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On extending the scope of a bounding technique for closed

queueing networks

Abstract

Queueing network models are widely used to analyze the
performance of automated manufacturing facilities and
computer systems. These models aid the
designers/operators of the system in evaluating the
impact of various alternate configurations on the
performance of these systems. In many instances, however,
the exact analysis of these networks for the measures of
performance may not be necessary; some bounds on the
performance measures may be adequate. This has motivated
research on obtaining bounds on performance measures, and
a number of techniques have recently been developed.
These techniques have generally obtained bounds on the
throughput for networks with a single class of customers,
where each node is either a single server fixed-rate
type or is a delay (infinite server) type.

In this paper we extend the scope of these techniques to
networks where non-delay nodes are allowed to have some
service rates which depend on the number of jobs present
at the nodes. In addition, efficient means are developed
for calculating bounds on the mean queue lengths forming
at the nodes in these networks.



1. Introduction:

The performance of complex systems such as flexible manufacturing systems
(FMS) are often evaluated using queueing networks. Several studies using such
analytical models of FMS have been made in the past [12,15,16]. These models aid
the FMS designers in predicting the behaviour of these systems under different
configurations. In the FMS context, closed queueing network models are usually
preferred over open queueing network models as being more realistic [16],
although open models are easier to analyze. The exact solution of these queueing
networks is, however, infeasible in general unless certain assumptions are made.
These assumptions give rise to a certain class of networks known as Product Form
(PF) networks, or separable networks. For these PF networks, it is possible to
obtain equilibrium performance measures with relatively less computational
effort.

Quite often, exact solutions of these queueing networks may not be needed.
One such situation arises in the design phase of a system, where the workload
parameters are themselves not usually known with reasonable accuracy. Similarly,
for the case when many alternate configurations are to be evaluated, obtaining
exact solutions may be unnecessary. In such cases, one would like to obtain
approximate solutions fairly quickly.

As an example, consider a flexible assembly system where components to be
assembled move from one workstation to another, undergoing some operations at
each point. Suppose that each workstation would operate-propertionately faster
depending on the number of assembly operators present at a station. Assuming,
for this simple example, that all the available operators are equally capable of
working at any station, the task of the supervisor here could be the assignment
of additional operators to each workstation at the start of each shift, so as to
maximize the throughput of assembled parts. In such a situation, the presence of

a technique which can obtain quick, albeit approximate, estimates of throughputs



for several operator assignments would be very helpful to the supervisor.
Needless to say these approximate solutions should take relatively little

time to compute and the resulting errors in approximation should preferably be
bounded.

Recent years have witnessed a substantial amount of work on developing
techniques for bounding the performance measures of closed queueing networks
(3,5,7,11,13,14,17,19]. These bounding techniques require the PF assumption and
they usually consider networks with a single class of customers where each node
in the network is either single server fixed-rate type or is a delay (infinite
sérver) type. The bounds obtained are for the cycle time (the mean system
residence time) of a job, or alternately, the throughput of the system (number
of job completions by the system in unit time).

In this paper, it is shown how the scope of these bounding techniques can
be extended in two ways: First, bounds are abtained on the cycle time/throughput
of PF networks where nodes exhibit a certain kind of load dependent behaviour.
Specifically it is required here that the service rate at these nodes is a non-
decreasing function of the number of customers present at the nodes. Examples of
such nodes, apart from delay nodes, are multiple server nodes, and flow-
equivalent nodes [2].

Secondiy, an effective means of obtaining bounds on the mean queue lengths
at the nodes in a PF network is also demonstrated. This method uses the
Convolution algorithm [1] and a bounding technique [13] which obtains

successively improving bounds (SIB) on the cycle time/throughput.

Previous work:

As noted before, work on obtaining bounds has usually been restricted to
networks with fixed rate and delay nodes. The Balanced Job Bounds [19] (BJB)

technique obtains a set of simple bounds on the cycle time. However, the bounds



obtained heré can be quite loose. A bounding scheme based on the Mean Value
Analysis (MVA) algorithm [10], is the technique due to Kriz [7]. However, these
bounds are effective only when the network population becomes large, at which
point the network begins to behave like an open network. The SIB technique, The
Performance Bound Hierarchies [5] (PBH), and the Generalized Quick Bounds [17]
(GQB) are all also bhased on the MVA algorithm. These techniques obtain a
sequence of increasingly tighter bounds at the expense of increased
computational effort. The GQB technique cannot handle delay nodes and does not
appear to perform significantly better than the Balanced Job Bounds. The PBH
technique produces a sequence of improving bounds which converge to the exact
solution, but it requires considerable computational effort to produce tighter
bounds, as it uses an iterative algorithm. The SIB technique, on the other hand,
obtains closed form expressions for the bounds and is thus much easier to
evaluate than the PBH bounds. Further, the SIB technique produces bounds which
are usually tight for all population values.

Recently, some results have been presented in [3,11,14] which obtain a
lower bound on the throughput of networks with multiserver nodes. These
techniques depend, in turn, on bounds obtained for a network consisting only of
fixed rate and delay nodes. These approaches are reviewed in section 3.

The outline of the rest of this paper is as follows: In section 2 the SIB
technique is extended to include networks where non-delay nodes are allowed to
exhibit a limited form of load dependent behaviour. Section 3 then illustrates
how this technique can then be applied to networks with some more general load
dependent behaviour, such as networks with multi-server nodes. Section 4
presents methods for obtaining effective bounds on the mean queue lengths

forming at the nodes in networks consisting only of fixed rate and delay nodes.



2. Bounds for networks with a class of load dependent nodes:

2.1 Preliminaries:

Consider a closed PF queueing network with M nodes and a customer
population N. We adopt the following notation:
T : mean value of service demand by a customer per visit to node m
v : mean number of visits to node m to service a typical request
um(n) : service rate at node m when n customers are present at the node

pm(iIN) : marginal queue size probability of i customers at node m with
- network population N

Qm(N) : mean queue length at node m with network population N
w;(N) : mean residence time at node m for a request at network population N

W(N) : the cycle time for a typical request (the sum of mean residence
times at all nodes) at network population N

AN : throughput of the network with network population N

Each node in the network is allowed here to display some limited type of
load dependent behaviour. Specifically, for n 2 0, this has the form

up(n) = n/(ay + bpen); ap, by 2 0. (2.1)
It is implicitly assumed here that am+bm > 0. We choose to term these nodes as
nodes with a Parametrized Rate function or PR nodes. In general, for the
networks considered here, each node m is thus associated with a set of four data

parameters: an, b and v_. Note that if ag = 0, equation (2.1)

m "m’ m

characterizes the behaviour of a fixed rate node, and if bm = 0, this equation

characterizes the behaviour of a delay node. For different values of a, and bp,

a variety of service rate functions can be generated as indicated in Figure 2.1.
In the following discussion, unless otherwise specified, the index for any

summation, is over the range 1,..,M. We also implicitly assume that we are

considering network populations of N 2 2.



Figure 2.1

The mean residence time at any node in the network can be written as [10]:
X N

Wa(N) = vpeT, 21(n/um(n))-pm(n—1|w-1). (2.2)
N=

From equations (2.1) and (2.2), we can write

N
*
W (N) VoTn ) (ap + byen)epy(n=1|N-1)
n=1
= I+ Ly + LeQ(N-1), (2.3)
where
Loy = bV o (2.4a)
and
In = ap Ve T, (2.4Dp)

The values Lm and Im are, for convenience, referred to as the 'fixed rate' load,

and the 'delay' load at node m. The cycle time, W(N), is then

WON) = DLy + DI+ ] LpQp(N-1). (2.5)
m m m
Let

Pm = L/ (LLg*ry)), (2.6a)
m

o = I/(TLgry)), (2.6b)
m

em = pm + Umt (2.6c)



and define a sequence of terms {Si}, i=1,2,.. by

A R (2.7)
m

The expression for the cycle time given by equation (2.5) is then rewritten as
W) = (D)) (1 + e(N-1)), (2.8)
m
where

oK) = L ppeQp(K), K20, (2.9)
m

For notational convenience, set
D = 1+ ¢(K). (2.10)
In the expression for the cycle time given by equation (2.8), the unknown

term is ¢(N-1). A bound on ¢(N-1) then directly gives a bound on the cycle time.

2.2 The bounding technique:

The mean queue length at node m at population K 2 0, is given by Little's
rule [9] as:
* *
Q(K) = Awp(K) = Kup (K)/W(K). (2.11)
Hence, from equations (2.3),(2.8),(2.9) and (2.11), we express ¢(N-1) as

§(N-1) = § p (N=1)ew (N-1)/W(N-1)
m

$(N-1) = (N-1)S, + =---- - Y'(§-2), (2.12)
Dy-2
where
YT(N-2) = ] p2:Q (N-2) - S,0(N-2)). (2.13)
m
Let
i
Ag,i = T Ag-y- (2.14)
j=0

Theorem 2.1 first establishes an expression for the mean queue length forming at



a node with network population N in terms of the throughputs at populations 1

through N.

Theorem 2.1:

The mean queue length at a node m is given by

Qu(N) = Qu(N) « 8 /pp, (2.15)
where
- N
Q) = L Lpeay i (2.16)
i=1 ’
Proof:

From equations (2.11) and (2.3), for K > 1,

QuK) = Age(Lp + Ip) + AgeL Qp(K-1),
and by a repeated application of the above expression for Qm(K), for N2 K > 1,

Q (N) = (L + I )ehy *+ oou + (Lo + I )-LN"20p + LNy Q. (1)

m m m’ °N e m m’ “m N,N-2 m N,N-2 ™m :
Noting that Qu(1) = A;wr(1) = A;(Ly * I,), we can write

N
i-1

i
QW) = (Ly + Ip) 121 Lm *My,ie
The result follows by noting that

(Lm + Im)/Lm = 8,/Pp. u

A set of simple upper and lower bounds on the cycle time is now
established. These are termed level 1 bounds analogous to [13]. These bounds
are obtained by noting that in equation (2.12), Y'(N-2) 2 0. To obtain these

bounds, we need the following:

Definition 2.1:

Given a sequence X = {xm}, m=1, ..., M, such that xy 2 xy_q 2 ...
2 X, 2 0, then a sequence Y = {ym}, m=1, .., M, is said to have a Positive
Correspondence with X, denoted as Y(PC)X, if for some k, 1 S k S M,

YM 2 eee 2V 205 Ypoqs ooy ¥q SO



Lemma 2.1:
Given sequences U = {up}, X = {x,}, ¥ = {y }, m=1, .., M, such that
(@) u, 20, m=1, ..., M,
(b) Xy 2 ...2% 20,
(e) Y(PC)X,

() Juy,st,
m

(e) Z UV 2 0,
m

then

L Xpunyp 2 (L xgup) (2 upy). (2.17)
m m n
A proof of Lemma 2.1 is given in Appendix A.

Note that if we let @ = {Qu(+)}, and p = {p }, m = 1,..,M, then Q(PC)p.

=6, and y, =Q (*), and noting

m

In equation (2.17), setting Xp = Py U m

that em-am(K) =.pm-Qm(K) we get the following result which we state as

Theorem 2.2:

I 020, (K) 2 (I ppp) I ppQq(K). (2.18)
m m n

From Theorem 2.2, we can obtain a set of upper and lower bounds on DN-1
(and hence on the cycle time) which we term as the level 1 SI bounds. The bounds

are expressed as Théorem 2.3. A proof of Theorem 2.3 is given in Appendix B.

Theorem 2.3:

Let u be the node such that Lu = max {Lm}. Then the level 1 SI bounds

m
on Dy_4 are given by

2N-1 s Dy-1 s DN-1' (2.19)
where

Dy-y = 1+6, (2.19a)



and

By; = 0.5[1 + ¥ + SQRT((¥-1)2 + 1g)], (2.19b)
with

¥ = (N-1)p, (2.19¢)

£ = (N-1)8,. (2.194)

Remark: If we set Im =0 for m=1,..,M, we have a network of fixed rate nodes.
The Balanced Job (BJ) Bounds technique can obtain bounds on the term DN-1 in
this case. These bounds require computation of the terms Lu and L,, where L, =
Z Lm/M, and these computations involve a total of about 2M operations. Computing
the upper and lower BJ bounds on DN~1 then involves 2 more arithmetic operations
for a total of 2M + 2 operations. Now consider the level 1 SI bounds on DN-I
obtained using Theorem 2.3: These bouhds require computation of the terms 82 and
Py which involves a total of 3M arithmetic operations; once these terms are
obtained, computing QN-I requires 2 more operations, and computing EN-1 requires
about 9 more operations for a total of 3M+11 operations. Hence the level 1 SI
bounds on DN-1 here require about M+9 additional operations over that needed by
the BJ bounds. However, for this case it is easily shown [13] that the level 1
upper and lower SI bounds are both tighter than the corresponding BJ bounds.

Further, the BJ Bounds technique do not handle delay nodes efficiently.

a
Define
0.0 = 82, (2.20&)
and
i-1
a; = Sy —'208i+1-j ay, 1>0. (2.20Db)
Ja

The term Y'(N-2) can now be expressed as the sum of a sequence of non-
negative terms involving the throughputs at populations N-1,..,1, and the terms

Ay, i 2 0. This gives an expression for the term Dy-1 which is expressed as



Theorem 2.4. This theorem makes a statement analogous to a similar statement
proved in [13] and its proof is omitted here.
Theorem 2.4:

The term DN_1 can be written as:

N=2 (N-2)(N-3) (N-2)..1
Dy-q =1+ (N-1)°(SZ + m=mmay + mmmemm—oe- P “N-z)' (2.21)

Dy-2 Dy-2°Dy-3 Dy-2+-Dy

Equation (2.21) for DN-1 is used to obtain a sequence of increasingly tighter
lower bounds which we term as Successively Improving bounds of higher levels.
This is achieved by considering more and more terms from the expression for DN-1
in-the bound. A level 1 lower SI bound uses the first two terms in the
expression. For example, a level 2 lowgr SI bound, 25_1, makes use of the first
three terms from the above expression for DN_1 and is obtained from

Dy—y 2 1+ (N=1)+(S, + (N-2)a;/Dy_;.

Solving this quadratic in DN-1 gives:

D, = 0.5:(1 + (N-1)ag + SQRT(T1)), (2.22a)
where
T = ((N-Dag + 1)2 + 4 (N-1)(N-2)a,. (2.22b)

Now, a sequence of upper SI bounds is obtained by noting that from

equations (2.15) and (2.16) for the mean queue lengths, we can write

I p2Q,(K) = py0(K) = I (py=pp)0pQp(K)
m m

= pu¢(k) - (k/Dk_1)(puSZ—S3) - (k/Dk_t‘ )z (pu-pm)péqm(k"1),
m

(2.23)
and so on for an expression with up to k terms.

Hence, including the first two terms from the above expression for Zp%Qm(k)
in the expression for Y (N-2) as given by equation (2.12), we get

SN-1)  (N-1)(N-2)
PN-1 81+ (DSp & (N-1)(py-5,) ----m- - - === (pyS5-53).
Dy-1 DN-2 Dy-3

10



o (N-1) (N=1)(N-2)
S 1+ (N=1)5, + (N=1)(p,=8,) ====-- - mmimm—ees (pS57S3).

Oyt Dy-1 D=3
Here, BN-3 is given by the level one upper bound on DN-3 (equation 2.19b).
Solving this resulting quadratic in Dy_; gives the level two upper SI bound.

The level two bounds require a little more than 3M extra operations over
that required by the level one SI bounds. The increase in computations here is
mainly due to the calculation of the term S3 which requires about 3M operations.

Thus a smooth tradeoff between accuracy and computational effort is
achieved by these bounds. The use of these bounds is illustrated by a few

examples in this and the following sections.

Computational Remark: Suppose the network has a number of delay nodes. Then,

in order to compute the exact cycle time/throughput, these nodes can be replaced

by a single delay node whose load is the sum of the load at each delay node.

Example 2.1:

This is a network with 15 nodes. Table 2.1 gives the mean service time
demand per visit, T and the parameters aps and bm for each node. Note that
nodes 1 through 5 are fixed rate nodes, and node 6 is a delay node. The mean
number of visits to each node, Ve is assumed as 1.

The throughputs were computed exactly, and also evaluated by the bounding
technique using the level 5 SI bounds, for populations ranging from 1 to 50.

Table 2.2 gives the results of these evaluations for some population values.

Node 1 2 3 4 5 6 7 8 9 10
Mean Tine %0 3 30 30 20 M 6 10 0 10
Demand

e o o o0 0o 0 1 .50 .50 .o .3
ey 1 1 11 1 0 .50 .50 .60 .65

- - - - - - - = - - - - - - - - - - - - - - - - - - - — - - - - - — - - - - - - - - - - - - - - -

Table 2.1 Data parameters for example 2.1

"



Population Throughputs

Values Exact Lower Bound Upper Bound
10 0.0128 0.0127 0.0128
20 0.0173 0.0169 0,0174
30 0.0193 0.0187 0.0196
40 0.0203 0.0197 0.0208
50 0.0209 0.0202 0.0217

Table 2.2: Throughput bounds for example 2.1.uj O

3. Bounds for networks: nodes with non-decreasing service rates:

In this section, we consider networks where load dependent nodes (other
than the PR nodes we considered in section 2) have service rates which are
non-decreasing functions of their queue lengths. Examples of such nodes are
multiserver nodes and flow equivalent service centers. When these nodes are
preseht in a queueing network, exact solution algorithms require 0(MN2)
computations to obtain the performance measures. In this section we develop
bounds on the throughput/cycle time for these networks which take O(M)
computations.

Suppose it is desired to obtain a throughput bound for a given queueing
network T. We now consider a new queueing network T' which is constructed as
follows: for each PR node, m, in T we create a PR node in T' which has the same
values for the fixed rate load, Lo and the delay load, Im.(refer equations
(2.4a) and (2.4b). However, each load dependent node which has a non-PR
behaviour in T is replaced by one or more PR nodes in Tt Suppose the

replacement is made such that the throughput of 7' can be guaranteed to bound

the throughput of T. for the range of populations being considered. Then, using

12



the techniques developed in section 2, a lower bound on the throughput T' can be
obtained with O(M) computations and this gives a lower bound on the throughput
of network T. In the same manner, an alternate network, T", can be constructed
to obtain an upper bound on the throughput of T.

In section 3.1 we develop the technique for obtaining throughput/cycle time
bounds for these networks. In the special case of a network with multiserver
nodes, an alternate scheme to obtain throughput/cycle time bounds is developed
in section 3.2,

3.1 A bounding scheme:

Consider a network T with M nodes where, for ease of discussion, we assume
that exactly one of the nodes has a non-PR behaviour. The extension to cases
where more than one node has a non-PR behaviour is straightforward. Without
loss of generality, let the node with the non-PR behaviour be node M. We
construct a new network T' that also has M nodes. The first M-1 nodes in T' have
identical characteristics as the first M-1 nodes in T. The Mth node in T' has
the same mean service time and the same mean number of visits as that of the Mth
node in T. However, the rate functions for these two nodes can be different. Let
uy(n) be the rate function for the Mth node in T and let EM(“) be the rate
function for the Mth node in 7. Now, if we choose a function EM(“) that is
non-decreasing in n and such that for n 2 0, HM(n) S uy(n), then it is possible
to show that the throughput of network T' is at most that of network T. This
follows from a result obtained in [18] which in effect shows that in a network
of nodes with non-decreasing rate functions decreasing the service rate at any
node decreases the throughput. (Hence, from Little's rule, the cycle time of
network T' is at least that of network T). Similarly, we can construct a
network T" which is identical to T' except that the non-decreasing service rate

uy(n) for node M is such that uy(n) 2 uy(n), n 2 0. Then the throughput of

13



network T can similarly be shown to be at most equal to that of network T".
Given the service rate uy(n), these functions uy(n) and py(n) are chosen
from the parametrized class of functions given by equation (2.1), with suitable
choices for ay and bM for the two cases. For example, suppose that node M is a
multiserver node with 6 servers. However, suppose that for some reason, the
effective service rate realized at the node is as follows:
uy(n) = 1+0.6(n-1); n=1,..,6, (3.1)
b, n> 6.
One possible way to obtain EM(n) using equation (2.1) would be to solve two
equations for the two unknowns EM and EM obtained by setting IM(1) = 1, and
uy(6) = L. This gives §M=O.9, and EM=0J. This choice ensures that EM(n) 2 uy(n)
for all n. It is possible to choose values of the parameters ay and EM for the
function BM(“) in a similar manner. Thus, a possible set of choices for the
functions HM(“) and HM(n) which, for n $ 20 ensures that BM(“) s uM(n) s EM(n)
is given by
HM(n) = n/ (0.8333 + 0.2083n), (3.2a)
uy(n) = n/ (0.9000 + 0.1000n). (3.2b)

Figure 3.1 plots the functions uM(n), EM(“)» and EM(n) for this case.

Figure 3.1

This is the approach taken here to bound the throughput/cycle time of

14



networks where one or more nodes are allowed to have non-PR behaviour. The

method is best illustrated with an example.

Example i;li

It is desired to estimate the throughput of a network T with 5 nodes; the
first three nodes in this network are fixed rate nodes with mean service time
demands of 20, 24 and 28 units respectively. Nodes 4 and 5 have load dependent
service rates of the form given by equation (3.1) and the mean service time
demand at each of these nodes is 120 units. The mean numbeir of visits to each
node is equal to 1. The throughput is to be estimated for a network population
of 20.

To evaluate the throughput bounds two alternate networks, T' and T", are
constructed: In these networks, nodes 1, 2 and 3 have the sage mean service time
demands as in the original network. However, in network T,, nodes 4 and 5 are PR
nodes with rate function as given by equation (3.2a); in network T", nodes 4 and
5 are PR nodes with rate function as given by equation (3.2b). The mean number
of visits at all nodes is equal to 1 for these networks. Using the techniques
developed in section 2, a level 5 lower SI bound on throughput is obtained for
network Tx and a level 5 upper SI bound on the throughput is obtained for

network T". Table 3.1 shows the results for some population values.

Ny Ty

5 0.013 0.012 0.013
10 0.021 0.018 0.022
15 0.026 0.022 0.027

20 0.029 0.025 0.030

Table 3.1: Throughput bounds for example 3.1.

15



3.2. Throughput Bounds for Networks with Multiserver nodes:

Here, we consider the special case of a network with multiserver nodes. The
service rate of a multiserver node, m, with Km multiservers is given by
up(n) = n; n S K, (3.3a)
and
up(n) = Kps n > K. (3.3Db)
Some bounding schemes have been proposed recently [3,11,14], which obtain lower

bounds on the throughput of such networks with O(M) computations. These are

reviewed below:

3.2.1 Previous work:

In a recent paper, Shanthikumar and Yao [11] obtained a lower bound on the
throughput for networks with multiserver nodes. This bound is obtained using
some results developed by them on likelihood ratio ordering and its preservation
under convolution, and essentially works as follows: Suppose each node in the
network has Km multiservers (for fixed rate servers, K

= 1), Let ¢y = Kp=1, m =

m m

1,..,M, and set ¢ = Z Cpe Now, consider an alternate network which consists only
of fixed rate servers., Each node in this network has the same mean service time
demand as that of the corresponding node in the original network, but has a
constant service rate of Km. A lower throughput bound on this network at
population N-c¢ then gives a lower throughput bound on the original network at
population N. Needless to say, we require that N-c > 0. This method is effective
when N-c¢ is not very small.

The technique proposed by Srinivasan [14] operates as follows: Consider a
Aetwork T with M nodes and suppose that node M is a multiserver node with KM
multiservers. Let the throughput of the multiserver node, when considered in

isolation, and with a network population N be given by AN(M). Now consider a
network T' where we replace this multiserver node by a set of Jy fixed rate

nodes with suitably chosen fixed rate loads, where Jy is a large number. Exactly

16



one of these JM nodes has a fixed rate load equal to VM'TM/KM, and the remaining
nodes each has a fixed rate load that is much smaller than VM'TM/KM' and such
that the sum of the loads at these JM nodes is equal to VM TMe Let the
throughput, in isolation, of a Flow Equivalent Service Center (FESC) [2], M1,
which is obtained by aggregating these JM nodes be AN(M1). It can be easily
shown that AN(M1) s AN(M). Then, using the results obtained in [18], it can be
shown that the throughput of T is bounded from above by the throughput of T.
Hence, a lower bound on the throughput of T' gives a lower bound on the
throughput of T. In a similar manner, it is possible to construct a network T"
where node M is replaced by a FESC, M2, with fixed rate loads chosen such that
AN(MZ) 2 AN(M). An upper bound on the throughput of " gives an upper bound on
the throughput of T. It is straightforward to generalize this approach to obtain
throughput bounds for a network with more than one multiserver node.

Working independently, a technique similar to the above has been proposed
recently by Dallery [3]. Here, each multiserver node with Km multiservers in the
original network is replaced by a set of Km fixed rate nodes each having a mean
service time demand of rm/Km. The Balanced Job lower bound on the throughput of
the resulting network gives the desired iower bound on the throughput of the
original network.

It may be observed that if the Balanced Job Bound is used, the techniques
proposed by [14] and [3] would give the same results, and would involve
essentially involve the same computational effort. One major problem, however,
with the BJB technique is that it does not handle networks with delay nodes
efficiently. Also, the BJ bounds are often quite loose. (This was the motivation
for the development of alternate schemes which obtain tighter bounds at the
expense of increased computational effort). The technique developed in [3] is

intended, though, to be used only in conjunction with the BJ bounds. When
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alternate bounding methods such as PBH or SIB are used, the lower throughput
bound obtained using the technique given in [14] can be shown to be tighter than

the bound obtained using the technique given in [3].

3.2.2 The scheme for networks with multiserver nodes:

The technique outlined here is essentially a modification of the technique
proposed in [14], For ease of discussion, assume as before that the network T
consists of M nodes where nodes 1 through M-1 are PR nodes and node M is a
multiserver node with KM multiservers, mean service time demand Ty» and visit
ratio Ve The extension to networks with more than one multiserver node is,

again, straightforward.

Obtaining the lower throughput bound:

To obtain a lower bound on the throughput of network T, we use Theorem 3.1.

Theorem 3.1:

Consider two closed systems operating with n customers in each system. The
first system consists of one node, M, having mean service time demand Ty and
with KM servers. The second system consists of one FESC, M1, which represents
the aggregation of a network consisting of one fixed rate node with mean service
time demand rM/KM, and a delay node with mean service time demand 1M°(KM-1)/KM.
Let A&M) and ASM1) respectively denote the throughput of these two systems.

Then
AM) 2 A(M1).

Proof:

Consider the second system M1. From the Asymptotic Bound Analysis for
networks with delay nodes [8], an upper bound on the throughput of this network

at population n is given by Xh(M1), where
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ApM1) = min(Ky/ty, n/(ty/Kyttye (Ky=1)/Ky))

= min(KM/rM, n/rM). (3.4)

Now consider the throughput of the system with the multiserver node. This
is given by
A(M) = n/ty; n oS Ky, (3.5a)
Ap(M) = Ky/tys n 2 Ky. (3.5b)
Comparing equation (3.4) with (3.5a) and (3.5b) the result follows.
o
Now, if the multiserver node M is replaced by a FESC, M1, obtained as
indicated above, then using the results obtained in [18], it can be shown that a
lower bound on the throughput of the resulting network gives a lower bound on
the throughput of the original network. In effect each multiserver node, m, with

mean number of visits v_ is replaced here by two PR nodes both with mean number

m
of visits Ve and mean service time demands chosen as indicated by Theorem 3.1.
Since the resulting network consists only of PR nodes, the bounds developed in

section 2 can be used.

Obtaining the upper throughput bound:

A simple upper bound on the throughput is obtained using similar arguments
as those used to obtain the lower throughput bound. Each multiserver node m,
with K, multiservers is replaced by a fixed rate node working at rate Tm/Km.
[3,11,14], In some cases, alternate replacements can do better [14].

The effectiveness of the technique developed here to obtain lower

throughput bounds for these networks is illustrated with a couple of examples.

Example 3.2:
There are 11 nodes in this network. The mean service time demands at these nodes

and the number of servers at these nodes are given in Table 3.2. The mean number
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of visits at each node is assumed to be 1. The exact throughput was calculated
at various population levels, Table 3.3 gives the results of the evaluation for

some population values.

Node 1 2 3 i 5 6 7 8 9 10 1
Mean Time Demand 120 160 140 100 100 90 72 30 20 16 15

No of servers 6 5 5 it l 3 3 2 1 1 1

Table 3.2: Data parameters for Example 3.2

Following the technique developed here, each multiserver node is replaced
by a fixed rate node and a delay node with mean service time demands chosen as
indicated by Theorem 3.2. A simple level 1 SI bound on the resulting network
gives the desired throughput bound. (As noted earlier, this requires about M
more arithmetic operations than the BJ bound does). This bound is termed the SI
bound in Table 3.3.

For comparison, the bound obtained using the technique outlined ia [11] is
also given (termed as SY bound in Table 3.3). The resulting network of fixed
rate nodes obtained by the technique is also evaluated using the level 1 SI
bound. Although this technique cannot obtain bounds at the initial population
values this technique produces bounds comparable to the SI bound for large N.

Finally, the bound obtained using the technique outlined in [3] (termed as
the DAL bound) is also presented in Table 3.3. The resulting network of fixed
rate servers obtained here was evaluated for the throughput using the level 1 SI
bound in this case too. It must be noted, however, that this technique is only
intended to be used in conjunction with the BJ bound (which in any case gives a

poorer estimate of throughput than the level 1 SI bound).
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N A (actual) SI bound SY bound b#t. bound
10 0.011 0.011 - 0.009
20 0.021 0.018 - 0.014
30 0.026 0.023 0.016 0.018
4o 0.029 0.025 0.023 0.020
50 0.030 0.027 0.026 0.022

Table 3.3: Throughput bounds for Example 3.2

Example 3.3:

As an example of an application of the bounding technique in a
manufacturing environment, consider again, the problem of the assembly line
supervisor who has to man 5 stations with additional operators so as to maximize
throughput. Each job completed in this shop requires an exponentially
distributed amount of time from each station. These stations are already manned
by one or more oberators. Assume that each station would operate proportionately
faster depending on the number of operators assigned to it. Due to certain
limitations, 30 jobs can be in the system at any time, and completion of one job
immediately triggers another into the system. The five stations have mean
service time demands of 40, 32, 9, 8, and 6, respectively, and the mean number
of visits to each station is 1. In addition, there is some time taken for
material movement between stations which is modelled by a delay station, and for
a typical cycle of operations, this takes 65 units of time. The number of
operators assigned at present to each station (Configuration 0) are,
respectively, 4, 3, 1, 1, and 1. The supervisor would like to obtain quick
estimates of the improvement in throughput resulting from adding one extra
operator either at station 1 (Configuration 1) or at station 2 (Configuration

2). Using the bounding technique developed above, the level 2 lower and upper
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bounds on the throughput for the three resulting configurations are calculated

and presented in Table 3.4,

Configuration Lower bound Upper bound Exact throughput
0 0.0822 0.1092 0.0889
1 0.0845 0.1145 0.0913
2 0.0885 0.1174 0.0952

Table 3.4: Throughput bounds for example 3.3

For comparison, the exact throughput values are also presented in Table 3.4
To compare the computational effort involved, calculating the exact throughput
for the three configurations involved a total of 62 milliseconds. The bounding
technique took less than 2 milliseconds to obtain all the bounds. However, it is
important to note that the bounding technique here would probably only require a

hand held calculator.

ﬂ; Bounds on mean queue lengths:

Techniques now exist for obtaining reasonably tight bounds on the
throughput for networks with PR nodes. These bounds can be obtained with
considerably less computational effort than that required in order to compute
the throughput/cycle time exactly. This suggests the possibility of achieving
good bounds on the mean queue lengths which form at the nodes. Needless to say,
these bounds should require little computational effort compared to that
required to obtain the exact values.

In section 4.1, some bounds are presented which are very easy to evaluate
once bounds on the throughput have been obtained. These bounds appear adequate

for nodes which do not experience very high utilizations (e.g., over 80%). For
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nodes with high utilizations, an alternate bounding method is developed in
section 4.2, This latter method is based on an application of the convolution
algorithm [1] and requires a relatively larger number of arithmetic operations
(0(M) operations for each such node) to obtain the mean queue length bounds. The
discussion below is restricted, for simplicity, to networks with fixed rate
nodes. It is easily extended to networks with delay nodes and nodes with

parametrized service rate functions of the type covered in section 2.

4,1 Obtaining simple bounds on mean queue length:

For networks with only single server fixed-rate nodes nodes, the mean queue
length at a fixed-rate node, m, is given from equations (2.15) and (2.16) as:
N i
Q, (N) ='2 Ly My, i-1- (4.1)
i=1
For the networks considered here, it can be shown that for K > 0, we must have

AK 2 AK-1' Hence

N
i, i
Q,(N) < _2 Lody

i=1
1 - (g, ()N
= Uy (N) =====mmmmmmeee , (4.2)
1 - Um(N)
where
Up(N) = Lok, (4.3)

is the utilization of node m. Let IN denote an upper bound on AN and let
ﬁh(N) = Ly Xﬁ denote the corresponding upper bound on the utilization at node

m. Then it is easily seen that
Q(N) S Up(N) ==mmmmmmmmmmmee . (4.4)

Let L, denote the load at the node(s) with the highest load. As the
network population increases, the network begins to behave like an open network

with mean arrival rate T/Lu. For this corresponding open network, any node m
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with load Lm < Ly will experience a mean queue length Qm = Um/(1-Um) where Up =
Lm/Lu would be the utilization of this node in the open network. Hence, for
large N the upper bound on mean queue lengths, as given by equation (4.4) would
begin to get increasingly closer to the exact value for these nodes. Let there
be k nodes with load L, For these nodes, at large N, an upper bound is:

QuN) = 1/k (N - ] Q,(N) (4.5)
m#Au

where Q (N) is a lower bound on Qm(N).
A lower bound on Qm(N) is given by Theorem 4.1. A proof of the theorem is

given in Appendix C.

Theorem 4.1:

In a closed PF network with only single server fixed rate nodes and
delay nodes, the mean queue length, Qm(N), at a fixed rate node m is bounded
from below by the term f(gm(N)), where gm(N) is a lower bound on Um(N) and

(N-1)(1 - Up(N)) + 1

P(U(N)) = U (N) ¢ =mmmmmmmm- oo : (4.6)
- - (N-1) (1 = U (N2 + 1

4,2 Obtaining tighter bounds on mean queue lengths:

Although the bounds presented in Section 4.1 are easy to evaluate, they can
be quite loose for nodes which have high utilizations. This is apparent since
the bounds in Section 4.1 were obtained as follows: (i) Bounds were developed
to express the mean queue lengths at the nodes in terms of their utilizations
and (ii) Some bounds on these utilizations themselves were used in the
expressions developed in (i) above.

It is, however, possible to obtain an exact closed form expression for the
mean queue lengths in terms of a throughput with some additional computation.

This is achieved by means of the Convolution algorithm [1]. For ease of
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presentation, only networks with fixed rate servers are considered here. The
extension to networks with delay servers is straightforward.
The Convolution algorithm for a network T with M fixed rate single server
nodes gives an expression for the normalizing constant g(N,M) as
g(N,M) = g(N,M-1) + L g(N=1,M). (4.7)
The throughput for this network, AN, is then given as

Ay = 8(N=1,M)/g(N,M). (4.8)

Suppose it is desired to obtain bounds for the mean queue length at some
designated node. Without loss of generality, let this be node M. The mean
queue length at this node can be shown to be [4]

N
Q(N) = I L g(N-1i,M)/g(N,M) . (4.9)
i=1
Now consider an augmented network T(M) with M+1 nodes where nodes 1 through M
have the same loads as in T and node M+1 had a load LM. Let A&M) be the

throughput of this augmented network. Theorem 4.1 then obtains an expression

for QM(N) in terms of xéM).

Theorem 4.2
Given a network, T, of M single server fixed rate nodes, the mean queue

length at the M'D node, Q(N) is given by

Q(N) = =m=memozemmeoe- , (4.10)

where A&M) is the throughput of the network T augmented by one additional
node, M+1, with load LM'
Proof ;

The normalization constant of the augmented network, T(M), is given by

g(N,M+1) = g(N,M) + Ly g(N-1,M+1), (4.11)
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and the throughput of T(M) is
W= g1, M) /g (N, M, (4.12)
By repeated application of (4.11) in equation (4.12), we get
AW
gN, M)+ Ly g(N-1,M) + ... + LYg(0,M)
1 + QM(N"1)
= Ay —mmmm————-- , (4.13)
where the last equality is obtained using equations (4.8) and (4.9).
From the MVA theorem an expression relating QM(N) with QM(N-1) can be
obtained as:
Substituting the expression for QM(N-1) resulting from (4.14) into equation

(4.13), and simplifying, the desired result in obtained.

Corollary U,1: i
Let W(M)(N) be the cycle time of the network, T(M).Then
N . S (4.15)
; WM ) - N
Proof':
The proof is immediate from an application of Little's rule [9].
a

To illustrate how this method extends directly to include, for example,
delay nodes, consider a network with M single server fixed rate nodes and one
delay node. Let this delay node be labelled node 0, and have a load LO. Then
the throughput for this network is given by

Ay = (N/Lg) + h(N=1,M)/h(N,M), (4.16)
where h(+, +) is obtained recursively from [4] as

h(n,m)

h(n,m=1) + (nly/Ly) « h(n-1,m); n21, m2 1; (4.17)

with
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h(0,m) = h(n,0) = 1; n,m > 0.

It is easily seen from equations (4.16) and (4.17), that the mean queue
length at a fixed rate node in this network is given in terms of an augmented
network, as before, by equation (4.10) or (4.15). The mean queue length, Q)
at the delay node is directly obtained from

Qy(N) = Ay * Lg-

In general, in order to use the approach outlined above, a new augmented
network is to be constructed for each fixed rate node with a distinct load, for
which mean queue length bounds are desired. This augmented network should then
be analyzed, using a bounding technique, to obtain bounds on its cycle time.
Equation (4.15) can then be used to obtain the bounds of the mean queue length.

Now suppose the SIB technique is used. Assume that the level two bounds on
the throughput have been obtained. This means that the terms Si, i=2,3 must
have been calculated, where Si is defined by equation (2.7). Now, to obtain
mean queue length bounds for a node, n, n § M, with load Ly, the augmented

network with M+1 nodes is constructed. The values of the relative utilizations

pén), m=1, ..., M+1, for this augmented network, are given by
p
pn(]n) = __——[E- . Lm, m = 1, ceey M+1o
L+ Ln
Let
M+1 ( ,
siM = T (it 1. 2,3, (4.18)
i=1
= (Si + pnl)/(1 + pn)i' ()4‘19)

Hence the terms S&n) are easy to evaluate, given the values for Si and the
relative utilizations. The lower bound for the augmented network is then given
by equation (2.22a) where the terms ag and ay are replaced by aén) and ag“). The

terms agn) are defined as
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1
0én) = sy g

Using this 1level 2 bound on cycle time in equation (4.15), an upper bound on
the mean queue length at node n is obtained.

The use of the bounding techniques developed in this section is illustrated
below with a few examples. In each case, the approach taken is to use bounds
developed in Section 4.1 for nodes with lower utilizations, and use the bounds
from Section 4.2 for nodes with higher utilizations. The basis for determining
which to use was, somewhat arbitrarily, set as follows: from the upper bound on
throughput, the upper bound on the utilizations at the nodes was determined
using equation (4.3). Nodes with this upper bound value s 0.80 were evaluated
for their mean queue length bounds by the method of Section 4.1, while the other
nodes used the method of Section 4.2. The SIB technique was used in all test
cases, and the level 5 SI bounds were used to calculate the throughput bounds.

For comparison, exact values for mean queue lengths were also evaluated.
The test cases were run on an AMDAHL 5860 running the MTS. The time taken by the
exact analysis and the bounding technique were recorded in each case.

Example 4.1

This is the example given in [19]. There are 49 single server fixed rate
nodes, with loadings as follows: 1 node at 21, 10 nodes at 20, 4 nodes at 10, 4
nodes at 5, 3 nodes at 4, 11 nodes at 3, 1 node at 2, and 15 nodes at 1 for a
total load of 343. The bounds were evaluated at a population of 100. The mean
queue length bounds and the exact values for mean queue lengths for each node
with a distinct load are given in Table 4.1. Even though many nodes had
identical loads, bounds were evaluated on all 49 nodes. The exact analysis

took 17 milliseconds, while the bounding technique took 2 milliseconds.
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- - - - — - - - - - - - — - - — - - - - - - - -~ -

- - - - — - - - —— - - - - — -

Load at node Exact Lower bound Upper bound
T haess 10am o 1sagsh

20 7.957 6.605 8.985

10 0.811 0.768 0.835

5 0.289 0.279 0.295

b 0.218 0.212 0.223

3 0.155 0.151 0.158

2 0.098 0.096 0.100

1 0.047 0.046 0.048

Table 4.1: Mean queue length bounds for example 4.1

Example 4.2:

This example is taken from [5]. There are 50 nodes with loads as
follows: 1 node at 20, 2 nodes at 19, 5 nodes at 18, 5 nodes at 15, 5 nodes
at 10, 8 nodes at 7, 8 nodes at 5, 8 nodes at 4, 8 nodes at 2, for a total
load of 417. The bounds were evaluated at a network population of 50. The
exact analysis required 9 milliseconds while the bounding technique required
2 milliseconds. Table 4.2 compares results for some of these nodes, Again,

for comparison purposes, bounds were evaluated for all 50 nodes.

Example 4.3:

The final example here is a very unbalanced network with 20 nodes, and
loads as follows: 2 nodes at 30, 1 node at 17, 3 nodes at 14, 1 node at 12,
2 nodes at 11, 1 node at 10, 2 nodes at 8, 1 node at 7, 2 nodes at 5, 3
nodes at 4, 1 node at 3, and 1 node at 1 for a total load of 212. Table 4.3

compares results for some of the nodes. The comparisons were made for a

29



population of 45, The exact analysis required about 3.3 milliseconds while

the bounding technique required about 0.7 millisecond of CP time.

- - - - - - = - — - - - - D —. - — - - - - > = =D =D > - = - - - - - - - - - - - - - - — - -

- P - - D - - - - = - - - - - - - - — - — - - - - — - - -

Load at node Exact Lower bound Upper bound
20 5.181 4.u84 5.691
19 4,027 3.531 4.329
18 3.207 2,464 3.749
15 1.781 1.544 1.923
10 0.753 0.701 0.781
7 0.431 0.409 0.443
5 0.274 0.262 0.281
Y 0.208 0.200 0.213

Table 4.2: Mean queue length bounds for example 4,2

Load at node Exact Léwer bound Upper bound
3 sk 1e.6s0 18.681

17 1.228 1.145 1.308

14 0.831 0.796 0.875

12 0.637 0.617 0.667

10 0.480 0.468 0.500

8 0.350 0.344 0.364

7 0.294 0.289 0.304

4 0.149 0.147 0.154

- - - - - — - - - - - - - — - - - - - - - - - —— - - - - - - — - - - - - -~ - - - -

Table 4.3: Mean queue length bounds for example 4.3

30



Remark:

In many instances, it may not be necessary to evaluate mean queue lengths
at all nodes. (This is certainly true if many nodes have the same loads.) It
is especially in such cases that a bounding technique would have an edge over
the exact analysis methods such aa'the MVA algorithm which would have to compute
these measures for all nodes, in any case, and at all intermediate population
values. In the above examples, however, to compare the computational effort

involved, the mean queue length bounds were calculated for all the nodes.

5. Conclusions:

In many situations, the use of bounding techniques for analyzing queueing
networks is justified. The scope of bounding techniques for closed PF queueing
networks has been extended to enable throughput bounds to be obtained for
networks in which the nodes are allowed to display some limited forms of load
dependent behaviour. The application of these bounding techniques in analyzing
flexible manufacturing systems has been illustrated by some examples. A simple,
but effective, means of obtaining bounds on the mean queue lengths that form at

the nodes in such networks has also been presented.
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Appendix A:

Proof of Lemma 2.1:

Lemma 2.1:
Given sequences U = {um}, X = {xm}, Y = {ym}, m=1, ..., M, such that
(&) u 20, m=1, ..., M,
(B) Xy 2 ... 2% 20,
(e¢) Y(PC)X,
(d) I uy s,
m
(e) 1} Up¥p 2 0,

m
then

Loxgupyn 2 (2 xqup) (T upyg). (A1)
m m n

Proof':

Let ¥ = z UnYme
m

We need to show that ] xpu (y, = Y) 2 0.
m .
Since ) uy, $1, it must be true that
m

Z umyrn Z (2 um) * (z unYn)' (A2)

m m n
Further, since Y 2 O,‘and U 2 0, there exists some i £ M, such that Ym 2 Y for
allm 2 i; and y, <Y, m < i. Since x;20, multiplying both sides of (A2) by x;,

Loxgupyp 2 (1 xqu ).
m m

Hence
i-1 M
0s ] xuly, =" = I oxpuyy -+ L xgu(yy, - Y)
m m=1 m=i
i-1 M i-1 M
S L xgup(yp =M+ I oxguplyp =) S L oxgup(yy = Y) + ] Xy (Y = V)
m=1 m=i m=1 m=1i

where the first (respectively second) inequality follows from the fact that Ym ~

Y < 0 (respectively 2 0) for all m < i (respectively 2 i). The result follows.
u)
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Appendix B:

Proof 9£ Theorem 2.3:

Theorem 2.3:

Let u be the node with maximum load. Then the level 1 bounds on DN—1 are:

Dy-1 S Dy-1 S Dy, (81)
where

Dyy = 1+E (B1a)

Dy.; = 0.5[1 + ¥ + SQRT((¥-1)2 + 4g)], (B1b)
with

¥ o= (N-1)p,, (Ble)

£ = (N-1)S,. (B1d)
Proof:

Equation (2.11) gives
Dyq = 1+ (N=1) = 1 + (N=1)S, + (N-1) * Y'(N-2)/Dy_,.

By construction, S, > 0. Theorem 2.2 gives Y1(N—2) > 0. So a lower bound is:
P—N"1 = 1 + (N"1 )82-

To obtain BN—1’ replace Y1(N—2) by a larger factor, i.e., from equation (2.13),

Y (N-2)

Py L ppQn(N=2) = ppe6, ¢(N-2))
= (py = 5, Jon-2).
Hence
DN_1 _s 1 + E + (‘i’ - E) ¢(N—2)/DN_20

Since S, =} ppfp < py L 8y < pys it is clear that (¥ - £) > 0.
m m

From known results on the 'monotonic' behavior [18] of networks, it is
possible to show DN—1 2 DN—2' Hence, noting that Dk =1+ ¢(k), it is seen that
¢(N=2)/Dy_» < ¢(N=1)/Dy-q. So, noting that Dy_; = 1 + ¢(N-1),

Dyag ST+ 8+ (¥ = E)O(N=1)/Dyqy =1+ &+ (¥~ E)(Dy_q = 1)/Dyyq. (B2)

Solving this resulting quadratic in Dy—qs We have the desired upper bound.
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APPENDIX C

Proof of Theorem 4.1
Theorem U4.1:

In a closed PF network with only single server fixed rate nodes and
delay nodes, the mean queue length, Qm(N), at a fixed rate node m is bounded
from below by the term f(U (N)), where Up(N) is a lower bound on Uy (N) and

(N-1)(1 - gm(N)) + 1
£(UL(N)) = U, (N) - E;:;;z;‘:*a*z;;;g—:";—. (C1)
-m
Proof':
From Little's rule [9] we can write:
Ay * W(N)/N = AN_iw(N-i)/N—i, 0<i<N.
A direct consequence of the results in 'monotonicity' in PF queueing
networks [18] gives the relation
W(N-i) £ W(N), 0<1isN.
Hence
Ay-iy 2 Ay(N-i)/N, 0 s i sSN. (c2)
From equations (C2), (4.1) and (4.3), for a fixed rate node m, we can write
N i N-j+1 N i N-j+1
Q) > L I Up(N) mmmme 2 I 1 U0 —mme- :
i=1 j=1 N i=1 j=1 N

For notational ease, set U = U (N). Then we can write

N  i-1 N-j
QM) > g(U,N) = ] Ut 1 -, (c3)
i=t  j=0 N
N
Noting that I (1-j/N) = 0, the function g(U,N) can be rewritten as
§=0
N i-1 N
g, = 1 vl m (-« N - g
i=1  j=0 3=0
N+l Q-
=v+u Y oulitt o o-gm,
i=2 j=0 -
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and, setting k =i -1,

N K N k=1
g(UN) = U+U § UK (1 -34/N) = Uu+u § K@ -kN) T (- §/N)
k=1 j=0 k=1 §=0
= U+ U g(u,N) - U/N h(U,N), (cw)
where
N k=1
h(u,N) = I kUK m(1-jm
k=1 j=0
N k=1 N k=1
= Tk m(-gm o+ Y kDU 1= )
k=1 j=0 k=1 3=0

and so, using equation (C3), and after some elementary algebra,

N-1 i
h(u,N) = g(u,N) +U ) iUt m (1 -3/N)
i=1 j=0
N-1 i
= g(UN) + U1 =) + U1 =~y Y el om - g
T =2 3=0
N~1 . i-1
< g(U,N) +Uu(1 =1/ (u+ ) vt 1= 3/m)
i=2 j=1
N Ci-1
< g(UN) + U1 ~1/N) (u+ ¥ vt 11 -3m))
i=2 j=1
= g(Uu,N) + U(1 - 1/N) h(U,N).
Hence
h(u,N) < g(U,N)/(1 = U +U/N). (c5)

Substituting the inequality for h(U,N) given by (C5) into equation (C4),

U g(U,N)
g(U,N) > U + U g(U,N) = mmmmmmmmmena—-
N (1 -U+ U/N) .
Collecting terms and simplifying the above expression gives
(N=1)(1-U) +1
(N=1)(1-0)2 4 1, (c6)

Equations (C3) and (C6) give the desired result.
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Figure 2.1: Service rate functions for some PR nodes
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