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Alexandru Constantinescu, Roman Cornei, Andrei Costin, Dragos Deliu, Dragos

iii



Luca, Dumitru Oboroc and Cornel Plugaru, who were always able to drag me down

to earth when my head was in the clouds; my friends I met in Michigan, among them

Nelu Bakaluca, Parca Bakhatary, Ana Calugar, Gourap Ghoushal, Fidel Jimenez,

Corina Kesler, Andrea Kiss, Andei Mischenko, Dezhong Sun, Chelsea Walton, Olga

Yermalenko, and my roomies at Jefferson 325. To all my friends, thank you for your

support and all the moments of joy we had together.

I would also like to thank very much my teachers in Bucharest: Lucian Badescu,

Vasile Brânzanescu, Iustin Coanda and Paltin Ionescu. Without them I would never

have chosen to do algebraic geometry.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Regularity of smooth curves in biprojective spaces . . . . . . . . . . . . . . . 2
1.2 Okounkov bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Volume functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

II. Multigraded Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Castelnuovo-Mumford regularity. . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Multigraded regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Multigraded regularity of a subvariety . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Proof of Theorem A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

III. Regularity of Smooth Curves in Biprojective Spaces . . . . . . . . . . . . . . 46

3.1 Existence of good projections . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Regularity bounds in the general case . . . . . . . . . . . . . . . . . . . . . . 53
3.3 Regularity bounds in a special case . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

IV. Okounkov Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Okounkov bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Countability of Okounkov bodies . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4 Conditions on Okounkov bodies on surfaces . . . . . . . . . . . . . . . . . . . 81
4.5 Non-polyhedral Okounkov bodies . . . . . . . . . . . . . . . . . . . . . . . . 87

V. Volume Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 The volume function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3 Countability of volume functions for complete linear series. . . . . . . . . . . 99
5.4 Volume functions of non-complete linear series . . . . . . . . . . . . . . . . . 107

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

v



LIST OF FIGURES

Figure

2.1 Regularity set of the curve C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Intersection of Γ(c1, c2, c3) with the nef cone Nef(Y )R . . . . . . . . . . . . . . . . . 104

vi



CHAPTER I

Introduction

This thesis consists of two mutually independent parts.

Chapters II and III constitute the first part, where our main concern is to study

multigraded regularity on multiprojective spaces. The principal result is the bound

we give on regularity for curves on biprojective spaces.

In the second part, Chapters IV and V, we study asymptotic invariants associated

to linear series. This is joint work with C. Maclean and A. Küronya. In Chapter

IV we focus on Okounkov bodies, which were first introduced by Lazarsfeld and

Mustaţă in [34]. Our main concern is to ask what can be said about the set of convex

bodies that appear as Okounkov bodies. We show first that the set of convex bodies

appearing as the Okounkov bodies of a big Cartier divisor on a smooth projective

variety with respect to an admissible flag is countable. We then give a complete

characterization of the set of convex bodies which arise as Okounkov bodies of R-

divisors on smooth projective surfaces. We will show that such Okounkov bodies are

always polygons, satisfying certain combinatorial criteria. In Chapter V, we study

another asymptotic invariant, called the volume function associated to an irreducible

projective variety or a multigraded linear series. In the classical case, we prove that

the collection of functions which appear as the volume function of an irreducible
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projective variety is countable. By contrast, in the non-complete case we are able to

show that there are uncountably many volume functions. More specifically, we prove

that any continuous, log-concave and homogeneous function appears as the volume

function of a multigraded linear series.

This thesis is adapted from the author’s three papers [35], [28] and [29]. The last

two preprints are joint work with Catriona Maclean and Alex Küronya.

In the remainder of this Chapter, we give a more detailed introduction to the

contents of this thesis.

1.1 Regularity of smooth curves in biprojective spaces

Let F be a coherent sheaf on Pr. Then Serre’s Theorem ([24, Proposition III.5.3])

says that after twisting F by a sufficiently high multiple of the hyperplane line

bundle, the higher cohomology groups of F vanishes. Mumford in [40] had the idea

to introduce an invariant which gives a quantitative measure of how much one has

to twist in order for the higher cohomology to vanish.

Specifically, recall that a coherent sheaf F ism-regular in the sense of Castelnuovo-

Mumford if

H i(Pr,F ⊗OPr(m− i)) = 0, for all i > 0.

One then defines reg(F) = min{m ∈ Z | F is m− regular }. Mumford showed that

if F is m-regular, then F(m) is globally generated, and moreover it is also (m+ n)-

regular for all n ∈ N. Thus this invariant bounds the cohomological complexity of

the coherent sheaf. On the other hand, we shall see in §II.1 that it also bounds the

algebraic complexity of the coherent sheaf, and for this reason regularity has been

the focus of considerable recent activity, e.g. [11], [41], [18], [19], [17], [32], [13],[30],

[31].
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In §II.1 we give the definition and basic properties of Castelnuovo-Mumford reg-

ularity. We explain the complexity-theoretic meaning of this invariant and survey

without proof several results giving bounds on regularity.

Inspired by the importance of Castelnuovo-Mumford regularity, both in algebraic

geometry and commutative algebra, in recent years several authors extended the

definition of regularity to the multigraded setting, e.g. [2], [36], [20], [51]. Notably,

motivated by toric geometry, Maclagan and Smith in [36] introduced a multigraded

variant of Castelnuovo-Mumford regularity.

Our main focus in Chapter II and III is to study multigraded regularity on multi-

projective spaces. Suppose Y = Pn1 × · · · × Pnk is a multiprojective space, for some

n1, . . . , nk ≥ 1 and k ≥ 1, and F is a coherent sheaf on Y . If m = (m1, . . . ,mk) ∈ Zk

is an integral vector, then Maclagan and Smith say that F is m-regular if

H i(Y,F ⊗OY (m− u)) = 0,

for all i > 0 and u ∈ Nk, such that |u| := u1 + · · · + uk = i. Inspired by Mumford’s

result, Hering, Schenck, and Smith prove in [23] its multigraded analogue, which

in our setup says that if F is m-regular, then F(m) is globally generated, and

moreover it is also (m + u)-regular for all u ∈ Nk. Thus, as in the classical case,

the multigraded version of regularity of Maclagan and Smith gives a quantative

measure of the cohomological complexity of a coherent sheaf. Also, if we define

reg(F) = {m ∈ Zk | F is m− regular}, then the same result implies that this set is

a union of positive cones

reg(F) =
⋃

F is m−regular

(m + Nk)

By contrast to the classical case–where Mumford worked with a sheaf-theoretic ge-

ometric approach to regularity–the main work in the multigraded setting was done
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in the commutative algebra setting. In this context is easy to see that for finitely

generated modules the regularity set is finitely generated (see Definition 2.24). In

the geometric setting the question of when the regularity set is finitely generated is

more complex. The answer to this question is the first result of this thesis. If we

denote by

πi : Y → Yi := Pn1 × · · · × P̂ni × · · · × Pnk

the projection that drops the i-th coordinate of Y , then inspired by a result of Hà,

[20, Proposition 3.3.2], we prove in §II.4 the following theorem:

Theorem A. Let F be a coherent sheaf on the multiprojective space Y . Then the

following two conditions are equivalent

(i) For each i = 1, . . . , k there exists a point xi ∈ Yi such that

dim(supp(F|π−1
i (xi)

)) > 0,

(ii) The set reg(F) is finitely generated 1 as a subset of Zk.

In the remainder of §II.2 and §II.3, we explain the algebraic approach to multi-

graded regularity given by Maclagan and Smith. In this setup we overview briefly

the work of Hà, [20], which gives a relationship between algebraic and cohomologi-

cal complexity. More specifically, Hà proves upper bounds on regularity in terms of

degrees of syzygies. We end Chapter III by surveying some results about bounding

regularity in terms of geometric data. We present first the work of Maclagan and

Smith, which bounds regularity in terms of multigraded Hilbert polynomial. Also

we show briefly how one can extend some results on bounding Castelnuovo-Mumford

regularity to the multigraded case.

1We say that reg(F) is finitely generated as a subset of Zk if there exists m1, . . . ,ml ∈ Zk such that reg(F) =⋃i=l
i=1(mi + Nk).
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With respect to bounding regularity in terms of geometric data, one question

became the focus of considerable research. Inspired by the work of Castelnuovo

[11], it is natural to seek upper bounds for the regularity of a smooth projective

variety X ⊆ Pr in terms of its degree. For example, a celebrated result of Gruson,

Lazarsfeld and Peskine [17] states that for an irreducible (possible singular) reduced

nondegenerate curve C ⊆ Pr (r ≥ 3) of degree d, the ideal sheaf IC/Pr is (d+ 2− r)-

regular.

In Chapter III, we give a multigraded counterpart to the result of [17]. More

specifically, we prove the following theorem:

Theorem B. Let C ⊆ Pa × Pb (a, b ≥ 2) be a smooth curve of bidegree (d1, d2) with

nondegenerate birational projections. The the ideal sheaf IC|Pa×Pb is (d2− b+ 1, d1−

a+ 1)-regular.

As a corollary, Theorem B together with ([36, Theorem 1.4]) imply the inclusion:

(
(d2 − b+ 1, d1 − a+ 1) + N2

)
⊆ reg(IC|Pa×Pb)

By comparison to the methods used in [17], the proof of Theorem B, which will take

most of Chapter III, uses generic projections and vector bundle techniques developed

by Gruson, Peskine ([18], [19]), and Lazarsfeld ([32]) in the classical case. The main

change is that instead of projecting to P2 we choose projections to P1×P1. The idea

is to prove first that whenever a 6= b or r := a = b and the curve C is not included in

the graph of an automorphism of Pr, then there are plenty of projections to P1×P1,

with the image of C having “nice” singularities. In §III.2 these projections will play

an important role in establishing the bound in Theorem B. The remaining case, when

the curve is included in the graph of an automorphism of Pr, will be discussed in

§III.3. There we will use the result of [17] to show that the same bound works. We
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end Chapter III with an example of a rational curve C ⊆ P2 × P2 of bidegree (3, 3).

This curve has the property that (2, 2) + N2 = reg(C), showing in this case that the

bounds we have in Theorem B are the best possible.

1.2 Okounkov bodies

In Chapter IV of this thesis we study an interesting construction of Lazarsfeld and

Mustaţă in a recent paper [34], which was motivated by earlier works of Okounkov

[44], [45].2 The construction associates a convex body in Rn, called the Okounkov

body, to any big divisor D on a n-dimensional complex projective smooth variety X.

Specifically, fix on X an admissible flag

Y• : X = Y0 ⊇ Y1 ⊇ Y2 ⊇ . . . ⊇ Yn−1 ⊇ Yn = {pt}

where Yi is a smooth irreducible subvariety of codimension i in X. This flag deter-

mines a valuation ν : H0(X,OX(mD))→ Zn for all m ∈ N, and the Okounkov body

of D with respect to the flag Y• is by definition the compact set

∆Y•(X;D) := closed convex hull
( ⋃
m≥1

1

m
· ν
(
H0(X,OX(mD))

))
⊆ Rn .

(Sometimes it will be preferable to use the language of line bundles. If L is a line

bundle on X, we write ∆Y•(X;L) ⊆ Rn for the Okounkov body of a divisor D with

OX(D) = L.)

The Okounkov body encodes many asymptotic invariants of divisorD, and Lazars-

feld and Mustaţă link its properties to the geometry of D. For example, whenever

D is big we have that

(1.1) volX(D) = n! · volRn(∆Y•(X;D))

2The same construction was studied independently by Kaveh and Khovanskii, [26]
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where the right hand side is the Euclidean volume of ∆Y•(X;D). This viewpoint

renders transparent several basic properties about the volume of big divisors and

will be used extensively in our study of the volume function in Chapter VI.

Our main concern here is to study the set of those convex bodies which appear

as Okounkov bodies of line bundles on smooth varieties with respect to admissible

flags. Our first theorem, proved in §IV.2, shows that this set is countable.

Theorem C. Let n ≥ 1 be a natural number. There then exists a countable set

of bounded convex bodies (∆i)i∈N ⊂ Rn such that for any big divisor D on a n-

dimensional complex smooth projective variety X and for any admissible flag Y• on

X, the Okounkov body ∆Y•(X;D) is identified with ∆i for some i.

In [34] it was shown that for any smooth variety X equipped with an admissible flag

Y•, the Okounkov bodies of big real classes on X with respect to Y• fit together in

a convex cone, called the global Okounkov cone. We prove Theorem C by analyzing

the variation of global Okounkov cones in flat families.

The question then naturally arises whether this countable set of convex bodies

can be characterized in small dimensions. We focus on the case of surfaces and try

to give an affirmative answer in this setup. An explicit description of ∆(D) for any

real divisor D on a smooth surface S with respect to a flag (C, x), where C ⊆ S is a

smooth curve and x ∈ C a point, based on the Zariski decomposition, is given in [34,

Theorem 6.4]. It was noted that it followed from this description that the Okounkov

body was a possibly infinite polygon. In §IV.3, we give a complete characterization of

Okounkov bodies on surfaces based on this work: these turn out to be finite polygons

satisfying a few extra combinatorical conditions.

Theorem D. The Okounkov body of an R-divisor on a smooth surface with respect



8

to some admissible flag is a finite polygon. Up to translation, a real polygon ∆ ⊆ R2
+

is the Okounkov body of an R-divisor D on a smooth projective surface S with respect

to a complete flag (C, x) if and only if

∆ = {(t, y) ∈ R2 | ν ≤ t ≤ µ, α(t) ≤ y ≤ β(t)}

for certain real numbers ν, µ > 0 and certain piecewise linear functions α, β : [ν, µ]→

R+ with rational slopes such that β is convex and α is increasing and concave.

In the case when the divisor D is in fact a Q-divisor, the proof of Theorem D

implies that the break points of the functions α and β occur at rational points and

that the number ν must be rational. As for the number µ it turns out that it might

be irrational–we give an example of this–but it is at worst a quadratic irrational. As

for the proof of Theorem D, which appears in §IV.3, it uses Zariski decomposition,

as in [34, Theorem 6.4]; more precisely, Theorem D is proved via a detailed analysis

of the variation of Zariski decomposition along a line segment. Conversely, we show

that all convex bodies as in Theorem D are Okounkov bodies of divisors on smooth

toric surfaces.

In contrast to the two dimensional case, in higher dimensions we cannot give a

simple characterization of Okounkov bodies along the lines of Theorem D. In §IV.4

we give two examples of varieties equipped with flags, such that there exists line

bundles with the property that the Okounkov body is non-polyhedral. Already in

[34, Section 6.3] there appears an example of a non-polyhedral Okounkov body in

higher dimensions. The novelty in both of our examples is that the varieties we deal

with are Fano and Mori dream spaces respectively. Also, the variety in the first

example is P2 × P2, and we are able to give a complete description of a slice of the

Okounkov body, which has a round shape. As for the second example, we find a
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Mori dream space threefold with the property that for any ample divisor and any

flag coming from a linear deformation of a certain given flag, the Okounkov body is

round.

1.3 Volume functions

In the final part of this thesis, Chapter V, we focus on the volume function of

projective varieties and multigraded linear series. IfX is a complex projective smooth

variety and D is a Cartier divisor on X, then the volume of D is defined to be

volX(D) = lim sup
k→∞

dimCH
0(X,OX(kD))

kn/n!
.

By definition, D is big when volX(D) > 0. The volume, and its restricted ver-

sion, have played recently a crucial role in several important developments in higher

dimensional geometry, e.g. [52], [21].

In the classical setting of ample divisors, the volume is simply the top self-

intersection of D. Starting with the work of Fujita [14], Nakayama [43], and Tsuji

[53], it became clear that the volume of a big divisor displays a surprising number of

properties analoguous to those of ample ones. One can check [33, Section 2.2.C] that

it depends only on the numerical class of D, that it is homogeneous of degree n, i.e.

volX(pD) = pn · volX(D) for any p ∈ N, and that it satisfies a continuity property.

These properties imply that one can extend uniquely the volume to a continuous

function

volX : N1(X)R −→ R,

where we denote by N1(X) the Neron-Severi group of numerical equivalence classes

of line bundles on X, and by N1(X)R the corresponding finite-dimensional real vector

space. Besides continuity and homogeneity, another important feature of the volume
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function is log concavity, i.e. for any two classes ξ, ξ′ ∈ Big(X)R we have

volX(ξ + ξ′)1/n ≥ volX(ξ)1/n + volX(ξ′)1/n.

However, besides these properties, relatively little is known about the global behavior

of the volume function, and understanding it more clearly remains a very important

quest.3

Inspired by Theorem C on Okounkov bodies, the first question we tackle about

the volume function is, how many functions like this can occur? In §V.2 we prove

that there are only countably many of them.

Theorem E. There exist countably many functions fj : Rρ → R with j ∈ N, such

that for any irreducible, projective and smooth variety X of dimension n and Picard

number ρ there is an integral linear isomorphism

ρX : Rρ → N1(X)R

with the property that volX ◦ ρX = fj for some j ∈ N.

Also, in §V.2 we show that there are countably many closed convex cones Ai ⊆ Rρ

with i ∈ N such that ρ−1
X (Nef(X)R) = Ai for some i ∈ N. Thus, there exist count-

ably many cones appearing as nef cones for all irreducible, projective and smooth

projective varieties. The same statement can be easily deduced for the ample, big

and pseudo-effective cones.

In (1.1) we have seen that the volume of a big Cartier divisor is proportional

with the Euclidean volume of its Okounkov body. The result on the countability of

global Okounkov cones implies the countability of the volume functions. As for the

countability of the nef cones, the proof follows the same steps as the one given for

3In their interesting paper [10], Boucksom-Favre-Jonsson found a nice formula for the derivative of volX in any
direction.
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Theorem C, by analyzing the variation of volume function in families coming from

multi-graded Hilbert schemes.

An interesting application of Theorem E concerns the set of volumes. If we define

V ⊆ R+ to be the set of all positive real numbers arising as the volume of a Cartier

divisor on some complex projective smooth variety, then V has a structure of a

countable multiplicative semigroup (see Corollary 5.15). Also we will see that all

positive rational numbers are contained in V, i.e. Q+ ⊆ V. On the other hand

in §V.2 we give an example of a four-fold whose volume function is given by a

transcendental function. In particular one can find easily integral divisors on this

four-fold whose volume is a transcendental number. Thus the set of volumes V

contains transcendental numbers, deepening further the mystery surrounding the

volume function in the classical case and in particular the structure of the set V.

With the emergence of Okounkov bodies, it became clear that in fact most of

the properties of the volX are quite formal in nature, and can be extended to the

(noncomplete) multigraded setting. Specifically, fix Cartier divisors D1, . . . , Dp on X

and write mD = m1D1 + · · · + mpDp for m = (m1, . . . ,mp) ∈ Np. A multigraded

linear series W• on X associated to D1, . . . , Dp consists of subspaces

Wm ⊆ H0(X,OX(mD))

such that R(W•) = ⊕Wm is a subalgebra of the section ring

R(X;D1, . . . , Dp) =
⊕
m∈Np

H0(X,OX(mD)).

The support of W•, supp(W•) ⊆ Rp
+, is the closed convex cone spanned by all indices

m ∈ Np such that Wm 6= 0. Now, given m ∈ Np, set

volW•(m) := lim sup
k→∞

dim(Wk·m)

kn/n!
.
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Then as in the complete case, one can define the volume function of W•,

volW• : Np −→ R+.

In [34] the authors associate a convex cone, called the Okounkov cone, to a multi-

graded linear series on a projective variety, generalizing the global construction

mentioned above. They use convex geometry and semigroup theory to show that

(under very mild hypothesis) the formal properties of the global volume function

extend to the multigraded setting. Specifically, as in the global case, the function

m 7→ volW•(m) extends uniquely to a continuous function

volW• : int(supp(W•)) −→ R+

which is log-concave and homogeneous of degree n = dim(X) and extends continu-

ously to all of supp(W•) (see Remark 5.29).

This definition is a natural extension of the volume function in the global case.

If X is a smooth projective variety then the big cone, Big(X)R, is pointed and volX

vanishes outside of it. Choosing D1, . . . , Dρ integral divisors on X, whose classes in

N1(X)R generate a cone containing Big(X)R, then volX = volW• on Big(X)R, where

W• =
(
H0(X,OX(mD))

)
m∈Nρ .

In this “in vitro” setting, we prove in a special case that any continuous, homoge-

neous and log-concave function in fact arises (up to scaling) as the volume function

of a multigraded linear series:

Theorem F. Let K ⊆ Rp
+ be a closed convex cone with nonempty interior and

suppose f : K → R+ is a continuous function, which is non-zero, log-concave and

homogeneous of degree p in the interior of K. Then there exists a smooth, projective

variety Y of dimension p, a multigraded linear series W• on Y and a positive constant

k such that volW• ≡ k · f on the interior of K. Moreover we have supp(W•) = K.
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As a consequence of Theorem F, we observe that the volume function volW• of a

multigraded linear series W• can be wild. Alexandroff [1] showed that a function as

in Theorem F is almost everywhere twice differentiable, but one can give examples of

such functions which are nowhere three times differentiable (see Remark 5.27). This

gives a positive answer to [34, Problem 7.2]. As for the proof of Theorem F, the linear

series used are on P1 × · · · × P1 (p times): first we prove that any pointed cone in

Rp
+×Rp

+, modulo scaling, is the Okounkov cone of some multigraded linear series on

P1 × · · · × P1. The volume of the corresponding multigraded linear series coincides

with the Euclidean volume function of slices of its Okounkov cone. We finish by

showing that any function as in Theorem F is the Euclidean volume function of a

cone.



CHAPTER II

Multigraded Regularity

2.1 Castelnuovo-Mumford regularity.

In this section we review a few facts about Castelnuovo-Mumford regularity. Gen-

eral references for this are [40], [41], [33]. We will always work over the field of com-

plex numbers. In the following X ⊆ Pr will be a projective subscheme of dimension

n and F a coherent sheaf on Pr.

In his efforts to simplify Grothendieck’s work on the existence of Hilbert schemes,

Mumford [40] realized the importance of vanishing theorems in order to establish the

boundedness of the family of all subschemes of projective space with fixed Hilbert

polynomial. He focused mainly on Serre vanishing, which states that for any coherent

sheaf F on Pr there exists an integer m0, depending on F , such that

H i(Pr,F(m)) = 0, for all m ≥ m0, i ≥ 1.

Mumford’s idea was to give a quantitative measure of how much one has to twist so

the higher cohomology vanishes. He proposed the following definition:

Definition 2.1 (Castelnuovo-Mumford regularity of a coherent sheaf). Let F be a

coherent sheaf on the projective space Pr, and let m be an integer. One says that F

is m-regular in the sense of Castelnuovo-Mumford if

H i(Pr,F(m− i)) = 0 for all i > 0.

14
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The Castelnuovo-Mumford regularity reg(F) of the coherent sheaf F on Pr is the

least integer m for which F is m-regular.

Remark 2.2. Let S = C[x0, . . . , xr] be the coordinate ring of Pr. Then one can

associate to any coherent sheaf F on Pr a Z-graded S module as follows

Γ∗(F) =
⊕
k∈Z

H0(Pr,F(k))

Now suppose that H0(Pr,F(k)) = 0, for k � 0. Then Theorem 2.4 below implies

that the graded S module is finitely generated. In this case it is not hard to see (see

Lemma 2.32 in the multigraded case) that reg(F) exists and is finite.

Remark 2.3. Suppose F is a coherent sheaf on Pr. If the dimension of supp(F) is at

least one, then it is not hard to show that the number reg(F) exists and is finite.

While the formal definition may seem rather unintuitive, a result of Mumford

gives a first indication that Castelnuovo-Mumford regularity measures the point at

which cohomological complexities vanish.

Theorem 2.4 (Mumford’s theorem). Let F be a coherent sheaf on Pr. If F is

m-regular, then for k ≥ 0:

(i) F(m+ k) is generated by its global sections.

(ii) The natural map

H0(Pr,F(m)) ⊗ H0(Pr,OPr(k)) → H0(Pr,F(m+ k))

is surjective.

(iii) F is (m+ k)-regular.

An important consequence of this theorem is that regularity governs the com-

plexity of the algebraic objects associated to a coherent sheaf. As before let S =
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C[x0, . . . , xr] be the homogeneous coordinate ring of Pr and Γ∗(F) be the correspond-

ing Z-graded S module of a coherent sheaf F . For simplicity, assume the vanishing

of the group of global sections H0(Pr,F(k)) for all k � 0. In this setup, Theorem

2.4 implies that Γ∗(F) is finitely generated Z-graded S module. Thus, by general

theory, Γ∗(F) admits a minimal graded free resolution E•:

0 → En+1 → En → . . . → E1 → E0 → Γ∗(F) → 0.

where Ep = ⊕iS(−ap,i) is a free Z-graded S-module. Here minimality means that

the maps of E• are given by matrices of homogeneous polynomials containing no non-

zero constants as entries. The integers ap,i-s specify the degrees of the generators of

Ep and are uniquely determined by Γ∗(F), hence by F . Set

ap = ap(F) = maxi{ap,i}

so that ap is the largest degree of a generator of the pth module of syzygies of Γ∗(F).

With this in hand, the following result (see [33, Theorem 1.8.26]) shows the rela-

tionship between regularity and the syzygetic degrees of the sheaf F :

Theorem 2.5. Let F be a coherent sheaf on the projective space Pr. Then F is

m-regular if and only if one of the following equivalent conditions is satisfied:

(i) F is resolved by a long exact sequence

. . . → ⊕OPr(−m− 2) → ⊕OPr(−m− 1) → ⊕OPr(−m) → F → 0

whose terms are direct sums of the indicated line bundles.

(ii) Each of the integers ap = ap(F) satifies the inequality

ap ≤ p+m.
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Remark 2.6. An easy application of Theorem 2.5 is that regularity has pleasant

tensorial properties. If E1 and E2 are two vector bundles on Pr, which are m and

respectively n-regular, then E1 ⊗ E2 is (m + n)-regular. This was used extensively

in the problem of finding bounds of regularity of subvarieties of projective space.

Although Mumford’s original interest was to apply regularity to the existence

of Hilbert schemes, the fact that it governs the algebraic complexity of a coherent

sheaf drew a considerable amount of work in the last thirty years, both in algebraic

geometry and commutative algebra.

A particularly interesting case occurs when F is the ideal sheaf of a subvariety

(or subscheme) of projective space:

Definition 2.7 (Regularity of a projective subvariety.). We say that a subvariety

(or a subscheme) X ⊆ Pr is m-regular if its ideal sheaf IX/Pr is. The regularity of X

is the regularity reg(IX/Pr) of its ideal.

Remark 2.8. For any projective subscheme X ⊆ Pr denote by

IX =
⊕
k∈Z

H0(Pr, IX/Pr(k))

the saturated homogeneous ideal of X. If X is m-regular, then Theorem 2.5 says

that IX is generated by forms of degree ≤ m, and the pth syzygies among these

generators appear in degrees ≤ m+ p.

Remark 2.9. If X ⊆ Pr is a subscheme of dimension n, then (for m > 0) X is

m-regular if and only if H i(Pr, IX/Pr(m− i)) = 0 for 1 ≤ i ≤ n+ 1.

As an example, if C ⊆ Pr is a smooth rational curve, embedded by a possibly

incomplete linear series, then C is m-regular (for m > 0) if and only if hypersurfaces

of degree m− 1 cut out a complete linear series on C, i.e. if and only if the map

H0(Pr,OPr(m− 1)) → H0(C,OC(m− 1))
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is surjective. For example, if C is the image of the embedding

P1 ↪→ P3, [s, t] 7→ [sd, sd−1t, std−1, td]

then C is (d− 1)-regular but not (d− 2) regular.

The result of Theorem 2.5 tells us that regularity and the data given by a linear

resolution of a coherent sheaf are interconnected. This emphasizes the importance

in finding upper bounds to regularity of a projective scheme X ⊆ Pr in terms of

geometric data. While the picture is not complete, the influential survey [6] of Bayer

and Mumford reveals a fascinating difference between the case of smooth varieties

and that of arbitrary schemes. On the one hand, for arbitrary schemes one can

find examples that show that regularity grows exponentially as a function of input

parameters. On the other hand, the regularity of smooth varieties is known or

expected to grow linearly in terms of geometric invariants.

Gotzmann’s bound. The earliest results bounded regularity in terms of Hilbert

polynomials. Given a projective subscheme X ⊆ Pr write

PX(k) = χ(X,OX(k)).

Then it is known that PX ∈ Q[t] is a polynomial with rational coefficients and is

called the Hilbert polynomial of X. Gotzmann in [15] finds an optimal statement in

this direction:

Theorem 2.10 (Gotzmann’s regularity theorem). There exists an unique increasing

sequence of positive integers ai with i = 1, . . . , s, such that one can write

PX(k) =

(
k + a1

a1

)
+

(
k + a2 − 1

a2

)
+ . . .+

(
k + as − (s− 1)

as

)
and then IX/Pr is s-regular.
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Remark 2.11. Mumford [40] was actually the first to bound the regularity of X in

terms of PX . His interest was to show that all schemes of fixed Hilbert polynomial

form a bounded family, i.e. are parametrized by finitely many irreducible varieties.

Gotzmann instead used a different approach to prove Theorem 2.10.

Bounds from defining equations. Bayer remarks that in an actual computation

the subcheme is described by explicit equations, hence the degrees of the generators

of the ideal sheaf will be known. So, it is natural to bound regularity in terms of

these degrees.

Definition 2.12. The generating degree d(I) of an ideal sheaf I ⊆ OPr is the least

integer d such that I(d) is globally generated.

For arbitrary subschemes of the projective space, Bayer and Mumford were first

to find a bound on regularity in terms of the generating degree. In [6, Proposition

3.8], they give a very elementary proof of an essentially doubly exponential bound:

Theorem 2.13 (Bound for arbitrary ideals). Suppose X ⊆ Pr is an arbitrary pro-

jective subscheme. Then

reg(X) ≤ (2d(IX/Pr))r!.

Remark 2.14. (1) Bayer and Mumford [6, Theorem 3.7] observed that work of Giusti

and Galligo leads to the stronger bound reg(X) ≤ (2d(IX/Pr))2r−1
.

(2) Surprisingly, Bayer and Stillman [7] show that a construction of Mayr and Meyer

give examples of projective subschemes whose regularity grows doubly exponential.

The constraint is that these examples are combinatorial in nature, instead of geo-

metric.

As we mentioned above, the picture for smooth subvarieties is expected to be

completely different. Specifically, a result of Bertram, Ein, and Lazarsfeld [8] give a
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linear bound to regularity in terms of the generating degree.

Theorem 2.15 (Linear bounds for smooth ideals). Let X ⊆ Pr be an irreducible

projective and smooth subvariety of dimension n and codimension e = r − n. If

d = d(IX/Pr) is the generating degree of the ideal sheaf of X, then

H i(Pr, IX/Pr(k)) = 0 for i ≥ 1 and k ≥ ed− r.

In particular, X is (ed − e + 1)-regular. Moreover, X fails to be (ed − e)-regular if

and only if it is a transversal complete intersection of e hypersurfaces of degree d.

Castelnuovo-type of bounds. An important question is to find upper bounds of

regularity of a projective subscheme X ⊆ Pr in terms of its degree. The appeal of

this question rests on two points. First, it turned out to be a rather hard problem to

tackle. Second, it is connected with a classical problem of Castelnuovo. In the early

1980-s several mathematicians proposed the following conjecture:

Conjecture 2.16 (Castelnuovo-type regularity conjecture). If X ⊆ Pr is a smooth

non-degenerate subvariety of dimension n and degree d, then X is (d + n + 1 − r)-

regular.

Remark 2.17. If i ≥ 2 and k ≥ −r, then one has the isomorphism

H i(Pr, IX/Pr(k)) = H i−1(X,OX(k)),

In practice the vanishing of the group on the right can be handled relatively easily.

Thus to give bounds for regularity one usually has to control the vanishing of the

groups H1(Pr, IX/Pr(k)). This groups measure the failure of hypersurfaces of degree

k to cut out a complete linear series on X and the question of their vanishing leads

to some classical results of Castelnuovo [11] for curves.
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Let C ⊆ Pr be a smooth non-degenerate curve of degree d. Castelnuovo’s approach

to finding bounds, when hypersurfaces of degree k cut out a complete linear series

on C, rests on the existence of general projections p : Pr 99K P2 away from C such

that the image of C has “nice” singularities. This reduces the problem to one about

the singularities of curves embedded in P2, and Castelnuovo finally is able to prove

that hypersurfaces of degree ≥ d − 2 cut out a complete linear series on C. As

for regularity bounds, one uses Castelnuovo’s argument on bounding the genus of a

space curve to handle the vanishing of the second cohomoly groups and deduces that

C is (d− 1)-regular.

In [17] Gruson, Lazarsfeld, and Peskine prove Conjecture 2.16 for any irreducible

(possibly singular) reduced and non-degenerate curve. They also show that this

bound is the best possible. Unlike Castelnuovo’s arguments, their proof is essentially

cohomological. They introduce a new interesting technique. The idea is that instead

of taking a resolution of the ideal sheaf IC/Pr , it is better to take a complex, which is

exact outside of the curve C. Using a Beilinson-type construction, this complex helps

them to express C as the locus where a matrix of linear forms drops rank. Taking the

corresponding Eagon-Northcott complex, they arrive at complexes of simpler form

of the ideal sheaf. Since the complex is exact away from a one-dimensional set they

are able to read off the desired vanishings.

In the case of surfaces, Pinkham was first to attempt to generalize Castelunovo’s

arguments in order to find bounds on degrees which cut out complete linear series.

In his work he takes S ⊆ P5 to be a smooth non-degenerate surface of degree d

and using generic projections, reduces the problem to analyzing a finite birational

map X → Y ⊆ P3, where Y is possibly singular. Using this projection and Kodaira

vanishing, Pinkham is able to find a curve C ⊆ X such that for any k ≥ d − 3 the
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condition that hypersurfaces of degree k in P5 cut out a complete linear series on X

is equivalent to the same condition imposed on C. Using the fact that the morphism

C → D, which is the restriction of the projection above to C, is generically a double

cover, Pinkham is able to prove the following theorem:

Theorem 2.18. ([46]) Let S ⊆ P5 be a smooth non-degenerate surface of degree d.

Then for any k ≥ d − 2, hypersurfaces of degree k cut out a complete linear series

on S.

Remark 2.19. Around the same time that Pinkham’s work was published, Lazarsfeld

[32] proved Conjecture 2.16 in the case of surfaces. As before, Lazarsfeld uses generic

projections to P3, so the image of the surface has “nice” singularities. In comparison

to Castelnuovo’s approach, Lazarsfeld uses a vector bundle construction introduced

for curves by Gruson and Peskine to obtain an optimal bound. This construction

turns out to be very powerful. On the one hand, Kwak uses it to give linear bounds

of regularity for smooth three-folds and four-folds in [30] and for smooth fivefolds

and sixfolds in [31]. On the other hand, in Chapter 3 we will use this technique in the

multigraded setting. This will help us to generalize the result of Gruson, Lazarsfeld

and Peskine [17] in this setup.

2.2 Multigraded regularity

Inspired by the importance of classical Castelnuovo-Mumford regularity both in

algebraic geometry and commutative algebra, in recent years the definition of regu-

larity has been extended to the multigraded setting ([2], [36], [20], [25], [51]). In this

section we will survey some of the definitions and results in this direction that have

appeared in the literature.

In the previous section we have seen that in the classical case regularity can be de-
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fined either by vanishing of higher cohomology (Definition 2.1) or via bounds on the

degrees of the syzygies in a minimal free resolution of the sheaf (Theorem 2.5). In the

multigraded setting one does not expect an equivalence between syzygies and vanish-

ing of higher cohomology. In view of this, the literature contains both approaches.

On the one hand, Maclagan and Smith [36], inspired by Mumford’s definition of

regularity, used the cohomological approach to define multigraded regularity. On the

other hand, Hà [20] and Sidman and Van Tuyl [50] define the resolution regularity

vector by bounding the multigraded degrees of the syzygies in any free resolution of

the sheaf.

Maclagan and Smith [36] work in the general toric setting and they use the vanish-

ing of local cohomology to define their multigraded version of Castelnuovo-Mumford

regularity. A related approach was followed by Hering, Schenck and Smith in [23]

where they work sheaf-theoretically. We prefer to work mainly in this setup, and for

simplicity we will focus on a product of projective spaces. Most of the features of

the multigraded theory are visible here.

First let’s introduce some notations, which will be used throughout the next three

sections. Let k ≥ 1 be a natural number and denote by

Y = Pn1 × · · · × Pnk

the multi-projective space for some n1, . . . , nk ≥ 1. Notice that each line bundle on

Y has the following form:

OY (m) := p∗1(OPn1 (m1))⊗ · · · ⊗ p∗k(OPnk (mk))

for some m := (m1, . . . ,mk) ∈ Zk, where pi : Y → Pni is the projection on the i-th

factor. In this setting the multigraded regularity can be defined as follows [23]:
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Definition 2.20 (Geometric multigraded regularity). Let F be a coherent sheaf on

Y and m ∈ Zk an integral vector. One says that F is m-regular if

H i(Y,F ⊗OY (m− u)) = 0,

for all i > 0 and all u ∈ Nk with |u| := u1 + · · · + uk = i. Furthermore, we define

the multigraded regularity set of F as follows

reg(F) = { m ∈ Zk | F is m− regular }.

Remark 2.21. It is not hard to see, using the Künneth formula, that if F = OY then

it is 0-regular, where 0 = (0, . . . , 0) ∈ Zk.

Using the same techniques as in the classical case, Hering, Schenck, and Smith (see

[23, Theorem 2.1]) prove a multigraded version of Mumford’s Theorem, i.e. Theorem

2.4, indicating that this version of multigraded regularity still measures the point at

which cohomological complexities vanish.

Theorem 2.22 (Multigraded version of Mumford’s Theorem). If the coherent sheaf

F is m-regular, then for u ∈ Nk:

(i) F(m + u) is globally generated.

(ii) The map H0(Y,F(m))⊗H0(Y,OY (u))→ H0(Y,F(m + u)) is surjective.

(iii) F is (m + u)-regular.

Remark 2.23. Theorem 2.22 implies that the multigraded regularity set of F is a

union of positive cones:

reg(F) =
⋃

F is m−regular

(m + Nk).
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An important distinction between Castelnuovo-Mumford regularity and its multi-

graded counterpart is that in the classical case is easy to describe those coherent

sheaves whose Castelnuovo-Mumford regularity is bounded from below (see Remark

2.3). In the following we will see that in the multigraded setting the class of sheaves

whose regularity set cannot be bounded from below is much larger and for this we

will introduce the following definition:

Definition 2.24. Let S ⊆ Zk be a subset such that there exists a set J ⊆ Zk with

the property that S =
⋃

m∈J(m + Nk). We say that S is finitely generated as a

subset of Zk if there exists finitely many integral vectors m1, . . . ,ml ∈ Zk such that

S =
⋃i=l
i=1(mi + Nk).

Remark 2.25. The importance of this definition relies on the fact that if reg(F) is

finitely generated as a subset of Zk, then the set reg(F) is given by finitely many

data. At the same time Dickson Lemma says that a subset S ⊆ Zk, as in Definition

2.24, is finitely generated if and only if S is bounded from below, i.e. there exists a

vector m ∈ Zk such that S ⊆ (m + Nk).

Example 2.26 (Unbounded regularity set). In the following example we construct

a sheaf, which in the classical setting would have a bounded regularity, but in the

multigraded setup the regularity set is unbounded.

Suppose Y = P3 × P3 and let C ⊆ Y be a smooth rational curve of bidegree

(3, 4). If F = OC , then it is not hard to see that reg(F) is not finitely generared

as a subset of Z2. Using the fact that the support of F is one dimensional, then to

describe the multigraded regularity set reg(F) is enough to study the vanishings of

the first cohomology groups. So it is not hard to see that the regularity set can be
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characterized as follows

reg(OC) = { (m1,m2) ∈ Z2 | 3m1 + 4m2 − 1 ≥ 0 }.

and thus the set reg(OC) cannot be bounded from below.

Remark 2.27. Theorem A, the proof of which will be given in §2.4, describes all those

sheaves, which have a finitely generated multigraded regularity set. The statement

will be inspired by Remark 2.3.

Remark 2.28. In Example 2.44, we will see that even though the set reg(F) is

bounded from below, usually this set as a subset of Zk might not have a minimal

element. This is the first main conceptual difference between Castelnuovo-Mumford

regularity and its multigraded analogue.

Algebraic approach to regularity. We will now sketch the algebraic approach

to the multigraded regularity given by Maclagan and Smith and we shall see the

reason that it is more convenient to work in the algebraic setting in the general case

of coherent sheaves. At the same time we will see the discrepancies with the classical

case, where algebra and geometry interacted harmoniously.

The idea of Maclagan and Smith in [36] is to view Y as a simplicial toric variety.

By general theory, for any toric variety Y one introduces the “homogeneous coor-

dinate ring” SY of Y endowed with a semi-group grading. This construction is due

to Cox [12] and as in the case of projective space there is a correspondence between

coherent sheaves on Y and finitely generated graded SY modules. In our case the

homogeneous coordinate ring of Y is the polynomial ring

SY = C[x1,0, . . . , x1,n1 , . . . , xk,0, . . . , xk,nk ]

with the natural Zk-grading, where deg(xi,j) = ei is the i-th standard basis vector of

Zk. Let BY = 〈x1,0, . . . , xk,nk〉 be the irrelevant ideal. With this in hand using local
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cohomology with respect to the irrelevant ideal BY , we give the algebraic analogue

of multigraded regularity.

Definition 2.29 (Multigraded Castelnuovo-Mumford regularity). For m ∈ Zk, one

says that a Zk-graded SY module M is m-regular if the following conditions are

satisfied:

(i) H i
BY

(M)p = 0 for all i ≥ 1 and all p ∈
⋃

(m−u+Nk), where the union is taken

over all integral vectors u ∈ Nk with the property |u| = u1 + · · ·+ uk = i− 1;

(ii) H0
BY

(M)u = 0 for all u ∈
⋃j=k
j=1(m + ei + Nk), where as before ei is the i-th

standard basis vector of Zk.

Set reg(M) = {m ∈ Zk | M is m-regular}.

Remark 2.30. As in the geometric setting the regularity set is a union of positive

cones

reg(M) =
⋃

M is m-regular

(m + Nk)

On the other hand whenever M is a finitely generated SY module, we will prove in

Lemma 2.32 that the set reg(M) is bounded from below, hence finitely generated

as a subset of Zk. This is one of the main reasons why multigraded regularity have

been studied in the algebraic setting.

Remark 2.31 (Local cohomology vs. sheaf cohomology). In order to explain the

connection between the algebraic setting and the geometric one, choose F to be

a coherent sheaf on Y . As in the projective space case, one can associate to F a

Zk-graded SY module

Γ∗(F) =
⊕
m∈Zk

H0(Y,F(m)).

For example, Γ∗(OY ) = SY because H0(Y,OY (m)) = (SY )m for any m ∈ Zk. The

scalar multiplicitation which makes Γ∗(F) a Zk-graded SY module comes from the
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natural maps H0(Y,F(m)) ⊗ H0(Y,OY (u)) → H0(Y,F(m + u)). The correlation

between algebra and geometry follows from the fact that the sheaf associated to

Γ∗(F) is isomorphic to F itself.

At the same time if M is a Zk-graded SY module whose associated sheaf is F

then the multigraded Serre-Grothendieck correspondence gives the exact sequence

0→ H0
BY

(M)→M →
⊕
m∈Zk

H0(Y,F(m))→ H1
BY

(M)→ 0

and the isomorphisms

⊕
m∈Zk

H i(Y,F(m)) ' H i+1
BY

(M)

for all i ≥ 1. If M = Γ∗(F), then by Theorem 2.22 one deduces that reg(Γ∗(F)) =

reg(F) for any coherent sheaf F .

An interesting relation between algebra and geometry is the following lemma,

which is a multigraded generalization of Remark 2.2.

Lemma 2.32. In the same setting as before, let F be a coherent sheaf on the multi-

projective space Y . If the associated module Γ∗(F) is a finitely generated Zk-graded

SY module then the set reg(F) is finitely generated as subset of Zk.

Proof. Suppose that Γ∗(F) is finitely generated Zk graded SY module and let

{f1, . . . , fl} ⊆ Γ∗(F)

be a set of generators and mi = deg(fi), i.e. fi ∈ H0(Y,F(mi)). Now choose m ∈ Zk

such that for all i-s we have mi ∈m+Nk. The idea is to show that reg(F) ⊆m+Nk.

As a result of finite generatedness we have that

Γ∗(F) =
⊕

u∈m+Nk
H0(Y,F(u)).
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This instead implies that H0(Y,F(u)) = 0 for all u /∈m+Nk. So if u ∈ reg(F) such

that u /∈ m + Nk, then by Theorem 2.22 the sheaf F(u) is globally generated and

H0(Y,F(u)) 6= 0, thus contradicting our assumption.

Example 2.33. The main difference between the algebraic setting and the geomet-

ric one is that the converse of Lemma 2.32 can fail. In fact, there are examples

of coherent sheaves whose associated module is not finitely generated, but whose

regularity set is finitely generated.

For example, let Y = P1 × P1 × P1 and X := {x0y0z0 − x1y1z1 = 0} ⊆ Y . This

is a smooth surface in the linear series defined by the line bundle OY (1, 1, 1). Take

F = OX and we will use Theorem A to show first that the set reg(OC) is finitely

generated.

Taking into account the statement of Theorem A, we only show conditon (i) for

the first projection π1 : P1×P1×P1 → P1×P1, as for the second and third the same

ideas are valid. But for the first projection one notice easily that

(
π−1

1 ([1 : 0]× [0 : 1])
) ⋂ (

supp(OC)
)

= P1 × [1 : 0]× [0 : 1].

Thus using Theorem A, we deduce that reg(OC) is finitely generated.

On the other hand, it is not hard to see that Γ∗(OX) is not a finitely generated

Z3-graded SY module. For this, consider the exact sequence

0→ OY (m− 1, n− 1, p− 1)→ OY (m,n, p)→ OX(m,n, p)→ 0.

If m < 0 then in cohomology one obtains the exact sequence

0→ H0(X,OX(m,n, p))→ H1(Y,OY (m− 1, n− 1, p− 1))→ H1(Y,OY (m,n, p)).

Now whenever m < 0 and n, p > 0 one has

dimC(H1(Y,OY (m− 1, n− 1, p− 1))) = −mnp
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and

dimC(H1(Y,OY (m,n, p))) = (−m− 1)(n+ 1)(p+ 1).

In particular, apply this to the 3-tuples (m,n, p) = (−2l, 2l, 22l), where l ∈ N. The

first group has dimension 24l and the second one 24l − 1, implying that for 3-tuples

like this one has

H0(X,OX(m,n, p)) 6= 0.

So the Z3-graded SY module Γ∗(OX) is not globally generated.

Multigraded regularity and syzygies. Both Theorem A and Example 2.33 give

a good indication that in the geometric setting, the study of multigraded regularity

in the most general case, that is, for any coherent sheaf on Y , has some drawbacks.

The mere fact that there are coherent sheaves whose associated modules are not

finitely generated, though the regularity set is fintely generated, is an important

handicap, as one might expect, especially in the study of syzygies and their relation

with regularity. From this viewpoint it is more natural to study regularity in the

algebraic setting.

The starting point, in the algebraic setting, is to study the connections between

multigraded regularity and syzygies is the multigraded version of Hilbert Syzygy

Theorem [38, Proposition 8.18].

Proposition 2.34 (Multigraded Hilbert Syzygy Theorem). Let M be a finitely gen-

erated Zk-graded SY module, then M has a unique minimal Zk-graded finite free

resolution E•

0→ Es → Es−1 → . . .→ E1 → E0 →M → 0

where Ei = ⊕jSY (−bi,j).
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Remark 2.35. Minimality means that the maps of E• are given by matrices of Zk-

homogeneous polynomials containing no non-zero constant entries.

Inspired by the classical case, the idea of Há [20] and Sidman-Van Tuyl [50] is to

define for each finitely generated SY module M , a vector bounding the degrees of

each component in the minimal free resolution E• of M .

Definition 2.36 (Resolution regularity vector). Let M be a finitely generated Zk-

graded SY module and E• the minimal free resolution of M as in Proposition 2.34.

Then for any l = 1, . . . , k define bil = maxj{bi,jl }, where each bi,jl is the l-th component

of the vector bi,j coming from the resolution E•. If we denote by

res-regl(M) = maxi{bil − i},

then define the resolution regularity vector of M as follows

res-reg(M) = (res-reg1(M), . . . , res-regk(M)) ∈ Zk.

Remark 2.37. In the geometric setting, suppose F is a coherent sheaf on Y such that

Γ∗(F) is a finitely generated SY module. Let E• be the minimal resolution of Γ∗(F)

as in Proposition 2.34. If we sheafify E•, then we obtain a free resolution of F

0→ ⊕jOY (−bs,j)→ ⊕jOY (−bs−1,j)→ . . .→ ⊕jOY (−b0,j)→ F → 0

and define

res-reg(F) = res-reg(Γ∗(F)).

The drawback is when Γ∗(F) is not finitely generated, as it is hard to expect the

resolution regularity vector of Γ∗(F) to exist. Even when we take a finitely generated

SY module M whose sheafification is F (which always exists), it still might happen

that reg(M) and reg(F) do not coincide.



32

Unlike the Z-graded case where different approaches agree to give a unique invari-

ant, the relationship bewteen the multigraded regularity and the resolution regularity

is not yet clear. Há [20, Theorem 4.2.1] investigates this relationship and proves the

following theorem:

Theorem 2.38 (Syzygies and multigraded regularity). Let M be a finitely gener-

ated Zk-graded SY module and suppose that σ = proj-dim(M). Then, one has the

following inclusion

⋃
(res-reg(M) + σ1−m + Nk) ⊆ reg(M)

where the union is taken over all m ∈ Nk such that |m| = σ and 1 = (1, . . . , 1) ∈ Zk.

Remark 2.39. In comparison to the classical case (Theorem 2.5) Há’s Theorem gives

an upper bound of the regularity set in terms of syzygies degrees. It would be

interesting to know if one can give lower bounds.

Remark 2.40. It is not known if multigraded regularity has nice tensorial properties.

In the case of P1 × P1 we will prove in Chapter 4 that this is the case.

2.3 Multigraded regularity of a subvariety

As in the classical setting of Castelnuovo-Mumford regularity, the interesting case

in the multigraded context is when F is the ideal sheaf of a subvariety (or a sub-

scheme) of the multi-projective space.

Definition 2.41 (Multigraded regularity of a projective subvariety). We say that

a subvariety (or a subscheme) X ⊆ Y is m-regular if its ideal sheaf IX/Y is. The

multigraded regularity set of X is the multigraded regularity set reg(IX/Y ) of its

ideal.
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Remark 2.42. It is interesting to note that for a subscheme X ⊆ Y , there is no

difference if one works either in the algebraic setting or the geometric one. This

happens because the module Γ∗(IX/Y ) is a submodule of SY , hence finitely generated.

Thus the multigraded regularity in the algebraic setting coincides with the geometric

one. Also by Lemma 2.32, this set is finitely generated.

Remark 2.43. In §3.4 we give an example of a rational curve C ' P1 ⊆ P2×P2 such

that the regularity set is described as follows

reg(C) = (2, 2) + N2.

This example will be important for us, as it shows that the bounds given in Theorem

B are the best possible.

Example 2.44 (Non-minimality of multigraded regularity). In comparison to the

example above, the regularity set reg(X) is usually generated by more than one

element. For example, take a rational curve C ↪→ Y = P3 × P3 of bidegree (3, 4),

whose embedding is defined as follows:

[s : t] ∈ P1 −→ [s3 : s2t : st2 : t3]× [s4 : s3t : st3 : t4] ∈ P3 × P3.

Then it is not hard to check that the regularity set is described as follows

reg(C) =
(
(2, 1) + N2

)
∪
(
(1, 2) + N2

)
.

This set is illustrated in Figure 2.1.

First, Theorem B implies that this curve is (2, 1)-regular. In the following we will

show that it is also (1, 2)-regular. We claim that H1(P3×P3, IC/P3×P3(0, 2)) = 0, for

which we use the following long exact sequence

H0(Y,OY (0, 2))→ H0(P1,OP1(8))→ H1(Y, IC/Y (0, 2))→ H1(Y,OY (0, 2)).
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The way the embedding C ⊆ Y was chosen, it is easy to notice that the first map is

surjective. Using the Künneth formula and the vanishings of the higher cohomlogy

of projective space, one deduces the vanishing of the the last group. Hence our group

vanishes. The same ideas yield H1(P3 × P3, IC/P3×P3(1, 1)) = 0. To prove that C is

(1, 2)-regular, we also need to establish that

H2(Y, IC/Y (−1, 2)) = H2(Y, IC/Y (0, 1)) = H2(Y, IC/Y (1,−1)) = 0.

We show the vanishing of the first group as the rest follow from the same ideas. For

this, our group is part of the following exact sequence

H1(P1,OP1(5))→ H2(Y, IC/Y (−1, 2))→ H2(Y,OY (−1, 2)).

The vanishing of the first group follows from Serre duality, and the third group

vanishes because of the Künneth formula.

Since C is of dimension one, then the vanishing of the rest of the H i-s for i ≥ 3

follows from the isomoprhisms

H i(Y,OY (m,n)) = H i(Y, IC/Y (m,n))

and from the vanishings of the higher cohomology on P3 × P3, which are obtained

by using once more the Künneth formula and Serre duality. Thus the curve C ⊆ Y

is (2, 1) and (1, 2)-regular.

On the other hand C is not (1, 1)-regular. For this, it suffices to show that

H1(Y, IC/Y (0, 1)) doesn’t vanish. So, using the exact sequence

H0(Y,OY (0, 1))→ H0(P1,OP1(4))→ H1(Y, IC/Y (0, 1))

and the description of the embedding of C ⊆ Y , it is not hard to see that the first

map is not surjective. Thus C is not (1, 1)-regular. To show the description of the
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Figure 2.1: Regularity set of the curve C

regularity set reg(C) as above, it remains to prove that C fails to be (0,m) and

(m, 0)-regular for all m ≥ 2. We prove that C is not (0,m)-regular, as one uses the

same ideas to show that it is also not (m, 0)-regular. For this we use the following

exact sequence:

H0(Y,OY (−1,m))→ H0(P1,OP1(4m− 3))→ H1(Y, IC/Y (−1,m)).

Using the Künneth formula, we deduce that the first group vanishes. Now because

m ≥ 2 the second group does not vanish. Hence H1(Y, IC/Y (−1,m)) 6= 0 and this

tells us that C is not (0,m)-regular.

Gotzmann’s bounds. As in the classical case it is interesting to ask for bounds

on multigraded regularity. The earliest results bounded regularity in terms of the
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multigraded Hilbert polynomials. This was accomplished by Maclagan and Smith in

[37].

In the following we will briefly describe the work of Maclagan and Smith. Let’s

start with the following definition:

Definition 2.45 (Multigraded Hilbert function). Given a projective subscheme X ⊆

Y , one defines the multigraded Hilbert function as

PX(m) = χ(X,OX(m)), for any m ∈ Zk.

Remark 2.46. As in the classical case, the multigraded Hilbert function PX of X is

a polynomial with rational coefficients and it takes the form

PX(t1, . . . , tk) =
∑

m∈Ar

cm ·
i=k∏
i=1

(
ti
mi

)
,

for some r ∈ Nk, where Ar = { m ∈ Nk | r −m ∈ Nk } and cm ∈ Z. This follows

inductively from the classical case, by taking hyperplane sections on components of

Y .

As in their first paper, when they define multigraded regularity, the idea Maclagan

and Smith use in [37] to bound multigraded regularity in terms of multigraded Hilbert

polynomials is to think of the multiprojective space Y as a toric variety. So let

SY = C[x1,0, . . . , x1,n1 , . . . , xk,0, . . . , xk,nk ] = C[x0, . . . , xN ]

be the homogeneous ring of Y . If σ ⊆ {0, . . . , N} then it decomposes into a finite

disjoint union

σ =
i=k⊔
i=1

σi,

where σi consists of those j ∈ σ such that the variable xj ∈ S corresponds to the the

i-factor Pni of the multiprojective space Y . With this in hand one can associate to
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σ a polynomial

Pσ(t1, . . . , tk) =
i=k∏
i=1

(
ti − |σi|+ 1

|σi| − 1

)
.

With this language in hand Maclagan and Smith introduce the following definition:

Definition 2.47 (Stanley filtrations). Let I ⊆ SY be a monomial ideal. A Stanley

filtration is a set of pairs {(xui , σi) | 1 ≤ i ≤ m }, consisting of a monomial xui ∈ SY

and a subset σi ⊆ {0, . . . , N}, such that the modules

Mi = S/
(
I + 〈xui+1 , . . . , xum〉

)
form a filtration

C = M0 ⊆M1 ⊆ . . . ⊆Mm = SY /I

with Mi/Mi+1 = C[xj | j ∈ σi]. Moreover, if X ⊆ Y is a projective subscheme, then

we call a set {(xui , σi) | 1 ≤ i ≤ m}, a Stanley filtration of X, if it is a Stanley

filtration for the initial ideal in(Γ∗(IX/Y )), where we write in(I) for the initial ideal

of I ⊆ SY with respect to some monomial order.

Maclagan and Smith construct an algorithm for finding Stanley filtrations. Their

first result is the following:

Proposition 2.48. (i) For any multigraded polynomial P (t), there are at most

finitely many BY -saturated monomial ideals whose multigraded Hilbert polyno-

mial is equal to P (t).

(ii) Let X ⊆ Y be a projective subscheme and {(xui , σi) | 1 ≤ i ≤ m} be a Stanley

filtration for X. Then the multigraded Hilbert polynomial is equal to

PX(t) =
i=m∑
i=1

Pσi(t− deg(xm)),

where each Pσi(t) is defined as above.
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To state the main result of Maclagan and Smith, we make the following definition:

Definition 2.49. If X ⊆ Y is a projective subscheme, then the largest number of

pairs in a Stanley filtration of X is called the Gotzmann number of PX(t).

Theorem 2.50 (Maclagan and Smith’s theorem). Let X ⊆ Y be a projective sub-

scheme and suppose s is the Gotzmann’s number of PX(t). Then X is (s − 1) · 1-

regular, where 1 = (1, . . . , 1) ∈ Zk.

Remark 2.51. Using Theorem 2.50, Maclagan and Smith note that one can recover

the original version of Gotzmann’s Theorem in the classical case, with a slight im-

provement on the bound. For the proof of Theorem 2.50, they notice that the

regularity of the inital ideal bounds the regularity of the ideal Γ∗(IX/Y ). Using the

algorithm they constructed to find Stanley filtrations of a monomial ideal, Maclagan

and Smith are able to obtain the bound from Theorem 2.50 in the monomial set-

ting. Remarkably, they obtain this bound using only the behaviour of multigraded

regularity in short exact sequences.

Bounds from defining equations. As in the classical case, an interesting ques-

tion is to find bounds on multigraded regularity in terms of the multidegrees of the

generators of the ideal sheaf of a subscheme embedded in a multiprojective space.

The main work in this direction was done only for zero dimensional subschemes, e.g.

[50].

The question of giving upper bounds on regularity for arbitrary subschemes has

not yet been tackled. As in the classical case (Theorem 2.13), it is presumed that

for arbitrary subschemes one obtains exponential type bounds. The main issue when

one wants to use the same ideas of Bayer and Mumford in order to exend Theorem

2.13 to the multigraded case is that on a multiprojective space Y , the line bundles
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OY (ei) are only base point free and not ample. Thus Serre vanishing does not apply

in this case, as it might happen that there exists sheaves F on Y such that for m� 0

some higher cohomology group of F(m · ei) might not vanish.

In comparison to the case of arbitrary subschemes, the result of Bertram, Ein and

Lazarsfeld [8] for smooth subvarieties can be easily generalized to the multigraded

setting. As in the classical case, one obtain linear bounds.

Theorem 2.52 (Linear bounds for smooth ideals). Let X ⊆ Y be a smooth subva-

riety of dimension n. Let r = n1 + · · ·+ nk be the dimension of Y and e = r − n be

the codimension of X in Y . If d = (d1, . . . , dk) ∈ Nk, with each di ≥ 1, is a vector

which satisfies the property that the ideal sheaf IX/Y (d) is globally generated, then X

is v = (v1, . . . , vk)-regular, where each vi = edi − ni + n.

Remark 2.53. The proof of the theorem uses the same ideas as that of Theorem 2.15

given in [33, Theorem 4.3.15] and we briefly explain it here.

Let µ : Y ′ → Y be the blow-up of Y along X and E be the exceptional divisor of

µ. For any 1 ≤ i ≤ n and u ∈ Nk with |u| = i we will use the following isomorphism:

H i(Y, IX/Y (v − u)) = H i(Y ′, µ∗(OY (v − u))⊗OY ′(−E)).

The idea is to write µ∗(OY (v − u)) ⊗ OY ′(−E) = OY ′(KY ′ + D), where D is a

big and nef divisor on Y ′, so that one can apply Kawamata-Viehweg vanishing. In

order to see that D is big and nef, one uses the fact that µ∗(OY (d)) ⊗ OY ′(−E) is

base point free and µ∗(OY (a)) is big and nef for any a = (a1, . . . ak) ∈ Nk with each

ai ≥ 1.

As for the other vanishings, when n+ 1 ≤ i ≤ r one uses the isomorphism

H i(Y, IX/Y (v − u) = H i(Y,OY (v − u))



40

Now by the Künneth formula and the fact that

edi − ni + n ≥ r − n− ni + n = r − ni,

the group on the right vanishes and the theorem follows.

Another important question is to find an upper bound on multigraded regularity

of a projective subscheme X ⊆ Y in terms of its multidegree. Inspired by the work

of Gruson, Lazarsfeld and Peskine in the classical case, the first attempt was done by

the author in [35], where he gives a linear bound in terms of its bidegree for smooth

curves embedded in biprojective spaces. The main idea is to translate into the

multigraded setting the techniques developed by Gruson and Peskine and effectively

used by Lazarsfeld, on his work on bounding regularity for smooth surfaces [32]. This

will be explained in full detail in Chapter 3.

2.4 Proof of Theorem A

In the final section of this chapter we give a proof of Theorem A, generalizing

Remark 2.3 in the multigraded setting. We start with a general lemma, which will

be helpful for our further discussion.

First let’s fix some notation. Let Z = Pn × X, where X is a smooth projective

variety, and p1 : Z → Pn and p2 : Z → X are the projections to each factor. If we

denote OZ(1) = p∗1(OPn(1)) then the following lemma holds:

Lemma 2.54. With the notations above, let F be a coherent sheaf on Z. Then the

following two conditions are equivalent:

(i) For any x ∈ X, the set supp(F|p−1
2 (x)) is at most zero-dimensional.

(ii) For all m ∈ Z and any i > 0, Rip2∗(F(m)) = 0.
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Proof. Suppose condition (i) holds. By the vanishing Theorem of Grothendieck (see

[24, Theorem III.2.7]) for a coherent sheaf M on some projective scheme W such

that M has a zero dimensional support, we have H i(W,M) = 0 for all i > 0. Now

combining this with the Theorem on Formal Functions (see [24, Theorem III.11.1]),

we deduce that for any point x ∈ X we have

Rip2∗
(
F(m)

)̂
x

= 0, for any i > 0 and all m ∈ Z.

Thus one has Rip2∗
(
F(m)

)
= 0 for any i > 0 and all m ∈ Z.

Conversely, suppose condition (ii) is satisfied and that condition (i) is not. Let

V = supp(F) and x ∈ X be a point over which V has a maximal dimensional fiber.

Then on Pn ×X we have the following short exact sequence of sheaves

0→ K → F → F|Pn×{x} → 0

where K is the kernel sheaf of the retriction map. Denote by a the dimension of the

fiber of V over the point x ∈ X . Since supp(K) ⊆ supp(F), then for any m ∈ Z we

have the following sequence on higher direct image sheaves:

. . .→ Rap2∗
(
K(m)

)
→ Rap2∗

(
F(m)

)
→ Rap2∗

(
F(m)|Pn×{x}

)
→ 0,

where the last map is surjective because the dimension of each fiber of supp(K) is

at most a. Thus to contradict our assumption it is enough to show that there exists

an integer m ∈ Z such that the sheaf Rap2∗
(
F(m)|Pn×{x}

)
does not vanish. As this

sheaf is supported on the fiber Pn × {x}, we actually need to prove that for a sheaf

G on Pn, whose support is of dimension a > 0, there exists an integer m ∈ Z such

that

Ha(Pn,G(m)) 6= 0.
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Let W be the support of G. If W $ Pn, then by taking a general projection Pn 99K Pa

we can find a finite branched covering p : W → Pa. Since this morphism is finite, we

have that

H i(Pn,G(m)) = H i(Pa, p∗(G)(m)).

for all i ≥ 0 and all m ∈ Z. Thus we can assume that W = Pa.

Also we have a short exact sequence of sheaves

0→ G1 → G → G2 → 0

where G1 is the torsion sheaf of G and G2 is a torsion free sheaf. Since supp(G1) ⊆

supp(G), then for any m ∈ Z the map

Ha(Pa,G(m))→ Ha(Pa,G2(m))

is surjective. Thus to prove the claim, we can also assume that G is a torsion free

sheaf.

Now, let G∗ be the dual of G and r = rank(G). Take m0 � 0 such that the sheaf

G∗(m0) is globally generated. We can choose r global section of G∗(m0) such that

the map they define

⊕i=ri=1OPa → G∗(m0)

is an isomorphism at the generic point, i.e. the kernel and cokernel of this map have

support of dimension at most a− 1. As G is a torsion free sheaf, we have a natural

inclusion G ⊆ G∗∗, which is an isomorphism on a nonempty open set. Thus, by

dualizing the map above, we obtain a map

G → ⊕i=ri=1OPa(m0)

which has the property that the kernel and the cokernel have support of dimension
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at most a− 1. Thus for any m ∈ Z we obtain a surjective map

Ha(Pa,G(m))→ ⊕i=ri=1H
a(Pa,OPa(m+m0))

If we take m � 0, then the group on the right does not vanish. Thus we prove our

claim and this contradicts our assumption.

Another important tool we will need in order to prove Theorem A is the following

application of the Leray spectral sequence:

Lemma 2.55. Let f : Z → X be a morphism between two projective varieties.

Suppose F is coherent sheaf on Z and we have that Hj(X,Rkf∗(F)) = 0 for all

j > 0 and k ≥ 0. Then we have the isomorphism

H i(Z,F) = H0(X,Rif∗(F)) for all i ≥ 0.

Now, getting back to our setup, let Y = Pn1 × · · · × Pnk and let

πi : Y → Yi := Pn1 × · · · × P̂ni × · · · × Pnk

the projection that drops the i-th coordinate of Y . With this in hand, by Remark

2.25, Theorem A is implied by the following proposition.

Proposition 2.56. Let F be a coherent sheaf on the multiprojective space Y . Then

the following two conditions are equivalent:

(i) Suppose that for each i = 1, . . . , k there exists a point xi ∈ Yi such that the

support supp(F|π−1
i (xi)

) is of dimension at least one.

(ii) The set reg(F) is bounded from below as a subset of Zk.

Proof. Suppose that condition (i) takes place. In this case, we show that the existence

of a closed point x1 ∈ Y1 such that the support reg(F|π−1
1 (x1)) is of dimension at least
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one, implies the existence of an integral vector (m0
1, . . . ,m

0
k) ∈ Zk such that for any

(m2, . . . ,mk) ∈ (m0
2, . . . ,m

0
k) + Nk−1 there exists i > 0 such that

H i(Y,F(m0
1,m2, . . . ,mk)) 6= 0.

It is easy to notice that by applying this reduction for each morhism πi and Theorem

2.22, we deduce that the regularity set of F is bounded from below.

For this, first notice that by Lemma 2.55 we have Ri0π1∗(F(m0
1, 0, . . . 0)) 6= 0 for

some 0 < i0 ≤ n1 and m0
1 ∈ Z. Now, there exists a vector (m0

2, . . . ,m
0
k) ∈ Zk−1 such

that for all i ≥ 0 the sheaf Riπ1∗(F(m0
1, 0, . . . , 0)) is (m0

2, . . . ,m
0
k)-regular on Y1. By

Theorem 2.22, then for any (m2, . . . ,mk) ∈ (m0
2, . . . ,m

0
k) + Nk−1 we have

Hj(Y1, R
iπ1∗(F(m0

1,m2, . . . ,mk))) = 0, for all i ≥ 0 and j > 0.

Also this implies that the sheaf Ri0π1∗(F(m0
1,m2, . . .mk)) is nonzero and globally

generated. Now using Lemma 2.55 and the projection formula we obtain that

H i0(Y,F(m0
1,m2, . . . ,mk)) = H0(Y1, R

i0π1∗(F(m0
1,m2, . . . ,mk))) 6= 0

for all (m2, . . . ,mk) ∈ (m0
2, . . . ,m

0
k) + Nk−1, and this proves the reduction.

Conversely, suppose that condition (ii) is satisfied and condition (i) is not. This

says that for all x ∈ Y1 the support supp(F|π−1
1 (x)) is at most zero dimensional. By

Lemma 2.54, we have that

Riπ1∗(F(m, 0, . . . , 0)) = 0, for all i > 0,m ∈ Z.

By a degeneration of Leray spectral sequence and projection formula, then for all

(m1, . . . ,mk) ∈ Zk and i > 0 we have

H i(Y,F(m1, . . . ,mk)) = H i(Y1, π1∗(F(m1, 0, . . . , 0))⊗OY1(m2, . . . ,mk)).
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The idea is to prove that for any m ∈ Z there exists a vector (m2, . . . ,mk) ∈ Zk−1

such that F is (m,m2, . . . ,mk)-regular, which will contradict our assumption.

For this, denote by s = n2 + · · · + nk and choose m ∈ Z. In this case, there

exists a vector (m2, . . . ,mk) ∈ Zk−1 such that all the sheaves π1∗(F(m, 0, . . . , 0)),

. . . ,π1∗(F(m− s, 0, . . . , 0)) are simultaneously (m2, . . . ,mk)-regular on Y1. The idea

is to show that F is (m,m2, . . . ,mk)-regular.

For this, take i > 0 and u = (u1, . . . , uk) ∈ Nk such that |u| = i. Now, by

Theorem 2.22 and the fact that m − s ≤ m − u1 ≤ m, we deduce that the sheaf

π1∗(F(m− u1, 0 . . . 0)) is (m2 + u1,m3, . . . ,mk)-regular. Using the isomorphism

H i(Y,F(m− u1, . . . ,mk − uk)) = H i(Y1, π1∗(F(m− u1,m2 − u2, . . . ,mk − uk)))

we deduce that the group on the right vanishes and this finishes the proof.



CHAPTER III

Regularity of Smooth Curves in Biprojective Spaces

This chapter, which concludes the first part of this thesis, gives an upper bound

on multigraded regularity for curves embedded in biprojective spaces. Here we give

a proof to Theorem B.

The proof is adapted from [35] and we start with some notation and definitions.

In this chapter C ⊆ Pa × Pb (a, b ≥ 2) will be a smooth irreducible curve. Denote

by p1 and p2 the projections of Pa×Pb to each factor. We will only deal with curves

C ⊆ Pa×Pb which have nondegenerate birational projections, meaning p1|C and p2|C

are birational morphisms and have nondegenerate images, C1 and C2 respectively.

Let L1 := OPa×Pb(1, 0)⊗OC and L2 := OPa×Pb(0, 1)⊗OC , Then we say that C is of

bidegree (d1, d2) if d1 = degC(L1) and d2 = degC(L2).

The main idea of the proof of Theorem B is the existence of good projections.

In order to define them, let Λa and Λb be codimension two planes in Pa and Pb

respectively. They define the projection maps: πa : Pa 99K P1 and πb : Pb 99K P1. If

Λa ∩ C1 = ∅ and Λb ∩ C2 = ∅ then we have the diagram

C

fa,b

��

⊆ Pa \ {Λa} × Pb \ {Λb}
πa×πb

��
C̄ ⊆ P1 × P1

where fa,b is the restriction to C of πa × πb. In this case we introduce the definition:

46
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Definition 3.1. We will say that the pair (Λa,Λb) defines a good projection for C if

fa,b is a birational morphism with fibers of length at most two, and the differential

map of fa,b is injective for all z ∈ C.

As we said before, in order to prove that a smooth irreducible curve C ⊆ Pa × Pb

of bidegree (d1, d2) with nondegenerate birational projections is (d2−b+1, d1−a+1)-

regular, we first show the existence of good projections. This will be done in §3.1,

where we show that whenever a 6= b, or r := a = b and the curve C is not included

in the graph of an automorphism of Pr, there exist plenty of good projections to

P1 × P1. The idea will be based on Castelnuovo’s approach, relying on the sort of

monodromy argument developed by Harris [3, Chapter III]. Then in §3.2, whenever

good projections exist, we are able to establish the bound in Theorem B, by using

vector bundle techniques developed by Gruson, Peskine [18], [19] and Lazarsfeld [32].

In the case when one cannot construct good projections, we prove that the curve is

included in the graph of an automorphism of Pr. In this case we reduce the problem,

in §3.3, to the classical setting of curves embedded in the projective space, and by

making use of [17, Theorem 1.1], mentioned in §2.1, we finish the proof of Theorem

B. We end this chapter, in §3.4, with an example of a rational curve C ⊆ P2 × P2 of

bidegree (3, 3). This curve has the property that reg(C) =
(
(2, 2) + N2

)
, showing

that the bound in Theorem B is the best possible.

3.1 Existence of good projections

In this section, we prove the existence of good projections. Specifically our goal

is to establish the following theorem:

Theorem 3.2 (Existence of good projections). Let C ⊆ Pa × Pb be a smooth curve

with nondegenerate birational projections. Suppose that either a 6= b, or r := a = b
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and the curve C is not included in the graph of an automorphism of Pr. Then C has

good projections to P1 × P1.

Remark 3.3. In our search for good projections we need to know that a general center

Λa ∈ Grass(a−2,Pa) is not contained in a hyperplane Ha ⊆ Pa, such that the map p2

projects at least two points of the set (Ha×Pb)∩C to the same one. To prove this, note

that a hyperplane of this sort contains two points (x1, y1), (x2, y2) ∈ (Ha×Pb)∩C with

y1 = y2 and x1 6= x2. As a result the line x1x2 connecting both points is contained in

the hyperplaneHa. On the other hand we assumed that p2|C is birational to its image,

so there exist only finitely many pairs of points on C having the same image under

p2. This implies that the family of these hyperplanes is of codimension at least two

in Pb∗. As a consequence, the dimension of those Λa ∈ Grass(a− 2,Pa) contained in

these hyperplanes is at most a−2+a−1 = 2a−3. But dim(Grass(a−2,Pa)) = 2a−2

and the assertion follows immediately.

In order to prove Theorem 3.2, we introduce some notation which will simplify

our exposition. If Ha and Hb are hyperplanes in Pa and Pb respectively, then denote

by

(C.Hb) := p1((Pa ×Hb) ∩ C) ⊆ Pa,

(Ha.C) := p2((Ha × Pb) ∩ C) ⊆ Pb

Also if F1, F2 ⊆ Pa then F1F2 will be the Zariski closure of the union of all lines

connecting one point from F1 and another one from F2.

The proof of Theorem 3.2 uses the idea of “uniform position principle” developed

by Harris, e.g. Chapter III of [3]. Specifically, we have the following lemma:

Lemma 3.4 (Uniform position principle). If Λa ⊆ Pa is a general codimension two

plane, then one of the following two situations must happen:
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(1a) For all hyperplanes Ha containing Λa, the set (Ha.C) does not span Pb.

(2a) For a general hyperplane Ha containing Λa, any b+ 1 points of (Ha.C) span Pb.

Proof. The curve C is the desingularization of C1, so ([47, Theorem 1.1]) implies

that the projection map πa|C defined by a general codimension two plane Λa ⊆ Pa

has the full symmetric group as its monodromy. If we set

U = P1 \ {Branch points of πa|C} and V = (πa|C)−1(U),

this says that ∀y ∈ U , every two points in the fiber (πa|C)−1(y) can be connected by

a path in V lifted from a loop in U based at y. Now construct the following incidence

correspondence:

Ia(b+ 1) ⊆ V × ....× V × U

consisting of those tuples (q1, ..., qb+1, y) where the points q1, ..., qb+1 are distinct and

contained in the fiber (πa|C)−1(y). As the monodromy is the full symmetric group,

Ia(b + 1) is connected. Now, the projection map Ia(b + 1) → U is a covering map

and U is irreducible, therefore Ia(b + 1) is an irreducible variety of dimension one.

Otherwise, if it is reducible, then by connectivity of Ia(b+ 1), two components have

to intersect, forcing the existence of a point in U whose fiber contains fewer points

than a general fiber of the map Ia(b+ 1)→ U .

Let’s define the following closed subvariety:

Ja(b+ 1) = {(q1, ..., qb+1, y) ∈ Ia(b+ 1) :

p2(q1), ..., p2(qb+1) don’t span Pb}.

As Ia(b+1) is irreducible, either Ja(b+1) = Ia(b+1), or dim(Ja(b+1)) = 0. Bearing

in mind Remark 3.3 we have that the first case corresponds to (1a), and the second

one is equivalent with (2a).
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Lemma 3.5. Let Λa ⊆ Pa \ C1 be a general codimension two plane in the first

factor. If condition (2a) from Lemma 3.4 is satisfied, then for a general codimension

two plane Λb ⊆ Pb, the pair (Λa,Λb) defines a good projection for C.

Proof. Since Λa is general, Remark 3.3 tells us that ∀x ∈ P1 both (xΛa × Pb) ∩ C

and (xΛa.C) have the same cardinality. With this in hand we can start the proof.

First, notice that for a general choice of Λb, we need to show that the map fa,b has

all the fibers of length at most two. The map fa,b has a fiber of length at least three

only if there exist x ∈ P1 and a hyperplane Hb passing through Λb which contains

at least three points from the set (xΛa.C). Condition (2a) guarantees the existence

of an open set U ⊆ P1, where ∀x ∈ U any three points in (xΛa.C) span a plane in

Pb. Hence the family of those hyperplanes Hb which for some x ∈ U contain at least

three points from the set (xΛa.C) is of codimension two. Simultaneously Λb should

not be included in a hyperplane which for some x ∈ P1 \ U contains at least two

points from (xΛa.C). Now, bearing in mind the ideas from Remark 3.3, the assertion

follows immediately.

Next, for a general choice of Λb, we need to show that the map fa,b is birational to

its image. The map is not birational if given a general hyperplane Hb containing Λb,

there exists x ∈ P1 such that Hb contains at least two points from the set (xΛa.C).

This forces Λb to intersect the line connecting these two points. The union of all lines

connecting two points of (xΛa.C) when x ∈ P1 is of dimension two. Hence a general

codimension two plane Λb ⊆ Pb intersects only finitely many lines, such that each

one contains only two points of (xΛa.C) for some x ∈ P1. As Λb does not intersect

C2 inside Pb we deduce that a general hyperplane passing through Λb contains at

most one point of (xΛa.C) for all x ∈ P1, and bearing in mind Remark 3.3 we obtain

the birationality condition for a general Λb.
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Lastly we need the differential map of fa,b to be injective for all z ∈ C. This

means that there should not exist a hyperplane Hb passing through Λb and a point

x ∈ P1 such that xΛa × Hb contains the tangent direction at some point on C.

The fact that Λa is general implies that for only finitely many x ∈ P1 we have that

xΛa × Pb is tangent to C at some point. Therefore a general Λb does not intersect

the projection to Pb of the tangent direction at these points, so the differential map

of fa,b is injective for all z ∈ C.

Lemma 3.4 and Lemma 3.5 imply that one might fail to obtain good projections,

only in the case wherein for a general codimension two plane Λa ⊆ Pa, condition

(1a) in Lemma 3.4 is satisfied. This means that for a general hyperplane Ha ⊆ Pa,

the set (Ha.C) does not span Pb, and as this condition is closed, it is true for all

hyperplanes. Similarly, the same is true when we deal with codimension two planes

in Pb. Thus we deduce that the only case when there fail to exist good projections

is when the curve C satisfies the following property:

(*) For all hyperplanes Ha ⊆ Pa and Hb ⊆ Pb, the finite sets (Ha.C) and (C.Hb)

fail to span Pb and Pa respectively.

The last fact needed to prove Theorem 3.2 is the following lemma:

Lemma 3.6. Let C ⊆ Pa × Pb be a curve which satisfies (∗). Then for a general

hyperplane Ha ⊆ Pa we have:

(i) The set Ha ∩ C1 spans the hyperplane Ha.

(ii) The set of points (Ha.C) spans a unique hyperplane Hb in Pb.

(iii) (Ha × Pb) ∩ C = (Pa ×Hb) ∩ C.
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Proof. First, the uniform position principle [3] states that if C1 ⊆ Pa is an irreducible,

nondegenerate curve, then for a general hyperplane Ha ⊆ Pa, the set Ha ∩ C1 spans

Ha. Secondly, we want to show that (∗) forces these hyperplanes to satisfy (ii) in the

lemma. Choose a hyperplane Ha which satisfies (i) and suppose that the set (Ha.C)

generates a plane Πb ⊆ Pb of codimension at least two. Hence for all hyperplanes

Hb passing through Πb we have (Ha.C) ⊆ Hb and therefore Ha ∩ C1 ⊆ (C.Hb). Now

(∗) says that the set (C.Hb) lies in a hyperplane. Together with (i) we get that

(C.Hb) ⊆ Ha, for all hyperplanes Hb containing Πb. As the union of all hyperplanes

containing Πb covers Pb we have that C ⊆ Ha× Pb, which is a contradiction. Lastly,

for (iii) notice that because (Ha.C) spans the hyperplane Hb ⊆ Pb, we have the

inclusion

(Ha × Pb) ∩ C ⊆ (Pa ×Hb) ∩ C

This tells us that Ha∩C1 ⊆ (C.Hb) inside Pa and by (∗) combined with (i) we deduce

that the set (C.Hb) spans Ha and obtain the reverse inclusion,

(Ha × Pb) ∩ C ⊇ (Pa ×Hb) ∩ C,

completing the proof.

Proof of Theorem 3.2. The paragraph following Lemma 3.5 says that we might fail

to obtain good projections only if the curve C ⊆ Pa×Pb satisfies property (∗). Now

Lemma 3.6 and (∗) implies that there exist open sets of hyperplanes Ha ⊆ Pa and

Hb ⊆ Pb such that condition (iii) in Lemma 3.6 is satisfied. Now choose Ha and

Hb where Ha × Pb and Pa × Hb intersect the curve C transversally at every point.

We deduce, by condition (iii) in Lemma 3.6, that the line bundles L1 and L2 are

isomorphic: denote this common bundle by L. Now, let Wi ⊆ H0(C,L) be the linear

subseries definining the restriction map pi|C for each i = 1, 2. Since condition (iii)
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from Lemma 3.6 is an open condition, there exist an open set of sections in W1 and

an open set of sections in W2 that correspond to each other. This forces W1 = W2

inside H0(C,L), therefore a = b and the curve C is included in the graph of an

automorphism, so Theorem 3.2 is proved.

Remark 3.7. Choose a general codimension two plane Λa and suppose it satisfies

condition (2a) from Lemma 3.4. As this condition is open, then the same property is

satisfied by other general codimension two planes in the first factor in Pa. Therefore

for a curve C ⊆ Pa × Pb as in Theorem 3.2 we have plenty of pairs (Λa,Λb) which

define a good projection for C.

3.2 Regularity bounds in the general case

In this section our goal is to prove that the bound on the multigraded regularity

given in Theorem B holds for all curves C ⊆ Pa × Pb which satisfy the conditions in

Theorem 3.2.

Theorem 3.8 (Regularity bound). Let C ⊆ Pa × Pb be a smooth curve of bidegree

(d1, d2) as in Theorem 3.2. Then the ideal sheaf IC/Pa×Pb is (d2 − b+ 1, d1 − a+ 1)-

regular.

The key idea for the proof of Theorem 3.8 is the following result, which allows us to

connect the regularity of the ideal sheaf of C with the regularity of a certain vector

bundle on P1 × P1.

Proposition 3.9. If the pair (Λa,Λb) defines a good projection for C then on P1×P1

we have the following short exact sequence:

0→ E → Va ⊗OP1×P1(−1, 0)⊕ Vb ⊗OP1×P1(0,−1)⊕OP1×P1
ε→ (fa,b)∗(OC)→ 0
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where E is a vector bundle of rank a+ b− 1 on P1 × P1 and Va, Vb are vector spaces

of dimension a− 1 and b− 1 respectively.

Proof. Blow-up Pa along Λa and Pb along Λb to get the diagram:

C ⊆ Y := BlΛa(Pa)×BlΛb(Pb)
µa×µb

ttiiiiiiiiiiiiiiiii
pa×pb

**UUUUUUUUUUUUUUUUU

C ⊆ Pa × Pb C̄ ⊆ P1 × P1

The morphism pa × pb will resolve the projection map πa × πb, whose restriction to

C is a good projection for the curve. Now set

A1 := (µa × µb)∗(OPa×Pb(1, 0)) and A2 := (µa × µb)∗(OPa×Pb(0, 1)).

As Λa ∩ C1 = ∅ and Λb ∩ C2 = ∅, we have that IC/Y = (µa × µb)∗(IC/Pa×Pb). Using

the diagram and the notations we made, for each i = 1, 2 we get an exact sequence

on P1 × P1:

0→ (pa × pb)∗(IC/Y (Ai))→ (pa × pb)∗(OY (Ai))
εi→ (fa,b)∗(Li)

The idea is to describe the points (x, y) ∈ P1 × P1, where the stalk of either ε1 or ε2

is surjective. For ε1, by Nakayama’s lemma, it suffices to show that the map:

(pa × pb)∗(A1)⊗ C(x, y)

'
��

ε1⊗C(x,y) // (fa,b)∗(L1)⊗ C(x, y)

'
��

H0(Λax× Λby,OΛax×Λby
(1, 0)) // H0(OC∩(Λax×Λby)(1, 0))

is surjective. Equivalently, it is enough to study the surjectiveness of the bottom

horizontal map. We know that the pair (Λa,Λb) defines a good projection, hence the

intersection C ∩Λax×Λby consists of at most two points. If it is a point then clearly

the bottom horizontal map is surjective. If it consists of (x1, y1) and (x2, y2) then

the bottom horizontal map is surjective whenever x1 6= x2. Symmetrically we have
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an analogous picture for ε2 and we deduce that for all (x, y) ∈ P1 × P1 the stalk of

at least one of the maps ε1 or ε2 is surjective.

Note that BlΛa(Pa) = P(Va⊗OP1⊕OP1(1)) and BlΛb(Pb) = P(Vb⊗OP1⊕OP1(1)),

where Va and Vb are vector spaces of dimension a − 1 and b − 1 respectively. This

allows one to have the isomorphisms:

(pa × pb)∗(A1) ' Va ⊗OP1×P1 ⊕OP1×P1(1, 0),

(pa × pb)∗(A2) ' Vb ⊗OP1×P1 ⊕OP1×P1(0, 1).

The ideas above tells us that if we tensor ε1 by OP1×P1(−1, 0), ε2 by OP1×P1(0,−1),

and sum them together then we get the following surjective map:

Va ⊗OP1×P1(−1, 0)⊕OP1×P1 ⊕ Vb ⊗OP1×P1(0,−1)⊕OP1×P1
ε0−→ (fa,b)∗(OC).

Notice that the second and the fourth component of the domain of ε0 have the same

image, so we actually get the following short exact sequence:

0→ E → Va ⊗OP1×P1(−1, 0)⊕ Vb ⊗OP1×P1(0,−1)⊕OP1×P1
ε→ (fa,b)∗(OC)→ 0

with E = Ker(ε). Now provided that (fa,b)∗(OC) is Cohen-Macaulay sheaf with

support of codimension 1 we have that E is a vector bundle of rank a + b − 1 and

this ends the proof.

Now the idea is to find bounds on the multigraded regularity of the vector bundle

E , but before that we have the following proposition:

Proposition 3.10. Under the assumptions of Theorem 3.2, we can make a choice

of a good projection so that the dual vector bundle E∗ is (−1,−1)-regular.

Proof. Serre duality and the short exact sequence from Proposition 3.9 imply the

vanishings:

H2(P1 × P1, E∗(−3,−1)) = H2(P1 × P1, E∗(−1,−3)) = 0.
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As for the group H2(P1×P1, E∗(−2,−2)), notice that by Serre duality it is isomorphic

to H0(P1×P1, E). Now the idea is to use the following exact sequence in cohomolgy:

H0(P1×P1, E)→ H0(Va⊗OP1×P1(−1, 0)⊕Vb⊗OP1×P1(0,−1)⊕OP1×P1)→ H0(C,OC).

As C is irreducible, the latter map is an isomorphism between two one dimensional

spaces. This imply that H0(P1 × P1, E) = 0. Also notice that the same argument

shows that H1(P1 × P1, E) = 0, which we will need later.

It remains to show that both H1(P1×P1, E∗(−1,−2)) and H1(P1×P1, E∗(−2,−1))

vanish. We will prove that the first group is zero, as the second vanishing follows

from the same ideas.

First, by Serre duality the group in question is isomorphic to H1(P1×P1, E(−1, 0)).

Now, using the vanishings of H1(P1×P1, E) we proved above and the exact sequence

0 −→ E(−1, 0) −→ E −→ E|{x}×P1 −→ 0

we obtain the isomomorphism

H0({x} × P1, E|{x}×P1) = H1(P1 × P1, E(−1, 0)),

for all x ∈ P1. The morphism p1|C has a nondegenerate image, so the multiplication

map by x

(fa,b)∗(OC)(−1, 0) −→ (fa,b)∗(OC)

is injective. Thus the Snake lemma implies that ∀x ∈ P1 we have the exact sequence:

0→ E|{x}×P1 →
(
Va ⊕ C

)
⊗O{x}×P1 ⊕ Vb ⊗O{x}×P1(−1)→ (fa,b)∗(OC)|{x}×P1 → 0.

To finish the proof it remains to show that there exists a point x ∈ P1 such that the

map

Va ⊗H0(O{x}×P1)⊕H0(O{x}×P1)
l1⊕l2−→ H0((fa,b)∗(OC)|{x}×P1)
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is injective. For this purpose, suppose the projection map is given by the formula:

(πa × πb)
(
[x0 : . . . : xa]× [y0 : . . . : yb]

)
= [x0 : x1]× [y0 : y1].

Remark 3.7 implies that we can choose x ∈ P1 which satisfies

(
Λax× Pb ∩ C

)
= {P1, . . . , Pd1} with Pi = (xi, yi) and xi 6= xj for i 6= j.

Finally assume that P1 ∈ {x2 = . . . = xa = 0} × Pb. In this case we have

(fa,b)∗(OC)|{x}×P1 = ⊕d1i=1CPi

and we can write l2(1) = (1, . . . , 1) and l1(ei) = (xi|P1 , . . . , xi|Pd1 ) for some basis

{e2, . . . , ea} of Va. As xi|P1 = 0, for all i = 2, . . . , a, it is enough to prove that l1 is

injective. Suppose the opposite. Then there exists (u2, . . . , ua) ∈ Ca−1 such that

(
a∑
i=2

uixi|P1 , . . . ,
a∑
i=2

uixi|Pd1 ) = (0, . . . , 0).

This means that the set {x1, . . . , xd1} ⊆ {
∑a

i=2 uixi = 0} ∩ xΛa, therefore the points

x1, . . . , xd1 span a plane Πa of codimension at least two. Choose (x, y) ∈ C with

x /∈ Πa and a hyperplane Ha containing Λax. Now the intersection Ha × Pb ∩ C

consists of at least d1 + 1 points. This is a contradiction as we assumed that p1|C

has a nondegenerate image. Therefore l1 is injective and the vector bundle E∗ is

(−1,−1)-regular.

The last ingredient necessary for Theorem 3.8 is the following lemma, which will

later allow us to connect the multigraded regularity of E to the one of E∗:

Lemma 3.11 (Tensorial property of regularity). Let G1 and G2 be two locally free

sheaves on P1 × P1. If G1 is (p, q)-regular and G2 is (m,n)-regular then G1 ⊗ G2 is

(p+m, q + n)-regular. In particular as we work over complex numbers for all k ∈ N

we have that
∧k(G1) is (kp, kq)-regular.
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Proof. It is enough to consider the case when G1 and G2 are (0, 0)-regular. We will

only prove the vanishing of H1(P1 × P1,G1 ⊗ G2(−1, 0)), as the other ones follow

from the same ideas. By Theorem 2.22, we obtain that both G1 and G2 are globally

generated. One therefore has the two short exact sequences,

0 −→Mi −→ ⊕OP1×P1 −→ Gi −→ 0,

where the Mi are locally free sheaves for i = 1, 2. Now tensor the second sequence

with G1(−1, 0) and get the exact sequence in cohomology:

⊕H1(P1×P1,G1(−1, 0))→ H1(P1×P1,G1⊗G2(−1, 0))→ H2(P1×P1,G1⊗M2(−1, 0))

As G1 is (0, 0)-regular, the left group vanishes and is enough to prove that the right

one also does. For this, tensor the first short exact sequence with M2(−1, 0) and in

cohomology we obtain

⊕H2(P1 × P1,M2(−1, 0))→ H2(P1 × P1,M2 ⊗ G1(−1, 0))→ 0.

This implies that it remains to show the vanishing of H2(P1×P1,M2(−1, 0)). Going

back to the second short exact sequence, tensor it with OP1×P1(−1, 0) and get the

exact sequence:

H1(P1 × P1,G2(−1, 0))→ H2(P1 × P1,M2(−1, 0))→ ⊕H2(OP1×P1(−1, 0)).

As G2 is (0, 0)-regular this implies our vanishing, and the proof is done.

Proof of Theorem 3.8. Theorem 3.2 and Remark 3.7 imply the existence of plenty of

good projections. Proposition 3.9 allows us to construct a vector bundle E , whose

dual E∗ is (−1,−1)-regular by Proposition 3.10. Using the isomorphism

E '
a+b−2∧

(E∗)⊗ det(E)
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with Lemma 3.11 and the exact sequence from Proposition 3.9 we obtain that E is

(d2 − b + 1, d1 − a + 1)-regular. It remains to show that this implies that the ideal

sheaf IC/Pa×Pb is also (d2 − b+ 1, d1 − a+ 1)-regular.

Writing l := d2− b and k := d1− b+ 1, then the regularity of E we proved above,

implies that the map

H0(V1 ⊗OP1×P1(l − 1, k)⊕ V2 ⊗OP1×P1(l, k − 1)⊕OP1×P1(l, k))
g−→ H0(OC(l, k))

is surjective. Assume again that the projection map is given by the formula

(πΛa × πΛb)
(
[x0 : ... : xa]× [y0 : ... : yb]

)
= [x0 : x1]× [y0 : y1].

Thus the fact that g is surjective says that H0(C,OC(l, k)) is generated by the

restriction to C of polynomials of the type xiF , yjG and H, for i = 2, . . . , a and

j = 2, . . . , b, where F ∈ H0(OP1×P1(l − 1, k)), G ∈ H0(OP1×P1(l, k − 1)) and H ∈

H0(OP1×P1(l, k)). Hence the map

H0(Pa × Pb,OPa×Pb(d2 − b, d1 − a+ 1))→ H0(C,OC(d2 − b, d1 − a+ 1))

is surjective and H1(Pa × Pb, IC/Pa×Pb(d2 − b, d1 − a + 1)) vanishes. Likewise it can

be shown that

H1(Pa × Pb, IC/Pa×Pb(d2 − b+ 1, d1 − a)) = 0.

Now let’s use the sequence

0 −→ IC/Pa×Pb −→ OPa×Pb −→ OC −→ 0

together with the exact sequence from Proposition 3.9 to get that

H2(Pa × Pb, IC/Pa×Pb(m,n)) = H1(C,OC(m,n)) = H2(P1 × P1, E(m,n))

for all m,n ≥ −1. This implies the vanishings of the second cohomology groups we

need, because d2 − b+ 1 ≥ 1 and d1 − a+ 1 ≥ 1.



60

Using the fact that C is of dimension one, then the other higher cohomology groups

of the ideal sheaf also vanish. Thus we conclude that IC/Pa×Pb is (d2−b+1, d1−a+1)-

regular.

3.3 Regularity bounds in a special case

In order to finish the proof of Theorem B, it remains to study the case when

r := a = b and C is included in the graph of an automorphism of Pr. This is

discussed in the following proposition:

Proposition 3.12. Let C ⊆ Pr × Pr be a smooth curve of bidegree (d, d). If C is

contained in the diagonal ∆Pr and is nondegenerate, then IC/Pr×Pr is (d− r + 1, d−

r + 1)-regular.

Proof. Denote by J := IC/Pr×Pr and k := d− r+ 1. As C is included in the diagonal

we have OPr×Pr(1, 0)|C ' OPr×Pr(0, 1)|C and denote this line bundle of degree d by

L. To prove that H2(Pr×Pr, J(k−2, k)) = 0 use the following short exact sequence:

0 −→ J(k − 2, k) −→ OPr×Pr(k − 2, k) −→ L⊗2k−2 −→ 0.

As C ⊆ Pr is nondegenerate then k ≥ 1 and we have the vanishings

H1(Pr × Pr,O(k − 2, k)) = H2(Pr × Pr,O(k − 2, k)) = 0.

This vanishings and the long exact sequence in cohomology of the sequence above,

tells us that we have the isomorphism

H1(C,L⊗2k−2) ' H2(Pr × Pr, J(k − 2, k)).

Now [17, Theorem 1.1] says that for a nondegenerate curve C ⊆ Pr of degree d we

have that L⊗n is non-special for all n ≥ d − r, where L := OPr(1)|C . In our case
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2k − 2 = 2d− 2r ≥ d− r and the vanishing follows. Using exactly the same ideas it

is easy to show

H2(Pr × Pr, J(k − 1, k − 1)) = H2(Pr × Pr, J(k, k − 2)) = 0

It remains to show H1(Pr × Pr, J(k − 1, k)) = 0. This vanishing is equivalent to the

surjectiveness of the map

H0(OPr(k − 1))⊗H0(OPr(k))→ H0(C,L⊗2k−1).

Now this map can be factored as follows:

H0(OPr(k − 1))⊗H0(OPr(k)) //

l
��

H0(C,L⊗2k−1)

H0(Pr,OPr(2k − 1))

u
44iiiiiiiiiiiiiiiii

As l is surjective we need only to prove that u is surjective. For this we use a result

from [17], which states that for a nondegenerate curve C ⊆ Pr of degree d we have

H0(Pr,OPr(n))→ H0(C,L⊗n) is surjective ∀n ≥ d− r + 1.

In our case n = 2k − 1 = 2d− 2r + 1 ≥ d− r + 1 and this finishes the proof.

3.4 An example

We end this chapter with an example, showing that the bound in Theorem B is

the best possible. The curve, from the following example, has the property that

reg(C) = (d2 − b+ 1, d1 − a+ 1) + N2.

Thus by Theorem B, (d2 − b + 1, d1 − a + 1) + N2 is the maximal set contained in

reg(C) for all curves C ⊆ Pa× Pb of bidegree (d1, d2) with nondegenerate birational

projections.
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The idea is to find examples of curves with high order “secant lines”. In our case

we will consider the “secant lines” of the type

l × [y0 : ... : yb] ⊆ Pa × Pb,

where l ⊆ Pa is a line. Suppose that l × [y0 : ... : yb] ∩ C consists of k points. If

s ∈ H0(Pa × Pb, OPa×Pb(k − 1, n)) is a hypersurface, vanishing along the curve C,

then the index of intersection with the “secant line” l× [y0 : ... : yb] is k − 1, forcing

s to vanish along l × [y0 : ... : yb]. It follows that for any n ∈ N, the ideal sheaf

IC/Pa×Pb(k−1, n) is not globally generated, and therefore by the multigraded version

of Mumford’s Theorem 2.22, the ideal sheaf is not (k − 1, n)-regular.

Example 3.13. Let the morphism ψ : C = P1 −→ P2 × P2 be given by the formula

ψ([s : t]) = [t2s− 4s3 : t3 − 4s2t : t2s− 3s3]× [s2t− t3 : s3 − st2 : t3].

First notice that ψ defines an embedding, such that the curve C is of bidegree (3, 3)

with nondegenerate birational projections. At the same time we have the following:

C ∩
(
{x2 = 0} × [0 : 0 : 1]

)
= {[1 : 1], [1 : −1]}

C ∩
(
[0 : 0 : 1]× {4y0 + 3y2 = 0}

)
= {[1 : 2], [1 : −2]}.

Bearing in mind the ideas above we obtain that the ideal sheaf IC/P2×P2 is not (1, s)

and (t, 1)-regular for all s, t ∈ N. Theorem B states that this ideal is (2, 2)-regular

and we conclude that reg(C) = (
(
(2, 2) + N2

)
.

It is easy to notice that we can generalize this example, i.e. find a rational curve

C ⊆ Pr ×Pr of bidegree (r+ 1, r+ 1) and nondegenerate birational projections such

that reg(C) =
(
(2, 2) + N2

)
.



CHAPTER IV

Okounkov Bodies

4.1 Introduction

We now begin the second part of this thesis, where our main focus will be Ok-

ounkov bodies. These are convex bounded bodies associated to Cartier divisors and

were introduced by Lazarsfeld and Mustaţă [34], based on the work of Okounkov

[44], [45] (see also [26] for an independent development). In this chapter we consider

the following question: what can be said about the set of convex bodies that appear

as Okounkov bodies? In §4.1 we give a brief introduction to the construction of

Okounkov bodies and present the basic properties they satisfy, with a special em-

phasis on the connection between them and the volume function, which will be used

fruitfully in the next chapter. In §4.2 we give a proof of Theorem C and show that

the set of all convex bodies appearing as the Okounkov bodies of big Cartier divisors

on projective varieties with respect to any admissible flag is countable. Then, in

§4.3, we give a full description of the Okounkov body of a R-divisor on some smooth

projective surface. More precisely, in Theorem D we show that they are polygons,

closely given by rational data. In sharp contrast, in §4.4 we give a technique that

enables us to find examples of Okounkov bodies in higher dimensions whose geome-

try becomes more complicated. This chapter is based on [29], which is a joint work
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with Alex Küronya and Catriona Maclean.

Before introducing the construction of Okounkov bodies we fix some notation

that we will use throughout the next two chapters. If X is an irreducible projective

variety of dimension n, then N1(X) will be the Neron-Severi group of numerical

equivalences classes of divisors on X. We will denote by N1(X)R the corresponding

finite dimensional vector space and call it the Neron-Severi space. We will say that

X has Picard number ρ if dimR(N1(X)R) = ρ.

Inside the Neron-Severi space N1(X)R we have four cones.

The first one is called the ample cone of X:

Amp(X)R ⊆ N1(X)R.

It is the convex cone of all ample R-divisor classes on X. Equivalently, one could

define Amp(X)R to be the convex cone in N1(X)R spanned by the classes of all ample

integral (or rational) divisors. The ample cone is open and its closure is the nef cone

Nef(X)R. It is a basic Theorem of Kleiman (see [27]) that

Nef(X)R = {D ∈ N1(X)R | (D.C) ≥ 0 for all effective curves C on X}.

We define the pseudo-effective cone of X

Eff(X)R ⊆ N1(X)R

to be the closed convex cone generated by those integral classes which can be rep-

resented by an integral divisor D ∈ N1(X) which satisfies the property that there

exists an integer m ∈ N such that H0(X,OX(mD)) 6= 0. The interior of the pseudo-

effective cone Eff(X)R is an open cone denoted by Big(X)R and called the big cone

of X. This cone is the convex cone generated by the classes of big integral divisors,

where an integral divisor D ∈ N1(X) is called big if it satisfies the property

dimC(H0(X,OX(mD))) ≥ C ·mn
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for sufficiently large m ∈ N and some positive constant C > 0. Besides the previous

natural inclusions between these cones, we have two others:

Eff(X)R ⊇ Nef(X)R,

Big(X)R ⊇ Amp(X)R.

4.2 Okounkov bodies

In this section we recall the construction of Okounkov bodies and some relevant

facts about them. This material is adapted from [34].

Let X be a smooth projective variety of dimension n. The construction of Ok-

ounkov bodies starts with the choice of an admissible flag :

Definition 4.1 (Admissible flag). An admissible flag on X is a flag Y• of irreducible

subvarieties

Y• : Y0 = X ⊇ Y1 ⊇ Y2 ⊇ . . . ⊇ Yn−1 ⊇ Yn = {pt}

such that each Yi is smooth and codimX(Yi) = i.

Remark 4.2. In [34], Lazarsfeld and Mustaţă define Okounkov bodies in a more

general setup. The only difference from our setup is that they ask each element Yi

of the flag to be smooth only at the point Yn. For simplicity, we will consider the

case when each Yi is globally smooth.

The purpose of this admissible flag is that it determines a map

νY• : H0(X,OX(D))− {0} → Zn, s→ (ν1(s), . . . , νn(s))

where D is any Cartier divisor on X. The map is defined recursively. For this let

s ∈ H0(X,OX(D)) be a non-zero section and define

ν1(s) = ordY1(s).



66

Now s determines a nonzero section

s̃1 ∈ H0(X,OX(D − ν1(s)Y1))

that does not vanish identically along Y1. So after restriction we get a nonzero section

0 6= s1 ∈ H0(Y1,OX(D − ν1(s)Y1)|Y1)

and we set

ν2(s) = ordY2(s1).

Now continue in this manner and define all the νi(s).

Definition 4.3 (Valuation attached to a flag). We call the map νY• defined above

the valuation map attached to the admissible flag Y•. We set νY•(s) =∞ if s = 0.

Remark 4.4. Strictly speaking νY• is not a valuation, as it is defined on the spaces

of global sections of different line bundles, but it satisfies valuation-like properties.

On the one hand, from the construction, it follows that for any two sections s, t ∈

H0(X,OX(D)) we have

νY•(s+ t) ≥ minlex order{νY•(s), νY•(t)}.

On the other hand, if s1 ∈ H0(X,OX(D1)) and s2 ∈ H0(X,OX(D2)) then

νY•(s1 ⊗ s2) = νY•(s1) + νY•(s2).

Example 4.5. Let X = Pn be the projective space of dimension n and choose Y• to

be the admissible flag of linear spaces defined in homogeneous coordinates x0, . . . , xn

by Yi = {x1 = . . . = xi = 0}. Let |D| be the linear system of hypersurfaces of degree

m. Then νY• is the lexicographic valuation determined on monomials of degree m by

νY•(x
a0
0 · xa1

1 · . . . · xann ) = (a1, a2, . . . , an).

In other words, νY•(
∑
cax

a) = minlex-order{a | ca 6= 0}, where a = (a0, . . . , an).
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The valuation νY• attached to the admissible flag Y• satisfies the following basic

property (see [34, Lemma 1.4]):

Lemma 4.6. Let W ⊆ H0(X,OX(D)) be a subspace. Then the number of valuation

vectors arising from sections in W is equal to the dimension of W :

#
(

Im
(
(W − {0}) νY•−→ Zn

))
= dim(W )

The idea of Lazarsfeld and Mustaţă is that one can associate to a Cartier divisor

a semigroup, using the valuation map discussed before.

Definition 4.7 (Graded semigroup of a Cartier divisor). The graded semigroup of

D is the sub-semigroup

ΓY•(X;D) = {(νY•(s),m) | 0 6= s ∈ H0(X,OX(mD)),m ≥ 0}

of Nn × N = Nn+1.

Writing Γ = ΓY•(X;D), denote by Σ(Γ) ⊆ Rn+1 the closed convex cone spanned

by Γ. The Okounkov body of D is then the base of this cone:

Definition 4.8 (Okounkov body). The Okounkov body of D with respect to the flag

Y• is the convex set

∆Y•(X;D) = Σ(Γ) ∩ (Rn × {1})

and we view ∆Y•(X;D) in the natural way as a closed convex subset of Rn.

Example 4.9. Let X = Pn and take Y• to be the linear flag appearing in Example

4.5. Also take D to be the divisor defined by a hyperplane in Pn. Then it follows

immediately from that example that the Okounkov body of D with respect to the

flag Y• is the simplex

∆Y•(Pn;D) = {(z1, . . . , zn) ∈ Rn | z1 ≥ 0, . . . , zn ≥ 0,
∑

zi ≤ 1}.
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In §4.4 we give examples of Okounkov bodies with a more complicated description.

In the following proposition we state the basic properties of Okounkov bodies (see

[34, Lemma 1.11] and [34, Proposition 4.1]).

Proposition 4.10 (Variational properties). Let D be a big divisor on X and Y• an

admissible flag.

(i) The Okounkov body ∆Y•(X;D) is a compact convex set of Rn which depends

only on the numerical equivalence class of D.

(ii) For any integer p > 0, one has

∆Y•(X, pD) = p ·∆Y•(X;D)

where the expression on the right denotes the homothetic image of ∆Y•(X;D)

under scaling by the factor p.

Remark 4.11 (Rational classes). Take a big rational class ξ ∈ Big(X)Q and an integer

p � 0 such that p · ξ is an integral class of N1(X). Suppose D is a Cartier divisor

representing this integral class. Then we can define the Okounkov body of the class

ξ to be

∆Y•(X; ξ) =
1

p
·∆Y•(X;D) ⊆ Rn.

The proposition above implies that this definition is independent of the choice of D

and p.

An important consequence of Lemma 4.6 is the connection between the Okounkov

body of a Cartier divisor and its volume, [34, Theorem A].

Theorem 4.12 (Okounkov body and the volume of a divisor). If D is a big Cartier

divisor on X, then

volRn(∆Y•(X;D)) =
1

n!
· volX(D),



69

where the left side is the standard Euclidean volume in Rn.

Remark 4.13. The quantity on the right is the volume of D, which we will study in

Chapter 5. It is important to note that this theorem tells us that by varying only

the flag one might obtain different Okounkov bodies for a fixed integral divisor, but

their volume remains constant.

The construction of Okounkov bodies can be generalized easily to the multigraded

setting and even more to the non-complete case. For that fix divisors D1, . . . , Dp on

X and write mD = m1D1 + . . .+mpDp for m = (m1, . . . ,mp) ∈ Np. Then we have

the following definition:

Definition 4.14 (Multigraded linear series). A multigraded linear series W• on X

associated to D1, . . . , Dp consists of subspaces

Wm ⊆ H0(X,OX(mD))

such that R(W•) = ⊕Wm is a subalgebra of the section ring R(D1, . . . , Dp) =

⊕H0(X,OX(mD)). The support of W•, supp(W•) ⊆ Rp
+, is the closed convex cone

spanned by all indices m ∈ Np such that Wm 6= 0.

As in the complete case, one associates a semigroup to W• with respect to an

admissible flag Y•.

Definition 4.15 (Multigraded semigroup of linear series). Let W• be a multigraded

linear series on X and Y• be an admissible flag. We define the multigraded semigroup

of W• with respect to the flag Y• to be

ΓY•(W•) = {(νY•(s),m) | 0 6= s ∈ Wm,m ∈ Np}

Now we can associate to W• a cone:
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Definition 4.16 (Okounkov cone of a multigraded linear series). Let W• be a multi-

graded linear series on X and Y• an admissible flag. Then set

∆Y•(X;W•) ⊆ Rn × Rp
+

to be the closed convex cone generated by ΓY•(W•) and call it the Okounkov cone of

W• with respect to Y•. If π2 : Rn × Rp
+ → Rp

+ is the second projection then notice

that π2(∆Y•(X;W•)) = supp(W•).

Example 4.17. Let Y = P1 × . . . × P1 (p-times). Now take on Y the following

admissible flag

(4.1) Y• : Y0 = Y ⊇ Y1 = [0 : 1]×P1× . . .×P1 ⊇ . . . ⊇ Yp = [0 : 1]× . . .× [0 : 1]

and denote by V• the complete multigraded linear series, whose graded pieces are

Vm = H0(Y,OY (m)) for all m ∈ Np.

Then the multigraded semigroup of V• has the following description:

Γ(V•) = {(n1, . . . , np,m1, . . . ,mp) ∈ Np × Np | 0 ≤ ni ≤ mi for all i = 1 . . . p}.

Given this, the Okounkov cone of V• with respect to Y• is

∆(V•) = {(z1, . . . , z2p) | 0 ≤ zi ≤ zp+i for all i = 1, . . . , p} ⊆ Rp
+ × Rp

+.

We will use this example extensively in in Chapter 5.

An important consequence of the construction of the Okounkov cone for multi-

graded linear series is that all the Okounkov bodies of rational big classes ξ ∈

Big(X)Q fit together in a closed convex cone.

This happens because the pseudo-effective cone Eff(X)R is a pointed cone inside

the vector space N1(X)R, ([34, Lemma 4.6]). So one can choose integral divisors
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D1, . . . , Dρ on X whose classes form a Z-basis for N1(X) and every effective divisor

is numerically equivalent to a N-linear combination of the divisors Di. Now construct

the association

Nρ '−→ ND1 ⊕ . . .⊕ NDρ, m 7→mD

where mD = m1D1+. . .+mρDρ. If we take V• to be the complete multigraded linear

series, whose graded pieces are Vm = H0(Y,OY (mD)), then taking into account the

association above we denote the Okounkov cone of V• by

∆Y•(X) ⊆ Rn ×N1(X)R.

The following theorem [34, Theorem B] connects this cone with the Okounkov bodies

of rational classes on X.

Theorem 4.18 (Global Okounkov cone). There exists a closed convex cone, called

the global Okounkov cone

∆Y•(X) ⊆ Rn ×N1(X)R

satisfying the property that for any big class ξ ∈ N1(X)Q, the fiber

∆Y•(X) ∩
(
Rn × {ξ}

)
= ∆Y•(X; ξ).

4.3 Countability of Okounkov bodies

In this section we prove Theorem C, showing the countability of Okounkov bod-

ies. Theorem 4.18 points out that it is enough to prove the countability of global

Okounkov cones and this can be stated as follows:

Theorem 4.19 (Countability of global Okounkov cones). There exist countably

many closed convex cones (∆i)i∈N ⊂ Rn × Rρ such that for any complex smooth
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and projective variety X of dimension n with Picard number ρ equipped with an

admissible flag Y•, there is an integral linear isomorphism

ρX : Rρ → N1(X)R

with the property that (idRn × ρ−1
X )(∆Y•(X)) is equal to ∆i for some i ∈ N.

Remark 4.20. (1) We say that ρX is integral if ρX(Zρ) ⊆ N1(X).

(2) In [34], the Okounkov bodies were defined in more general setup. The Yi were

not assumed to be smooth, but merely irreducible and smooth at the point Yn. The

statement of Theorem C can easily be generalised to flags of this form. Suppose that

Theorem C holds under the additional hypothesis that each component of the flag

is smooth.

Consider now a smooth variety with a flag Y• of irreducible subvarieties of X,

which are smooth at the point Yn. Choose a proper birational map µ : X ′ → X,

isomorphic in some neighborhood of Yn, such that the proper transform Y ′i of each

Yi is smooth and irreducible. The flag Y ′• is then admissible in our sense, and hence

for any divisor D on X there is an i ∈ N such that ∆Y ′•(X
′;µ∗(D)) = ∆i. The fact

that X is smooth, then by Zariski’s Main Theorem, µ∗(OX′) = OX , and hence

H0(X,OX(mD)) = H0(X ′, µ∗(OX(mD))),

for any m ∈ N. Since µ is an isomorphism in a neighborhood of Yn it follows that

the convex body ∆Y•(X;D) is the same as ∆Y ′•(X
′;µ∗(D)), and hence it is one of

the convex bodies ∆i from Theorem C.

We start by collecting some definitions and technical prerequisites we need for

the proof of Theorem 4.19. The idea is to use the multigraded Hilbert Flag functor,
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parametrizing flags contained in a multiprojective space. First, denote

Y = P2n+1 × . . .× P2n+1︸ ︷︷ ︸
ρ times

.

Next, let pi : Y → P2n+1 be the projection map to the i-th factor. Each Cartier

divisor can be described as

mD = m1D1 + . . .+mρDρ,

for some m := (m1, . . . ,mρ) ∈ Zρ, where each Di is the pullback by the projection

map pi of a hyperplane section on the i-factor of Y .

For any closed smooth varietyX ⊆ Y we denote by ρX the map ρX : Zρ → N1(X)

given by ρX(m) = (mD)|X . We also denote by ρX the induced map ρX : Rρ →

N1(X)R.

Now, for any closed subscheme Z ⊆ Y we can define its multigraded Hilbert

function as follows

PZ(m) = χ(Z, (OY (mD))|Z), for all m ∈ Nρ.

With this in hand, suppose we are given an (n+ 1)-tuple of numerical functions

P(m) = (P0(m), . . . , Pn(m)).

Then the multigraded Hilbert Flag functor HP assigns to any scheme T the set of

all flat families of closed flags

Y × T ⊇ X0 ⊇ X1 ⊇ . . . ⊇ Xn−1 ⊇ Xn

where for each i the projection map φi : Xi → T is flat and surjective. Also, any

closed point t ∈ T defines a flag

Y × {t} ⊇ X0,t ⊇ X1,t ⊇ . . . ⊇ Xn−1,t ⊇ Xn,t
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such that the multigraded Hilbert function PXi,t(m) = Pi(m). The following propo-

sition says that this functor is represented by a projective scheme.

Proposition 4.21. Suppose we are given an n-tuple of numerical functions P =

(P0, . . . , Pn), where Pi : Zρ → Z for all i. There then exists a projective scheme HP,

a closed subscheme XP ⊂ W ×HP and a flag of closed subschemes Y•,P : XP = Y0 ⊃

Y1 ⊃ . . . ⊃ Yn such that

1. the induced projection map φi : Yi → HP is flat and surjective for all i,

2. for all i and all t ∈ HP we have that PYi,t = Pi,

3. for any projective subvariety X ⊆ W and a flag of subvarieties X = Y0 ⊃

Y1 ⊃ Y2 ⊃ . . . ⊃ Yn such that PYi = Pi there is a t ∈ HP and an isomorphism

β : Xt → X such that β(Yi,t) = Yi for all i.

Proof(Sketch): By [22, Corollary 1.2], there exists for each i a multigraded Hilbert

scheme HPi , equipped with a flat surjective family Y ′i ⊂ W ×HPi such that for any

Y ′i ⊂ W such that PY ′i = Pi, there is a t such that Y ′i,t = Y ′i .

We consider HPi and Y ′i with their reduced scheme structure. We now define

HP ⊂ HP0 ×HP1 × . . .×HPn

to be given by the incidence relation: t = (h0, . . . , hn) ∈ HP if and only if Y ′i,hi ⊂

Y ′i−1,hi−1
for all i. Each element Yi of the flag Y•,P is defined to be Yi = π∗i (Y ′i),

where πi : HP → HPi is the projection onto the factor HPi . By definition, Yi ⊂ Yi−1

for all i and Yi → HP is surjective and flat because Y ′i is. Condition (1) therefore

holds. Condition (2) is immediate. By the universal property of multigraded Hilbert

schemes HPi , Condition (3) is also satisfied.
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Remark 4.22. It is not hard to check the universality of the multigraded Flag Hilbert

scheme. For Theorem 4.19 we use only the fact that all smooth varieties and all ad-

missible flags on them with a fixed (n+1)-tuple of multigraded Hilbert functions can

fit together in a projective scheme. The construction we give in the proof of Propo-

sition 4.21 does satisfy this property, because of the universality of the multigraded

Hilbert scheme proved in [22, Corollary 1.2].

The following proposition will play an important role in the proof of Theorem

4.19.

Proposition 4.23. Let φ : X → T be a smooth projective and surjective mor-

phism with reduced and irreducible fibers of relative dimension n between two quasi-

projective varieties. Let D1, . . . , Dρ be Cartier divisors on X . If there is a closed

point t0 ∈ T such that the restrictions D1|Xt0 , . . . , Dρ|Xt0 form a basis for the Neron-

Severi space N1(Xt0)R, then for all t ∈ T the divisors D1|Xt , . . . , Dρ|Xt are linear

independent in N1(Xt)R.

Proof. First notice that D1|Xt , . . . , Dρ|Xt are Cartier divisor on Xt. If one wants to

show that they are linearly dependent in N1(Xt)R, then it is enough to prove that

they are linear dependent over Z. Therefore we only need to show that given a

Cartier divisor D on X such that D|Xt0 6=num 0, then D|Xt 6=num 0 for any t ∈ T .

The idea is to use induction on n = dim(X )− dim(T ). Assume first that n = 1.

In this case Xt0 is a smooth irreducible curve and the condition D|Xt0 6=num 0 is

equivalent with (D.Xt0) 6= 0. As φ is flat and T irreducible then for any t1 ∈ T \{t0},

we have

(D.Xt1) = (D.Xt0) 6= 0,

implying that D|Xt1 6= 0.



76

In the general case, when n ≥ 2, let t1 ∈ T \ {t0}. Also choose a Cartier divisor

A on X such that its corresponding line bundle OX (A) is very ample relative to the

map φ. The Theorems of Bertini and generic smoothness imply that for a general

section W of A, the fiber Wt = W ∩ Xt is smooth and irreducible for all t in some

open neighborhood of t0. The same statement holds for t1, and using the fact that T

is irreducible, one can choose a general section W and an open neighborhood U ⊆ T ,

containing both t0 and t1, such that Wt is smooth and irreducible for all t ∈ U . Now,

as W is general, the map

φUW = φ|W∩φ−1(U) : W ∩ φ−1(U) −→ U

is flat and of relative dimension n − 1, and because each fiber of φUW is smooth, we

can assume without loss of generality that the map is also smooth. With this in

hand, suppose first that D|Wt0
6=num 0. Then by applying induction on the family

φUW we have D|Wt1
6=num 0. This in turn implies that D|Xt1 6=num 0. Now, whenever

D|Wt0
=num 0, we have two cases. In the first one, when n = 2, use the fact that Wt0 is

an ample section of Xt0 , and by the Hodge Index Theorem on surfaces one deduces

that (D|Xt0 )2 < 0. Hence by flatness, one finds that (D|Xt1 )2 < 0 and therefore

D|Xt1 6=num 0. For the second case, n ≥ 3, one can use a higher dimensional version

of the Hodge Index Theorem (Corollary I.4.2 [27]) and deduce that the condition

D|Wt0
=num 0 implies that D|Xt0 =num 0. This contradicts our assumptions and ends

the proof.

In the proof of Theorem 4.19, T will be a reduced and irreducible quasiprojective

variety and X ⊆ Y × T will be a closed subscheme such that the induced projection

φ : X → T will be a flat, projective and surjective morphism. We assume we are
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given a flag of closed subschemes of X

Y• : Y0 = X ⊇ Y1 ⊇ . . . ⊇ Yn−1 ⊇ Yn

such that the restriction maps φi = φ|Yi : Yi → T are flat, projective and

surjective. We say that t ∈ T admits an admissible fiber if the fiber Xt is smooth

and irreducible and the flag Yt,• is admissible. We call the morphism φ : X → T a

family of admissible flags if each t ∈ T admits an admissible fiber.

Proof of Theorem 4.19. Let X be a smooth and irreducible variety of dimension n

and Picard number ρ, equipped with an admissible flag Y•. We start by showing

that X can be embedded in Y in such a way that the induced map of real vector

spaces ρX is a linear integral isomorphism.

For this, choose ρ very ample Cartier divisors D1,X , . . . , Dρ,X on X forming a Q-

basis of the Néron-Severi space N1(X)Q. As X is smooth, [48, Theorem 5.4.9] says

that for each i there exists an embedding X ⊆ P2n+1 such that Di,X is the pullback

of a hyperplane section on P2n+1. We can embed X in Y in the following way:

(4.2) X ⊆ X × . . .×X︸ ︷︷ ︸
ρ times

⊆ Y,

where the first embedding is given by the diagonal. Notice that the restriction map

ρX : Rρ → N1(X)R is an integral linear isomorphism. Also each Yi is embedded in Y

the same way as X and the restrictions Dj,X |Yi remain very ample Cartier divisors.

Thus each multigraded Hilbert function PYi given by the embedding of Yi in Y is a

polynomial with rational coefficients and of degree dim(Yi).

This tells us that for all smooth varieties of dimension n and Picard number

ρ, and for all admissible flags on them, we have countably many (n + 1)-tuples of

multigraded Hilbert functions. By Theorem 4.21, for each (n+ 1)-tuple

P(m1, . . . ,mρ) = (P0(m1, . . . ,mρ), . . . , Pn(m1, . . . ,mρ))
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of numerical functions there exists a projective scheme parametrizing all flags of

length (n+1) whose Hilbert (n+1)-tuple is equal to P. So, we have countably many

flag families as in Theorem 4.21 with the property that any smooth and irreducible

variety X of dimension n with Picard number ρ, and any admissible flag Y• on X is

a fiber in at least one of these families.

By the above, it suffices to show the countability of global Okounkov cones for

one of these flat families. So fix one of them, say φ : X → T , and let Y• be the

given flag on X . We will consider T and the Yi with their reduced structures and

will assume, without loss of generality, that T is irreducible. It is enough to show the

countabiltity of global Okounkov cones on a non-empty open set U ⊆ T , as we can

further argue inductively on the dimension of T . So we can assume that T is smooth

and that there exists a closed point t0 ∈ T admitting an admissible fiber, which is

embedded in Y as in (4.2). Now since each φi := φi|Yi is flat, by [16, Theorem 12.2.4]

the set of all points t ∈ T such that Yi,t is smooth and irreducible is open in T . So,

by further restricting T , we can assume that φ is a family of admissible flags and

that there is a closed point t0 ∈ T whose fiber is embedded in Y as in (4.2).

With the assumptions made above, notice that we have the natural embedding

X ⊆ Y × T . On Y we have ρ Cartier divisors D1, . . . , Dρ which form a base for

N1(Y )R. As Xt0 is a smooth variety embedded in Y as in (4.2), the Cartier divisors

D1|Xt0 , . . . , Dρ|Xt0 form an R-base for N1(Xt0)R. As each fiber of φ : X → T is

smooth and of dimension n, by [24, Theorem III.10.2] the map φ is smooth and we

can apply Proposition 4.23, which says that under our conditions the map

ρXt : Rρ → N1(Xt)R,

where ρXt(Di) := Di|Xt , is an injective integral linear morphism for all t ∈ T .
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Under these assumptions, it remains to show that the set of all convex bodies

(idRn × ρ−1
Xt

)(∆Yt,•(Xt)) ⊆ Rn × Rρ,

for all t ∈ T , is countable. It’s actually sufficient to show that there exists a subset

F = ∪Fm ⊆ T consisting of a countable union of proper Zariski-closed subsets

Fm & T such that

(idRn × ρ−1
Xt

)(∆Yt,•(Xt)) is independent of t ∈ T \ F .

This reduction implies Theorem 4.19, because one can argue inductively on the

dimension of T and apply this reduction for each family of flags φ : φ−1(Fm) → Fm

containing an admissible fiber.

With this in hand let’s prove the reduction above. Denote by

Bt = (ρ−1
Xt

)(Eff(Xt)R) ⊆ Rρ

and if B is the closed convex cone generated by ∪t∈TBt, then we need first to show

that B is a pointed cone.

Before proving this, note that if ξ ∈ Bt1 for some closed point t1 ∈ T , then we

have

(ξ ·Di1
1 · . . . ·Diρ

ρ ·Xt) ≥ 0

for any i1 + . . . + iρ = n − 1 and t ∈ T . It follows that for any ξ ∈ B we have that

(ξ ·Di1
1 · . . . ·D

iρ
ρ ·Xt) ≥ 0 for any collection {ij} such that i1 + . . .+ iρ = n− 1 and

any t ∈ T . If B is not pointed there exists an ξ ∈ B such that −ξ ∈ B, and hence

(ξ ·Di1
1 · . . . ·Diρ

ρ ·Xt) = 0

for any i1 + . . .+ iρ = n− 1 and t ∈ T . Now, set H = D1 + . . .+Dρ and notice that

for any t ∈ T the Cartier divisor H|Xt is ample. Thus, by the above, we have that

(ξ ·Hn−1 ·Xt) = 0,
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(ξ2 ·Hn−2 ·Xt) = 0.

By [27, Proposition I.4.3] it follows that ξ|Xt =num 0 for all t ∈ T , and this contradicts

the condition that the divisors D1|Xt0 , . . . , Dρ|Xt0 are linearly independent.

That B ⊆ Rρ is a pointed cone implies that there exists a Q-base {H1, . . . , Hρ} ⊆

Rρ such that the positive convex cone generated by the H1, . . . , Hρ inside Rρ, call it

A, has the property that Bt ⊆ A for any t ∈ T , i.e. every effective divisor on Xt

(taken to a large power), contained in the image of ρXt , is numerically equivallent to

a positive N-linear combination of the Hi|Xt .

Going back to our family of admissible flags, φ : X → T and the flag Y•, notice

that each morphism φi : Yi → T has smooth and irreducible fibers, hence again by

[24, Theorem III.10.2] each map φi is smooth. Now because the base T is assumed

to be smooth, it implies that each Yi is smooth, i.e. Yi+1 ⊆ Yi is Cartier. Thus our

family of flags satisfies the conditions of [34, Theorem 5.1], whose proof says that

for any divisor D on X , there exists a non-empty open subset U ⊂ T such that the

finite sets

(4.3) Im(νYt,•(Xt;D|Xt) : H0(Xt,OXt(D)) → Zn)

coincide for all t ∈ U . Now for each t ∈ T the Okounkov cone ∆Yt,•(Xt) is the cone

generated by the semigroup

ΓYt,•(Xt) = {(ν(s), (mH)|Xt) | 0 6= s ∈ H0(Xt,OXt(mH),∀m ∈ Nρ}

inside Rn ×N1(Xt)R, where mH = m1H1 + . . .+mρHρ is seen as an element in Rρ.

As the semigroups generating the Okounkov cone are countable, applying (4.3) we

deduce the existence of a subset F = ∪Fm ⊆ T consisting of countably many Zariski

closed sets Fm & T such that

ρ−1
Xt

(
∆Yt,•(Xt)

)
⊆ Rn × Rρ is independent of t ∈ T \ F.
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In the end, notice that if the fiber Xt is embedded as in (1), then the map ρX is an

isomorphism and we finish the proof of the theorem.

4.4 Conditions on Okounkov bodies on surfaces

In this section our main goal is to characterize the convex bodies arising as Ok-

ounkov bodies of big R-divisors on smooth surfaces, by proving Theorem D. Also we

give some fairly strong restrictions on the set of Okounkov bodies for big Q-divisors.

The main technical tool is Zariski decomposition.

Fixing notation, let S be a smooth surface and D a pseudo-effective real (resp.

rational) divisor on X. Fix is an admissible flag on S, consisting of a smooth curve

C ⊆ S and a point x ∈ C. The Zariski decomposition [4, Theorem 14.14] states that

D can uniquely written as a sum

D = P (D) + N(D)

of R (resp. Q)-divisors with the property that P (D) is nef, N(D) is effective with

negative definite intersection matrix 1and (P (D).C) = 0 for every irreducible com-

ponent C of N(D). P (D) is called the positive part of D and N(D) the negative

part. Another important property of the Zariski decomposition is the minimality of

the negative part [4, Lemma 14.10]. This states that if D = M +N , where M is nef

and N effective, then N −N(D) is effective.

We prove Theorem D using Lazarsfeld’s and Mustaţă’s description of the Ok-

ounkov body on a surface [34, Theorem 6.4] via Zariski decomposition. Let ν be the

coefficient of C in the negative part N(D) and let

µ = µ(D;C) = sup{ t > 0 | D − tC is big }.
1An effective divisor

∑
aiCi is said to have a negative definite intersection matrix if the matrix((Ci · Cj))i,j is

negative definite.



82

When there is no risk of confusion we will denote µ(D;C) by µ(D). For any t ∈ [ν, µ)

we set Dt = D − tC and write Dt = Pt + Nt for its Zariski decomposition. Then

there exist two continuous functions α, β : [ν, µ]→ R+ defined by

α(t) = ordx(Nt|C), β(t) = ordx(Nt|C) + (Pt · C),

such that the Okounkov body ∆(D) ⊆ R2 is the region bounded by the graph of α

and β:

∆(D) = {(t, y) ∈ R2 | ν ≤ t ≤ µ, α(t) ≤ y ≤ β(t)}.

With this preparation in hand, set D′ = D − µC, which is pseudo-effective by

definition of µ. Now for any t ∈ [ν, µ] write s = µ− t and set

D′s = D′ + sC = D′ + (µ− t)C = D − tC.

In comparison to the proof of [34, Theorem 6.4], it turns out that it is more fruitful

to consider the set of the divisors Dt for t ∈ [ν, µ] in the form D′s for s ∈ [0, µ − ν].

If D′s = P ′s + N ′s is the Zariski decomposition of D′s, then our aim is to study N ′s as

a function of s ∈ [0, µ− ν] and this is done in the following proposition:

Proposition 4.24. The function s� N ′s is decreasing on the interval [0, µ−ν], i.e.

for each 0 ≤ s′ < s ≤ µ − ν the divisor N ′s′ − N ′s is effective. Moreover, for some

k ≥ 1, there exists a partition 0 = p0 < p1 < . . . < pk−1 < pn = µ − ν such that

there exist effective divisors Ai and Bi with Bi rational and N ′s = Ai + sBi for all

s ∈ [pi, pi+1].

Proof. Let C1, . . . , Cr be the irreducible components of Supp(N ′), where N ′ = N ′0.

Choose real numbers s′, s such that 0 ≤ s′ < s ≤ µ− ν. We can then write

P ′s′ = D′s′ −N ′s′ = (D′s − (s− s′)C)−N ′s′ = D′s − ((s− s′)C +N ′s′).
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As P ′s′ is nef and the negative part of the Zariski deomposition is minimal, the divisor

(s − s′)C + N ′s′ − N ′s is effective. It remains to show that C is not in the support

of N ′s for any s ∈ [0, µ − ν]. If C were in the support of N ′s for some s, then for

any λ > 0 the Zariski decomposition of D′s+λ would be D′s+λ = P ′s + (N ′s + λC). In

particular, C would be in the support of N ′µ−ν , contradicting the definition of ν.

Rearranging the Ci, we assume that the support of Nµ−ν consists of Ck, . . . , Cr.

Set

pj def = sup{s | Cj ⊆ Supp(N ′s)} for all j = 1, . . . , k − 1

and without loss of generality suppose that 0 = p0 < p1 < . . . < pk−1 < pk = µ− ν.

We will show thatN ′s is linear on [pi, pi+1] for this choice of the pi. By the continuity of

the Zariski decomposition (see [5]), it is enough to show that N ′s is linear on the open

interval (pi, pi+1). If s ∈ (pi, pi+1) then the support of N ′s is precisely {Ci+1, . . . , Cr},

and N ′s is determined uniquely by the equations

N ′s · Cj = (D′ + sC) · Cj, for i+ 1 ≤ j ≤ r .

As the intersection matrix defined by the curves Ci+1, . . . , Cr is non-degenerate, there

exist uniquely defined divisors Ai and Bi supported on those curves such that

Ai · Cj = D′ · Cj and Bi · Cj = C · Cj for all i+ 1 ≤ j ≤ r .

Notice that Bi is a rational divisor. By [4, Lemma 14.9], both Ai and Bi are effective

and by the above we have N ′s = Ai + sBi for any s ∈ (pi, pi+1).

Proof of Theorem D. By [34, Theorem 6.4] we already know that the function α is

convex, β is concave and α ≤ β. The description given for α and β and Propo-

sition 4.24 it follows that α and β are piecewise linear with only finitely many
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break-points. Moreover, α is an increasing function of t by Proposition 4.24, be-

cause Nt = N ′µ−s and α(t) = ordx(Nt|C). This proves that the Okounkov body of

any real divisor on a surface has the required form.

Conversely, we show that a polygon as in Theorem D is the Okounkov body of

a real T -invariant divisor on some toric surface. This section of the proof is based

on Proposition 6.1 in [34], which characterizes the Okounkov body of a T -invariant

divisor with respect to a T -invariant flag on a toric variety in terms of the polygon

associated to T in the character lattice MZ associated to the toric variety.

Let ∆ ⊆ R2 be a polygon of the form given in Theorem D. As α is increasing, we

can assume after translation that (0, 0) ∈ ∆ ⊆ R2
+. We identify R2 with the vector

space MR associated to a character lattice MZ = Z2 of the smooth toric surface S

we want to find. Let E1, . . . , Em be the edges of ∆ and for each edge Ei choose a

primitive vector vi ∈ NR normal to Ei in the direction of the interior of ∆, where NR

is the dual of MR. We can then write

∆ = { u ∈MR | 〈u, vi〉+ ai ≥ 0 for all i = 1 . . .m }

for some set of positive rational ai. After adding vectors vm+1, . . . , vr we can assume

the set of all vectors vi has the following properties:

1. The toric surface S associated to the complete fan Σ which is defined by the

rays {R+ · v1, . . . ,R+ · vr} is smooth projective toric surface.

2. None of the vectors vi lie in the interior of the first quadrant.

3. For some i1, i2 ∈ {1, . . . ,m} we have vi1 =

 1

0

 and vi2 =

 0

1

.

Condition (2) is possible because α is increasing. Since ∆ is compact there exists
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real numbers am+1, . . . , ar ∈ Q+ such that

∆ = { u ∈MR | 〈u, vi〉+ ai ≥ 0 for all i = 1 . . . r }

Condition (3) implies that we can choose ai1 = ai2 = 0. The general theory of

toric surfaces now tells us that each vi represents a T -invariant divisor Di on S

and on setting D = ΣaiDi the polytope P (D) ⊆ MR associated to D is equal

to ∆. We choose on S the flag consisting of the curve C = Di1 and the point

{x} = Di1 ∩ Di2 . The curve C is smooth and the intersection Di1 ∩ Di2 is a point

because S is smooth and, besides vi1 and vi2 , none of the vectors vi are contained in

R2
+. By [34, Proposition 6.1], the Okounkov body ∆(C,x)(S;D) of D with respect to

the flag (C, x) is equal to ψR(P (D)) where the map ψR : MR → R2 is defined as

ψR(u) = (〈u, vi1〉, 〈u, vi2〉) for any u ∈MR.

In our case ψR ≡ idR, so ∆(C,x)(S;D) = P (D) = ∆ by construction. This completes

the proof of Theorem D.

It is now natural to ask, which of these polygons is the Okounkov body of a rational

divisor. It follows from the above toric-surface construction that any polygon of the

form considered in Theorem D which is given by rational data is the Okounkov body

of a rational divisor. The following proposition gives a partial converse, showing the

the rationality of the divisor implies strong rationality conditions on the data points

of the Okounkov body.

Proposition 4.25. Let S be a smooth projective surface, D a big rational divisor on

S and (C, x) be an admissible flag on S. Then:

1. TAll the vertices of the polygon contained in the set ([ν, µ] × R have rational

coordinates.
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2. µ(D) is either rational or satisfies a quadratic equation over Q.

3. if an irrational number a > 0 satisfies a quadratic equation over Q and the

conjugate a of a over Q is strictly larger than a, then there exists a smooth,

projective surface S, an ample Q-divisor D and an admissible flag on S such

that µ(D) = a.

Proof. As the positive and negative parts of the Zariski decomposition of a Q-divisor

remain rational, ν is a rational number. By the description of α and β, the starting

point (α(ν), β(ν)) has rational coordinates. According to Proposition 4.24, the break-

points of α and β can only occur at ti = µ−pi. As the functions α and β are piecewise

linear with rational slope, we only need to prove that the ti are rational. This follows

from the Zariski chamber decomposition of the cone of big divisors [5, Theorem 1.1],

which locally has a finite decomposition into rational locally polyhedral subcones,

and the fact that µ− pi = inf{t | Ci ⊂ Supp(Nt)}.

For (2), notice that the volume volX(D), the area of the Okounkov polygon ∆(D),

is rational. As the slopes and intermediate breakpoints of ∆(D) are rational, the re-

lation computing the area of ∆(D) gives a quadratic equation for µ(D) with rational

coefficients. Notice that µ will be irrational when one edge of the polygon ∆(D) sits

on the vertical line t = ν.

For the last part we consider a construction of Morrison [39, Theorem 2.9] of K3

surfaces, which states that any even integral quadratic form of signature (1, 2) occurs

as the self intersection form of a K3 surface S, with Picard number 3. An argument

of Cutkosky (p. 96 [11]) shows that if the coefficients of the form are all divisible by

4, then the pseudo-effective and nef cones of S coincide and are given by

{α ∈ N1(S) | (α2) ≥ 0 , (h · α) > 0}
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for any ample divisor h on S. If D is an ample divisor and C ⊆ S an irreducible

curve, then the function f(t) = (D − tC)2 has two positive roots and µ(D) with

respect to C is equal to the smaller one, i.e.

µ(D) =
(D · C)−

√
(D · C)2 − (D2)(C2)

(C2)
.

Since we are only interested in the roots of f , then we start with any integral

quadratic form of signature (1, 2) and multiply it by 4. Hence we can exhibit any

number with the required properties as µ(D) for suitable choices of D, C, and the

quadratic form.

4.5 Non-polyhedral Okounkov bodies

In this section we will give two examples of non-polyhedral Okounkov bodies of di-

visors on Mori dream space varieties, showing in particular that divisors with finitely

generated section rings can nevertheless have non-polyhedral Okounkov bodies. The

first example is Fano. The second is not, but has the advantage that the existence

of non-polyhedral Okounkov bodies is stable under perturbations of the flag.

Proposition 4.26. Let X be a smooth projective variety of dimension n equipped

with an admissible flag Y•. Suppose that D is a divisor such that D − sY1 is ample.

Then we have the following lifting property:

∆Y•(X;D) ∩
(
{s} × Rn−1

)
= ∆Y•(Y1; (D − sY1)|Y1).

In particular, if Eff(X)R = Nef(X)R then on setting

µ(D;Y1) = sup{ t | D − tY1 effective }

we have that the Okounkov body ∆Y•(X;D) is the closure in Rn of the set

{(s, v) | 0 ≤ s < µ(D;Y1), v ∈ ∆Y•(Y1; (D − sY1)|Y1)}.
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Proof. In order to prove the lifting property we will use [34, Theorem 4.26], which

states that in our setting we have

∆Y•(X;D) ∩
(
{s} × Rn−1

)
= ∆Y•(X|Y1;D − sY1)

where the second body is the restricted Okounkov body defined in [34, Section 2.4].

Hence it is enough to show that

(4.4) ∆Y•(X|Y1;D − sY1) = ∆Y•(Y1; (D − sY1)|Y1),

We will prove this for rational s ∈ Q+, as the general case follows by the continuity

property of slices of the Okounkov bodies. Combining [34, Theorem 4.26] and [34,

Proposition 4.1] we obtain that the restricted Okounkov body satisfies the required

homogeneity condition, i.e.

∆Y•(X|Y1; p(D − sY1)) = p∆Y•(X|Y1; (D − sY1)) for all p ∈ N.

Now, by the construction of restricted Okounkov bodies, to show (4.4) it is enough

to prove that

H1(X,m(p(D − sY1)− Y1)) = 0

for sufficiently large divisible p,m ∈ N. As D − sY1 is an ample divisor, this follows

from Serre vanishing and so we complete the proof.

Corollary 4.27. Let X be a smooth three-fold and Y• = (X,S,C, x) an admissible

flag on X. Suppose that Eff(X)R = Nef(X)R and Eff(S)R = Nef(S)R. Then for

an ample divisor D on X, its Okounkov body with respect to the admissible flag Y•

can be described as

∆Y•(X;D) = { (r, t, y) ∈ R3 | 0 ≤ r ≤ µ(D;S), 0 ≤ t ≤ f(r), 0 ≤ y ≤ g(r, t) }

where f(r) = sup{ s > 0 | (D−rS)|S−sC is ample } and g(r, t) = (C.(D−rS)|S)−

t(C2) with the interesection numbers taking place on the surface S.
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Remark 4.28. (1) This corollary follows from Proposition 4.26 in combination with

the description on surfaces given by Lazarsfeld and Mustaţă [34, Theorem 6.4].

(2) Observe from Prosposition 4.27 that only the function f : [0, µ(D;S)] → R+

might force the Okounkov body to have a “weird” shape. Assume that the Picard

number of S is at least three. Then f(r) is the unique real number such that the

divisor (D− rS)|S − f(r)C lies on the boundary of the pseudo-effective cone, which

coincides under our assumption with the nef cone. Such classes define a curve in

N1(S)R, obtained by intersecting the boundary of Nef(S)R with the plane passing

through the points defined by the class of D and supported by the directions deter-

mined by the vectors given by the classes (D|S −C) and (D−S)|S inside the vector

space N1(S)R. Hence, “worse” the shape of the nef cone of S, “worse” the shape of

the Okounkov body.

Example 4.29 (Non-polyhedral Okounkov body on Fano varieties). Set X = P2×P2

and let D be a divisor in the linear series OP2×P2(3, 1). We set

Y• : Y0 = P2 × P2 ⊇ Y1 = P2 × E ⊇ Y2 = E × E ⊇ Y3 = C ⊇ Y4 = {pt}

where E is a general elliptic curve. Since E is general we have that

Eff(E × E)R = Nef(E × E)R = {(x, y, z) ∈ R3 | x+ y + z ≥ 0, xy + xz + yz ≥ 0}

under the identification

R3 → N1(E × E)R, (x, y, z)→ xf1 + yf2 + z∆E,

where f1 = {pt}×E, f2 = E×{pt} and ∆E is the diagonal divisor. We let C ⊆ E×E

be a smooth general curve in the complete linear series |f1 + f2 + ∆E| and Y4 is a

general point on C. We show that the Okounkov body ∆Y•(X;D) is not polyhedral.

For this it is actually enough to show that the slice ∆Y•(X;D) ∩
(
{0} × R3) is not
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polyhedral. Since Eff(P2 × P2)R = Nef(P2 × P2)R, by Proposition 4.26 this slice is

identified with the Okounkov body ∆Y•(Y1;OY1(D)). In the following we give a full

description of this body, whose shape it will turn out to be round.

The three-fold Y1 = P2×E is homogeneous, so its nef cone is equal to its pseudo-

effective cone: this cone is bounded by the rays R+[line × E] and R+[P2 × {pt}].

So we fall under the conditions of Corollary 4.27.

Using the description of Nef(Y1)R we had above, it is not hard to show that

µ(OY1(D), Y2) = 1. Also, a simple calculation gives us

g(r, t) = (C.(D|Y1 − rY2)|Y2)− t(C2) = 24− 18r − 6t.

Finally, from Corollary 4.27 we have

f(r) = sup{s > 0 | (D − rY2)|Y2 − sC is ample}

= sup{s > 0 | (9− 9r − s)f1 + (3− s)f2 − s∆E is ample }.

After calculation, we see that for positive s the divisor (9− 9r)f1 + (3− s)f2 − s∆E

is ample if and only if s < (4− 3r −
√

9r2 − 15r + 7). Therefore, by Corollary 4.27

we can describe the Okounkov body ∆Y•(Y1;D) as

{(r, t, y) ∈ R3 | 0 ≤ r ≤ 1, 0 ≤ t ≤ 4− 3r −
√

9r2 − 15r + 7, 0 ≤ y ≤ 24− 18r − 6t}

The Okounkov body ∆Y•(X;D) is therefore non polyhedral.

Example 4.30. In the following, we give an example of a Mori dream space, such

that under a linear deformation of the flag, the Okounkov body of a random di-

visor remains non-polyhedral. Our construction is based heavily on an example of

Cutkosky’s [11]. He considers a K3 surface S whose Néron-Severi space N1(S)R is iso-

morphic to R3 with the lattice Z3 and the intersection form q(x, y, z) = 4x2−4y2−4z2.

He shows that:
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1. The divisor class on S represented by the vector (1, 0, 0) corresponds to the class

of a very ample line bundle L, which embedds S in P3 as a quartic surface.

2. The nef and pseudo-effective cones of S coincide, and a vector (x, y, z) ∈ R3

represents a nef (pseudo-effective) class if it satisfies the inequalities

4x2 − 4y2 − 4z2 ≥ 0 , x ≥ 0,

where the first inequality is saying that the self interesection is positive, and the

second that the intersection of the divisor with L is positive.

We consider S ⊂ P3, and the pseudo-effective Cartier divisors represented by the

vectors (1, 1, 0) and (1, 0, 1), which we denote by α and β respectively. By Riemann-

Roch we have that H0(Z, α) ≥ 2 and H0(Z, β) ≥ 2, so both α and β, being extremal

rays in the pseudo-effective cone, are classes of irreducible moving curves. Since

α2 = β2 = 0, both of these families are base-point free, and it follows from the

base-point free Bertini theorem that there are smooth irreducible curves C1 and C2

representing α and β respectively, which are elliptic by the adjunction formula. We

may assume that C1 and C2 meet transversally in C1 · C2 = 4 points.

The threefold Z we are interested in is constructed as follows. Let π1 : Z1 → P3 be

the blow-up along the curve C1 ⊆ P3. Then Z is the blow up of the strict transform

C2 ⊆ Z1 of the curve C2. Denote by π2 : Z → Z1 the second blow-up, and by π the

composition π1 ◦ π2 : Z → P3. If E2 is the exceptional divisor of π2 and E1 the strict

transform of the exceptional divisor of π1 under π2 then the following takes place.

Proposition 4.31. (i) The variety Z is a Mori dream space.

(ii) Let L1 = −KZ, and let L2 and D be two ample divisors on Z such that the

classes D, [L1], [L2] are linearly independent in N1(Z)R. Then the Okounkov
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body ∆Y•(X;D) is non-polyhedral with respect to any admissible flag (Y1, Y2, Y3)

such that OZ(Y1) = L1 and OY1(Y2) = L2|Y1.

Remark 4.32. This example is more satisfying than the previous one, because the

Picard number of a general choice of Y1 is equal to that of Z. At the same time, the

non-polyhedral shape of the Okounkov body persists under a linear change of the

flag or a change of the divisor D. Moreover, it would be interesting to see if there

exists an admissible flag on Z such that for any divisor D, the Okounkov body of

D is polyhedral. This will check the veracity of [34, Problem 7.1] for Mori dream

spaces, but not Fano.

Proof. (i) By Corollary 1.3.1 in [9], it will be enough to find an effective big dlt

divisor ∆ on Z such that −KZ − ∆ is ample. For this we only need to show that

−KZ is big and nef. Indeed, if this turns to be true, then there exists an effective

divisor E such that −KZ − εE is ample for any sufficiently small ε: we then set

∆ = δ(−KZ) + εE for any sufficiently small δ and ε.

Let’s show that −KZ is nef. We know that −KZ = 4H − E2 − E1, where H =

π∗(OP3(1)). The idea is to prove first that any base point of OZ(−KZ), if it exists,

is contained in π−1(C1 ∩ C2). Notice that π∗OZ(−KZ) = OP3(4) ⊗ IC1+C2 . Now

the idea is to show that both C1 and C2 are the complete intersection of a pair of

quadrics. Since Ci is an elliptic curve embedded in P3 by a complete linear series of

degree 4, the dimension of H0(OP3(2H) ⊗ ICi) is at least two: let P i
1, P

i
2 be two of

these quadrics. As Ci ⊆ P3 is nondegenerate and of degree 4, then it is the complete

intersection of Pi and Qi. Now the inverse image of each P1P2, P1Q2, Q1P2, Q1Q2 is

a section of OZ(−KZ), implying that the base points of OZ(−KZ) are included in

π−1(C1 ∩ C2).

In order to show that −KZ is nef, is enough to check that the intersection of −KZ
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with any curve contained in π−1(C1 ∩ C2) is positive. Set C1 ∩ C2 = {p1, p2, p3, p4}.

Let R1 and R2 be the class of a curve in the ruling of E1 respectively E2. For any i

the set π−1(pi) is then the union of two irreducible curves, one of class R2 and the

other of class R1 − R2. We have that R1 ·H = R2 ·H = R1 · E2 = R2 · E1 = 0 and

R1 · E1 = −1, R2 · E2 = −1. In particular, −KZ · R2 = 1 and −KZ · (R1 − R2) = 0

and hence −KZ is nef but not ample.

It remains only to check that −KZ is big. More explicitly, we show that the image

of P3 under the rational map

φ : P3 99K P4 , φ = [F : P1P2 : P1Q2 : Q1P2 : Q1Q2]

is three-dimensional. Here F is the polynomial defining the surface S ⊆ P3 and is

hence an element of the set H0(OP3(4)⊗ IC1+C2).

The idea is to show that the image of the restriction map φ|S of φ to S has

dimension two. For this notice that φ|S can be factored as follows

f ◦ (φ1 × φ2) : S 99K P1 × P1 99K P4

where f([a : b], [c : d]) = [0 : ac : ad : bc : bd] and φi = [Pi : Qi]. Because the image of

f has dimension 2, it is enough to show that φ1 × φ2 is generically surjective. Since

C1 is the locus where both P1 and Q1 vanish on S, the general fiber of φ1 is in the

class (2, 0, 0)− (1, 1, 0) = (1,−1, 0) and likewise the general fiber of φ2 is (1, 0,−1).

But (1, 0,−1) 6≥ (1,−1, 0) and (1,−1, 0) 6≥ (1, 0,−1) in N1(S), and φ1 and φ2 are

individually generically surjective, so φ1× φ2 is also generically surjective. Thus φ|S

has a two dimensional image.

It follows that either Im(φ) is three dimensional or Im(φ) ⊂ Im(φS). But, if p 6∈ S,

then F (p) 6= 0 so φ(p) 6∈ Im(φS), so the image of φ is three dimensional and −KZ is

big.
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(ii) For the second part notice that Y1 is the strict transform of a smooth K3

surface containing both C1 and C2. Since Y1 is linearly equivalent to S on Z, the

intersection numbers involving C1, C2 and H are the same on both S and Y1. Thus

C1, C2, and H are linearly independent in N1(Y1)R, and if V is the subspace they

generate, then for the same reason and from the fact that the cones Nef(S)R and

Eff(S)R are equal and dual we have

V ∩ Nef(Y1)R = V ∩ Eff(Y1)R = {xH + yC1 + zC2 | 4(x+ y + z)2 − 4y2 − 4z2 ≥ 0}.

Using this and the fact that D− εY1 is ample for any small ε > 0, it follows that the

intersection ∆Y•(Z;D)∩
(
[0, µ]×R2

)
, for some small µ > 0, has the same description

as the one given in Corollary 4.27. By Remark 4.28, the Okounkov body ∆Y•(Z;D)

is not polyhedral if the function

f(r) = sup{ s > 0 | (D − rY1)|Y1 − sY2 ∈ V ∩ Eff(Y1)R},

where r ∈ [0, µ], is not piecewise linear. Since D,L1 and L2 are linearly independent

in N1(Z)R and Y1 is a section of a big and nef divisor, then the restrictions D|Y1 ,

(−KZ)|Y1 and L|Y1 remain linear independent in N1(Y1)R. By Remark 4.28, because

of the shape of V ∩ Eff(Y1)R, the function f is not piecewise linear and this finishes

the proof.



CHAPTER V

Volume Functions

5.1 Introduction

In the last part of this thesis, our main concern is the volume function associated to

a (multigraded ) linear series. We start by studying the classical case, i.e. the volume

function associated to a complex projective variety. In §5.2, we give the definition

and present the basic properties of the volume function in this setup, following [33,

Section 2.2.C]. In §5.3 we prove the countability of the volume functions in the

classical case. In the same section we construct a four-fold whose volume function

is locally given by a transcendental formula. Using the same ideas as in Theorem

4.19, we also show the countability of ample, nef, big, and pseudo-effective cones for

all complex projective varieties. In the last section, §5.4, we deal with the volume

function of non-complete linear series. Here our main focus is to show that any

continuous, log-concave and homogeneous function is the volume function of some

multigraded linear series. This is in contrast with the classical case where we only

have countably many of them. The material in §5.3 and §5.4 is adapted from [28].

5.2 The volume function

In this section we give the definition of the volume of a Cartier divisor and discuss

its main properties.

95
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In the following, X will be a complex projective variety of dimension n and let D

be a Cartier divisor on X. Our main concern in this section will be an invariant which

originates in the Riemann-Roch problem. Recall that the Riemann-Roch problem

asks for the computations of the dimensions

h0(X,OX(kD)) =def dimC(H0(X,OX(kD)))

as a function of k. Our main focus lies on the asymptotic behavior of these dimen-

sions. In the most interesting cases they grow like kn. We introduce the following

invariant which measures this growth.

Definition 5.1 (Volume of a line bundle). Let X be a complex projective variety of

dimension n, and let D be a Cartier divisor on X. The volume of D is defined to be

the non-negative real number

volX(D) = lim sup
k→∞

h0(X,OX(kD))

kn/n!
.

Sometimes it will be preferable to use the language of line bundles. If L is a line

bundle on X, we write volX(L) for the volume of a divisor D with OX(D) ' L.

Remark 5.2 (Volume of ample Cartier divisors). Suppose D is an ample Cartier

divisor on X. Then by Asymptotic Riemann-Roch (see [33, Example 1.2.19]) we

have

h0(X,OX(kD)) =
(Dn)

n!
· kn +O(kn−1),

implying that whenever D is ample, volX(D) = (Dn).

Remark 5.3 (Characterization of bigness). By the definition of bigness, the integral

divisor D is big if and only if volX(D) > 0.

Example 5.4 (Positive integers as volumes). If m ∈ N is a positive natural number,

then it is not hard to find a variety X and an integral divisor D satisfying the

property that volX(D) = m.
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For this let f : X → P2 be a cyclic cover of degree m, ramified along some smooth

plane curve. Define OX(D) ' f ∗(OP2(1)), so that then the Cartier divisor D is

ample because the map f is finite. In this case, using Remark 5.2, we deduce

volX(D) = (D2) = deg(f) · (OP2(1)2) = m.

Example 5.5 (Integral divisors with small volume). If a ∈ N is a positive natural

number, then we give an example of a surface S and an integral divisor D on S with

the property volS(D) = 1
a
.

For this, let C = P1, L1 = OP1(1− a) and L2 = OP1(1), and set

S = P(L1 ⊕ L2) and OS(D) ' OS(1).

To compute volS(D), one reduces the problem to P1 as follows:

h0(S,OS(k)) =
∑

a1+a2=k

h0(P1,OP1(a1(1− a) + a2)) =

a1=k∑
a1=0

h0(P1,OP1(k − a1a)).

If [k
a
] is the round-down of k/a, then we have

h0(S,OS(k)) =

a1=[ k
a

]∑
a1=0

(k − a1a+ 1) =
k2

2a
+O(k)

and hence volS(OS(1)) = 1
a
.

We turn next to the variational properties of the volume. The following result

can be found [33, Section 2.2.C].

Theorem 5.6 (Variational properties of volume). Let X be a complex projective

variety of dimension n and let D be a big Cartier divisor.

(i) For any natural number p > 0,

volX(p ·D) = pn · volX(D).
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(ii) The volume of D depends only on the numerical class of D.

Remark 5.7. Although the original proof of these properties of the volume are al-

gebraic in nature, the emergence of Okounkov bodies highlighted their convexity.

Since the volume of an integral divisor is (up to a factor) the Euclidean volume of its

Okounkov body, by Theorem 4.12, these two properties follow from Theorem 4.10,

which tells us that similar properties hold for Okounkov bodies.

An important consequence of Theorem 5.6 is that one can extend the volume to

rational classes in N1(X)Q. Hence one obtains a homogeneous function of degree n

volX : N1(X)Q → R,

vanishing outside the big cone, Big(X)Q. It turns out that this function is continuous

and log-concave (see [33, Theorem 2.2.44] and [33, Theorem 11.4.9]).

Theorem 5.8. Let X be an irreducible complex projective variety of dimension n.

(i) The function ξ 7→ volX(ξ) on N1(X)Q extends uniquely to a continuous function

volX : N1(X)R → R.

(ii) The volume function satisfies the log-concavity relation

volX(ξ + ξ′)1/n ≥ volX(ξ)1/n + volX(ξ′)1/n

for any two big classes ξ, ξ′ ∈ N1(X)R.

Remark 5.9. The volume function is actually differentiable inside the big cone. This

follows as an application of the restriction theorem of Okounkov bodies, the proof

of which was given by Lazarsfeld and Mustaţă in [34, Theorem 4.26]. It was also

proved independently in [10], where Boucksom-Favre-Jonsson found a nice formula

for the derivative of volX in any direction, and used it to answer some question of

Teissier.
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Remark 5.10. In this general setup, this theorem can be found in [33]. On the

other hand, continuity of volX inside Big(X)Q, follows easily from the existence of

global Okunkov cone, Theorem 4.18. The same theorem and the Brunn-Minkowski

inequality imply also the log-concavity property for volumes of big classes.

5.3 Countability of volume functions for complete linear series.

In the previous section we noticed that almost all the features known about the

volume function follow from convex geometry arguments. This is in contrast with

the fact that the volume function is an algebraic geometry invariant. In this section

we want to discuss an aspect which happens only in algebraic geometry. Essentially

we prove that for all irreducible varieties there are only countably many volume

functions.

Theorem 5.11 (Countability of volume functions). There exist countably many

functions (fj : Rρ → R)j∈N such that for any complex smooth and projective variety

X of dimension n with Picard number ρ, there is an integral linear isomorphism

ρX : Rρ → N1(X)R

with the property that volX ◦ ρX = fj for some j ∈ N.

Remark 5.12. The countability of volume functions for all possibly singular irre-

ducible varieties follows easily from Theorem 5.11. Let X be an irreducible projective

variety and suppose µ : X ′ → X is a resolution of singularities of X. In this case it

is not hard to see that the pullback map

µ∗ : N1(X)R → N1(X ′)R

is linear and injective. Additionally, by [33, Example 2.2.49], we have

volX ≡ volX′ ◦ µ∗.
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Since the map µ∗ is defined by choosing dim(N1(X)R) integral vectors inside N1(X ′)R,

then the same statement as on Theorem 5.11 takes place for only complex varieties.

Remark 5.13. Since the function volX is the volume function of the global Okounkov

cone ∆Y•(X) ⊆ Rn × N1(X)R, the countability of volume functions follows from

Theorem 4.19, where we prove the countability of global Okounkov cones.

An interesting consequence of Theorem 5.11 is the fact that the set of all volumes

is countable. For this let’s introduce the following definition.

Definition 5.14 (The semigroup of volumes). Denote by

V = {a ∈ R+ | a = volX(D) for some pair (X,D)}

where X is a complex irreducible projective variety and D a Cartier divisor on X.

We call this set V the semigroup of volumes.

Corollary 5.15. The set V ⊆ R+ is a countable multiplicative semigroup with respect

to the product.

Remark 5.16. The fact that the set V is a multiplicative semigroup follows from the

Künneth formula.

For this take two pairs (X1, D1) and (X2, D2). Also, take a surface S as in Example

5.5 and a Cartier divisor D3 such that

volS(D3) =
n1! · n2! · 2!

(n1 + n2 + 2)!
,

where n1 and n2 are the dimensions of X1 and X2 respectively.

Now consider the pair

(X,A) = (X1 ×X2 × S, p∗1(D1)⊗ p∗2(D2)⊗ p∗3(D3)),
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where p1, p2, and p3 are the projection to each factor. Then by the Künneth formula

one has

h0(X,mA) = h0(X1,mD1) · h0(X2,mD2) · h0(S,mD3)

for all m ∈ N. This implies

volX(A) = volX1(D1) · volX2(D2)

and one deduces that the product puts a multiplicative structure on V.

Remark 5.17. It is not hard to see that all the positive rational numbers are contained

in V, i.e. Q+ ⊆ V. This follows by combining Example 5.4, Example 5.5 and the

multiplicative structure of V given by the product.

As one might suspect, the set of volumes V does not consist only of positive

rational numbers. In [33, Section 2.3.B] one finds an example of a quadratic irrational

volume. Inspired by this, we construct in the following an example whose volume

function is given locally by a transcendental function. Additionally, this example

shows that the set of volumes V also contains transcendental numbers, enhancing

the mystery surrounding this set.

Example 5.18 (Transcendental volume). Inspired by a construction of Cutkosky,

as explained in [33, Chapter 2.3], we give an example of a four-fold X whose volume

function is locally given by a transcendental formula.

Suppose E is a general elliptic curve and set Y = E ×E. Let f1, f2 be the fibers

of Y and ∆ its diagonal. Then by [33, Lemma 1.5.4] we have a full description of all

the cones on Y , i.e.

Nef(Y )R = Eff(Y )R = {x · f1 + y · f2 + z ·∆ | xy + xz + yz ≥ 0, x+ y + z ≥ 0}.

Let H1 = f1 + f2 + ∆, H2 = −f1 and H3 = −f2 and define the vector bundle

V = OE×E(H1)⊕OE×E(H2)⊕OE×E(H3).
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If X = P(V ) and π : X → Y is the projection map then we have the following

proposition:

Proposition 5.19 (Transcendental volume function). With the above notation there

exists an open set in Big(X)R, where the volume is given by a transcendental formula.

Remark 5.20. Let D be a Cartier divisor on X such that OX(D) ' OX(1). Then

the proof of Proposition 5.19 implies also that volX(D) is a transcendental number,

hence the semigroup of volumes V contains transcendental numbers.

Proof. As before let D be a Cartier divisor such that OX(D) ' OX(1). The charac-

terization of Cartier divisors on X and the fact that the function volX is continuous

and homogeneous on Big(X)R, imply that it is enough to consider integral divisors

of the form

A = D + π∗(L′)

where L′ = c1f1 + c2f2 + c3∆ is a Cartier divisor on Y with (c1, c2, c3) ∈ N3. Now,

we can describe the volume as

volX(A) =

∑
a1+a2+a3=m h

0(Y,mL′ + a1H1 + a2H2 + a3H3)

m4/24

where the sum is taken over all natural numbers ai.

The idea is to use Riemann-Roch on Y , which by Kodaira vanishing says that for

an ample Cartier divisor L we have

h0(Y, L) =
1

2
(L2).

We claim that in the sum above only the ample divisors L = mL′+a1H1+a2H2+a3H3

count. If L is not nef, then it has no sections and hence doesn’t count in the sum.

When L is nef but not ample, the description of the nef cone of Y implies that

(L2) = (mL′ + a1H1 + a2H2 + a3H3)2 = 0.
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Hence we have at most 2m-tuples (a1, a2, a3) ∈ N3 with a1 + a2 + a3 = m, for which

the integral divisor is nef but not ample. Now for each one of them we have the

bound:

h0(Y, L) = h0(Y, (mc1 + a1 − a2)f1 + (mc2 + a1 − a3)f2 + (mc3 + a1)∆)

≤ h0(Y, (mc1 + a1)f1 + (mc2 + a1)f2 + (mc3 + a1)∆) ' Cm2

for large m ∈ N, where the latter part follows from Riemann-Roch as the divisor is

ample, because (c1, c2, c3) ∈ N3. This tells us that nef but not ample divisors do not

count in the computation of the volume, and by Riemann-Roch we have

volX(A) = lim
m→∞

4!

2m4

∑
a1+a2+a3=m

((mc1+a1−a2)f1+(mc2+a1−a3)f2+(mc3+a1)∆))2,

where the sum is taken over all ample divisors. Now write xi = ai/m and make the

following change of coordinates T : R3 → R3:

W (c1) = c1 + x1 − x2,W (c2) = c2 + x1 − x3,W (c3) = c3 + x1

Then we can write our volume as

volX(A) =

∫
Γ(c1,c2,c3)

(W (c1)f1 +W (c2)f2 +W (c3)∆)2

where the set Γ(c1, c2, c3) is the intersection of the image of the triangle with the

vertices (1, 0, 0), (0, 1, 0), (0, 0, 1) through the map T and the nef cone Nef(Y )R. For

example, when c1 = c2 = c3 = 1/4 this set is represented in Figure 5.1. The shape

of Γ(c1, c2, c3) and the use of Maple enables one to show easily that vol(A) is given

by a transcendental formula in the ci.

Countability of ample and nef cones. The question of countability, which was

proved for volume functions and Okounkov bodies, can be asked also for all the cones



104

Nef(Y)r

Γ(¼,¼,¼)

Figure 5.1: Intersection of Γ(c1, c2, c3) with the nef cone Nef(Y )R

of projective varieties. We end this section, by proving the counability of nef cones

for all such varieties. For this we will use the same construction we applied to the

proof of the countability of Okounkov cones in Theorem 4.19.

Theorem 5.21 (Countability of nef cones). There exists countably many closed con-

vex cones Ai ⊆ Rρ for i ∈ N, such that for any complex smooth and projective variety

X of dimension n with Picard number ρ, there is an integral linear isomorphism

ρX : Rρ → N1(X)R

with the property that ρ−1
X (Nef(X)R) = Ai for some i ∈ N.

Remark 5.22 (Countability of nef cones for irreducible varieties). As in Remark 5.12,

the countability of nef cones for possibly singular varieties follows from Theorem

5.21.

Let X be a projective variety and suppose µ : X ′ → X is a resolution of singu-

larities of X. Then the pullback map

µ∗ : N1(X)R → N1(X ′)R
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is linear and injective and has the property that Nef(X)R = (µ∗)−1(Nef(X ′)R). Since

the map µ∗ is defined by choosing dim(N1(X)R) integral vectors inside N1(X ′)R, we

deduce the countability of nef cones for all projective varieties.

Remark 5.23 (Countability of ample, big and pseudo-effective cones). If one consider

the finite real vector space N1(X)R, for some irreducible projective variety X, with

the usual topology then we know that the ample cone Amp(X)R is the interior of

Nef(X)R. Thus the same statement as Theorem E is valid for ample cones. Also,

the big cone has the description

Big(X)R = {ξ ∈ N1(X)R | volX(ξ) > 0}.

Thus using Theorem 5.11 the same statement can be deduced for big cones. As for

the pseudo-effective cone, notice that it is the closure of the big cone.

Proof of Theorem 5.21. As in the proof of Theorem 4.19, let Y be the product of ρ

projective spaces P2n+1. Then any smooth projective variety X of dimension n with

Picard number ρ can be embedded in Y as in (4.2) such that this embedding X ⊆ Y

has the property that the restriction map ρX : Rρ → N1(X)R is an integral linear

isomorphism. This embedding forces the multigraded Hilbert function of X, PX , to

be a polynomial with rational coefficients and degree equal to dim(X) .

Thus we have countably many multigraded functions which appear as the multi-

graded Hilbert function of a smooth projective variety of dimension n and Picard

number ρ. Using the representability of the multigraded Hilbert functor (see [22,

Corollary 1.2]), there exist countably many flat families such that any smooth and

irreducible variety X of dimension n with Picard number ρ is a fiber in at least one

of these families.

Fix one of these families: φ : X → T . To prove the countability of nef cones in
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this family we will use the same ideas as in the proof of Theorem 4.19. So we can

shrink T such that for all t ∈ T the fiber Xt is smooth, irreducible and reduced.

Also we can assume that the map φ is smooth. Finally, using Proposition 4.23, the

restriction map

ρXt : Rρ → N1(Xt)R

is an injective integral linear morphism for all t ∈ T .

Now, we can proceed and prove Theorem 5.21. For this denote by

At := ρ−1
Xt

(Nef(Xt)R),

for each t ∈ T . We have to show that the set (At)t∈T is countable. It is enough to

show that there exists a subset F = ∪Fm ⊆ T consisting of a countable union of

proper Zariski-closed subsets Fm & T , such that At is independent of t ∈ T \F . This

reduction will imply Theorem 5.21, as one can argue inductively on dim(T ).

The set of all cones (At)t∈T has the following property: if to ∈ T , there exists a

subset ∪Fm
t0

& T , which does not contain t0, and consists of a countable union of

proper Zariski-closed sets such that

(5.1) At0 ⊆ At, for all t ∈ T \ ∪Fm
t0
.

To verify this, choose any element D ∈ At0 ∩ Zρ. By [33, Theorem 1.2.17] on the

behaviour of nefness in families, there exists a countable union Ft0,D ⊆ T of proper

subvarieties of T , not containing t0, such that D ∈ At, for all t outside of Ft0,D. As

Ato is a closed pointed cone, the set Ato ∩ Zρ is countable and generates Ato as a

cone. Thus the cone At0 is contained in At for all t not included in any of the subsets

Ft0,D with D ∈ At0 ∩ Zρ. Since the base field is the complex numbers, the union of

all the Ft0,D remains a countable union of proper subvarieties of T .
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Now, denote by A := ∪t∈TAt. To finish the proof is enough to find a closed point

t ∈ T with At = A. For this, first note that A ⊆ Rρ satisfies the second countability

axiom, i.e. it has a countable base. So by [42, Theorem 30.3] there exists a countable

set {ti ∈ T | i ∈ N} such that A = ∪i∈NAti . By (5.1), for each i ∈ N there exists a

countable union of proper Zariski-closed subsets Fi & T with the property

Ati ⊆ At, for all t ∈ T \ Fi,

and as before ∪Fi remains a countable union of proper Zariski-closed subsets. This

proves Theorem 5.11 in the case of nef cones because for each t ∈ T \ ∪Fi and i ∈ N

we have Ati ⊆ At and hence At = A.

5.4 Volume functions of non-complete linear series

In this section we will study the volume function of a multigraded linear series.

For this, let X be an irreducible projective variety and let D1, . . . , Dp be Cartier

divisors on X. As before write mD = m1D1 + . . . + mpDp for m = (m1, . . . ,mp) ∈

Np and suppose we are given a multigraded linear series W• on X with respect to

D1, . . . , Dp, as in Definition 4.14. In this case we can define the volume function of

W• as follows:

Definition 5.24 (Multigraded volume function). With the notations above, then

define the volume function of W•, volW• : Np → R+, where

volW•(m) = lim sup
k→∞

dimC(Wk·m)

kn/n!

for all m ∈ Np.

Remark 5.25. This definition is a natural extension of the one given in the classical

case. By [34, Lemma 4.6] the pseudo-effective cone Eff(X)R ⊆ N1(X)R is pointed,
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so one can choose Cartier divisors D1, . . . , Dρ on X such that they form a Z-basis

of N1(X) and every effective line bundle is numerically equivalent to an N-linear

combination of the Di-s. Define the integral linear isomorphism

ρX : Rρ → N1(X)R, where ρX(ei) = Di.

With this in hand, consider the complete multigraded linear series V•, where we

define Vm = H0(X,OX(mD)) for each m ∈ Nρ. Then by definition for any m ∈ Nρ

we have (volX ◦ ρX)(m) ≡ volW•(m) and this defines the volume function of X as

volX vanishes outside the cone ρX(Rρ
+).

In the following we will prove Theorem F, and show that in fact any function

as in the theorem appears (modulo compressing) as the volume function of some

multigraded linear series on Y = P1 × . . .× P1 (p times).

Theorem 5.26. Let K ⊆ Rp
+ be a closed convex cone with nonempty interior and

suppose f : K → R+ is a continuous function that is non-zero, log-concave and

homogeneous of degree p in the interior of K. Then there exists a multigraded linear

series W• on Y ,

Wm ⊆ H0(Y,OY (m))

for any m ∈ Np having the property that supp(W•) = K and volW• ≡ k · f in the

interior of K, for some positive constant k.

Remark 5.27. Notice that each function as in Theorem 5.26 can be constructed from

a continuous concave function g : B → R+, where B ⊆ Rp−1
+ is a bounded convex

body. If we choose an affine hyperplane H ⊆ Rp
+, not containing the origin, with the

property that H ∩ C = B is a bounded convex body, then the function

g := p
√
f : B → R+
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has the properties needed. The same construction works backwards and in order to

find wild functions as in Theorem 5.26, one can focus on continuous and concave

functions. For example, one can take a negative, bounded function defined on a

closed interval, which is nowhere differentable, and integrate it twice to obtain a

continuous, concave and nowhere three times differentiable function.

The main idea of the proof of Theorem 5.26 is to use Okounkov cones for multi-

graded linear series introduced in Definition 4.16. For this, we will use the construc-

tion from Example 4.17. So let Y = P1 × . . . × P1 (p-times) and pick on Y the

following flag

(5.2) Y• : Y0 = Y ⊇ Y1 = [0 : 1]×P1× . . .×P1 ⊇ . . . ⊇ Yp = [0 : 1]× . . .× [0 : 1].

Let V• be the complete multigraded linear series, with Vm = H0(Y,OY (m)) for all

m ∈ Np. We showed in Example 4.17 that the Okounkov cone of V• with respect to

Y• has the following description

∆(V•) = {(z1, . . . , z2p) | 0 ≤ zi ≤ zp+i for all i = 1, . . . , p} ⊆ Rp
+ × Rp

+.

With this in hand we can proceed to prove Theorem 5.26. First we show that any

nonempty closed convex cone ∆′ ⊆ ∆(V•) is the Okounkov cone of some multigraded

linear subseries W• ⊆ V•. This will be done in the following proposition:

Proposition 5.28. If ∆′ ⊆ ∆(V•) is a closed convex cone with non-empty interior,

then there exists a multigraded linear subseries W• ⊆ V• whose Okounkov cone with

respect to Y• is ∆′. Moreover, if π2 : Rp
+ ×Rp

+ → Rp
+ is the projection on the second

factor, then π2(∆′) = supp(W•), and for any m ∈ int(π2(∆′)) ∩ Np
+ we have

volRp
(
∆′ ∩ (Rp

+ × {m})
)

=
1

p!
· volW•(m),

where the left side is the standard Euclidean volume in Rp.
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Remark 5.29. Proposition 5.28, says that the function

volW• : int(supp(W•))→ R+

is the volume of slices of the cone ∆′, hence it is continuous, log-concave and ho-

mogeneous of degree p in the interior of supp(W•). On the other hand, since W• is

included in V•, the function is bounded, i.e. for some k1 > 0

volW•(v) ≤ k1||v||1/p, for all v ∈ supp(W•).

The concavity of (volW•)
1/p, implies that that the function volW• satisfies a Hölder

condition of degree p, [49, Theorem 1.5.1]:

|volW•(v)− volW•(w)| ≤ k2||v − w||1/p,

for all v, w ∈ int(supp(W•)). Hence the boundedness and the Hölder condition imply

that the function volW• can be extended continuously on the whole support of W•.

Proof. For any m ∈ Np, let

Γm(V•) = Γ(V•) ∩ (Np × {m})

and set

Γ′m = ∆′ ∩ Γm(V•).

Now for each m ∈ Np let Wm be the vector space generated by the set of monomials

{xn1
1 · ym1−n1

1 · . . . · xnpp · ymp−npp | (n1, . . . , np,m1, . . . ,mp) ∈ Γ′m }

where {xi, yi} represent the coordinates of the i-th factor in Y . As ∆′ is a cone and

Γ(V•) is a semigroup, it follows that

Γ′ =
⋃

Γ′m ⊆ Np × Np



111

is also a semigroup. Furthermore, by construction, we have

Wm · Wn ⊆ Wm+n,

for all m,n ∈ Np. Hence W• = (Wm)m∈Np is a multigraded linear series. It remains

to show that ∆′ is the Okounkov cone of W• with respect to Y•. By construction,

the multigraded semigroup of W• is Γ′, hence it is enough to prove that Γ′ generates

∆′ as a closed convex cone. For this, it suffices to show that ∆′ is generated by the

set ∆′ ∩ (Np × Np). Since ∆′ is a pointed cone, one can choose an affine hyperplane

H, not containing the origin, such that the set ∆′ ∩ H is compact and generates

∆′. Because ∆′ has a nonempty interior, then the same can be said about ∆′ ∩H.

Therefore the set of rational points is dense inside it and generates ∆′ as a closed

convex cone. Thus ∆′ coincides with the Okounkov cone of the multigraded linear

series W• with respect to the admissible flag Y•.

We end the proof by noticing that because ∆′ is the Okounkov body of the multi-

graded linear series W•, Lemma 4.6 yields

dim(Wm) = #
(
∆′ ∩ (Np × {m})

)
and so by the definition of the Euclidean volume the last statement also follows.

By the previous proposition, in order to finish the proof of Theorem 5.26, it

remains to show that any function as in the statement of the theorem is the volume

function of some cone ∆′ ⊆ Rp
+ × Rp

+, defined as the Euclidean volume of the slice

∆′ ∩
(
Rp

+×{m}
)

for any m ∈ Rp
+. For lack of a suitable reference we give a proof of

this fact.

Proposition 5.30. If f : K −→ R+ is a function as in Theorem 5.26, then there

exists a closed convex cone in C ⊆ Rp
+ ×K with a nonempty interior such that

f(v) = volRp({w ∈ Rp
+ | (w, v) ∈ C})
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for all v ∈ int(K).

Remark 5.31. In the statement of Theorem 5.26 we say that a function f is pro-

portional to the volume function of a multigraded linear series because the cones in

Proposition 5.28 are included in ∆(V•) and therefore any cone C ⊆ Rp
+ ×Rp

+ has to

be scaled in order to satisfy this condition. This in turn scales the volume function

of the original cone.

Proof. In order to ease the presentation, for any v ∈ K we define

r(v) := p

√
f(v)/Cp

where Cp is a positive constant chosen such that the volume of a ball with this radius

will be f(v). The idea is to find first a linear map g : Rp → Rp with the property

that for any vector v ∈ K the ball

Bg(v)(r(v)) = {w ∈ Rp | ||w − g(v)|| ≤ r(v) }

is contained in Rp
+. To find this map, use the fact that K is a pointed cone and first

choose a linear form l, strictly positive on K \ {0}. Now the function p
√
f(v)/l(v)

is homogeneous of degree 0 and continuous on K and hence bounded above. So

choosing an appropriate positive constant k, the linear map g(v) = k(l(v), . . . , l(v))

satisfies the property needed. Now the cone C, we are looking for, is the closure of

the following open set

C ′ = {(w, v) ∈ Rp
+ × int(K) | ||w − g(v)|| < r(v) }.

It remains to show that C ′ is an open convex cone. As f is homogenuous of degree

p in the interior of K, then C ′ is an open cone contained in Rp
+ × Rp

+ such that

volRp{w ∈ Rp
+ | (w, v) ∈ C} = volRp(Bg(v)(r(v))) = f(v)
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for any v ∈ int(K). To prove the convexity of the cone C ′, let (w1, v1), (w2, v2) ∈ C ′

be two points and denote (w3, v3) = (w1 +w2, v1 +v2). Using the fact that g is linear

we obtain

||w3 − g(v3)|| ≤ ||(w1 − g(v1))||+ ||(w2 − g(v2))|| ≤

≤ p

√
f(v1)

Cp
+ p

√
f(v2)

Cp
≤ p

√
f(v3)

Cp

where the first inequality is the triangle inequality, the second follows from the fact

that (wi, vi) ∈ C ′ for i = 1, 2, and the last follows from the log-concavity of f . This

tells us that (w3, v3) ∈ C ′ and therefore C ′ is convex. This completes the proof of

the proposition.
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