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Chapter 1

Introduction

1.1 Hamilton—Jacobi Theory

Hamilton—Jacobi theory for continuous-time unconstrained systems is well understood
from both the classical and geometric points of view. In classical mechanics [see, e.g.,
3, 27; [42; [47], the Hamilton—Jacobi equation is first introduced as a partial differential
equation that the action integral satisfies. Specifically, let ) be a configuration space
and T*Q be its cotangent bundle, and suppose that (G(s),p(s)) € T*Q is a solution

of Hamilton’s equations

_ %_;I, p= —%—ZI. (L.1)
Calculate the action integral along the solution starting from s = 0 and ending at
s =1t with ¢ > 0:

q

S(ant) = [ [pls) - i(s) = H(a5) ()] s (12

where ¢ := §(t) and we regard the resulting integral as a function of the endpoint
(q,t) € Q x R, where R is the set of positive real numbers. By taking variation of

the endpoint (g, t), one obtains a partial differential equation satisfied by S(q, t):

S S
=t H(q, a_q) = 0. (1.3)

This is the (time-dependent) Hamilton—Jacobi equation.
Conversely, it is shown that if S(g, ?) is a solution of the Hamilton—Jacobi equation
then S(q,t) is a generating function for the family of canonical transformations (or

symplectic flow) that describe the dynamics defined by Hamilton’s equations.



Furthermore, with a specified energy E, define W : ) — R by

where on the right-hand side, ¢ is seen as a function of the endpoint q. Then Eq. (1.3

turns into the (time-independent) Hamilton—Jacobi equation.

(a5 ) = E. (1.4)

Hamilton—Jacobi theory plays a significant role in Hamiltonian dynamics. In par-
ticular, the fact that solving the Hamilton—Jacobi equation gives a generating function
for the family of canonical transformation of the dynamics is the theoretical basis for
the powerful technique of exact integration of Hamilton’s equations [see, e.g.,
3; 27t 42] that are often employed with the technique of separation of variables. In
fact, Arnold [3, §47, p. 261] states that this technique (which he refers to Jacobi’s the-
orem) “is the most powerful method known for exact integration, and many problems
which were solved by Jacobi cannot be solved by other methods.”

The idea of Hamilton—Jacobi theory is also useful in optimal control theory [see,
e.g.,[34]. Namely, an argument similar to the above derivation of the Hamilton—Jacobi
equation applied to optimal control problems yields the Hamilton—Jacobi-Bellman
equation, which is a partial differential equation satisfied by the optimal cost func-
tion. It can also be shown that the costate of the optimal solution is related to the

solution of the Hamilton—Jacobi-Bellman equation.

1.2 Extension to Nonholonomic Mechanics

One of our objectives is to extend Hamilton—Jacobi theory to nonholonomic systems,
that is, mechanical systems with non-integrable velocity constraints. Nonholonomic
mechanics deals with such systems by extending the ideas of Lagrangian and Hamil-
tonian mechanics [see, e.g., [7]. However, it is often not straightforward to do so,
since a mechanical system loses some properties that are common to (conventional)

Lagrangian and Hamiltonian systems when one adds nonholonomic constraints.



1.2.1 Nonholonomic Hamilton—Jacobi Theory

Since Hamilton—Jacobi theory is developed based on the Hamiltonian picture of
dynamics, a natural starting point in extending Hamilton—Jacobi theory to non-
holonomic systems is a Hamiltonian formulation of nonholonomic mechanics. Bates
and Sniatycki [4] and van der Schaft and Maschke [58] generalized the definition of
Hamiltonian system to the almost-symplectic and almost-Poisson formulations, re-
spectively [see also [7; [38; 39]. As is shown in these papers, adding nonholonomic
constraints to a Hamiltonian system renders the flow of the system non-symplectic.
In fact, van der Schaft and Maschke [58] showed that the condition for the almost-
Poisson Hamiltonian system to be (strictly) Poisson is equivalent to the system being
holonomic. This implies that the conventional Hamilton—Jacobi theory does not di-
rectly apply to nonholonomic mechanics, since the (strict) symplecticity is critical in
the theory. In fact, the Hamilton—Jacobi equation is a PDE for generating functions
that yield symplectic maps for the flows of the dynamics.

There are some previous attempts to extend Hamilton—Jacobi theory to nonholo-
nomic mechanics, such as Pavon [52]. However, as pointed out by Iglesias-Ponte
et al. [30], these results are based on a variational approach, which does not apply
to nonholonomic setting. See de Leén et al. [19] for details. Iglesias-Ponte et al.
[30] proved a nonholonomic Hamilton—Jacobi theorem that shares the geometric view
with the unconstrained theory by Abraham and Marsden [I]. The recent work by
de Ledn et al. [19] developed a new geometric framework for systems defined with
linear almost Poisson structures. Their result generalizes Hamilton—-Jacobi theory to
the linear almost Poisson settings, and also specializes and provides geometric insights
into nonholonomic mechanics.

Our work refines the result of Iglesias-Ponte et al. [30] so that nonholonomic
Hamilton—Jacobi theory can be applied to exact integration of the equations of motion

for nonholonomic systems.

1.2.2 Chaplygin Hamiltonization and Nonholonomic H-J
Theory

There is an alternative less direct approach to nonholonomic Hamilton—Jacobi theory
using the so-called Chaplygin Hamiltonization. The Chaplygin Hamiltonization [see,
e.g., [16; 24; 25] is a method of transforming nonholonomic systems (which are not

strictly Hamiltonian) into Hamiltonian systems. The conventional Hamilton—Jacobi



theory applied to the transformed system gives the (conventional) Hamilton—Jacobi
equation or related to the original nonholonomic dynamics. This approach
is shown to give the same solutions as the direct approach mentioned above for some
solvable nonholonomic systems. However, it is not clear how the direct approach is
related to the Hamiltonization-based approach, since one approach is concerned with
the original dynamics whereas the other with the Hamiltonized dynamics.

Our work relates the two approaches by first formulating the Chaplygin Hamil-
tonization in an intrinsic fashion. The intrinsic formulation clarifies the geometry
involved in the Chaplygin Hamiltonization, which is often discussed locally in coor-
dinates. We show that a link between the two different approaches to nonholonomic

Hamilton—Jacobi theory comes out rather naturally from the geometric picture.

1.3 Discrete-Time Formulation

The second part of the thesis is also concerned with Hamilton—Jacobi theory, but the
work is independent of the nonholonomic one; our focus turns to the development
of a discrete-time version of Hamilton—Jacobi theory that fits into the framework of

so-called discrete mechanics.

1.3.1 Discrete Mechanics

Discrete mechanics, a discrete-time version of Lagrangian and Hamiltonian mechan-
ics, provides not only a systematic view of structure-preserving integrators but also
a discrete-time counterpart to the theory of Lagrangian and Hamiltonian mechan-
ics [see, e.g., 48 55 [56]. The main feature of discrete mechanics is its use of discrete
versions of variational principles. Namely, discrete mechanics assumes that the dy-
namics is defined at discrete times from the outset, formulates a discrete variational
principle for such dynamics, and then derives a discrete analogue of the Fuler—
Lagrange or Hamilton’s equations from it. In other words, discrete mechanics is
a reformulation of Lagrangian and Hamiltonian mechanics with discrete time, as
opposed to a discretization of the equations in the continuous-time theory.

The advantage of this construction is that it naturally gives rise to discrete ana-
logues of the concepts and ideas in continuous time that have the same or similar
properties, such as symplectic forms, the Legendre transformation, momentum maps,

and Noether’s theorem [48]. This in turn provides us with the discrete ingredients that



facilitate further theoretical developments, such as discrete analogues of the theories
of complete integrability [see, e.g., [50; 55; 56] and also those of reduction and connec-
tions [31}; [43; 46]. Whereas the main topic in discrete mechanics is the development
of structure-preserving algorithms for Lagrangian and Hamiltonian systems [see, e.g.,
48], the theoretical aspects of it are interesting in their own right, and furthermore
provide insight into the numerical aspects as well.

Another notable feature of discrete mechanics, especially on the Hamiltonian side,
is that it is a generalization of (nonsingular) discrete optimal control problems. In
fact, as stated in Marsden and West [4§], discrete mechanics is inspired by discrete
formulations of optimal control problems (see, for example, Jordan and Polak [32]
and Cadzow [11]).

1.3.2 Discrete Hamilton—Jacobi Theory

We develop the discrete-time version of Hamilton—Jacobi theory in a way analogous to
that of the continuous-time counterpart. Much of the ideas are essentially a transla-
tion of ideas and concepts in continuous time to the discrete-time setting. Specifically,
our starting point is a discrete counterpart of the derivation of the Hamilton—Jacobi
equation from the action integral sketched in Section [I.I, We also relate the solu-
tions of the resulting discrete Hamilton—Jacobi equation with those of the discrete
Hamilton’s equations. This is again a discrete analogue of the result mentioned in
Section [LIl

The theory specializes to linear discrete Hamiltonian systems and (regular) dis-
crete optimal control problems, and the discrete Hamilton—Jacobi equation gives the
discrete Riccati equation and the discrete Hamilton—Jacobi-Bellman equation, re-
spectively. Furthermore, some results in discrete Hamilton—Jacobi theory are shown

to reduce to some well-known results in discrete optimal control theory.



Chapter 2

Basic Concepts in Geometric
Mechanics and Discrete Mechanics

2.1 Geometric Mechanics

This section reviews basic notions and results of geometric mechanics following Arnold
[3], Marsden and Ratiu [47], and Bloch [7].

2.1.1 Hamiltonian Mechanics on Symplectic Manifolds

Let P be a symplectic manifold, that is, a manifold with a symplectic form 2, i.e.,
a closed non-degenerate two-form on P. Given a Hamiltonian H : P — R, the cor-

responding Hamiltonian vector field Xy € X(P) is defined by Hamilton’s equations

ix, Q= dH. (2.1)

The most important case in terms of applications is the one with P being the
cotangent bundle 7*Q) of a differentiable manifold ) called the configuration space (or
manifold) and each point in @) represents a configuration of the mechanical systems of
interest. Let mg : TQ) — @ be the cotangent bundle projection, and define the stan-
dard symplectic one-form © on T*Q as follows: For any p, € T*Q and v, € T, T"Q,

<@(pq)aqu> = <pq7T7TQ(qu>> . (2.2)

Then the two-form 2 on T defined by
Q:=—do (2.3)

is a symplectic form on T*(Q); it is called the standard symplectic form. So any



cotangent bundle is a symplectic manifold. Let dim@ = n and (¢',...,¢") be local
coordinates for Q. This induces the basis {dq'}?_, for T7@Q. Then a point in 7*Q has
the local coordinate expression (q¢',...,q", p1,...,p,). Then we have © = p; dq’ and
Q = dq* A dp;, and Eq. gives the conventional form of Hamilton’s equations:

. oH 9H

(2.4)
One of the most fundamental properties of Hamiltonian systems is conservation
of the Hamiltonian:

Proposition 2.1.1. The Hamiltonian function H is conserved along the flow of Xg:

Xy[H] = dH(Xy) = 0. (2.5)

2.1.2 Hamiltonian Mechanics on Poisson Manifolds

One can also take the Poisson point of view, instead of the symplectic one.

Definition 2.1.2. A Poisson bracket on a manifold P is a bilinear map {-, -} :
C>®(P) x C*(P) — R that satisfies

(i) anti-commutativity: {f,g} = —{g, f},
(ii) Jacobi’s identity: {{f. g}, h} + {{g.h}, f} + {{h, f}.9} = 0.
(iii) Leibniz’s rule: {fg,h} = f{g,h} + g{f, h}.
A manifold P endowed with a Poisson bracket is called a Poisson manifold.

Hamilton’s equations on a Poisson manifold P is defined as follows: For any
F:P—R,
F={F H}. (2.6)

Any symplectic manifold (P,€2) is a Poisson manifold with the Poisson bracket
defined by
(F.G} = Q(Xr, Xc). (2.7)

for any F,G : P — R, where Xy and X are the vector fields on P defined by
iXFQ =dF and iXGQ =d@.



2.1.3 Momentum Maps and Noether’s Theorem

Let GG be a Lie group and g its Lie algebra. Consider a symplectic group action of G
on a symplectic manifold (P, (), i.e., CI)f : P — P; z+— gz such that (@5)*@ = Q.

For any element £ € g, we define the infinitesimal generator {p € X(P) as follows:

d

E(2) = 8| 23

for any z € P, where exp : g — G is defined by exp & := 7¢(1); the curve 7 : R = G

is the solution with initial condition v¢(0) = e of the differential equation

d
E%@ =TeLqe (1) (6), (2.9)

where Ly, : G — G5 g+ hg is the left translation map, i.e., v, is an integral curve of
the vector field on G defined by the left-invariant extension of £ € g.

Definition 2.1.3. Suppose there exists a linear map J(. : g — C*°(P) such that
iep ) = dJg, (2.10)

for any £ € g, i.e., the infinitesimal generator p is the Hamiltonian vector field asso-
ciated to the function J : P — R. Then the momentum map J : P — g* is defined
by

(3(2),€) = Je(2), 2.11)

for any z € P.
If P is a cotangent bundle, i.e., P = T*(Q, and given a Lie group G acting on @,
i.e., we have ®, : ) — Q; ¢+ gq. Then there is a natural corresponding symplectic

action on its cotangent bundle 7*Q): For any g € G and q € @), let (ID;F*Q 1,Q = 1,,Q
be the cotangent lift [see, e.g., 47, Section 6.3] of @y, i.e., @]9 := T P 1 where

(T3 ®g1(py); vgq) = (Pgs Ty®g-1(vgq)) (2.12)

for any p, € T;Q and vy, € Ty,Q). Since the cotangent lift of any diffeomorphism is
symplectic [see, e.g., 47, Proposition 6.3.2 on p. 170], the action T*®,-1 : T*Q — T7*Q

is automatically symplectic. Moreover, we have an explicit expression for the map J:

Proposition 2.1.4. If P is a cotangent bundle, i.e., P = T*Q, then the map



Joy g = C(T*Q) is given by

Je(pg) = (Pg: §@(a)) , (2.13)

and thus the momentum map J : T*Q) — g* is defined by

(J(pq), &) = (Pa: €0(4)) (2.14)

for any p, € T*Q. Furthermore, J is equivariant, i.e.,
JoT"®, = AdjoJ (2.15)

for any g € G.
Proof. See, e.g., Marsden and Ratiu [47, Theorem 12.1.4 on p. 386]. ]

Definition 2.1.5. Given a Hamiltonian H : P — R, a Lie group G is called a
symmetry group of the Hamiltonian system Eq. (2.1]) if H o @5 = H for any g € G.

Theorem 2.1.6 (Noether’s Theorem). Consider a Hamiltonian system on a sym-
plectic manifold P with Hamiltonian H : P — R. Suppose G is a symmelry group
of the Hamiltonian system. Then the corresponding momentum map J is conserved

along the Hamiltonian flow defined by Xy, i.e.,
Jop,=J

fort € R, where o, : P — P is the flow of Xp.

2.2 Integrability of Hamiltonian Systems

One of the most important aspects of Hamiltonian mechanics is the question of their
integrability or exact solvability of Hamilton’s equations. The following theorem es-
tablishes the so-called complete integrability of Hamiltonian systems, and “covers all
the problems of dynamics which have been integrated to the present day.” [3]; so the
assumptions of the theorem is often recognized as the definition of integrability of

Hamiltonian systems:

Theorem 2.2.1 (Liouville-Arnold [3]). Let (P,Q2) be a 2n-dimensional symplectic
manifold and H : P — R a Hamiltonian. Suppose that there exist F; : P — R



fori =1,...,n with Fy := H such that {F;,F;} = 0 for any 1 < 4,5 < n. Let
f=(f1,...,fn) € R" and define

My :={z€eP | F(2)=fi, i=1,...,n}.

Then
(1) Mg is a smooth manifold invariant under the flow of Xy.

(2) If Mg is compact and connected, then it is diffeomorphic to the n-dimensional

torus
Tn - Sl AR Sl - . e . n .
X X , {(()&17 y P )}

n

(8) The flow of Xy is a conditionally periodic motion on Mgy = T", i.e., we have

dp; .
dt wi(f)

with some w; : R" =R fori=1,...,n,
(4) Hamilton’s equations (2.1)) can be integrated by quadratures.
Proof. See Arnold [3] §49]. O

Definition 2.2.2. The variables (¢4, . .., ¢,) defined above are called the angle vari-
ables. Those variables (Iy,...,1I,) so that the coordinate system (¢, ) for P is
symplectic, i.e., the standard symplectic form €2 is locally written as €2 = dy; A dI;,
are called the action variables. The coordinate system (i, I) is called the action-angle

variables.

In the action-angle variables, Hamilton’s equations (2.1]) reduces to the form

d;" = wi(1), % =0, (2.16)
and therefore
ei(t) = wi(I) t + ¢;(0), (2.17)
where I:= (I1,...,I,) € R" is a constant vector.

10



2.3 Hamilton—Jacobi Theory

This section gives a brief account of Hamilton—-Jacobi theory. We give the geomet-
ric description of Hamilton—Jacobi theory of Abraham and Marsden [I] as well as a
brief survey of the method of separation of variables for the Hamilton—Jacobi equa-
tion to solve Hamilton’s equations. The link between the Liouville-Arnold Theorem
(Theorem and Hamilton—Jacobi theory lies in the action-angle variables de-
fined above; in practice the action-angle variables can be found through separation

of variables for the Hamilton—-Jacobi equation [see, e.g., 33, §6.2].

2.3.1 The Hamilton—Jacobi Theorem

Theorem 2.3.1 (Hamilton-Jacobi). Consider a Hamiltonian system Eq. (2.1)) de-
fined on the cotangent bundle T*(Q) of a connected differentiable manifold () with the
standard symplectic form ). Let W : @Q — R be a smooth function defined on Q).

Then the following are equivalent:

(i) For every curve c(t) in Q) satisfying
é(t) =Trg - Xu(dW oc(t)), (2.18)
the curve t — dW o ¢(t) is an integral curve of Xp.
(ii) The function W satisfies the Hamilton—Jacobi equation:
HodW =FE, (2.19)

where E is a constant.

Proof. See Abraham and Marsden [I, Theorem 5.2.4 on p. 381]. m

2.3.2 Separation of Variables

Let us briefly show how separation of variables works in solving the time-independent
Hamilton—Jacobi equation (1.4)). One first assumes that the function W can be split

into pieces, each of which depends only on some subset of the variables ¢, e.g.,

Wiq) = Wi(q1) + Wa(ge),
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for Wi,W5 : @ — R, and ¢ = (q1,¢2). Then this sometimes helps us split the
Hamilton—Jacobi equation (3.1)) as follows:

(‘%h a”2
H =H e
1(611, s ) 2(Q27 94 ) )

with some functions Hi, Hy : T*Q) — R. The left-hand side depends only on ¢;

whereas the right-hand side depends only on ¢.; this implies that both sides must be

oW~ oW
Hl(q17_1) :HQ(C]% 2) =C.
Iq 92

Then we can solve them to obtain 0W;/dq; and OWs/0qs separately, and hence dV.
Now Theorem [2.3.1] implies that substituting this dWW into Eq. gives the set of
equations that defines the dynamics on ). So the problem of solving Hamilton’s
equations which is a set of 2n ODEs, reduces to that of solving the set of n ODEs
shown in Eq. [2.18 and it often turns out that one can solve Eq. by quadrature.

Let us show a simple example of how this method works:

constant:

Example 2.3.2 (The plane central-force problem; Example 6.1 of José and Saletan
[33]). Consider the Hamiltonian system whose configuration manifold is a plane, i.e.,

Q =R? = {(r,0)} with the Hamiltonian

H:i 2+p_§ + V(r)
om Pr r2 ’

The Hamilton-Jacobi equation (2.19) is

L (W, Lo
2m [\ Or r2\ 00

Assuming that the function W is written as

+V(r)=E.

W (r,8) = Wi(r) + Wy(6),

2mr?[E — V(r)] —r? (dg’"f = (%)2 :

Since the left-hand side depends only on r whereas the right-hand side depends only

we obtain

12



on 0, we obtain

dW,\* _ (dWy\”
2 — — 2 r = _— = 2
2mre[E =V (r)] —r < o > ( 70 ) C”,

with some constant C'; and hence

dw, C? AWy
o elE-ve- S Gr-c

assuming OW,./dr is positive. Then Eq. (2.18)) gives

1 C? . C
= —\/2m|E — - — 0 =—
i N mlE - V()] - .

which are solved by quadrature.

2.4 Nonholonomic Mechanics

Nonholonomic mechanics is an extension of Lagrangian and Hamiltonian mechan-
ics that incorporates so-called nonholonomic constraints, or in other words, non-

integrable constraintgT|

2.4.1 Nonholonomic Constraints

Many mechanical systems have some form of constraints. There are essentially two
kinds of constraints: holonomic and nonholonomic constraints. In loose terms, they
are classified as follows: A holonomic constraint restricts the dynamics only in terms
of position, or in other words, it tells where the dynamics should be. On the other
hand, a nonholonomic constraint does it in terms of velocity only, or it tells in which
direction the dynamics should go. Typical examples of nonholonomic constraints are
those imposed by rolling and sliding of the mechanical systems. Such systems often
arise in engineering problems, e.g., systems with wheels like cars and bicycles and
those with sliding parts like sleighs (see Fig. [2.1).

From the geometric point of view, a holonomic constraint restricts the dynamics
on a submanifold S of the configuration manifold @); on the other hand, a nonholo-

nomic constraint restricts the dynamics ¢(¢) on the subbundle D C T'Q) defined by

'We will later discuss what we mean by “non-integrable”.
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Figure 2.1: Examples of nonholonomic systems: Rolling disk, Snakeboard, and Sleigh.

the constraints, i.e., §(t) € Dy, and D is non-integrable in the sense that there is

no local submanifold whose tangent space is given by D (see Fig. . This cru-
D

q2

D, 14,Q D
T4, Q q2 T, q3

Q

Figure 2.2: Distribution D defined by nonholonomic constraints.

cial difference makes nonholonomic constraints much more difficult to deal with than
holonomic ones. For holonomic constraints, one can simply choose the submanifold S
as the new configuration manifold and do (unconstrained) mechanics on it. However,
for nonholonomic constraints, no such straightforward workaround is available and
thus one has to extend Lagrangian and Hamiltonian mechanics so that it can deal

with such constraints.

2.4.2 Hamiltonian Formulation of Nonholonomic Mechanics

Hamiltonian approaches to nonholonomic mechanical systems are developed by, for
example, Bates and Sniatycki [4] and van der Schaft and Maschke [58]. See also Koon
and Marsden [38, [39] and Bloch [7].
Consider a mechanical system on a differentiable manifold ) with Lagrangian
L : TQ — R. Suppose that the system has nonholonomic constraints given by the
distribution
D:={veTQ|uw(v)=4v=0,s=1,....,m}. (2.20)

Then the Lagrange-d’Alembert principle gives the equations of motion [see, e.g., [7,

14



Chapter 5]:
d oL 0L

dtd§  Og

= A\ AS, (2.21)

where )\, are Lagrange multipliers and w® = A$dg' are linearly independent non-
exact one-forms on (). The Legendre transformation of this set of equations gives the

Hamiltonian formulation of nonholonomic systems. Specifically, define the Legendre
transform FL : TQ) — T*Q by

d
(FL(vg), wg) = d_L(Uq + £ w,) )
€ e=0

for vy, w, € T;Q). We assume that the Lagrangian is hyperregular, i.e., the Legendre
transform FL is a diffeomorphism. Also define the Hamiltonian H : T*() — R by

H(q,p) := (p,q) — L(q. q),

where ¢ = (FL)"'(p) on the right-hand side. Then we can rewrite Eq. ([2.21]) as

follows:

. OH oH
= i = ———— + A;AS 2.22
1 3pi’ b oq* + ! ( )
with the constraint equations
0OH 0
w*(§) :ws((?pi 8qi) =0 for s=1,...,m. (2.23)

Equations and define Hamilton’s equations for nonholonomic systems.
We can also write this system in the intrinsic form in the following way: Suppose that
X — ['04i + PiOy, is the vector field on T*Q that defines the flow of the system,
is the standard symplectic form on 7@, and g : T*Q — () is the cotangent bundle
projection. Then we can write Hamilton’s equations for nonholonomic systems
and in the following intrinsic form:

along with
Trg(Xi) eD or w(Trg(Xy))=0fors=1,...,m. (2.25)

Introducing the constrained momentum space M = FL(D) C T*Q, the above con-
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straints may be replaced by the following:

peM. (2.26)

2.4.3 Completely Nonholonomic Constraints

Let us introduce a special class of nonholonomic constraints that applies to all the

examples in this thesis.

Definition 2.4.1 (Vershik and Gershkovich [59]; see also Montgomery [49]). A dis-
tribution D C T'Q is said to be completely nonholonomic (or bracket-generating) if
D along with all of its iterated Lie brackets [D, D], [D, [D, D]], ... spans the tangent
bundle T'Q).

Let us also introduce the following notion for convenience:

Definition 2.4.2. Let () be the configuration manifold of a mechanical system. Then
nonholonomic constraints on the system are said to be completely nonholonomic if
the distribution D C T'Q) defined by the nonholonomic constraints is completely

nonholonomic (or bracket-generating).

One of the most important results concerning completely nonholonomic distribu-
tions is the following?}

Theorem 2.4.3 (Chow’s Theorem). Let () be a connected differentiable manifold. If
a distribution D C T'Q) is completely nonholonomic, then any two points on ) can be

joined by a horizontal path.
We will need the following result that easily follows from Chow’s Theorem:

Proposition 2.4.4. Let () be a connected differentiable manifold and D C TQ be a
completely nonholonomic distribution. Then there is no non-zero exact one-form in
the annihilator D° C T™Q).

Proof. Chow’s Theorem says that, for any two points ¢y and ¢; in @), there exists a
curve ¢ : [0,7] — @ with some T" > 0 such that ¢(0) = gy and ¢(T") = ¢, and also
é(t) € Dy for any t € (0,T). Now let df be an exact one-form in the annihilator D°.

Then by Stokes’ theorem, we have

Fa) — Fla) = / af(é(t)) di =0,

2See, e.g., Montgomery [49] for a proof.
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where df (¢(t)) = 0 because df € D° and ¢(t) € Dey. Since go and g, are arbitrary

and @ is connected, this implies that f is constant on Q). n

2.4.4 Regularity of Nonholonomic Systems

We also introduce the notion of regularity of nonholonomic systems. Again all the
nonholonomic systems treated in this thesis are regular.
Consider a nonholonomic system with a hyperregular Lagrangian L : T'Q) — R and
a constant-dimensional distribution D C T'() defined by nonholonomic constraints.
For any v, € T'Q define a bilinear form By (v,) : T,Q x T, — R by
92

Br(vg)(ug, wg) :

= mL(Uq + 1y + £2w,) = DaDyL(q,v) - (ug, wg)-

e1=e2=0

Then hyperregularity of the Lagrangian implies that the associated map B"L(vq) :
T,Q — T;Q defined by

<BZ(Uq> (uq)v wq> i= Br(vg)(ug, wq)

is an isomorphism. Thus we can define a bilinear form Wr, : T/Q x T;Q — R by

Wi(vg)(ag, By) = <O‘qv (BZ)_I(B(J» .

Definition 2.4.5 (de Ledén and Martin de Diego [18]; see also de Ledén et al. [20]).
In the above setup, suppose that the annihilator D° is spanned by the one-forms
{w*}™ . Then the nonholonomic system is said to be regular if the matrices (Cj*(v))
defined by

Ci’(v) i= —-Wr(v)(w",w?) (2.27)

are nonsingular for any v € D.

For a mechanical system whose Lagrangian is kinetic minus potential energy, reg-

ularity follows automatically:

Proposition 2.4.6 (Carinena and Ranada [13]; see also de Leén and Martin de Diego
[18]). If the Lagrangian L : TQ — R has the form

Lia,) = 504(0,0) — V(@) (2.28)

with g being a Riemannian metric on (), then the nonholonomic system is reqular.
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Proof. In this case DyDoL(q,v)(uq, wy) = gq(uy, wy,), and so Wy, is defined by the in-
verse g% of the matrix g;;. Since g;; is positive-definite, so is the inverse g/; hence it
follows that W, is positive-definite. A positive-definite matrix restricted to a subspace

is again positive-definite, and so C;’ is positive-definite and hence nondegenerate. [J

In the Hamiltonian setting with the form of Lagrangian in Eq. (2.28)), we have the

following result:

Proposition 2.4.7 (Bates and Sniatycki [4]). Suppose that the Lagrangian is of the
form in Eq. (2.28). Let F be the distribution on T*Q defined by

F={veTlT*Q | Trg(v) € D}, (2.29)
and then define a distribution H on M :=FL(D) by
H:=FNTM. (2.30)

Then the standard symplectic form ) restricted to H is nondegenerate.

Proof. See Bates and Sniatycki [4, Theorem on p. 105]. O

2.5 Discrete Mechanics

This section briefly reviews some key results of discrete mechanics following Marsden
and West [48] and Lall and West [41].

2.5.1 Discrete Lagrangian Mechanics

A discrete Lagrangian flow {q;} for k =0, 1,..., N on an n-dimensional differentiable
manifold @ is defined by the following discrete variational principle: Let S} be the
following action sum of the discrete Lagrangian Lg: @ x @ — R:

=

S ({an}izo) = La(q, @rr1)- (2.31)

i

More precisely, given a Lagrangian L : T'(Q — R for a continuous-time system, the

corresponding discrete Lagrangian L4 : () X Q — R is an approximation of the exact
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discrete Lagrangian LG : () x () — R defined by

trt1
L) = [ Lla®.d0)dt
tg
where ¢ : [ty,txr1] — @ is the solution of the (continuous-time) Euler-Lagrange
equation with the boundary conditions ¢(t;) = qx and q(tgs1) = Grs1-
Consider discrete variations q; — qx+€dq for k =0,1,..., N with dgy = dqny = 0.

Then the discrete variational principle §S) = 0 gives the discrete Euler-Lagrange

{Qk}]kV:O
*

. 5 5 S 2 qN
© (oo

’

Figure 2.3: Discrete variations on configuration manifold Q).

equations:
DsLa(qe-1,qk) + D1La(qk, qret1) = 0. (2.32)

This determines the discrete flow Fpr, : Q X Q@ = Q X Q:

Fr, : (qe-1,ar) = (Qrs Qrg1)- (2.33)

Let us define the discrete Lagrangian symplectic one-forms @fd RQXQ = TH(QxQ)
by

OF : (aks Ger1) = DaLa(qr, Grs1) dgrs, (2.34a)
Or, (@ @or1) = —D1La(qw, Gr+1) dgi. (2.34b)

Then the discrete flow FJ, preserves the discrete Lagrangian symplectic form
QLo (s Grr1) = dOF, = dOT = Dy DsLa(qk, qrs1) dgi A dyy1- (2.35)

Specifically, we have

(FrLy)"Qr, = Qr (2.36)

a°
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2.5.2 Discrete Hamiltonian Mechanics

Introduce the right and left discrete Legendre transforms ]F'LéE QX Q —T"Q by

FLY < (ks Gis1) = (Ges1 DaLa(qr, Grer)), (2.37a)
FLy = (qk qer1) = (@, —D1La(qr, @rr))- (2.37b)

Then we find that the discrete Lagrangian symplectic forms Eq. (2.34)) and ([2.35)) are

pull-backs by these maps of the standard symplectic form on T*Q):
or, = FLy)'®,  Qp = (FLy)*Q. (2.38)
Let us define the momenta

Prjt1 = —D1 La(qr, qrt1), p;;kJrl i= Dy La(qr, qri1)- (2.39)

Then the discrete Euler-Lagrange equations ([2.32)) become simply p;—l,k‘ = Dppi1- D0
defining

Pk = Pi_16 = Prjes1s (2.40)

one can rewrite the discrete Euler-Lagrange equations ([2.32) as follows:

Pk = —D1La(qr, qe+1),
(2.41)

Pr+1 = Dalg (Qk; Qk+1) .

Notice that this can be interpreted as a symplectic map generated by the Type I
generating function Lq [27].
Furthermore, define the discrete Hamiltonian map FLd T*Q — T*Q) by

Fry  (an o) = (Gisrs Prs). (2.42)

One may relate this map with the discrete Legendre transforms in Eq. (2.37)) as
follows:
Fr, =FL; o (FLy)™" (2.43)

The diagram below summarizes the relations between Fy,,, Er,,, and FLT (see Marsden

20



and West [48] for details).

QxQ - QxQ (90, 1) —— (q1, ¢2)

VARV N\ /N

TQ i TQ i 7°Q (g0, p0) — (@1, 1) —— (q2. 2)
(2.44)

Furthermore one can also show that this map is symplectic, i.e.,
(Fp,)*Q=Q. (2.45)

This is the Hamiltonian description of the dynamics defined by the discrete Euler—
Lagrange equation (2.32)) introduced by Marsden and West [48]. However, notice that
no discrete analogue of Hamilton’s equations is introduced here, although the flow is
now on the cotangent bundle T*@Q).

Lall and West [41] pushed this idea further to give discrete analogues of Hamil-
ton’s equations: From the point of view that a discrete Lagrangian is essentially a
generating function of the first kind, we can apply Legendre transforms to the discrete
Lagrangian to find the corresponding generating function of type two or three [27]. In
fact, they turn out to be a natural Hamiltonian counterpart to the discrete Lagrangian

mechanics described above. Specifically, with the discrete Legendre transform
Prt1 = FLy (s 1) = D2La(qk, qryr), (2.46)
we can define the following right discrete Hamiltonian:

H (qr, prs1) = Prt1 - Gorr — La(@rs @), (2.47)

which is a generating function of the second kind [27]. Then the discrete Hamiltonian
map FLd : (qk, pr) ¥ (Qe+1, Prs1) is defined implicitly by the right discrete Hamilton’s

equations

Qo1 = Do HY (qr, prtr), (2.48a)
pe = DiH] (qk, prs1)- (2.48b)
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Similarly, with the discrete Legendre transform

Pk = FLy (qk, qk+1) = —D1La(qk, Gk+1), (2.49)

we can define the following left discrete Hamiltonian:

Hy (Prs Q1) = =Pk - @k — La(qr, @rrr), (2.50)

which is a generating function of the third kind [27]. Then we have the left discrete

Hamilton’s equations

G = —D1Hy (Pr, Ges1), (2.51a)
Per1 = —DoHy (Dre, Gt ). (2.51b)

Leok and Zhang [44] demonstrate that discrete Hamiltonian mechanics can be ob-
tained as a direct variational discretization of continuous Hamiltonian mechanics,

instead of having to go via discrete Lagrangian mechanics.
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Chapter 3

Nonholonomic Hamilton—Jacobi
Theory

3.1 Introduction

This chapter develops an extension of Hamilton—Jacobi theory to nonholonomic me-
chanics based on the Hamiltonian formulation of nonholonomic mechanics discussed
in Section 2.4.2] Much of the ideas in the proof of the nonholonomic Hamilton—
Jacobi theorem come from identifying both the similarities and differences between

the nonholonomic and unconstrained Hamilton’s equations.

3.1.1 Nonholonomic Hamilton—Jacobi Theory

The previous work by Iglesias-Ponte et al. [30] and de Ledn et al. [19] is of theoretical
importance in its own right. However, it is still unknown if the theorems are appli-
cable to the problem of exactly integrating the equations of motion of nonholonomic
systems in a similar way to the conventional theory. To see this let us briefly discuss
the difference between the unconstrained Hamilton—Jacobi equation and the nonholo-
nomic ones mentioned above. First recall the conventional unconstrained theory: Let
@ be a configuration space, T*(Q) be its cotangent bundle, and H : T*() — R be the

Hamiltonian; then the Hamilton—Jacobi equation can be written as a single equation:
ow

H(q— ) =FE, 3.1a

(q dq ) (3.12)

HodW(q)=E, (3.1b)

or
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for an unknown function W : ¢ — R. On the other hand, the nonholonomic

Hamilton—Jacobi equations in [30] have the following form:
d(H ov)(q) € D°, (3.2)

where v : Q — T*(Q is an unknown one-form, and D° is the annihilator of the dis-
tribution D C T'Q) defined by the nonholonomic constraints. While it is clear that
Eq. reduces to Eq. for the special case that there are no Constraintsﬂ
Eq. in general gives a set of partial differential equations for v as opposed to a
single equation like Eq. (3.1)).

Having this difference in mind, let us now consider the following question: Is
separation of variables applicable to the nonholonomic Hamilton—Jacobi equation?
It is not clear how the approach shown in Section [2.3.2] applies to the nonholonomic
Hamilton—-Jacobi Equation . Furthermore, there are additional conditions on the

solution v which do not exist in the conventional theory.

3.1.2 Integrability of Nonholonomic Systems

Integrability of Hamiltonian systems is an interesting question that has a close link
with Hamilton—Jacobi theory. For integrability of unconstrained Hamiltonian sys-
tems, the Arnold-Liouville theorem (Theorem stands as the definitive work.
For nonholonomic mechanics, however, the Arnold-Liouville theorem does not di-
rectly apply, since the nonholonomic flow is not Hamiltonian and so the key ideas in
the Arnold-Liouville theorem lose their effectiveness. Kozlov [40] gave certain con-
ditions for integrability of nonholonomic systems with invariant measures. However,
it is important to remark that there are examples that do not have invariant mea-
sures but are still integrable, such as the Chaplygin sleigh [see, e.g., [0; [7]. Also it is
unknown how this result may be related to nonholonomic Hamilton—Jacobi theory,

which does not have an apparent relationship with invariant measures.

3.1.3 Main Results

The goal of the present work is to fill the gap between the unconstrained and non-
holonomic Hamilton—Jacobi theory by showing applicability of separation of variables

to nonholonomic systems, and also to discuss integrability of them. For that purpose,

D = TQ and hence D° = 0 and identifying the one-form ~ with dW
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we would like to first reformulate the nonholonomic Hamilton—Jacobi theorem from
an intrinsic point of viewﬂ We show that the nonholonomic Hamilton—Jacobi equa-
tion (13.2)) reduces to a single equation H oy = E. This result resolves the differences
between unconstrained and nonholonomic Hamilton—Jacobi equations mentioned in
Section [3.1.1] and makes it possible to apply separation of variables to nonholonomic
systems. Furthermore, the intrinsic proof helps us identify the difference from the
unconstrained theory by Abraham and Marsden [I] and find the conditions on the
solution « arising from nonholonomic constraints that are more practical than (al-
though equivalent to, as pointed out by Sosa [53]) those of Iglesias-Ponte et al. [30].
It turns out that these conditions are not only useful in finding the solutions of the
Hamilton—Jacobi equation by separation of variables, but also provide a way to inte-

grate the equations of motion of a system to which separation of variables does not

apply.

3.1.4 Outline

In Section we formulate and prove the nonholonomic Hamilton—Jacobi theorem.
The theorem and proof are an extension of the one by Abraham and Marsden [I] to the
nonholonomic setting. In doing so we identify the differences from the unconstrained
theory; this in turn gives the additional conditions arising from the nonholonomic
constraints.

We apply the nonholonomic Hamilton—Jacobi theorem to several examples in
Section We first apply the technique of separation of variables to solve the non-
holonomic Hamilton—Jacobi equation to obtain exact solutions of the motions of the
vertical rolling disk and knife edge on an inclined plane. We then take the snakeboard
and Chaplygin sleigh as examples to which separation of variables does not apply,
and show another way of employing the nonholonomic Hamilton—-Jacobi theorem to

exactly integrate the equations of motion.

3.2 Nonholonomic Hamilton—Jacobi Theorem

We would like to refine the result of Iglesias-Ponte et al. [30] with a particular atten-
tion to applications to exact integration of the equations of motion. Specifically, we

would like to take an intrinsic approach (see [30] for the coordinate-based approach)

2A coordinate-based proof is given in [30]

25



to clarify the difference from the (unconstrained) Hamilton-Jacobi theorem of Abra-
ham and Marsden [I] (Theorem 5.2.4). A significant difference from the result by
Iglesias-Ponte et al. [30] is that the nonholonomic Hamilton-Jacobi equation is given
as a single algebraic equation H oy = FE just as in the unconstrained Hamilton—Jacobi

theory, as opposed to a set of differential equations d(H o) € D°.

Theorem 3.2.1 (Nonholonomic Hamilton—-Jacobi). Consider a nonholonomic sys-
tem defined on a connected differentiable manifold (Q with a Lagrangian of the form
Eq. and a completely nonholonomic constraint distribution D C T(Q. Let
v:Q — T*Q be a one-form that satisfies

v(q) € My for any q € Q, (3.3)

and

dy|pxp =0, i.e., dy(v,w) =0 for any v,w € D. (3.4)
Then the following are equivalent:

(i) For every curve c(t) in Q) satisfying
(t) =Trg - Xu(yoc(t)), (3.5)

the curve t — vy o c(t) is an integral curve of X%, where Xy is the Hamilto-

nian vector field of the unconstrained system with the same Hamiltonian, i.e.,

ix, Q= dH.
(i) The one-form =y satisfies the nonholonomic Hamilton—Jacobi equation:
Hovy=FE, (3.6)

where E is a constant.

The following lemma, which is a slight modification of Lemma 5.2.5 of Abraham

and Marsden [I], is the key to the proof of the above theorem:

Lemma 3.2.2. For any one-form v on @ that satisfies Eq. (3.4) and any v,w € F,
the following equality holds:

QT (yomg) - v,w) =Qv,w—T(yomg) - w). (3.7)
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Proof. Notice first that v — T'(y o mg) - v is vertical for any v € TT*Q:

Trq-(v=T(yomg) v) =Tmg(v) = T(rgoyomy) v
= Tﬂ'Q(U) — TWQ(U) = O,

where we used the relation mg oy o mg = mg. Hence
Qv —-T(yomg) -v,w—=T(yomg) w) =0,
and thus
AT (yomg) -v,w) =Qv,w—T(yomg) - w) + AT (yomq) - v,T(yomg) - w).
However, the second term on the right-hand side vanishes:
UT(yomq)-v, T(yomg) - w) =7 UTmq(v), Tro(w)) = —dy(Tmq(v), Tme(w)) =0,

where we used the fact that for any one-form 5 on @, §*Q) = —df with g on the
left-hand side being regarded as a map [ : @ — T*Q [see [1, Proposition 3.2.11

on p. 179], and the assumption that dy|pxp = 0; note that v,w € F implies
TWQ(U),TWQ(U)) e D. O

Let us state another lemma:

Lemma 3.2.3. The unconstrained Hamiltonian vector field Xy evaluated on the con-

strained momentum space M is in the distribution F, i.e.,
Xu(ag) € Fa, for any oy € M,.

Proof. We want to show that Tmg(Xg(a,)) is in D,. First notice that

Tro(Xan(as)) = 5~ (ay) 5 = FH(ay),

where we defined FH : T*Q) — T'Q) by

(Bg, FH(ay)) = digH(O‘q +e8)

e=0
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However, because the Lagrangian L is hyperregular, we have FH = (FL)~! and thus
Trq(Xn(ag) = (FL) ' (ag).

Now, by the definition of M, o, € M implies o, € FL(D,), which gives (FL) *(a,) €
D, by the hyperregularity of L. Hence the claim follows. m

Proof of Theorem|[3.2.1. Let us first show that implies . Assume and let
p(t) := 7o c(t), where ¢(t) satisfies Eq. (3.5). Then

p(t) = Ty(c(t))
=TyoTng - Xu(yoc(t))

— T(yomg) - Xulyoc(t)). (3.8)

Therefore, using Lemmas [3.2.2 and [3.2.3, we obtain, for any w € F,

AT (yomq) - Xu(p(t), w) = UXu(p(t), w —T(yomq) - w)
= QXu(p(t)), w) = AUXnu(p(t), T(yomq) - w).

For the first term on the right-hand side, notice that for any w € F,
QX w) =dH - w — Ampw’(w) = dH - w = Q(Xpg,w).
Also for the second term,
QUXu(p(t), T(yomq) - w) = dH(p(t)) - T(y o mq) - w = d(H o 7)(c(t)) - Tmg(w).
So we now have
AT (yomq) - Xu(p(t),w) = X (p(t), w) — d(H o y)(c(t)) - Tmo(w).  (3.9)

However, the nonholonomic Hamilton—Jacobi equation (3.6) implies that the second

term on the right-hand side vanishes. Thus we have

AT (y omq) - Xu(p(t)), w) = QXK (p(1)), w) (3.10)

for any w € F,u. Now T(yomg) - Xy € TM since vy takes values in M; also
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T(yomg)  Xu(p(t)) € Fpr because
TmqoT(yomq) - Xu(p(t)) = T(mq oy omq) - Xu(p(t)) = Tmg - Xu(p(t)) € D,

using Lemma again. Therefore T'(yomg)- Xu(p(t)) € Hpw)- On the other hand,
X2 (p(t)) € Hpuy as well: X3 (p(t)) € Ty M because M is an invariant manifold of
the nonholonomic flow defined by X! and also X3 (p(t)) € Fpr) due to Eq. (2.25).
Now, in Eq. , w is an arbitrary element in F,) and thus Eq. holds for
any w € H,() because H C F. However, according to Proposition [2.4.7 € restricted

to H is nondegenerate. So we obtain
T(yomg) - Xu(p(t) = X5 (p(1)),
and hence Eq. (3.8) gives

B(t) = X3 (p(1)).

This means that p(t) gives an integral curve of X" Thus implies .
Conversely, assume (f]); let c¢(f) be a curve in @ that satisfies Eq. (3.5) and set
p(t) :==yoc(t). Then p(t) is an integral curve of X2 and so

p(t) = X5 (p(1)).

However, from the definition of p(t) and Eq. (3.5)),

p(t) = Ty(é(t) =Ty o T'mg - Xu(p(t)) = T(y o mq) - Xu(p(t)).

Therefore we get
Xi'(p(1) = T(y o mq) - Xu(p(1)).

In view of Eq. (3.9)), we get, for any w € TT*Q) such that T'mg(w) € D,
d(H 0 7)(e(t)) - Trq(w) = 0,

but this implies d(H o v)(c(t)) - v = 0 for any v € D), or d(H o ¥)(c(t)) € Dy,
However, this further implies d(H o «)(¢q) = 0 for any ¢ € @: For an arbitrary point
q € @, consider a curve c(t) that satisfies Eq. such that ¢(0) = ¢. Then this gives
d(H ov)(q) € D;. Therefore d(H o) € D° on @, but then Proposition implies
that d(H o) = 0 because D is assumed to be completely nonholonomic. Therefore we

have H oy = F with some constant F, which is the nonholonomic Hamilton—Jacobi
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equation (3.6]). [

Remark 3.2.4. The condition on dv, Eq. , stated in the above theorem is equiv-
alent to the one in [30] as pointed out by Sosa [53] [see also 49, Lemma 4.6 on p. 51].
However Eq. gives a simpler geometric interpretation and also is easily imple-
mented in applications. To be specific, the condition in [30] states that there exist

one-forms {3'}™, such that

dy =) B AW, (3.11)
s=1

which does not easily translate into direct expressions for the conditions on v. On
the other hand, Eq. (3.4) is equivalent to

d7y(vg, vp) = 0 for any a # b, (3.12)

n—m

where {v,}o_]

spans the distribution D. Clearly the above equations give direct
expressions for the conditions on 7. We will see later in Section that the above

equations play an important role in exact integration.

Remark 3.2.5. Table compares Theorem with the unconstrained Hamilton—
Jacobi theorem of Abraham and Marsden [I] (Theorem [2.3.1)). Note that Eq.
is trivially satisfied for the unconstrained case: Recall that « is replaced by an exact
one-form dW in this case. Since D = T'Q) by assumption, we have dvy|pxp = dvy =
d(dW) = 0 and thus this does not impose any condition on dW. Notice also that

Table 3.1: Comparison between unconstrained and nonholonomic Hamilton—Jacobi
theorems.

Nonholonomic Unconstrained
Generating Function None W:Q —R
One-form Y:QoMCT*Q | dW:Q —T*Q
Condition dvy|pxp =0 ddW = 0 (trivial)
Hamilton—Jacobi Eq. Ho~(q)=F HodW(q)=FE

if D = TQ, then the condition dy|pxp = 0 implies that v is closed, and so locally
exact by the Poincaré lemma; hence the (local) existence of the generating function
W such that v = dW follows.

Remark 3.2.6. See Carifiena et al. [I14] for a Lagrangian version of Theorem [3.2.1]
and de Leén et al. [I9] for an extension to a more general framework, i.e., systems

defined with linear almost Poisson structures.
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3.3 Application to Exactly Integrating Equations
of Motion

3.3.1 Applying the Nonholonomic Hamilton—Jacobi Theo-
rem to Exact Integration

Theorem [3.2.1] suggests a way to use the solution of the Hamilton—Jacobi equation to

integrate the equations of motion. Namely,

Step 1. Find a solution v(q) of the Hamilton—Jacobi equation
Hon(q)=FE, (3.13)

that satisfies the conditions v(q) € M, and dy|pxp = 0;

Step 2. Substitute the solution 7(q) into Eq. (3.5) to obtain the set of first-order
ODEs defined in the configuration @:

é(t) =Tng - Xu(yoc(t)), (3.14a)
or, in coordinates,
(0 = (o clt): (3.14b)

Step 3. Solve the ODEs (3.14)) to find the curve ¢(¢) in the configuration space Q.
Then «y o ¢(t) gives the dynamics in the phase space T*Q.

Figure depicts the idea of this procedure.

In the following sections, we apply this procedure to several examples of non-
holonomic systems. In any of the examples to follow, it is easy to check that the
constraints are completely nonholonomic (see Definition 7 and also that the La-
grangian takes the form in Eq. and hence the system is regular in the sense of
Definition

3.3.2 Examples with Separation of Variables

Let us first illustrate through a very simple example how the above procedure works

with the method of separation of variables.
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T*Q 7:Q—-T7Q

v oc(t)

I\_%N
Q

Figure 3.1: Schematic of an implication of the nonholonomic Hamilton—-Jacobi theo-
rem.

Example 3.3.1 (The vertical rolling disk; see, e.g., Bloch [7]). Consider the motion
of the vertical rolling disk of radius R shown in Fig. [3.2] The configuration space is

‘A

Figure 3.2: Vertical rolling disk.

Q = SE?2) xS' = {(z,y,9,%)}. Suppose that m is the mass of the disk, I is the
moment of inertia of the disk about the axis perpendicular to the plane of the disk,
and J is the moment of inertia about an axis in the plane of the disk (both axes

passing through the disk’s center). The velocity constraints are

i = Rcos g, y = Rsin 1), (3.15)
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or in terms of constraint one-forms,
w! = dx — Rcos pdi, w? = dy — Rsin @ di. (3.16)

The Hamiltonian H : T*() — R is given by

1/p2+p> p> Dl

The nonholonomic Hamilton—Jacobi equation (3.6) is
Hoy=FE, (3.18)

where E' is a constant (the total energy). Let us construct an ansatz for Eq. (3.18]).
The momentum constraint p € M = FL(D) gives p, = mRcosppy/l and
py = mRsinppy /I, and so we can write vy : Q — M as

mR mR .
vy = Tcoww(x,y,so,zb) dr + - sin vy (2, y, 0, ) dy

+ Y2, y, 0,0) dp + Yy (2, y, @, ) dip. (3.19)

Now we assume the following ansatz:

Yo, 9, 0,%) = 7,(0). (3.20)

Then the condition d7y|pxp = 0 in Eq. (3.4]) gives

— =0 3.21
8()0 ) ( )
and so
’yib('ray?w?w) = ’)/w(xvyuw> (322>
So Eq. (3.18) becomes
1 2 T+ mR?
5 ) = B (3.23)

The first term in the parentheses depends only on ¢, whereas the second depends on
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x, y, and 1. This implies that both of them must be constant:

Yo(@) =7or Yl y. 1) =y, (3.24)

where 787 and 73 are the constants determined by the initial condition such that
1/1 I +mR?
(o T Eae) = v

Then Eq. (3.5) becomes

0R OR 0 . 0
T = ’waCQS(p’ y = /yd]Tsingp’ ('p = k @D = 771/;7 (325)

which are integrated easily to give the solution

JR 0 0
z(t) =c1 + I*y? sin(lf t+ <,Do> ;
TRY s 22 (3.26)
y(t) = co — ]73 cos i t+ o |, .
0 0
7 7
@(t):¢0+7@t7 1/)(t)=¢0+7w757

where ¢y, ¢, g, and ¥y are all constants.

Separation of variables for unconstrained Hamilton—Jacobi equations often deals
with problems with potential forces, e.g., a harmonic oscillator and the Kepler prob-
lem. Let us show that separation of variables works also for the following simple

nonholonomic system with a potential force:

Example 3.3.2 (The knife edge; see, e.g., Bloch [7]). Consider a plane slanted at an
angle « from the horizontal and let (x,y) represent the position of the point of contact
of the knife edge with respect to a fixed Cartesian coordinate system on the plane (see
Fig.[3.3). The configuration space is Q = SE(2) = {(x,y, ¢)}. Suppose that the mass
of the knife edge is m, and the moment of inertia about the axis perpendicular to the

inclined plane through its contact point is J. The velocity constraint is

sinpt — cospy =0, (3.27)
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Figure 3.3: Knife edge on inclined plane.

and so the constraint one-form is
w!' = sinpdr — cos pdy. (3.28)
The Hamiltonian H : T*Q) — R is given by

1/p2+p, p?
(—y+_<p

H=-
m J

5 > — mgx sin a. (3.29)

The nonholonomic Hamilton—Jacobi equation ([3.6) is
Ho~vy=EF, (3.30)

where E is a constant (the total energy). Let us construct an ansatz for Eq. (3.30)).
The momentum constraint p € M = FL(D) gives

Dy = tan ¢ p,,

and so we can write v : Q — M as

Y=Y (2,y, ) dr + tan o v, (2, y, @) dy + Yo(2, y, @) dp. (3.31)

Now we assume the following ansatz:

Yo (T, 4, 0) = V() (3.32)
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Then the condition dy|pxp = 0 in Eq. (3.4]) gives

Ve
D

= —tan ¢ y,. (3.33)
Integration of this equation yields

Yo(®,y,0) = f(z,y) cos p, (3.34)
with some function f(z,y). Then Eq. (3.30) becomes

1 2 2
5 % — (2mgsina)z + @ - E. (3.35)
The first two terms in the brackets depend only on x and y, whereas the third depends

only on ¢. This implies that
Yel0) =7, (3.36)

with some constant 72, and f(x,y) satisfies

1 2 0\2
5 {JC(ZET’?J) — (2mgsina) z + (7§> } =F. (3.37)
Let us suppose that sleigh is sliding downward in Fig. [3.3. Then we should have
ve > 0 for 0 < ¢ < /2. From Eq. (3.34) we see that f(x,y) > 0, and hence choose
the branch

flz,y) = \/m <2E - @> + (2m2gsina) x. (3.38)

Then Eq. (3.5) becomes

0)2

$: —_—
"2 + (3.39)
Y= sin (E— (7&2) + (mgsina) x o= lg
,/m/2 2J ’ J’

Let us choose the initial condition

(2(0), 5(0), ¢(0), £(0), 9(0), £(0)) = (0,0,0,0,0,w),
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where w :=~2/.J. Then we obtain

gsin o
2w?

gsin o

sin?(wt), y(t) 57

()

(wt— %sin(2wt)) . p(t) = wt. (3.40)

These are the solution obtained in Bloch [7, Section 1.6].

3.3.3 Examples without Separation of Variables

In the unconstrained theory, separation of variables seems to be the only practical
way of solving the Hamilton—-Jacobi equation. However notice that separation of
variables implies the existence of conserved quantities (or at least one) independent
of the Hamiltonian, which often turn out to be the momentum maps arising from
the symmetry of the system. This means that the integrability argument based on
separation of variables is possible only if there are sufficient number of conserved
quantities independent of the Hamiltonian [see, e.g., 42, §VIIL.3]. This is consistent
with the Arnold-Liouville theorem, and as a matter of fact, separation of variables
can be used to identify the action-angle variables [see, e.g., 33, §6.2].

The above two examples show that we have a similar situation on the nonholo-
nomic side as well. In each of these two examples we found conserved quantities
(which are not the Hamiltonian) from the Hamilton—Jacobi equation by separation of
variables as in the unconstrained theory. So again the existence of sufficient number
of conserved quantities is necessary for application of separation variables. However,
this condition can be more restrictive for nonholonomic systems since, for nonholo-
nomic systems, momentum maps are replaced by momentum equations, which in
general do not give conservation laws [§].

An interesting question to ask is then: What can we do when separation of vari-
ables does not seem to be working? In the unconstrained theory, there are cases where
one can come up with a new set of coordinates in which one can apply separation of
variables. An example is the use of elliptic coordinates in the problem of attraction by
two fixed centers [3], §47.C]. The question of existence of such coordinates for nonholo-
nomic examples is interesting to consider. However, we would like to take a different
approach based on what we already have. Namely we illustrate how the nonholo-
nomic Hamilton—Jacobi theorem can be used for those examples to which we cannot
apply separation of variables. The key idea is to utilize the condition d7|pxp = 0,
which does not exist in the unconstrained theory as shown in Remark [3.2.5]
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Example 3.3.3 (The Snakeboard; see, e.g., Bloch et al. [§]). Consider the motion
of the snakeboard shown in Fig. [3.4, Let m be the total mass of the board, J

Figure 3.4: The Snakeboard.

the inertia of the board, Jy the inertia of the rotor, J; the inertia of each of the

wheels, and assume the relation J + Jy + 2J; = mr? The configuration space is

Q=SE(2) xS'xS'={(z,y,0,v, )} and the Hamiltonian H : T*Q — R is given
by

2 1 Lo

1 1
H=——(p}+p)+ 5P (bo = po)* + 75 (3.41)

2m 2.Jo" Y * 2(mr? — Jp)

The velocity constraints are
i+ rcotg cosfh =0, § 4 rcotsinff =0, (3.42)
and thus the constraint distribution is written as

D ={v=(i,4,0,,6) € TQ | w'(v) = 0, s = 1,2}, (3.43)
where
w' = dx + rcot ¢ cosfdb, w? = dy + r cot ¢ sin 6 d. (3.44)

The nonholonomic Hamilton—Jacobi equation (3.6)) is
Ho~v=E. (3.45)

Let us construct an ansatz for Eq. (3.45). The momentum constraint p € M = FL(D)

gives

mr

mr .
et cost (py —py), Py = ——m——cotd sind (py — py),

pI:_ 2
mre — Jo mre — Jo

and so we can write v : Q — M as

v = —mTTT = cot ¢ (g — Yy)(cos O dx + sin 6 dy) + vo d6 + vy, dp + v, dd.  (3.46)
—Jo
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Now we assume the following ansatz:

71[1(1.7?/7977/}7(?) = Vw(w)a ’Y¢(5E,y,97¢a¢) = ’}/d)((ﬁ) (347>

Then the nonholonomic Hamilton—Jacobi equation (3.45) becomes

2

mr 1
£2 N2t 2

1
_ —v)+—72=E. (34
2(m7“2 — JO ) (70 71/)) + 4<]1 ’Y¢ <3 8)

mr? — Jy

Solving this for 7y, we have

10, 5,0,8,6) = () + e = o) sIn \/ po 20l 2@F 5 4

V (mr2 — Jysin® ¢) /2 2Jo 4J;

and substituting the result and Eq. (3.47)) into the condition dvy|pxp = 0 in Eq. (3.4)

gives

%[W)Z] —0,

sin ¢ JO\/E — %;L(;:) — 725?) sin ¢ — \/(mr2 — Josin? ¢) /2 Yo (V) fyq’b(w) =0.

Therefore it follows that

() =9 W) =1y
with some constants ’yg and 73. Hence Eq. (3.49)) becomes

(mr? — Jy) C'sin ¢
9(¢) ’

’}/g(l',y70,¢, ¢) = W(lﬁ) +

where we defined
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Then Eq. (3.5)) gives

_C’TCOSQ cos ¢ ___C’rsine Ccos ¢

o) T gle)
-_ﬁ_(]singb -_7_2
YT T e YT

xr =

o (3.50)

f 9(p) ’

This result is consistent with that of Koon and Marsden [38] obtained by reduction

of Hamilton’s equations for nonholonomic systems. It is also clear from the above

expressions that the solution is obtained by a quadrature.

In the above example we found conserved quantities through dv|pxp = 0 instead
of separation of variables. In the following example, we cannot identify conserved
quantities even through dv|pxp = 0; nevertheless we can still integrate the equations

of motion.

Example 3.3.4 (The Chaplygin sleigh; see, e.g., Bloch [7]). Consider the motion of
the Chaplygin sleigh shown in Fig. 3.5 Let m be the mass, I the moment of inertia

z

Figure 3.5: The Chaplygin sleigh.

about the center of mass C', a be the distance from the center of mass C' to the contact
point A of the edge. The configuration space is Q@ = SE(2) = {(z,y,0)}, where the
coordinates (x,y) give the position of the contact point of the edge (not the center of

mass). The velocity constraint is

sinf i —cosfy =0, (3.51)
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and so the constraint one-form is
w' = sinfdx — cos 6 dy. (3.52)
The Hamiltonian H : T*() — R is given by

Ma?sin0 + J 2+Ma2c0829—i-J )
2JM 2JM
1 . a’®sin 0 cos 6

NEYAL J

H =

a, .
—(sin@p, —cosbp,)pg. (3.53)

Pz Py + 7

The nonholonomic Hamilton—Jacobi equation (3.6)) is
Hov=E, (3.54)

where E' is a constant (the total energy). Let us construct an ansatz for Eq. (3.54)).
The momentum constraint p € M = FL(D) gives

om0 &M sec 6
= tanfp, ,
Dy D J M Y va 4
and so we can write v : Q — M as

aM sec 6

Y = Yelw,y,0) de+|tan 0 v, (2, y, 0) + (z,y,0)| dy+~p(x,y,0)db. (3.55)

T+ a2M o
Now we assume the following ansatz:
Yo(@,y,0) = 7(6). (3.56)

Then the condition d7y|pxp = 0 in Eq. (3.4]) gives

(J +a*M) Secﬁ(aa—e + tan9%> + aM tan ((2—9 + tan@w) = 0. (3.57)

On the other hand, the Hamilton-Jacobi equation (j3.54]) becomes

4atan @
(7,9, 0) 79 (0
T a Mv(xy )Y6(0)

(J 4 2a*>M + J cos 20) sec 6
(J + a2M)?

’Yz(«ry y7 0>2

1 0 2sect
— sec
4 M

79(9)2] =E. (3.58)
It is impossible to separate the variables as we did in the examples in Examples
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and [3.3.3] since we cannot isolate the terms that depend only on 6. Instead we solve
the above equation for v, and substitute the result into Eq. (3.57). Then we obtain

dryg 'Yg
N .71 7 —"—
do “\/ ( T+ a2M

Solving this ODE gives

M
6(0) = (J+a2M)wcos< JiW9> (3.59)

where we assumed that 2/(0) = 3/(0) = 0, #(0) = 0, and ¢'(0) = w and also that

|0(t)| < 7/2; note that the angular velocity w is related to the total energy by the
equation £ = (J + a*M)w/2. Then the equation for 0(¢) in Eq. (3.5) becomes

: [ a*M
0=uw COS( m 6) s (360)

which, with 6(0) = 0, gives

o(t) = % arctan {tanh (g wtﬂ , (3.61)

where we set b := /a2M/(J + a2M). Substituting this back into Eq. (3.59), we

obtain

9 a’M
Yo(t) = (J + a” M) wsech mwt : (3.62)

which is the solution obtained by Bloch [6] [see also [T, Section 8.6].
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Chapter 4

Chaplygin Hamiltonization and
Nonholonomic Hamilton—Jacobi
Theory

4.1 Introduction

This chapter approaches nonholonomic Hamilton—Jacobi theory from a different per-
spective from the previous chapter, and also establishes a link between those two
approaches. Specifically, we first employ the technique called the Chaplygin Hamil-
tonization to transform a certain class of nonholonomic systems into Hamiltonian
systems, and then apply the conventional Hamilton—Jacobi theory to the resulting
Hamiltonian systems to obtain what we would like to call the Chaplygin Hamilton—
Jacobi equation. The main result in this chapter is an explicit formula that relates the
solutions of the Chaplygin Hamilton—Jacobi equation with those of the nonholonomic

Hamilton—Jacobi equation in the previous chapter.

4.1.1 Direct vs. Indirect Approaches

The indirect approach via Chaplygin Hamiltonization has both advantages and disad-
vantages. The main advantage is that we have a conventional Hamilton—Jacobi equa-
tion and thus the separation of variables argument applies in a rather straightforward
manner compared to the direct approach in the previous chapter. A disadvantage
is that the Chaplygin Hamiltonization works only for limited nonholonomic systems;
and even if it does, the relationship between the Hamilton—-Jacobi equation and the
original nonholonomic system is not transparent, since one has to inverse-transform
the information in the Hamiltonized systems. Nevertheless Hamiltonization is known

to be a powerful technique of integration of nonholonomic systems [9} [16}; 23-H25], and
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hence it is interesting to make a connection between the approach in the previous
chapter and the one with Hamiltonization.

Let us briefly summarize the differences between two approaches. Recall from the
previous chapter that nonholonomic Hamilton—Jacobi theory gives the following set
of equations for a one-form v : @ — M C T*(@Q defined on the original configuration
space Q:

Hovy=F, dy|pxp =0,

where the Hamiltonian H is a function on 7*@. On the other hand, the Chaplygin
Hamiltonization first reduces the system by identifying it as a so-called Chaplygin
system with a symmetry group G, and then Hamiltonize the system on the cotangent
bundle T*(Q/G) of the reduced configuration space )/G. The resulting Chaplygin

Hamilton-Jacobi equation is an equation for a function W : Q/G — R:
I:I c© dW =F s

with another Hamiltonian H¢ defined on T%(Q/G). Therefore the difference lies not
only in the forms of the equations (former one involves a one-form that is not even
closed, whereas the latter an exact one-form), but also in the spaces on which the
equations are defined. Furthermore, the Chaplygin Hamilton—Jacobi equation cor-
responds to the Hamiltonized dynamics and is related to the original nonholonomic
one in a rather indirect way. Therefore, on the surface, there does not seem to be an

apparent relationship between the two approaches.

4.1.2 Main Results

The main goal of this chapter is to establish a link between the two distinct approaches
to nonholonomic Hamilton—Jacobi theory. To that end, we first formulate the Chap-
lygin Hamiltonization in an intrinsic manner to elucidate the geometry involved in
the Hamiltonization. This gives a slight generalization of the Chaplygin Hamiltoniza-
tion by Fedorov and Jovanovié¢ [24] and also an intrinsic account of the necessary and
sufficient condition for symplectizing a certain class of nonholonomic systems. These
results are also related to existence of invariant measure in nonholonomic systems. We
then identify a sufficient condition for the Chaplygin Hamiltonization. The sufficient
condition turns out to be identical to one of those for another kind of Hamiltonization
(which renders the systems “conformal symplectic” [29]) obtained by Stanchenko [54]

and Cantrijn et al. [I2]. We then give an explicit formula that translates the so-
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lutions of the Chaplygin Hamilton-Jacobi equation into those of the nonholonomic
Hamilton—Jacobi equation. Interestingly, it turns out that the sufficient condition
plays an important role here as well. We show, through a couple of examples, that
the solutions of the Chaplygin Hamilton—-Jacobi equation are, through the formula,

identical to those obtained by the direct approach in the previous chapter.

4.1.3 Outline

We first review, in Section [4.2] the so-called Chaplygin systems and their reduc-
tion following Koiller [36], Ehlers et al. [21I], and Hochgerner and Garcia-Naranjo
[29]. Section treats the Chaplygin Hamiltonization of such systems intrinsically,
making links with existence of invariant measures, and also identifies the necessary
and sufficient condition for symplectization and a sufficient condition for the Chap-
lygin Hamiltonization. In Section [4.4] we formulate the Chaplygin Hamilton—Jacobi
equation and give an explicit formula that relates the solutions of it to those of the
nonholonomic Hamilton—-Jacobi equation . Section takes two examples, the
vertical rolling disk and knife edge, to illustrate that the formula, combined with sep-

aration of variables for the Chaplygin Hamilton—-Jacobi equation, gives the solutions

obtained in Examples [3.3.1| and [3.3.2]in the previous chapter.

4.2 Chaplygin Systems

Consider a nonholonomic system on an n-dimensional configuration manifold () with
a constraint distribution D C T'Q) with dim D, = n—m, and also with the Lagrangian
L :T¢ — R of the form

L) = 39ty ) — V(a) (1)

with the kinetic energy metric g defined on (). Define the Legendre transform
FL:TQ — T*Q by

(FL(vg), wy) = %L(Uq + e w,) i = gq(Vg, Wq) = <gg(vq), wq>
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for any vy, w, € T,Q). where the last equality defines ¢’ : TQ — T*Q; hence we have
FL = ¢". Also define the Hamiltonian H : T*Q — R by

H(pq) = <pqavq> - L(Uq)a

where v, = (FL)"*(p,) on the right-hand side.

Suppose that the system is a so-called Chaplygin system: Consider a free and
proper group action of a Lie group G on @), i.e., we have & : GXQ — Qor ¢, : Q — Q
for any h € GG; we assume that the system has a symmetry under the group action,
and also that each tangent space is the direct sum of the the constraint distribution

and the tangent space to the orbit of the group action, i.e., we have, for any ¢ € @,
17,Q =D, ® T,0,, (4.2)
where O, is the orbit through ¢ of the G-action on @), i.e.,
Oy ={Py(q) €Q | g € G}.

Therefore the dimension of the Lie group G must be m. This setup gives rise to the
principal bundle 7 : Q — Q/G =: Q and the connection A : TQ — g, with g being
the Lie algebra of GG, such that ker A = D. So the above decomposition is now written

as
T,Q) = ker A, @ ker Ty, (4.3)

and any vector v, € T,() can be decomposed into the horizontal and vertical parts:
vy = hor(v,) + ver(v,), (4.4a)

with
hor(vy) = vy — (Ay(vy))@(a), ver(vy) = (Aq(vg))e(9), (4.4b)

where {g € X(Q) is the infinitesimal generator of £ € g. Furthermore, for any ¢ € @
and ¢ := 7(q) € Q, the map Tyr|p, : D, — T;Q is a linear isomorphism, and hence

we have the horizontal lift

hlf :T,Q = Dy g (Tymlp,) " (0g)- (4.5)
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We employ the following shorthand notation for horizontal lifts:
vy = hlqp(ﬁ(j). (4.6)

This gives rise to the reduced Lagrangian L := L o hl”, or more explicitly,

_ _ 1 _
L: TQ — R; 77(} = 5@7(@]7 77(1) - V(q)a (47>

where g is the metric on the reduced space ) induced by ¢ as follows:
gq(l_}(fa wq) ‘= Yq (h15(65)7 hlqp(l_}(f)) - gq<v(}]l7 w};)’ (48>

and the reduced potential V : Q — R is defined such that V =V o .
This geometric structure is carried over to the Hamiltonian side (see Ehlers et al.

[21]). Specifically, we define the horizontal lift hlg\” :TrQ — M, by

W :=FL,ohll o(FL);' = g, o hlY o(7); ", (4.9)

q
or the diagram below commutes.

FLg

Dq Mq
A
hi? :hlg" (4.10)
|
0 TQ
TCIQ (F[_/)gl q Q

Again we employ the following shorthand notation:

a? = hlflw(&q) (4.11)

for any az € T7Q.
We also define the reduced Hamiltonian H : T*Q — R by

H:= Hoh™, (4.12)

it is easy to check that this definition coincides with the following one by using the

reduced Lagrangian L:

H(pg) = (pg, vg) — E(Uq)v
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with v = (FL); " (py).
Performing the nonholonomic reduction of Koiller [36] (see also Bates and Sni-
atycki [4], Ehlers et al. [21], and Hochgerner and Garcia-Naranjo [29]), we obtain the

following reduced Hamilton’s equations for Chaplygin systems:

ixQ=dH +ixE, (4.13)

where X is a vector field on 7*Q and € is the standard symplectic form on T*Q; the
two-form = on T*Q is defined as follows: For any ag € Tg@ and Ya,, Za, € quT*Q,
let Y; := Tm5(Ya,) and Zg := Tng(Zs,) where 7 : T*Q — @ is the cotangent bundle

projection, and then set

Zay (Yag, Zag) 1= (T o )(@y), B, (h1D (V) h1D(Z,)))
= (J(ay), By(Y;, Zy)) (4.14)

where J : T*Q) — g* is the momentum map corresponding to the G-action, and B
is the curvature two-form of the connection A. This is well-defined, since the Ad-

equivariant properties of the momentum map J and the curvature B cancel each
other [37]: Writing hq := ®1(q) for any h € G, we have, using Lemma and the

G-equivariance of the momentum map J and the curvature B,

(3(@hy) Bra(Yiy, Z1)) = (I(Ty @ps(a})) 0B,V Z3))
= (Adj 2 3(0}), Adu B,(¥)' Z0)
= (J(ah), B,(Y), Z2)) -

4.3 Chaplygin Hamiltonization of Nonholonomic
Systems

This section discusses the so-called Hamiltonization of the reduced dynamics defined
by Eq. ([#.13). The results here are mostly a summary of some of the key results
of Stanchenko [54], Cantrijn et al. [12], Fedorov and Jovanovié¢ [24], and Fernandez
et al. [25]. However, our exposition is slightly different from them, and also touches

on those aspects that are not found in the above papers.
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4.3.1 Hamiltonization and Existence of Invariant Measure

We first discuss the relationship between Hamiltonization and existence of invariant
measure for nonholonomic systems. The next subsection will show how to Hamiltonize
the reduced system Eq. explicitly.

Let f : T*Q — R be a smooth function with f > 0 and also constant on each
fiber, i.e., f(ag) = f(B;) for any oy, B; € Tg@. Therefore we can write, with a slight
abuse of notation, f(ag) = f(q); so f may be seen as a function on Q. Now consider
the vector field

X/f = 3% €X(T°Q)

and let (IDfZ/f : T*Q — T*Q be the flow defined by this vector field, i.e., for any
Qg € T*Q,
d )_(/f S 1 =
— 0 ag)| = (X/f)(ag) = X(ag).
dt ! ! t=0 ! f(aé) !

Now consider the map Wy : T*Q — T*Q defined by

Vst fa,

which is clearly a diffeomorphism with the inverse W L=y, T *Q = T*Q: o —
a/f, and define CDE/ :T*Q — T*Q by

O =00 oWt =000 0wy,

or the diagram below commutes.

o X/

T*Q Q  offr—=o " (a/f)

‘I’f1=\1’1/f| l\I/f ‘ ] (415)

Q- - 5-=T"Q @ = - ==} (a)

t

Then we have the vector filed Y € X(T*Q) corresponding to the flow @f, which is
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the pull-back of X /f by \Ilf_l = Uy

— W, (X/f)(ag), (4.16)

for any oy € T*Q@; notice also that the third line in the above equation shows that
X/f and Y are Us-related:

TUro(X/f)=Y 0¥

The following theorem relates the symplecticity of the vector field Y and the
existence of an invariant measure for the reduced system Eq. (4.13)):

Theorem 4.3.1. If Y € X(T*Q) is symplectic, i.e., £3Q = 0, then the reduced sys-
tem Eq. (£.13) has the invariant measure f*"'A, where n := dimQ = n —m and A

being the Liouville volume form

—1)m=1)/2 _ _
A= —( D

— 1 o e n o e =
P Q/\-;-/\Q—dq/\ ANdqg" Ndpy A -+ A dps.

n

In other words, we have

f,))‘((fﬁflj\) =0.
This theorem is a slight generalization of the following:

Corollary 4.3.2 (Fedorov and Jovanovié¢ [24]). If Y € X(T*Q) is Hamiltonian, i.e.,
ivQ = dHc for some He : T*Q — R, then the reduced nonholonomic dynamics
Eq. (4.13) has the invariant measure fP1A.

Proof. Follows easily from Cartan’s formula:
£ =d(igQ) + iydQ) = ddHc = 0. m

Definition 4.3.3. We would like to call such H¢ : T*Q — R a Chaplygin Hamilto-

nian.
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We state a couple of lemmas before proving Theorem [4.3.1}

Lemma 4.3.4. Let f : T*Q — R be a smooth function that is constant on the fibers,
i.e., flag) = f(By) for any ag, b7 € Tg@. Then

U= fQ—df nO,

and

(W) A A (09) = [

n

A AL

Proof. Let © be the symplectic one-form on T*Q, i.e., Q = —dO. Let us first calculate
\IJ}‘(:): We have, for any o € T*Q and v € T,T*Q,

(V70)a(v) = Ouy(a) (T4 (v))
= (V(a), Tmq - TWy(v))
= (fa,T(mq o Vy)(v))
= f{a, Tmg(v))
= [ ©4(v),

where we used the fact that W, is fiber-preserving, i.e., mg o ¥y = mg. Hence we have
\If}‘@ = fO, and thus

Therefore, using the fact that a A f = 8 A «a for any two-forms « and (3, we have

DA A(TFQ) = f"AN---AQ
f f
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Let us show that the second term vanishes. Since f is constant on fibers, we have

of . .

df = 5 dq°.

Therefore 9
df NO = pb—f dq® A dg®
0q*

and thus df A© does not contain any term with dp,’s. On the other hand, Q A --- A Q)
—_—

n—k
contains only n — k of dp,’s. Therefore the 2n-form

QA;-}-C/\Q/\gdeG))/\-;-/\(df/\@)
n— k

contains only n — k of dp,’s, and thus n + k of dg®’s, which implies that this 2n-form

must vanish. ]

Lemma 4.3.5. Let M be a differentiable manifold, u be a volume form on M, X a
vector field on M, and f € C®°(M) a positive function. Then the following identity
holds:

divy,(X) = div,(fX). (4.17)

Proof. The following identities hold [see, e.g., [, Proposition 2.5.23 on p. 130]:

v, (X) = div,(X) + £X[/) div,(£X) = fdiv, (X) + X1

Multiplying the first identity by f and taking the difference of both sides, we have

fdivy(X) = fdiv,(fX).
The claim follows since f is positive. O]

Proof of Theorem[f.3.1. As shown in Eq. ([4.3.1]), the vector fields X/f and Y are
U-related. Therefore

£X/f(‘II;Q) = \I/;fyzQ =0,

and thus

£X/f[5\11}‘§2) AR (\IJ;QZ] = 0.

g

n
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However, by Lemma we have

Lxp(fPQA-- N Q) =0,

n

and hence £x,;(f"A) = 0; this implies div;5(X/f) = 0. However, the identity

Eq. (4.17) gives
diva-15(X) = divmz(X/f) =0,

which implies £ (f""1A) = 0. O

4.3.2 The Chaplygin Hamiltonization

Here we discuss the so-called Chaplygin Hamiltonization of the reduced system

Eq. (#.13). Let us first find the equation that is satisfied by the vector field Y defined
in Eq. (4.16).

Lemma 4.3.6. The vector field Y € X(T*Q) satisfies the following equation:
iyQ =dHo — 9} six(d(In f) A© - 2), (4.18)
where Ho : T*Q — R is defined by
Heo:=Ho Uy (4.19)

Proof. As shown in Eq. (4.3.1)), the vector fields X /f and Y are ¥;-related. There-
fore ig,;Via = Wtiya for any differential form « [see, e.g., [, Proposition 2.4.14]; in

particular, for o = 2, we have
However, using Lemma and Eq. (4.13)) on the left-hand side, we have
_ 1 _
= iXQ—iX(?df/\@)

= dH+i)gE—ix(d(1nf) /\(:))
=dH —ix(d(lnf)ANO—-E).
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Therefore
\I[;ZYQ =dH — ix (d(ln A O — E) ,

and then applying U], to both sides gives Eq. (4.18). ]

Proposition 4.3.7 (Necessary and Sufficient Condition for Symplectization). Then
the vector field Y € X(T*Q) is symplectic if and only if the one-form

ix(dInf)A© —E)
15 closed.

Proof. Y is symplectic if and only if £3Q = 0. However, using Cartan’s formula and
Eq. (4.18),
L0 = digQ + iydQ
= —U} ;dig(d(In f)NO - E).
Thus Y is symplectic if and only if the last term in the above equation vanishes,
which is equivalent to dig (d(In f) A© — =) = 0 since ¥y, is a diffeomorphism. [

Combining this result with Theorem (4.3.1]), we have

Corollary 4.3.8. Suppose there exists a fiber-wise constant function F : T*Q — R
such that i g (dF AO — E) is closed. Then, by setting f := exp F, the 2n-form " 'A
is an invariant measure of the reduced system Eq. (4.13]).

We now state the main result of this section. The following theorem will be used

in the next section in relation to nonholonomic Hamilton—Jacobi theory:

Theorem 4.3.9 (A Sufficient Condition for Chaplygin Hamiltonization). Suppose
there exists a fiber-wise constant function F : T*Q — R that satisfies the equation

dF N O =

[1]

. (4.20)

Then, by setting f = exp F, the vector field Y € X(T*Q) satisfies the following
Hamilton’s equations:
iyQ) = dHg, (4.21)

and, as a result, the reduced nonholonomic dynamics Eq. (4.13)) has the invariant

measure LA,
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Proof. Straightforward from Lemma and Corollary 4.3.2 [

Remark 4.3.10. As shown by Stanchenko [54] (see also Cantrijn et al. [12]), Eq. (4.20))
is also a sufficient condition for the two-form Q; := f(Q — Z) to be closed, so that

Eq. (4.13) becomes

and so the dynamics of X/f is Hamiltonian with the non-standard symplectic form
Q.

4.4 Nonholonomic Hamilton—Jacobi Theory via
Chaplygin Hamiltonization

4.4.1 The Chaplygin Hamilton—Jacobi Equation

Theorem m shows that the dynamics of Y on 7*Q is, under a certain condition,
Hamiltonian with the standard symplectic form Q on 7*Q and the Chaplygin Hamil-
tonian He : T*Q — R. Therefore the conventional Hamilton-Jacobi theory applies
directly to this case. Specifically, the (time-independent) Hamilton—Jacobi equation

for this dynamics is written as follows:
HcodW = E, (4.22)

with an unknown function W : @ — R and a constant E (the total energy). We
would like to call Eq. the Chaplygin Hamilton—Jacobi equation.

Now that we have a conventional Hamilton—Jacobi equation related to the Hamil-
tonized dynamics of a nonholonomic system, a natural question to ask is: What
is the relationship between the Chaplygin Hamilton—Jacobi equation and the
nonholonomic Hamilton—Jacobi equation developed in the previous chapter? In this
section, we would like to establish a link between the Chaplygin Hamilton—-Jacobi

equation and the nonholonomic Hamilton—Jacobi equation of the previous chapter.
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4.4.2 Relationship between the Chaplygin H-J and Nonholo-
nomic H-J Equations

First recall from the previous chapter that the nonholonomic Hamilton—Jacobi equa-
tion is an equation for a one-form 7 on the original configuration manifold @ (not the
reduced one Q := Q/G):

Hoy=F, (4.23)

along with the conditions that v, seen as a map from @) to T*(Q), takes values in the

constrained momentum space M C T%Q), i.e., 7 : () — M, and also that
dv|pxp =0, i.e., dy(v,w) =0 for any v,w € D. (4.24)

In relating the Chaplygin Hamilton—Jacobi equation with the nonholonomic
Hamilton—Jacobi equation , a natural starting point is to look into the rela-
tion between the Chaplygin Hamiltonian Hc and the original one H: Recall from
Egs. and that they are related through the Hamiltonian H; the upper

half of the following commutative diagram shows their relations.

R
H _ Hg
H

./\A/l <hl—MT*Q<T/fT*Q (4.25)

I
I aw

I

I —

Q = Q

Now suppose that a function W : Q — R satisfies the Chaplygin Hamilton-Jacobi
equation (4.22). This means that the one-form dW, seen as a map from Q to
T*Q, satisfies Hc o dW(g) = E for any ¢ € Q with some constant E; equivalently,
HcodW on(q) = E for any ¢ € Q. The lower-half of the above diagram (4.25))

incorporates this view, and also leads us to the following:

Theorem 4.4.1. Suppose that there exists a fiber-wise constant function F : T*Q —
R that satisfies Eq. (4.20), and hence by Theorem we have Hamilton’s equations
[@.21) for the vector field Y with f := expF. Let W : Q — R be a solution of the
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Chaplygin Hamilton—Jacobi equation (4.22), and define v : Q@ — M by

7(g) =hly oWy/; 0 dW o 7(q)

(L
= 1! < f(q_)dW(q)>, (4.26)

where q := 7(q). Then ~y satisfies the nonholonomic Hamilton—Jacobi equation (4.23)
as well as Eq. (4.24).

Proof. That the v defined by Eq. satisfies the nonholonomic Hamilton—Jacobi
equation follows from the diagram (4.25). To show that it also satisfies
Eq. (4.24), we need to perform the following lengthy calculations: Let X,V € X(Q)
be arbitrary horizontal vector fields, i.e., X,,Y, € D, for any ¢ € (). We start from
the following identity:

dy(X,Y) = X[y(Y)] = Y[7(X)] = ~2([X, Y]). (4.27)

Our goal is to show that the right-hand side vanishes. Let us first evaluate the first two
terms on the right-hand side of the above identity at an arbitrary point ¢ € ): Since
Y, € D,, there exists Y; € T;Q such that Y, = hl?(}_/q). Thu, using Lemma ,

Y(Y)(q) = (I} oWy 0 dW(q), 01D (V7))
= (Uy,p0dW(q),Yy)
1
f(a)

AW (Y)(q)-

Hence, defining a function 7y : Q — R by

_ ._L N
Y (q) = 6 dW(Y)(a),

'Recall that f: T*Q — R is fiber-wise constant and thus, with a slight abuse of notation, we
may write f(ag) = f(q) for any oz € T7Q; therefore f is seen as a function on @) as well.
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we have y(Y) = 4y omw. Therefore

X[(Y)](q) = X[y o7](q)

= (W*dVY)W Xq)

X[V [W]] - = df(X) dW(Y)) @

where X; := T,m(X,), i.e., X, = hqu( X;) because X is horizontal, and f may be seen

as a function on (). Hence we have

_ % (AW, [X,7]) %df ANAW(X,T),  (4.28)

where we did not write down ¢ and ¢ for simplicity.
Now let us evaluate the last term on the right-hand side of Eq. (4.27): First we
would like to decompose [X, Y], into the horizontal and vertical part. Since both X

and Y are horizontal, we have?]
hor([X,Y],) = hi7 ([X,Y]y),
whereas the vertical part is
ver([X, Y]g) = (Aq([X, Y]y))g (@) = =(Be(Xq, Yg))g (0)

where we used the following relation between the connection A and its curvature B

2See, e.g., Kobayashi and Nomizu [35, Proposition 1.3 (3), p. 65].
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that hold for horizontal vector fields X and Y:

Bq(Xqv YZ]) = d'Aq(Xqv Y;])
= X[AY)l(q) — X[AY)](q) — A([X, Y])(q)
= —A([X,Y])(g)-

As a result, we have the decomposition
(X, Y], = hlqp([j{’?]q) —(By(Xq, Yq))Q (),
and therefore

Y([X,Y])(q) = (hL)* oWy, 0 dW o m(q), 1D (X, Y]y))
—<h1q oWy 0 dW 0 7(),(By( Xy, Yo))g (4) )
:(xpl/fodW(-) (X, Y]g) — (I (h1}" okIll/fodW(q_)) By( X4, Yy))

f 5 <dW ). [X,Y]g) — (TohIM(dW(q)/f(q)) , By(X,, qq >q
= S (V. 1X.V)@)
N % (T o WM (dW (q)) , B, (hP(X,), hIP(V,)))
S (V5. Y)(@) — 5 (@) 2T @), (4.29)

where the second equality follows from Lemma and the definition of the mo-
mentum map J; the fourth one follows from the linearity of hI™ and also of J in
the fiber variables; the last one follows from the definition of = in Eq. : Since
o o dw = idg and thus T'mg o TdW = idpg, we have
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Substituting Eqs. ) and - into Eq. , we obtain

(X, Y) = — L df AW (X,T) + %uv‘m*z(x, ¥)

where the third line follows sinc (@W)*f(q@) = f(dW(q)) = f(q) and also that
(dW)*© = dW [see, e.g., [, Proposition 3.2.11 on p. 179]; the last line follows from
Eq. (4.20]), which is assumed to be satisfied. H

4.5 Examples

Example 4.5.1. Consider the motion of the vertical rolling disk treated in Exam-

ple3.3.1]
The Lagrangian L : T'QQ — R and the Hamiltonian H : T*(@) — R are given by

1 1
L=gm(d* +°) + Jgo +21¢
and 2 2 2 2
1/ps+p, D, P
H=_-|2% v "o v 4.30
2( m +J+I)’ (4:30)

respectively. The velocity constraints are
x':Rcong@b, y:Rsin¢¢,
or in terms of constraint one-forms,
w' = dx — Rcos pdi, w? = dy — Rsingdi).

So the constraint distribution D C T'(Q) and the constrained momentum space

3 Again recall that f : T*@Q — R may be seen as a function on Q as well.
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M C T*Q are given by
D = {(i.9.¢,¢) €TQ| & = Reospu), § = Rsing) |

and

. mR mR .
M = {(pz,py,pga,pw) €eT"Q | p. = ] COSPDy, Py = Tsmwpw} ,

respectively.
Let G = R? and consider the action of G on @ defined by

GxQ—=0Q; ((a,b),(z,y,0,0) = (z+a,y+b )

Then Eq. (4.2)) is satisfied, and hence it is a Chaplygin system. The Lie algebra g is
identified with R? in this case. Let us use (£,7) as the coordinates for g. Then we

may write the connection A : TQ — g as

0 , 0
.A—(dx—Rcosgpdzﬂ)@a—£+(dy—Rsmgpdw)®a—n, (4.31)

and hence its curvature as

0 0
= i — — — . 4.32
B R(smgodgo/\dw@) o€ Cosgpdgp/\dw®8n> (4.32)

Furthermore, the momentum map J : 7% — g* is given by
J<pq) - pmd§ + pydn~ (433)

The quotient space is Q := Q/G = {(¢,v)}. The Hamiltonian H : T*Q — R is

. 1/1 I +mR?
H = 5 (jpi + Tpi) . (434)

A simple calculation shows that the horizontal lift hI™ : 7*Q — M is given by

mR mR

hiM(py, py) = (T COS P Py~ sin @ Py, Pes pw) , (4.35)

Then we find from Eq. (4.14]) along with Eqgs. (4.31), (4.32)), (4.33)), and (4.35) that
= = 0. Therefore the sufficient condition for Chaplygin Hamiltonization Eq. (4.20)
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reduces to dF' A © = 0, and hence we may choose F' = 0 and thus f = 1; then
the Chaplygin Hamiltonian H¢ : T*Q — R is identical to H. So the Chaplygin
Hamilton—Jacobi equation (4.22)) becomes

11 /oW 2+I+mR2 oW\’

2|1 J\ Oy I? o
Now we employ the conventional approach of separation of variables, i.e., assume that
W : @Q — R takes the following form:

= E, (4.36)

W(p, ) = Welp) + Wey(9).

Then Eq. (4.36]) becomes
1[1(dW, 2+I+mR2 AW, \
2|7\ dp 2 &

Since the first term on the left-hand side depends only on ¢ and the second only on

=I.

1, we obtain the solution

dW. aw,
L=ap ot J =9, (4.37)

where 72 and y?p are the constants determined by the initial condition such that

11 I +mR?
3 j(’Vﬂ)QJF T(%(DQ =L

Then Eq. (4.26) gives the solution obtained in Example [3.3.1}

mR

mR .
Yz, y, 0,0) = — cos gp”yg dr + — sin gp”yg dy + ’yg dy + ’yg di). (4.38)

Example 4.5.2. Consider the knife edge problem treated in Example [3.3.2]
The Lagrangian L : T'Q) — R and the Hamiltonian H : T*(@) — R are given by

1 1
L= Em(xg —Hf) + §ng2 + mgx sin «

and

L(pi+p, P
H = §(u+p—f> — mga sin (4.39)
m
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respectively. The velocity constraint is
sinpx —cospy =0
and so the constraint one-form is
w! = sin @ dr — cos ¢ dy.

The constraint distribution D C T'Q) and the constrained momentum space M C T%Q)
are given by

D={(i,9,¢) €TQ| sinpi —cospy =0}
and

M = {(pa: py,pp) € TQ | sinpp, = cospy},

respectively.
Let G = R and consider the action of G on () defined by

GxQ—Q; (a,(z,y,9) = (z,y+a,p).

Then Eq. (4.2)) is satisfied, and hence it is a Chaplygin system. The Lie algebra g is
identified with R in this case. Let us use 7 as the coordinate for g. Then we may

write the connection A : T'Q) — g as

A= (dy — tanpdr) ® 2, (4.40)
on
and hence its curvature as
1 0
B = dz Nd —. 4.41
cos? p TP ® an ( )

Furthermore, the momentum map J : 7*¢Q) — g* is given by

J(pq) = Pydﬁ- (4'42>

The quotient space is Q := Q/G = {(z,)}. The Hamiltonian H : T*Q — R is

_ 1 2
H:_<cos gopi+
2 m

1, )
7 p, | —mgzrsina.
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A simple calculation shows that the horizontal lift hI™' : T*Q — M is given by

W™ (pg, p,) = (cos® @ pa, sinp cos @ py, py) | (4.43)

Then we find from Eq. (4.14) along with Eqgs. (4.40)), (4.41)), (4.42)), and (4.43) that

= =np.tanpdzr A dep.

Therefore the sufficient condition for Chaplygin Hamiltonization Eq. (4.20)) becomes

oF oF .
— — pe—=— = pytan .

It is easy to find the solution F' = In(cos ¢) and hence
f = cos o, (4.44)

where we restrict ¢ to be in the range (0,7/2) so that f > 0.
Then Eq. (4.19)) gives the following Chaplygin Hamiltonian:

= 0 Pz p
HC(xa (;Oapxapcp) = H<x7907 ) z )
COS @ COs

(1, 1 .
=—|— — mgx sin .
2\m P Jcos2g0p“’ I

So the Chaplygin Hamilton—Jacobi equation (4.22)) becomes

1|1 oy’ I TAN .
5[E(ax) + Jcos2g0<8g0> ] —mgrsina = F, (4.45)

Now we employ the conventional approach of separation of variables, i.e., assume that
W : Q — R takes the following form:

Wiz, ¢) = We(z) + W,(p).

Then Eq. (4.45)) becomes

11dWx2_(2 dna)r s ! i, \*
2|m\ dx IS S Jcos? o \ dp

The first two terms in the brackets depend only on z, whereas the third depends only

=k
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on ¢, and thus

1 (dW,\? 1 (dW,\"
— — (2mgsina)r = 2E — C?, 2) =C?,
m\ dzx Jcos?z o\ dy
with some constant C. Hence, assuming dW, /dz > 0, we have
dW, dW,
Pl Vm(2E — C?) + (2m2gsina) x, 7 2 — OV Jcos .
x 2

Then Eq. (4.26]) gives

v(z,y, ¢) = V/m(2E — C?) + (2m2gsina) z (cos  dz + sin p dy) + CV'J de,

This is the solution obtained in Example with C' = ’yg el

4.A Some Lemmas on the Horizontal Lift h1'"!

Lemma 4.A.1. The horizontal lift W™ is invariant under the action of the cotangent
lift of the group action ® : G x Q — Q. Specifically, for any h € G, we have

hlyt = T ®,-1 o hI), (4.46)

where hq = ®1,(q); or equivalently, for any ag € T;Q,

a}“zq = T;(I)hfl(a];);

aq } O./hq
Qg

hlpt = FLy, o bl o(FL);"
= FLpg 0 T,®; o bl o(FL). ",

or the commutative diagram below commutes.
Tr®,
h
M, ————= M,
M M
fk /lhq
L~
T;Q

Proof. From the definition of hlg\/t,

q
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where we used the G-invariance of h1”. Now, for any vy € T,Q and wy, € Th,Q, using

the G-invariance of the Lagrangian L,

d
(FLng 0 Tg®n(vg), wag) = d_gL(qu)h(Uq) + € Whg)

e=0

d
= d_z-jL e} qu)h(vq + € Thqq)hfl (whq))

e=0

d
= £L(Uq +ée Thq(thl (whq))

= <]FLq<Uq>> Thg®p—1 (whq>>
= (T; 041 (FLg(vy)), whq) ,

e=0

and thus we have FLj, o T®), = T*®;-1 o FL,. Hence we obtain

hly! = T7®;-1 o FL, o hl] o(FL) "
= Tr®p-1 o hI)" O

Lemma 4.A.2. Let q be an arbitrary point in Q and § = 7(q) € Q. For any oy € T(;Q
and vy € T;Q, the following identity holds:

(h1)" (ag), b7 (vg)) = {ag, vg) (4.47)

Proof. Follows from the definitions of g and th (see Egs. and . respec-
tively):

(hI'(ag), 1D (vg)) = (g
g
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Chapter 5

Discrete Hamilton—Jacobi Theory

5.1 Introduction

The main objective of this chapter is to present a discrete analogue of Hamilton—
Jacobi theory within the framework of discrete Hamiltonian mechanics [41].

There are some previous works on discrete-time analogues of the Hamilton—Jacobi
equation, such as Elnatanov and Schiff [22] and Lall and West [41]. Specifically, El-
natanov and Schiff [22] derived an equation for a generating function of a coordinate
transformation that trivializes the dynamics. This derivation is a discrete analogue
of the conventional derivation of the continuous-time Hamilton—Jacobi equation [see,
e.g., 42, Chapter VIII]. Lall and West [41] formulated a discrete Lagrangian analogue

of the Hamilton—Jacobi equation as a separable optimization problem.

5.1.1 Main Results

Our work was inspired by the result of Elnatanov and Schiff [22] and starts from a
reinterpretation of their result in the language of discrete mechanics. This chapter
further extends the result by developing discrete analogues of results in (continuous-
time) Hamilton—Jacobi theory. Namely, we formulate a discrete analogue of Ja-
cobi’s solution, which relates the discrete action sum with a solution of the discrete
Hamilton—Jacobi equation. This also provides a very simple derivation of the discrete
Hamilton—Jacobi equation and exhibits a natural correspondence with the continuous-
time theory. Another important result in this chapter is a discrete analogue of the
Hamilton—Jacobi theorem, which relates the solution of the discrete Hamilton—Jacobi
equation with the solution of the discrete Hamilton’s equations.

We also show that the discrete Hamilton—Jacobi equation is a generalization of

the discrete Riccati equation and the Bellman equation (discrete Hamilton—Jacobi—
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Bellman equation). (See Fig. [5.1]) Specifically, we show that the discrete Hamilton—
Jacobi equation applied to linear discrete Hamiltonian systems reduces to the discrete
Riccati equation. This is again a discrete analogue of the well-known result that the
Hamilton—Jacobi equation applied to linear Hamiltonian systems reduces to the Ric-

cati equation [see, e.g.,[34] p. 421]. Also, we establish a link with discrete-time optimal

| Discrete Hamilton’s Eq. | Discrete Hamilton—Jacobi Eq.
Quadratic Hamiltonian Control Hamiltonian Quadratic Hamiltonian ,/'l ‘\ Control Hamiltonian
V4 A
Discrete Linear Hamilton’s Eq.| | Discrete Optimal Control| | Discrete Riccati Eq. | Bellman Eq.

Linear System & Linear System &

Specific Choice of Matrix Quadratic Cost Function Specific Choice of Matrix Quadratic Cost Function

| Linear Quadratic Regulator | | Discrete Riccati Eq. for LQR |

Figure 5.1: Discrete evolution equations (left) and corresponding discrete Hamilton—
Jacobi-type equations (right). Dashed lines are the links established in this work.

control theory, and show that the Bellman equation of dynamic programming follows.
This link makes it possible to interpret discrete analogues of Jacobi’s solution and
the Hamilton—Jacobi theorem in the optimal control setting. Namely we show that
these results reduce to two well-known results in optimal control theory that relate

the Bellman equation with the optimal solution.

5.1.2 Outline

A brief review of discrete Lagrangian and Hamiltonian mechanics is in Section [2.5]
In Section we describe a reinterpretation of the result of Elnatanov and Schiff
[22] in the language of discrete mechanics and a discrete analogue of Jacobi’s solution
to the discrete Hamilton—Jacobi equation. The remainder of Section [5.2] is devoted
to more detailed studies of the discrete Hamilton—Jacobi equation: its left and right
variants, more explicit forms of them, and also a digression on the Lagrangian side. In
Section [5.3] we prove a discrete version of the Hamilton—Jacobi theorem. Section
establishes the link with discrete-time optimal control and interprets the results of
the preceding sections in this setting. In Section [5.5| we apply the theory to linear
discrete Hamiltonian systems, and show that the discrete Riccati equation follows
from the discrete Hamilton—Jacobi equation. We then take a harmonic oscillator as a
simple physical example, and solve the discrete Hamilton—Jacobi equation explicitly.
Finally, Section discusses the continuous-time limit of the theory.
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5.2 Discrete Hamilton—Jacobi Equation

5.2.1 Derivation by Elnatanov and Schiff

Elnatanov and Schiff [22] derived a discrete Hamilton—Jacobi equation based on the
idea that the Hamilton—Jacobi equation is an equation for a symplectic change of
coordinates under which the dynamics becomes trivial. In this section we would like
to reinterpret their derivation in the framework of discrete Hamiltonian mechanics

reviewed in Section 2.5

Theorem 5.2.1. Suppose that the discrete dynamics {(qx, pi) o is governed by
the right discrete Hamilton’s equations (2.48). Consider the symplectic coordinate
transformation (qx, pr) — (G, D) that satisfies the following:

(i) The old and new coordinates are related by the type-1 generating functimﬂ
Sk R* x R* — R:
pk - _DISk(QkacZk)a

(5.1)
e = DaS*(Gr, q1);

(ii) the dynamics in the new coordinates {(qr,Dr)}o-y is rendered trivial, i.e.,

(Qr+1, Prt1) = (i, Pre) -

Then the set of functions {S*}Y_, satisfies the discrete Hamilton—Jacobi equation:

S* M (Go, @rr1) — S™(do, ar) — D2S" (Gos Gur1) - @1 + Hy (g, D2S* ™ (Go, qres1)) = 0,
(5.2)
or, with the shorthand notation S%(qx) := S*(Go, q1),

SE M (qrrr) — S5(ar) — DS (qrr1) - @rr + Hy (qk, DS (1)) = 0. (5.3)

Proof. The key ingredient in the proof is the right discrete Hamiltonian in the new

coordinates, i.e., a function f[i(q},ﬁkﬂ) that satisfies

Qk+1 = DZH;_@kaﬁk-&-l)?
(5.4)

ﬁk = Dlﬁi((jlmﬁlﬂrl)a

I This is essentially the same as Eq. in the sense that they are both transformations defined
by generating functions of type one: Replace (qx, Pk, @hs1s Phs1s La) by (G, Pr» Qx» Pk, S*). However
they have different interpretations: Eq. describes the dynamics or time evolution whereas
Eq. is a change of coordinates.
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or equivalently,
P ddi + 1 dprr1 = AH (G, Prs)- (5.5)

Let us first write H in terms of the original right discrete Hamiltonian H and

the generating function S*. For that purpose, first rewrite Eqgs. (2.48) and (5.1)) as
follows:

Prdgy = — Q1 dpes1 + dHT (qe, prsr)
and
Pr dix = pr. dqr. — dS™(Gr, i),

respectively. Then, using the above relations, we have

Pr i + Q1 dPryr = Pr A + d(Prvr - Grr1) — Pry1 ddria
= pe dge — dS™(Gr, @) + d(Prr1 - Grr1)
— i1 A1 + ST Gy 1, Qrit)
= —Qr+1 dpry1 + dH;r(Qk,pkH)
- dSk(cjk, Q) + d(Prs1Grt1) — Prg1 dGrs1 + dSkH(QAkH, Qr+1)
= d<HI(Qk,pk+1) + Dit1 " k1 — Pht1 * Qi1
+ S5 (g1 rrr) — S* (G an)-

Thus in view of Eq. (5.5]), we obtain

H (Grs Pes1) = He (@, Drst) + Prsr - Gt — Pt - Gt + S (Grrrs i) — S* (G an)-
(5.6)
Now consider the choice of the new right discrete Hamiltonian H 4 that renders

the dynamics trivial, i.e., (Gkt1,DPr41) = (Qk,Dr). It is clear from Eq. (5.4)) that we
can set

H (Gr, Prsr) = Prsr - Qi (5.7)
Then Eq. (5.6) becomes
Pt G = Hi (@ Prr1) + Drar - Gt — Prrt - Qo + S Gty grar) — S (Grs qr),

and since xy1 = G = - - - = §o We have

0= H(qr,Pkr1) — P - Gerr + S" ™ (Go, @rrr) — S*(Go, qr)
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Eliminating py.; by using Eq. (5.1)), we obtain Eq. (5.2)). ]
Remark 5.2.2. What Elnatanov and Schiff [22] refer to the Hamilton—Jacobi difference

equation is the following:

S* (o, qresr) — S*(do, ax) — D2S*(do, qres1) - D2HY (qrs 1) + Hi (qi, presr) = 0.
(5.8)
It is clear that this is equivalent to Eq. ((5.2) in view of Eq. (2.48])

5.2.2 Discrete Analogue of Jacobi’s Solution

This section presents a discrete analogue of Jacobi’s solution. This also gives an al-
ternative derivation of the discrete Hamilton—Jacobi equation that is much simpler

than the one shown above.

Theorem 5.2.3. Consider the action sums Fq. (2.31)) written in terms of the right
discrete Hamiltonian, Eq. (2.47):

k-1
Si(ar) = [pv1 - @1 — Hy (@1, p141)] (5.9)
=0

evaluated along a solution of the right discrete Hamilton’s equations ([2.48)); each
S¥(qr) is seen as a function of the end point coordinates qi, and the discrete end
time k. Then these action sums satisfy the discrete Hamilton—Jacobi equation (5.3)).

Proof. From Eq. (5.9)), we have

SE M (qry1) — SE(qr) = prsr - Geer — H (qhs prsr), (5.10)

where pyy1 is considered to be a function of g, and i1, i.e., pri1 = Pra1(Qr, Qer1)-

Taking the derivative of both sides with respect to qx.1, we have

apk-i-l |:

g Qrk+1 — D2Hd+(Qk>pk+1)} .
k41

DSSH (Qe41) = D1 + 7——

However, the term in the brackets vanishes because the right discrete Hamilton’s
equations (2.48)) are assumed to be satisfied. Thus we have

Dk+1 = DSQCH(%H)- (5.11)
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Substituting this into Eq. (5.10) gives Eq. (5.3). O

Remark 5.2.4. Recall that, in the derivation of the continuous Hamilton—-Jacobi equa-
tion [see, e.g., 20, Section 23], we consider the variation of the action integral Eq. ([1.2])
with respect to the end point (¢,t) and find

dS =pdq— H(q,p)dt. (5.12)
This gives
oS S
- _ _H = 5.13
T (¢.p), P 9 (5.13)
and hence the Hamilton—Jacobi equation
oS 05
— 4+ H(qg,— ) =0. 5.14

In the above derivation of the discrete Hamilton—Jacobi equation , the difference
in two action sums Eq. is a natural discrete counterpart to the variation dS
in Eq. . Notice also that Eq. plays the same essential role as Eq.
does in deriving the Hamilton—Jacobi equation. Table summarizes the corre-

spondence between the ingredients in the continuous and discrete theories (see also

Remark [5.2.4)).

Table 5.1: Correspondence between ingredients in continuous and discrete theories;
R> is the set of non-negative real numbers and Ny is the set of non-negative integers.

Continuous Discrete
(g,t) € Q x Rxo (ar, k) € Q x No
¢ = 0H/0p, Gkt1 = DaHY (qi, prg1),
p=—0H/0q pr = D1H] (qk, Pit1)
k—1

S(q.1) = /O Io(s) - d(s) — Hla(s),pls))]ds | SE(ax) i= S [pros - aver — H (avprs)]
=0

98, 08

ds = 30 dq+ - dt SE (qrer1) — S&(a)

pdq— H(q,p)dt Prt1 - Qo1 — Hy (q, Dr41)
a8 N H(q 35) 0 SE N (qrt1) — S5(ar) — DSY ™ (@rs1) - @t
ot 9 +HY <Qk,D2S§H(Qk+1)> =0
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5.2.3 The Right and Left Discrete Hamilton—Jacobi Equa-
tions

Recall that, in Eq. (5.9)), we wrote the action sum Eq. (2.31]) in terms of the right
discrete Hamiltonian Eq. (2.47). We can also write it in terms of the left discrete
Hamiltonian Eq. (2.50]) as follows:

T
L

Sh(qr) = [—pz ~q — Hy (pi, Ql+1)] . (5.15)

Il
=)

Then we can proceed as in the proof of Theorem [5.2.3; First we have

S§+1(Qk+1) — Sh(ar) = —pr - qr — Hy (pr, Grs1)- (5.16)

where py is considered to be a function of ¢x and gyy1, i-e., pr = Pe(qk, Gr+1). Taking

the derivative of both sides with respect to ¢, we have

0 _
—DS5(qr) = —pi — 8_2;: ar + D1HZ (pr, @rs1)] -

However, the term in the brackets vanish because the left discrete Hamilton’s equa-

tions ([2.51]) are assumed to be satisfied. Thus we have
pr = DS} (qr). (5.17)

Substituting this into Eq. (5.16)) gives the discrete Hamilton—Jacobi equation with

the left discrete Hamiltonian:

SE (qrs1) — S5 (ar) + DS (ar) - ax + Hi (DS5(qk), qrsr) = 0. (5.18)

We refer to Eqs. (5.3) and (5.18)) as the right and left discrete Hamilton—Jacobi equa-

tions, respectively.

As mentioned above, Egs. (5.9) and (5.15) are the same action sum Eq.(2.31))

expressed in different ways. Therefore we may summarize the above argument as

follows:

Proposition 5.2.5. The action sums, Eq. (5.9) or equivalently Eq. (5.15)), satisfy
both the right and left discrete Hamilton—Jacobi equations (5.3) and ((5.18)).
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5.2.4 Explicit Forms of the Discrete Hamilton—Jacobi Equa-
tions

The expressions for the right and left discrete Hamilton—Jacobi equations in Eqgs.
and are implicit in the sense that they contain two spatial variables g and gz .
However Theorem suggests that ¢, and gr,1 may be considered to be related
by the dynamics defined by either Eq. (2.48) or (2.51), or equivalently, the discrete
Hamiltonian map F’Ld . (qr,pr) = (Qk+1, pr+1) defined in Eq. . More specifi-

cally, we may write g1 in terms of g;. This results in explicit forms of the discrete

Hamilton—Jacobi equations, and we shall define the discrete Hamilton—Jacobi equa-
tions by the resulting explicit forms. We will see later in Section that the explicit
form is compatible with the formulation of the well-known Bellman equation.

For the right discrete Hamilton—Jacobi equation ([5.3]), we first define the map
fi : Q — Q as follows: Replace py41 in Eq. by DS ™ (gry1) as suggested by
Eq. :

Qk+1 = D2H(;r (Qk7 DS§+1(Qk+1)) . (5.19)

Assuming this equation is solvable for gx,1, we define f;7 : Q@ — Q by the resulting
Qrt1, 1.€., f; is implicitly defined by

£ (qr) = DoHT (g, DSKY(fE (an)) - (5.20)

We may now identify g1 with f;"(gx) in the implicit form of the right Hamilton—
Jacobi equation (/5.3)):

SaT (fif (@) = Si(a) = DS (a) - fif (@) + Hi (¢, DSTTH(f (a)) =0, (5.21)

where we suppressed the subscript & of ¢, since it is now clear that ¢, is an indepen-
dent variable as opposed to a function of the discrete time k. We define Eq.
to be the right discrete Hamilton—Jacobi equation. Notice that these are differential-
difference equations defined on () x N, with the spatial variable ¢ and the discrete
time k.

For the left discrete Hamilton—Jacobi equation ([5.18), we define the map f, :
Q — Q as follows:

e (q) == mq o Fr, (dS§(qr)) , (5.22)

where mg : T*Q) — @ is the cotangent bundle projection; equivalently, f, is defined
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so that the diagram below commutes.

FLd " ~
T*Q —2—=T*Q dSk(qr) —= Fr, (dS5(ar))

‘ | [ ] (5.9

Q----- -Q e A

Notice also that, since the map FLd (G, pr) = (Qrs1,Pr+1) is defined by Eq. (2.51]),
fr is defined implicitly by

g = —D1Hy (DS5(ar), fi (ar)) - (5.24)

In other words, replace py in Eq. (2.51a]) by DS%(qy) as suggested by Eq. (5.17), and
define f, (gx) as the gy41 in the resulting equation.

We may now identify g1 with f, (gx) in Eq. (5.18):
Si™ (fi (@) = Sia) + DSi(9) - g + Hy (DSi(a). fiy (@) =0, (5.25)

where we again suppressed the subscript k of gx. We define Egs. (5.21) and ((5.25)
to be the right and left discrete Hamilton—Jacobi equations, respectively. Notice that

these are differential-difference equations defined on @) x N, with the spatial variable

¢ and the discrete time k.

Remark 5.2.6. That the discrete Hamilton—Jacobi equation is a differential-difference
equation defined on () x N corresponds to the fact that the continuous-time Hamilton—

Jacobi equation ([5.14) is a partial differential equation defined on @ x R.

Remark 5.2.7. Notice that the right discrete Hamilton—Jacobi equation ([5.21)) is more
complicated than the left one , particularly because the map f; appears more
often than f,~ does in the latter; notice here that, as shown in Eq. , the maps f,;t
in the discrete Hamilton—Jacobi equations and depend on the function
S¥ which is the unknown one has to solve for.

However, it is possible to define an equally simple variant of the right dis-
crete Hamilton—Jacobi equation by writing ¢,_; in terms of g,: Let us first define
gk 1 Q@ = Q by

gilar) = mq o FL (dSk(ar)) . (5.26)
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or so that the diagram below commutes.

T+Q i TQ FH(dSh(qr)) <— dSk(qr)
| |dsg ] ‘ (5.27)
Q<———— - Q gelqr) <——— -4k

Now, in Eq. (5.3)), change the indices from (k,k + 1) to (kK — 1,k) and identify g4
with gx(qx) to obtain

Sk(a) — S5 " (ge(q)) — DSK(q) - ¢ + H (9x(q), DS (q)) = 0, (5.28)

where we again suppressed the subscript k of qx. This is as simple as the left discrete
Hamilton—Jacobi equation ([5.25)). However the map g is, being backward in time,
rather unnatural compared to fi. Furthermore, as we shall see in Section [5.4] in the
discrete optimal control setting, the map f; is defined by a given function and thus

the formulation with f; will turn out to be more convenient.

5.2.5 The discrete Hamilton—Jacobi Equation on the La-
grangian Side

First notice that Eq. (2.31) gives
S(’f“(qu) - Sg(%) = La(qr, @rr1)- (5.29)

This is essentially the Lagrangian equivalent of the discrete Hamilton—Jacobi equa-
tion (5.21]) as Lall and West [41] suggest. Let us apply the same argument as above
to obtain the explicit form for Eq. (5.29)). Taking the derivative of the above equation

with respect to g, we have

— D1 La(qr, qrr1) dgi, = dS5(qx),

and hence from the definition of the left discrete Legendre transform Eq. (2.37h)),

FL7 (qk, 1) = dS5(qr)-
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Assuming that FL] is invertible, we have

(Gk> qra1) = (FLY) " (dSE(ar)) = (qrs £ (ar)), (5.30)

where we defined the map f£: Q — Q as follows:

J () i= proo (FL7) 7' (dSg(qr)) , (5.31)

where pry @ Q x Q@ — @ is the projection to the second factor, i.e., pra(qi, ¢2) = ¢o.
Thus eliminating g1 from Eq. (5.29), and then replacing g, by ¢, we obtain the

discrete Hamilton—Jacobi equation on the Lagrangian side:

SY (@) = Sh(g) = La(g, [ (a)) - (5.32)

The map fF defined in Eq. (5.31) is identical to f, defined above in Eq. (5.22) as

the commutative diagram below demonstrates:

Fr, ~

dS4(qr) —— Fr, (dSk(ax))

Q) Q)
%)1 W /

dsy Q@xQ mQ (ax, fir (qr)) (5.33)

The commutativity of the square in the diagram defines the f,_ as we saw earlier,
whereas that of the right-angled triangle on the lower left defines the f£ in Eq. (5.31));
note the relation Fy, = FL} o (FL7)~' from Eq. (2.43). Now f/ being identical
to f, implies that the discrete Hamilton-Jacobi equations on the Hamiltonian and

Lagrangian sides, Eqs. ((5.25)) and ([5.32)), are equivalent.

5.3 Discrete Hamilton—Jacobi Theorem

The following gives a discrete analogue of the geometric Hamilton—-Jacobi theorem
(Theorem 5.2.4) by Abraham and Marsden [I]:

Theorem 5.3.1 (Discrete Hamilton—Jacobi). Suppose that S¥ satisfies the right dis-
crete Hamilton—Jacobi equation (5.21)), and let {cx}Y_o C Q be a set of points such
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that
Crr1 = fi (ex) for k=0,1,...,N—1. (5.34)

Then the set of points {(cr, pr) -y C T*Q with
pr == DS (cx) (5.35)

is a solution of the right discrete Hamilton’s equations ([2.48)).

Similarly, suppose that S% satisfies the left discrete Hamilton—Jacobi equation
(5.25)), and let {ck}2_y C Q be a set of points that satisfy

Cpy1 = fr (cg) for k=0,1,...,N —1. (5.36)

Furthermore, assume that the Jacobian D f,” is invertible at each point ci. Then the
set of points {(cx, pr) ey C T7Q with

pr = DS%(cp) (5.37)

15 a solution of the left discrete Hamilton’s equations ([2.51]).

Proof. To prove the first assertion, first recall the implicit definition of f;" in

Eq. :
£ (@) = DoHY (0. DSE(£5(0))) - (5.38)

In particular, for ¢ = ¢, we have
Chy1 = DoHY (ci, i) (5.39)

where we used Eq. (5.34) and (5.35). On the other hand, taking the derivative of
Eq. (5.21)) with respect to g,

DS (£ () - Dfif(q) — DS5(q) — DfiH(q) - D*SETN(fE () - fiF (a)
— DSE™(fiH(q)) - Dfif (q) + DiHS (¢, DS (£ (9)))
+ DoHY (¢, DS (£ (0))) - D*SET(fif (0) - D (@) = 0,

which reduces to
—DS%(q) + D1H (¢, DS (fi () =0,
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due to Eq. (5.38)). Then substitution ¢ = ¢, gives
—DS%(cr) + DiHY (ci, DS5T (i (er))) = 0,

Using Eqgs. (5.34)) and (5.35), we obtain
pe = D1HY (., prta) - (5.40)

Egs. (5.39) and (5.40) show that the sequence (cg,py) satisfies the right discrete
Hamilton’s equations (2.48]).

Now let us prove the latter assertion. First recall the implicit definition of f,” in

Eq. :
q=—D1H; (DS)(q), f; (0)) (5.41)

In particular, for ¢ = ¢, we have

cr = —D1H (pr, Cit1) s (5.42)

where we used Eq. (5.36) and (5.37). On the other hand, taking the derivative of
Eq. (5.21)) with respect to g,

DS (f (q)) - Dfy (q) — DSK(q) + D*Si(q) - ¢ + DSi(q)
+ D H; (DSE(q), f7(q)) - D2SE(q) + DoHy (DS5(q), fi (@) - Dfy (q) =0,

which reduces to
(DS (fi (@) + D2Hy (DSi(a), £y ()] - Dy (a) = 0,
due to Eq. . Then substitution ¢ = ¢, gives
DS{H(fi (er) = —=D2Hy (DSg(cr), £ (er)

since Df, (cx) is invertible by assumption. Then using Egs. (5.36) and (5.37)), we

obtain

Pre1 = —DoHy (pr, cri1) - (5.43)
Egs. (5.42)) and ([5.43)) show that the sequence (¢, pr) satisfies the left discrete Hamil-
ton’s equations ([2.51). O
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5.4 Relation to the Bellman Equation

In this section we apply the above results to the optimal control setting. We will show
that the (right) discrete Hamilton—Jacobi equation ([5.21)) gives the Bellman equation

(discrete-time Hamilton—Jacobi-Bellman equation) as a special case.

5.4.1 Discrete Optimal Control Problem

Let {qx}2_, be the state variables in a vector space V = R" with gy and ¢y fixed and
uq = {ug }2_, be controls in the set U C R™. With a given function Cq : V x U — R,

define the cost functional

Jd = Z Cd(qk,uk). (544)

Then a typical discrete optimal control problem is formulated as follows [see, e.g.,
oy, 115 28: [32):

Problem 5.4.1. Minimize the cost functional, i.e.,

N-1
in.Jq = mi C 5.45
minJq %ﬁnkzg a(qr, ue) (5.45)
subject to the constraint
Qi1 = f(qr, ur). (5.46)

5.4.2 Necessary Condition for Optimality and the Discrete-
Time HJB Equation

We would like to formulate the necessary condition for optimality. First introduce

the augmented cost functional:

k—
J (¢4, pa, ua) Z{Cd Qs ur) = pre (@ — [ @ w)l}

=0
k—

Z[pl—i-l Qi1 — H, H o (@ s )
!

=S

>_¢

0
(Qdapd, ud),

x|l
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where we defined the Hamiltonian

A~

Hi (@, prv1,w) = pr1 - fla, w) — Cala, w),

and the action sum

N
—_

N

Sg(@mpmud) = [pl+1 “qi41 — H;(Qlapl—i-laul) )
l

I
o

with the shorthand notation qq = {q}F_, pa == {m},, and uq = {ul}f;ol

the optimality condition Eq. (5.45)) is restated as

k—1
min J(?(Qd)pdaud) = min {_ Z |:pl+1 “diy1 — H;—(qlvpl-l-l?ul)] } )
=0

qd;PdUd 4d,Pd,Ud

which is equivalent to
k—1

7+
max S¥(qq, pa, uq) = max E |:pl+1 Qi1 — Hy (%sz,Ul)]
4d,Pd,ud q4,Pd,Ud

In particular, extremality with respect to the control uq implies

~

DsHI (q,pri1,w) =0, 1=0,1,...,k—1.

(5.47)

(5.48)

. Then

(5.49)

(5.50)

(5.51)

Now we assume that ﬁj is sufficiently regular so that the optimal control u} :=

{u;}}=y is determined by
D3H{ (g1, prer,uf) =0, 1=0,1,...,k—1.

Therefore u; is a function of ¢; and py41, i.e., v = u (q, pi+1)-

Then we can eliminate uq in the maximization problem Eq. (5.50)):

k-1
max Sq(¢a, pa) = maxz Pt - Qe — H (@, peya) ]
qd,Pd qd,pP —0

where we defined

A

H;(Qlapl—l-l) = HJ(thzH,U?) = Pi+1 f(QI,UT) - Cd(Ql7U7)7
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and

T
L

S¥(qa, pa) = S&(qa, pa, uf) = [Pt - @i — H (@, pie1)] - (5.55)
)

So now the problem is reduced to maximizing the action sum Eq. (5.55) that has
exactly the same form as the one in Eq. (5.9) formulated in the framework of discrete

Hamiltonian mechanics.

Il
=)

The corresponding right discrete Hamilton’s equations are, using the expression
for the Hamiltonian in Eq. (5.54)),

dk+1 = f(Qk; UZ)J

(5.56)
Pr = Pry1 - Dif(ar, wi) — D1Ca(gr, uy)-
Therefore Eq. (5.20) gives the implicit definition of f,” as follows:
T () = f(ars wi (gr, DST(FE (ar)))) - (5.57)

Hence the (right) discrete Hamilton—Jacobi equation (5.21)) applied to this case gives

Sat (F(aw ui)) = Saaw) = DSTH (f (g, wi)) - f (aw, i) + H (a1, DST (f (ar, ui) = 0,

5.58
and again using the expression for the Hamiltonian in Eq. , we obtain ( |
Sat (F(aw,up) — Si(ar) — Calaw, uz) =0, (5.59)

or equivalently
max [ S5 (f (g, ) — Calgr, ux)| — Sk(qr) =0, (5.60)

Uk

which is the discrete-time Hamilton—Jacobi-Bellman (HJB) equation or, in short, the

Bellman equation [see, e.g., 5].

Remark 5.4.2. Notice that the discrete HJB equation ([5.60)) is much simpler than the
discrete Hamilton—Jacobi equations (5.21]) and (5.25)) because of the special form of
the control Hamiltonian Eq. . Also notice that, as shown in Eq. , the term
fi () is written in terms of the given function f. See Remark for comparison.
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5.4.3 Relation between the Discrete HJ and HJB Equations
and its Consequences

Summarizing the observation made above, we have

Proposition 5.4.3. The right discrete Hamilton—Jacobi equation (5.21)) applied to
the Hamiltonian formulation of the discrete optimal control problem gives the
discrete-time Hamilton—Jacobi—-Bellman equation (5.60)).

This observation leads to the following well-known facts:

Proposition 5.4.4. The optimal cost function satisfies the discrete-time Hamilton—
Jacobi-Bellman equation (5.60)).

Proof. This follows from a reinterpretation of Theorem through Proposi-
tion [£.4.3 n

Proposition 5.4.5. Let S%(qx) be a solution to the discrete Hamilton—Jacobi-
Bellman equation . Then the costate py in the discrete maximum principle
15 given as follows:

pr = DS%(cp), (5.61)

where cx1 = f(cx, ul) with the optimal control u.

Proof. This follows from a reinterpretation of Theorem through Proposi-
tion £.4.3 m

5.5 Application To Discrete Linear Hamiltonian
Systems

5.5.1 Discrete Linear Hamiltonian Systems and Matrix Ric-
cati Equation

Example 5.5.1 (Quadratic discrete Hamiltonian—discrete linear Hamiltonian sys-
tems). Consider a discrete Hamiltonian system on 7*R" = R™ x R™ (the configuration
space is Q = R™) defined by the quadratic left discrete Hamiltonian

1

B _ 1
Hy (P, @) = §ng "Di + P Lyt + §q,{+1qu+1, (5.62)
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where M, K, and L are real n X n matrices; we assume that M and L are invertible
and also that M and K are symmetric. The left discrete Hamilton’s equations ([2.51)

are
qr = — (M 'pp + Laiy1),

(5.63)
i1 = — (L pr + Kqia),
Q41 —L! —L'M! q
— , (5.64)
Ph+1 KL™' KL 'M~'-L" Dk

and hence are a discrete linear Hamiltonian system (see Section [5.A1]).

Now let us solve the left discrete Hamilton—Jacobi equation for this system.
For that purpose, we first generalize the problem to that with a set of initial points
instead of a single initial point (qo,po). More specifically, consider the set of initial
points that is a Lagrangian affine space £(zy) (see Definition which contains
the point 2y := (qo,po). Then the dynamics is formally written as, for any discrete
time k£ € N,

Ly = (Fr)"(£(z0)) = Fryo- o0 By, (£(20) )
ak,_/
where ), 4 T7Q — T7Q is the discrete Hamiltonian map defined in Eq. . Since
Fy . 1s a symplectic map, Proposition implies that £ is a Lagrangian affine
space. Then, assuming that Ly is transversal to {0} & @Q*, Corollary implies
that there exists a set of functions S% of the form

1
Si(q) = §qTAkq +byq+ cx (5.65)

such that £, = graph dS¥; here A, are symmetric n x n matrices, by are elements in
R™ and ¢ are in R.

Now that we know the form of the solution, we substitute the above expression
into the discrete Hamilton—Jacobi equation to find the equations for Ay, by, and cg.
Notice first that the map f, is given by the first half of Eq. with py replaced
by DS}(q):

file)=—=L"(¢+M'DS}(q))
= L YT+ M1A)g— LM, (5.66)

Then substituting Eq. (5.65)) into the left-hand side of the left discrete Hamilton—
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Jacobi equation ([5.25)) yields the following recurrence relations for Ay, by, and c:

Appr = LI+ A,M DAL - K, (5.67a)

b1 = — LT (1 + A M)y, (5.67b)
1

Ck+1 = Cp, — §bZ(M + Ak)_lbk, (567C)

where we assumed that I + A, M ! is invertible.

Remark 5.5.2. For the Apy; defined by Eq. (5.67a) to be symmetric, it is sufficient
that Ay is invertible; for if it is, then Eq. (5.67al) becomes

Appr = L7 (A P+ MY 'L - K,

and so Ay, M, and K being symmetric implies that Az, is as well.

Remark 5.5.3. We can rewrite Eq. (5.67al) as follows:
Appr =[KL7" + (KL'M ™ = L) A ] (=L7' = L' M1 A4,) (5.68)

Notice the exact correspondence between the coefficients in the above equation and
the matrix entries in the discrete linear Hamiltonian equations ([5.64)). In fact, this is
the discrete Riccati equation that corresponds to the iteration defined by Eq. ((5.64)).

See Ammar and Martin [2] for details on this correspondence.

To summarize the above observation, we have

Proposition 5.5.4. The discrete Hamilton—Jacobi equation (5.25) applied to the dis-
crete linear Hamiltonian system (5.64) yields the discrete Riccati equation (5.68)).

In other words, the discrete Hamilton—Jacobi equation is a nonlinear generalization
of the discrete Riccati equation.
A simple physical example that is described as a discrete linear Hamiltonian sys-

tem is the following:

Example 5.5.5 (Harmonic oscillator). Consider the one-dimensional harmonic os-
cillator with mass m and spring constant k. The configuration space is a real line,
i.e., @ =R, and the Lagrangian L : TR — R of the system is

k

. m .
L(q,q) = 5q2 + §q2-
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Introducing the angular frequency w := /k/m, we have

m

L(g.4) = 5

(q-2 +w2q2) )

It is easy to solve the (continuous) Euler-Lagrange equation and calculate Jacobi’s

solution explicitly:

S(q,t;q0) := /Ot L(q(s),q(s))ds = %mw[(qg + ¢%) cot(wt) — 2gog esc(wt)],  (5.69)

where qq is the initial position: ¢(0) = go. This gives the exact discrete Lagrangian [4§]

with step size h as follows:

1
L (ks 1) = S(qrsr, i) = §mw[(q13 + G 1) cot(wh) — 23 qr+1 csc(wh)] . (5.70)

The corresponding left discrete Hamiltonian (see Eq. (2.50))), which we shall call the
exact left discrete Hamiltonian, is then
2
-

Lip
d,ex(pkv Qrt1) = B m_]Zu tan(wh) — 2prqrs1 sec(wh) + mw qzﬂ tan(wh)| . (5.71)

Comparing this with the general form of the quadratic Hamiltonian Eq. (5.62]), we
see that this is a special case with n = 1 and
. tan(wh)

M~ = , L = —sec(wh), K = mw tan(wh).
mw

Note that M, L, and K are also scalars now. Thus Eq. (5.66|) gives

f(q) =R o Fy, (dS(q)) = (cos(wh) + %Ak) q-+ ka. (5.72)

Now the recurrence relations Eq. (5.67) reduce to

mw[ Ay cos(wh) — mw sin(wh)]

A =
i mw cos(wh) + Ay sin(wh)
biys = e b
MU mw cos(wh) + Ay sin(wh) (5.73)
b2
Ck+1 = Cp — .

Ay + mw cot(wh)
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We impose the “initial condition” S}(q1) = L (qo, q1), which follows from Eq. (5.9)
or (5.15) for k = 1. This gives

Ay = mw cot(wh), by = —mwqg csc(wh), c1 = mwqg cot(wh). (5.74)
Solving the above recurrence relations using Mathematica, we obtain
Ay = mw cot(wkh), by = —mwqo csc(wkh), cr = mwqs cot(wkh),  (5.75)
and hence the solution of the left discrete Hamilton—Jacobi equation
S¥(q) = %mw (g5 + ¢°) cot(wkh) — 2goq csc(wkh)] . (5.76)

Remark 5.5.6. Notice that, in the above example, we have S%(q) = S(q, kh; qo) from
the explicit expression for Jacobi’s solution Eq. under the assumption that
q = qr. This is because we started with the exact discrete Lagrangian and hence the
corresponding discrete dynamics is exact. Specifically, the exact discrete Lagrangian

satisfies, by definition,
(I+1)h
LEX(QZa QI+1) = / L(q(t)a q(t)) dt? l e {07 17 R k — 1} (577>
Ih

where ¢(t) satisfies the continuous dynamics and the boundary conditions ¢(lh) = ¢
and q((I + 1)h) = ¢.1. Hence

k—1

kh
Sk(a) = 3 L5 (an ai) = / L{q(t). 4(t)) dt = S(g, kh: qo), (5.78)

=0

which says that the discrete analogue of Jacobi’s solution Eq. (5.9)) is identical to
Jacobi’s solution Eq. (5.69)) calculated using the continuous dynamics.

5.5.2 Application of the Hamilton—Jacobi Theorem

We illustrate how Theorem [5.3.1| works using the same example. Here we would like
to see if we can “generate” the dynamics using the solution of the discrete Hamilton—

Jacobi equations as in Theorem [5.3.1}

Example 5.5.7 (Harmonic oscillator). Let us start from the solution obtained in
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Example [5.5.5¢
1
S¥(q) = 5w (45 + ¢°) cot(wkh) — 2qoq csc(wkh)] . (5.79)

Notice that the expression for the right-hand side of Eq. (5.36]) was already given in
Eq. (5.72):

. 1 .
mg © Fr,(dS5(qr)) = qi cos(wh) + — DS%(qp.) sin(wh).
Hence substituting Eq. (5.79)) into Eq. (5.36]) yields
qr+1 = csc(wkh){qy sinfw(k + 1)h] — gy sin(wh)} . (5.80)

Then Eq. (5.37)) gives
pr = DS¥(qr) = mw csc(wkh)[qi cos(wkh) — qo) - (5.81)

It is easy to check these equations satisfy the left discrete Hamilton’s equations ([2.48)
as Theorem [5.3.7] claims.

5.6 Continuous Limit

This section shows that the right and left discrete Hamilton—Jacobi equations
and recover the original Hamilton—Jacobi equation in the continuous-
time limit. We reproduce the result of Elnatanov and Schiff [22] on the continuous
limit of the right discrete Hamilton—-Jacobi equation, applying the same argument
simultaneously to the left discrete Hamilton—Jacobi equation. The main purpose
of doing so here is to make it clear how the discrete ingredients are related to the

corresponding continuous ones in our notation.

5.6.1 Continuous Limit of Discrete Hamilton’s Equations

Let us first look at the continuous-time limit of the right and left discrete Hamilton’s
equations (2.48)) and (2.51)). This makes it clear how the discrete and continuous

Hamiltonians are related in the limit. First recall from Section 2.3 of Marsden and
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West [48] that the discrete Lagrangian Lq(qx, qx+1) is consistent if it satisfies

Lalaaen) = [ Llalo)d(0)di-+ 00

tr

tkt1
= [ b0+ - Ha@.pde 007 (82
173

where ¢, = kh, and the (q(¢),p(t)) in the integrand is the flow defined by the con-
tinuous Lagrangian or Hamiltonian with ¢(tx) = ¢ and q(tx+1) = qx. Consistency
of a discrete Lagrangian implies that of the corresponding discrete flow, hence the

terminology.

Lemma 5.6.1. The right and left discrete Hamiltonians Hdi defined in Eq. (2.47))
and (2.50) with a consistent discrete Lagrangian satisfies the following relations with

the continuous Hamiltonian:

.1 N S
H(qr,pr) = }Ll_{% 7 [H (qk, prs1) — Prsr - ] = }Ll_f)ﬂ —[Hy Pk @res1) + Dre - Qs ] -

0h
(5.83)
Proof. Simple calculations with Eqs. €47) and (Z50) with Eq. (552) show
1 —_
E[Hi(%mkﬂ) — Dit1 'Qk} = D1 - w
1 [teth .
177
and
1 E—
7 [HT (ks @i1) + Pr - Q1] = P - W
1 tp+h ‘
k

Taking the limit as h — 0 on both sides in each of the above equations gives the
result. O

Definition 5.6.2. We shall say that a right /left discrete Hamiltonian Hdi is consistent

if it satisfies Eq. (5.83]).

Proposition 5.6.3. With consistent discrete Hamiltonians, the right and left dis-
crete Hamilton’s equations (2.48)) and (2.51)) recover the continuous-time Hamilton’s

equations in the continuous limit.
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Proof. Simple calculations with Egs. (2.48) and (2.51)) show

s — e _ 0 [1
th k_ B {E[H;(Qk,pkﬂ) — P41 qk]} ’

Pri1 = P o _[1
k1 Pk {E[Hg(qk,pm)—pkﬂ'qk}}

h - 041

and

Q1 — Gk Ja (1, _
p— —_— .
n et { h [Hd (P, Qes1) + P Qk+1} } ;

_ o (1.
Prt1 = Pk _ {E[Hd (P> Q1) + Pr - Qk—i-l} } :

h gk
Taking the limit as h — 0 on both sides in each of the above equations gives, with

Eq. [.83}
OH OH

q(tr) = a—p(Q(tk),p(tk)), p(te) = _a_q((](tk:)ap(tk))- O

5.6.2 Continuous Limit of Discrete Hamilton—Jacobi Equa-
tions

Now we are ready to discuss the continuous limit of the right and left discrete

Hamilton—Jacobi equations.

Proposition 5.6.4. With consistent discrete Hamiltonians, the right and left discrete
Hamilton—Jacobi equations (5.3) and (5.18)) recover the continuous-time Hamilton—

Jacobt equation.

Proof. First define S : Q x R — R that satisfies S(qy, ;) = S¥(gr). Simple calcula-

tions with (5.3]) and (5.18)) yield

% [S(qu, thr1) — S(qr, tr) — g_§<9k+latk+l) (Grs1 — Qk)]
+ % [H; (qk, z—i(Qk+1,tk+1>> - g—j(%ﬂa trt1) - Qk] =0 (5.84)
and
% [S(qu, thr1) — S(qr, tr) — g_§<9k+latk+l) (qrs1 — Qk)]
+ % [Hd_ (g—j(qk,tk)7Qk+1) + Z_j@k’tk) ' Qk+1] =0. (5.8
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The first group of the terms in brackets is common to both of the above equations.

Taylor expansion of the terms gives

1 oS
7 |:S(Qk+1a tit1) — S(qk, tr) — a_q(9k+17tk+1) Q1 — Qk>:|
2s oS 2s Gt — g oS
= E(%ytk) + {a—q(qutk) - 6_q(q’“+1’tk“)] ' % +O(h) — E(kaatk)

as h — 0. On the other hand, by Lemma [5.6.1 the limit as A — 0 of the second
group of the terms in each of Egs. (5.84]) and ([5.85)) is

o1 oS oS oS
lim — {H;{ (Qk, _(Qk+17tk+1)> — —(Qht1, L) - Qk] = H(% a—q(Qk>tk)) ;

h—0 h dq Jq
and
o 1[.. [0S oS 0S8
}Llif(l) 7 {Hd <8_q(qk’ tk), Qk+1) + a_q<Qk7tk> : Qk-s-l} = H(Qk, a_q(Qk; tk)) .

As a result, both the right and left discrete Hamilton—Jacobi equations give, in the

limit as h — 0,

oS

S
E(%ﬁtk) + H(le 8_q(qk’tk)> =0,

which is the continuous-time Hamilton—Jacobi equation. O]

5.A Discrete Linear Hamiltonian Systems

5.A.1 Discrete Linear Hamiltonian Systems

Suppose that the configuration space () is an n-dimensional vector space, and that
the discrete Hamiltonian HJ or H] is quadratic as in Eq. . Also assume that
the corresponding discrete Hamiltonian map F, + (@, pk) = (Qs1, Prs1) 1s invertible.
Then the discrete Hamilton’s equations or reduce to the discrete linear
Hamiltonian system

21 = Ar, 2k, (5.86)

where z;, € R*" is a coordinate expression for (qx, px) € @ x Q* and Ar, : Q X Q* —

Q x Q* is the matrix representation of the map Fy, , under the same basis. Since Fr J
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is symplectic, Ay, is an 2n x 2n symplectic matrix, i.e.,
AL JAL, =1, (5.87)

where the matrix J is defined by

with I the n X n identity matrix.

5.A.2 Lagrangian Subspaces and Lagrangian Affine Spaces

First recall the definition of a Lagrangian subspace:

Definition 5.A.1. Let V be a symplectic vector space with the symplectic form €.
A subspace £ of V is said to be Lagrangian if Q(v,w) = 0 for any v,w € £ and
dim £ = dim V/2.

We introduce the following definition for later convenience:

Definition 5.A.2. A subset E(b) of a symplectic vector space V is called a Lagrangian
affine space it ﬁ(b) = b+ L for some element b € V' and a Lagrangian subspace £ C V.

The following fact is well-known [see, e.g., 34, Theorem 6 on p. 417]:

Proposition 5.A.3. Let L be a Lagrangian subspace of V and A :' V. — V be a

symplectic transformation. Then A*(L) is also a Lagrangian subspace of V' for any

k e N.
A similar result holds for Lagrangian affine spaces:

Proposition 5.A.4. Let L(b) = b+ L be a Lagrangian affine space of V and
AV =V be a symplectic transformation. Then A* (ﬁ(b)) 1s also a Lagrangian
affine space of V' for any k € N. More explicitly, we have

Ak (ﬁ(b)) = AFb+ AM(L).

Proof. Follows from a straightforward calculation. O
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5.A.3 Generating Functions

Now consider the case where V = Q & @)*. This is a symplectic vector space with the
symplectic form Q : (Q ® Q*) x (Q ® Q*) — R defined by

Q: (v,w) — v Jw.

The key result here regarding Lagrangian subspaces on ) ® Q* is the following:

Proposition 5.A.5. A Lagrangian subspace of Q ® Q* that is transversal to {0} ® Q*
is the graph of an exact one-form, i.e., L = graphdS for some function S : Q — R
which has the form

S(q) = % (Ag,q) +C (5.88)

with some symmetric linear map A : Q — Q* and an arbitrary real scalar constant C'.
Moreover, the correspondence between the Lagrangian subspaces and such functions

(modulo the constant term) is one-to-one.

Proof. First recall that a Lagrangian submanifold of 7@ that projects diffeomorphi-
cally onto @ is the graph of a closed one-forms on @ [See [1, Proposition 5.3.15 and
the subsequent paragraph on p. 410]. In our case, ) is a vector space, and so the
cotangent bundle T*(@) is identified with the direct sum @ ® Q*. Now a Lagrangian
subspace of Q @ Q* that is transversal to {0} @& Q* projects diffeomorphically onto @,
and so is the graph of a closed one-form. Then by the Poincaré lemma, it follows that
any such Lagrangian subspace L is identified with the graph of an exact one-form dS
with some function S on @, i.e., £ = graphdS.

However, as shown in, e.g., Jurdjevic [34, Theorem 3 on p. 233], the space of La-
grangian subspaces that are transversal to {0} & Q* is in one-to-one correspondence
with the space of all symmetric maps A : ) — Q*, with the correspondence given by
L = graph A. Hence graph dS = graph A, or more specifically,

dS(q) = Aijqj dq'.
This implies that S has the form
1 i
S(q) = 5Aiyd'd +C,

with an arbitrary real scalar constant C'. O]
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Corollary 5.A.6. Let L(zy) = zo+L be a Lagrangian affine space, where zy = (qo, po)
is an element in QQ ® Q* and L is a Lagrangian subspace of Q & Q* that is transver-
sal to {0} @ Q*. Then L(zy) is the graph of an ezact one-form dS with a function
S:Q — R of the form

oy 1

S(q) 5 (Aq,q) + (po — Ago, q) + C,

with an arbitrary real scalar constant C'.

Proof. From the above proposition, there exists a function S : () — R of the
form Eq. (5.88) such that £ = graphdS. Let S : Q@ — R be defined by

S(q) :== S(q — @) + (po,q). Then

dS(q) = A(q — q) + po- (5.89)
and thus
graphdS = {(¢.dS(q)) | ¢ € Q}

={(¢; Alg—q0) +po) | g€ Q}

= (q0,p0) +{(¢ — 90, Alg — @)) | g € Q}

=20 + L

= ﬁ(Zo).
The form Eq. (5.89) follows from a direct calculation. ]
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Chapter 6

Conclusion and Future Work

6.1 Nonholonomic Hamilton—Jacobi Theory

We formulated a nonholonomic Hamilton—Jacobi theorem building on the work by
Iglesias-Ponte et al. [30] with a particular interest in the application to exactly inte-
grating the equations of motion of nonholonomic mechanical systems. In particular
we formulated the theorem so that the technique of separation of variables applies
as in the unconstrained theory. We illustrated how this works for the vertical rolling
disk and knife edge. Furthermore, we proposed another way of exactly integrating
the equations of motion without using separation of variables.

We also applied the conventional Hamilton—Jacobi equation to the Chaplygin-
Hamiltonized nonholonomic system and obtained the Chaplygin Hamilton—Jacobi
equation. We obtained an explicit formula that provides a link between the solutions
of the Chaplygin Hamilton-Jacobi and nonholonomic Hamilton—-Jacobi equations.
This result relates the two seemingly distinct approaches to extending Hamilton—
Jacobi theory to nonholonomic systems.

The following topics are interesting to consider for future work:

e Role of symmetry in nonholonomic Hamilton—Jacobi Theory. Many nonholo-
nomic systems possess symmetry, and there are theories on nonholonomic
reduction by symmetry [4; 8; 36; 38; 39]. Introducing the ideas of symmetry
and reduction to nonholonomic Hamilton—Jacobi theory is certainly appealing.
Iglesias-Ponte et al. [30] applied their Hamilton—Jacobi theorem to the so-called
Chaplygin case to prove a reduced version of the theorem. Our preliminary
calculations with simple examples showed that symmetry consideration leads
to the assumptions made in constructing the ansatz, e.g., Eq. for the
vertical rolling disk. We are interested in exploring this idea to gain insights

into integrability of nonholonomic systems.
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o Relation between measure-preservation and applicability of separations of vari-
ables. The integrability conditions of nonholonomic systems formulated by
Kozlov [40] include measure-preservation. As mentioned above, applicability
of separation of variables implies the existence of conserved quantities other
than the Hamiltonian. Therefore it is interesting to see how these ideas, i.e.,
measure-preservation, applicability of separation of variables, and existence of

conserved quantities, are related to each other.

e “Right” coordinates in monholonomic Hamilton—Jacobi theory and relation to
quasivelocities. In the unconstrained Hamilton—Jacobi theory, there are exam-
ples which are solvable by separation of variables only after a certain coordinate
transformation. As a matter of fact, Lanczos [42], p. 243] says “The separable
nature of a problem constitutes no inherent feature of the physical properties of
a mechanical system, but is entirely a matter of the right system of coordinates.”
It is reasonable to expect the same situation in nonholonomic Hamilton—Jacobi
theory. In fact the equations of nonholonomic mechanics take simpler forms
with the use of quasivelocities [10; [I7]. Relating the “right” coordinates, if any,

to the quasivelocities is an interesting question to consider.

e [Lxtension to Dirac mechanics. Implicit Lagrangian/Hamiltonian systems de-
fined with Dirac structures [57} [60; 61] can incorporate more general constraints
than nonholonomic constraints including those from degenerate Lagrangians
and Hamiltonians, and give nonholonomic mechanics as a special case. A gen-

eralization of Hamilton—Jacobi theory to such systems is in progress [45].

6.2 Discrete Hamilton—Jacobi Theory

We developed a discrete-time analogue of Hamilton—Jacobi theory starting from the
discrete variational Hamilton equations formulated by Lall and West [41]. We reinter-
preted and extended the discrete Hamilton—Jacobi equation given by Elnatanov and
Schiff [22] to show that it possesses theoretical significance in discrete mechanics that
is equivalent to that of the (continuous-time) Hamilton—Jacobi equation in Hamilto-
nian mechanics. Furthermore, we showed that the discrete Hamilton—Jacobi equation
reduces to the discrete Riccati equation with a quadratic Hamiltonian, and also that
it specializes to the Bellman equation of dynamic programming if applied to discrete

optimal control problems. This again gives discrete analogues of the corresponding
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known results in the continuous-time theory. Application to discrete optimal control
also revealed that Theorems [5.2.3] and specialize to two well-known results in
discrete optimal control theory.

We are interested in the following topics for future work:

e Application to integrable discrete systems. Theorem [5.3.1] gives a discrete ana-
logue of the theory behind the technique of solution by separation of variables
in the sense that the theorem relates a solution of the discrete Hamilton—Jacobi
equations with that of the discrete Hamilton’s equations. An interesting ques-
tion then is whether or not separation of variables applies to integrable discrete
systems, e.g., discrete rigid bodies of Moser and Veselov [50] and various others
discussed by Suris [55], 56].

e Development of numerical methods based on the discrete Hamilton—Jacobi equa-
tion. Hamilton—Jacobi equation has been used to develop structured integrators
for Hamiltonian systems [see, e,g., 15, and also references therein]. The present
theory, being intrinsically discrete in time, potentially provides a variant of such

numerical methods.

e FEaxtension to discrete nonholonomic and Dirac mechanics. The present work
is concerned only with unconstrained systems. Extensions to nonholonomic
and Dirac mechanics, more specifically discrete-time versions of nonholonomic
Hamilton—Jacobi theory [19; [30; 51] and Dirac Hamilton—Jacobi theory [45], are

another direction of future research.

e Relation to the power method and iterations on the Grassmannian manifold.
Ammar and Martin [2] established links between the power method, iterations
on the Grassmannian manifold, and the Riccati equation. The discussion on
iterations of Lagrangian subspaces and its relation to the Riccati equation in
Sections [5.5.1] and [5.A.2] is a special case of such links. On the other hand,
Proposition suggests that the discrete Hamilton—Jacobi equation is a gen-

eralization of the Riccati equation. Interpreted in the context of the result by

Ammar and Martin [2], the discrete Hamilton—Jacobi equation defines an inter-
ation of Lagrangian submanifolds. We are interested in seeing possible further
links provided by the generalization, such as the relationship between discrete
Hamiltonian dynamical systems and iterations of Lagrangian submanifolds, and

its applications to numerical methods.
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