62]
LDC2006E92[61]
LDC2006E34[57]
LDC2006E24[54]
LDC2006E86[59]
LDC2006E85[55]
LDC2006E25[53]

ara-eng train (large) 6,561,091 UN
LDC2007E07[41]
LDC2006E25[53]
LDC2004T18[96]
LDC2005E46[50]
LDC2004T17[71]
LDC2006E93[62]
LDC2006E92[61]
LDC2006E34[57]
LDC2006E24[54]
LDC2006E86[59]
LDC2006E85[55]

ara-eng tune newswire 1,178 NIST 04[81]
NIST 05[82]
NIST 06[83]

ara-eng test 1 newswire 1,298 NIST 04[81]
NIST 05[82]
NIST 06[83]

ara-eng test 2 newswire 765 NIST 06[83] newswire

Table A.1: Arabic-English Data Sets
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Language Name Sentence Pairs Source

chi-eng A train (small) 329,031 LDC2003E07[48]
LDC2003E14[49]
LDC2005T06[70]
LDC2006G05[30]

chi-eng A tune newswire 878 NIST 02[79]
chi-eng A test newswire 919 NIST 03[80]
chi-eng B train (small) 395,055 LDC2003E07[48]

LDC2003E14[49]
LDC2005E83[52]
LDC2005T06[70]
LDC2006E24[54]
LDC2006E34[57]
LDC2006E85[55]
LDC2006E86[59]
LDC2006E92[61]
LDC2006E93[62]

chi-eng B tune newswire 1,482 NIST 04[81]
NIST 05[82]
NIST 06[83]

chi-eng B test newswire 1,463 NIST 04[81]
NIST 05[82]
NIST 06[83]

Table A.2: Chinese-English Data Sets

122



Bibliography

123



Bibliography

[1] Steven Abney, Robert E. Schapire, and Yoram Singer. Boosting applied to
tagging and PP attachment. In Proceedings of EMNLP, 1999.

[2] Necip Fazil Ayan and Bonnie J. Dorr. Going beyond AER: an extensive analysis
of word alignments and their impact on MT. In Proceedings of ACL, 2006.

[3] Ann Bies, Martha Palmer, Justin Mott, and Colin Warner. English Chi-
nese translation treebank v 1.0. Linguistic Data Consortium, Catalog Number
LDC2007T02, 2007.

[4] Daniel M. Bikel. Design of a multi-lingual, parallel-processing statistical parsing
engine. In Proceedings of HLT, 2002.

[5] E. Black, S. Abney, D. Flickinger, C. Gdaniec, R. Grishman, P. Harrison,
D. Hindle, R. Ingria, F. Jelinek, J. Klavans, M. Liberman, M. Marcus,
S. Roukos, B. Santorini, and T. Strzalkowski. A procedure for quantitatively
comparing the syntactic coverage of english grammars. In Proceedings of the
DARPA Speech and Natural Language Workshop, 1991.

[6] Eric Brill and Philip Resnik. A rule-based approach to prepositional phrase
attachment disambiguation. In Proceedings of COLING, 1994.

[7] Peter F. Brown, John Cocke, Stephen A. Della Pietra, Vincent J. Della Pietra,
Fredrick Jelinek, John D. Lafferty, Robert L. Mercer, and Paul S. Roossin. A
statistical approach to machine translation. Computational Linguistics, 16(2),
1990.

[8] Peter F. Brown, Stephen Della Pietra, Vincent J. Della Pietra, and Robert L.
Mercer. The mathematics of statistical machine translation: Parameter esti-
mation. Computational Linguistics, 19(2), 1993.

[9] David Burkett and Dan Klein. Two languages are better than one (for syntactic
parsing). In Proceedings of EMNLP, 2008.

[10] Eugene Charniak. Statistical parsing with a context-free grammar and word
statistics. In Proceedings of AAAI, 1997.

124



[11] Eugene Charniak and Mark Johnson. Coarse-to-fine n-best parsing and maxent
discriminative reranking. In Proceedings of ACL, 2005.

[12] Colin Cherry and Dekang Lin. Soft syntactic constraints for word alignment
through discriminative training. In Proceedings of ACL (Poster), 2006.

[13] David Chiang. A hierarchical phrase-based model for statistical machine trans-
lation. In Proceedings of ACL, 2005.

[14] David Chiang. Hierarchical phrase-based translation. In Computational Lin-
guistics, 2007.

[15] Smaranda Muresan Christopher Dyer and Philip Resnik. Generalizing word
lattice translation. In Proceedings of ACL, 2008.

[16] John Cocke and Jacob T. Schwartz. Programming languages and their compil-
ers: Preliminary notes. In Technical report, Courant Institute of Mathematical
Sciences, New York University, 1970.

[17] Michael Collins. Three generative, lexicalised models for statistical parsing. In
Proceedings of ACL, 1997.

[18] Michael Collins. Discriminative reranking for natural language parsing. In
Proceedings of ICML, 2000.

[19] Michael Collins. Discriminative training methods for hidden Markov models:
theory and experiments with perceptron algorithms. In Proceedings of EMNLP,
2002.

[20] Michael Collins and James Brooks. Prepositional phrase attachment through
a backed-off model. In Proceedings of the Workshop on Very Large Corpora,
1995.

[21] Ido Dagan and Alon Itai. Word sense disambiguation using a second language
monolingual corpus. Computational Linguistics, 20(4), 1994.

[22] Ido Dagan, Alon Itai, and Ulrike Schwall. Two languages are more informative
than one. In Proceedings of ACL, 1991.

[23] AP Dempster, NM Laird, and DB Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1), 1977.

[24] John DeNero, David Chiang, and Kevin Knight. Fast consensus decoding over
translation forests. In Proceedings of ACL, 2009.

[25] John DeNero and Dan Klein. Tailoring word alignments to syntactic machine
translation. In Proceedings of ACL, 2007.

125



[26] Yonggang Deng and William Byrne. HMM word and phrase alignment for
statistical machine translation. In Proceedings of HLT/EMNLP, 2005.

[27] Victoria Fossum and Kevin Knight. Using bilingual Chinese-English word align-
ments to resolve PP-attachment ambiguity in English. In Proceedings of the
AMTA Student Research Workshop, 2008.

[28] Victoria Fossum and Kevin Knight. Combining constituent parsers. In Pro-
ceedings of HLT-NAACL, 2009.

[29] Victoria Fossum, Kevin Knight, and Steven Abney. Using syntax to improve
word alignment for syntax-based statistical machine translation. In Proceedings
of the ACL Workshop on Statistical Machine Translation, 2008.

[30] FOUO. Gale Y1 Q2 release–LDC/FBIS/NVTC parallel text v2.0. Linguistic
Data Consortium, Catalog Number LDC2006G05, 2006.

[31] Alexander Fraser and Daniel Marcu. Getting the structure right for word align-
ment: LEAF. In Proceedings of EMNLP, 2007.

[32] Alexander Fraser and Daniel Marcu. Measuring word alignment quality for
statistical machine translation. Computational Linguistics, 33(3), 2007.

[33] Michel Galley, Jonathan Graehl, Kevin Knight, Daniel Marcu, Steve DeNeefe,
Wei Wang, and Ignacio Thayer. Scalable inference and training of context-rich
syntactic translation models. In Proceedings of ACL, 2006.

[34] Michel Galley, Mark Hopkins, Kevin Knight, and Daniel Marcu. What’s in a
translation rule? In Proceedings of HLT/NAACL-04, 2004.

[35] John C. Henderson and Eric Brill. Exploiting diversity in natural language
processing: Combining parsers. In Proceedings of EMNLP, 2000.

[36] Donald Hindle and Mats Rooth. Structural ambiguity and lexical relations. In
Proceedings of ACL, 1993.

[37] Liang Huang and David Chiang. Forest rescoring: Faster decoding with inte-
grated language models. In Proceedings of ACL, 2007.

[38] Liang Huang, Kevin Knight, and Aravind Joshi. Statistical syntax-directed
translation with extended domain of locality. In Proceedings of AMTA, 2006.

[39] Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara Cabezas, and Okan Kolak.
Bootstrapping parsers via syntactic projection across parallel texts. Natural
Language Engineering, 11(3), 2005.

[40] Rebecca Hwa, Philip Resnik, Amy Weinberg, and Okan Kolak. Evaluating
translational correspondence using annotation projection. In Proceedings of
ACL, 2001.

126



[41] ISI. ISI Arabic-English automatically extracted parallel text. Linguistic Data
Consortium, Catalog Number LDC2007E07, 2007.

[42] Abraham Ittycheriah and Salim Roukos. A maximum entropy word aligner for
Arabic-English machine translation. In Proceedings of HLT/EMNLP, 2005.

[43] T. Kasami. An efficient recognition and syntax-analysis algorithm for context-
free languages. In Scientific report AFCRL-65-758, Air Force Cambridge Re-
search Lab, Bedford, MA, 1965.

[44] Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In
Proceedings of ACL, 2003.

[45] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello
Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, and Evan Herbst.
Moses: Open source toolkit for statistical machine translation. In Proceedings
of ACL (demo), 2007.

[46] Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical phrase-based
translation. In Proceedings of HLT/NAACL, 2003.

[47] Simon Lacoste-Julien, Ben Taskar, Dan Klein, and Michael I. Jordan. Word
alignment via quadratic assignment. In Proceedings of HLT-NAACL, 2006.

[48] LDC. Chinese treebank English parallel corpus. Linguistic Data Consortium,
Catalog Number LDC2003E07, 2003.

[49] LDC. FBIS multilanguage texts. Linguistic Data Consortium, Catalog Number
LDC2003E14, 2003.

[50] LDC. Arabic treebank English translation. Linguistic Data Consortium, Cat-
alog Number LDC2005E46, 2005.

[51] LDC. Gale Y1 Q1 release–English translation treebank. Linguistic Data Con-
sortium, Catalog Number LDC2005E85, 2005.

[52] LDC. Gale Y1 Q1 release–translations. Linguistic Data Consortium, Catalog
Number LDC2005E83, 2005.

[53] LDC. Gale Y1–Arabic English parallel news text. Linguistic Data Consortium,
Catalog Number LDC2006E25, 2006.

[54] LDC. Gale Y1–interim release: Translations. Linguistic Data Consortium,
Catalog Number LDC2006E24, 2006.

[55] LDC. Gale Y1 Q1 release–English translation treebank. Linguistic Data Con-
sortium, Catalog Number LDC2006E85, 2006.

127



[56] LDC. Gale Y1 Q2 release–English translation treebank, phase 1. Linguistic
Data Consortium, Catalog Number LDC2006E36, 2006.

[57] LDC. Gale Y1 Q2 release–translations v2.0. Linguistic Data Consortium, Cat-
alog Number LDC2006E34, 2006.

[58] LDC. Gale Y1 Q3 release–English translation treebank, phase 1. Linguistic
Data Consortium, Catalog Number LDC2006E82, 2006.

[59] LDC. Gale Y1 Q3 release–word alignment. Linguistic Data Consortium, Catalog
Number LDC2006E86, 2006.

[60] LDC. Gale Y1 Q4 release–English translation treebank, phase 1. Linguistic
Data Consortium, Catalog Number LDC2006E95, 2006.

[61] LDC. Gale Y1 Q4 release–translations. Linguistic Data Consortium, Catalog
Number LDC2006E92, 2006.

[62] LDC. Gale Y1 Q4 release–word alignment. Linguistic Data Consortium, Catalog
Number LDC2006E93, 2006.

[63] LDC. Gale phase 4 Arabic parallel aligned treebank part 1. Linguistic Data
Consortium, Catalog Number LDC2009E82, 2009.

[64] Percy Liang, Alexandre Bouchard-Cote, Dan Klein, and Ben Taskar. An end-
to-end discriminative approach to machine translation. In Proceedings of COL-
ING/ACL, 2006.

[65] Yang Liu, Qun Liu, and Shouxun Lin. Log-linear models for word alignment.
In Proceedings of ACL, 2005.

[66] Yang Liu, Qun Liu, and Shouxun Lin. Tree-to-string alignment template for
statistical machine translation. In Proceedings of ACL, 2006.
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