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ABSTRACT

Active Integrated Optic Devices for Sensing: Optical Rate
Gyroscopes and Stellar Interferometers

by

Hsien-kai Hsiao

Chair: Kim A. Winick

The concept of integrated optics was first conceived by Miller at AT&T Bell Labora-

tories in 1969. In the intervening years, this field has attracted significant attention

and has led to the development of multi-functioned, miniaturized, optical devices on

a single chip. Integrated optical devices are free from the alignment and stability

issues that bedevil bulk optical devices and systems. Integrated optics has much in

common with semiconductor integrated circuit technology. As with this later tech-

nology, integrated optical devices can be produced using batch processing techniques,

such as optical and e-beam lithography, thin film deposition and etching. Integrated

optical circuits, comprising optical devices interconnected via channel optical waveg-

uides, have been fabricated on a wide range of substrates, including crystals, glasses,

polymers and semiconductors. Integrated optical devices are now widely deployed in

fiber optic telecommunication systems and as sensor components. This thesis is a the-

oretical and experimental study of two new integrated optical sensors. The first is an

integrated optic ring resonator gyroscope for measuring angular rotation rate, and the

second is an integrated optic beam combiner for astronomical stellar interferometry.

xiii



Although passive integrated optic ring resonators for gyroscopes have been pre-

viously reported, little work has been performed for active rings. The operation of

ring resonator gyroscopes is based on the Sagnac effect. According to this effect,

optical beams counter-propagating along the ring will experience a phase difference

proportional to the ring’s rotation rate. The sensitivity of the gyroscope is limited by

the propagation losses in the ring, and hence can be improved by the introduction of

loss-compensating gain inside the ring. In this thesis the first active ring resonator

for gyroscopic applications is designed, fabricated and characterized. A 1.6 cm di-

ameter active ring resonator is fabricated in a neodymium-doped glass by silver ion

exchange. The finesse of the ring resonator is measured and is observed to increase

from approximately 11 to 250 when the neodymium ions inside the ring are optically

pumped to produce gain. The saturation of the gain medium is also observed as the

injected signal strength increases. The ultimate sensitivity of a ring resonator gy-

roscope is shown from theoretical considerations to be fundamentally limited by the

spontaneous emission noise generated within the gain medium. In a passive cavity

ring resonator gyroscope the improvement in the noise-limited sensitivity is inversely

proportional to the increase in the resonator finesse. In this thesis it is demonstrated

that the noise-limited sensitivity of an active (i.e., one with gain) ring resonator gy-

roscope only increases as the reciprocal of the square-root of the improvement in

resonator finesse, and thus the full benefit of the gain cannot be realized.

Astronomical imaging techniques based on interferometric (i.e., beam combining)

methods have a long history dating back to Albert Michelson’s seminal work at the

Mt. Wilson observatory in 1890. Starting with Kern’s work in 1996, the use of

integrated optics for telescope beam combining has been pursued. In the context of

interferometric imaging, integrated optic beam combiners offer many advantages over

conventional bulk optic implementations, including spatial mode filtering, enhanced

stability and a small, robust platform. To date, integrated optic beam combiners

xiv



have only been demonstrated at wavelengths below 2 µm. Operation in the mid-

IR, however, is highly desirable. In this thesis an integrated optic beam combiner for

stellar interferometry that operates in the mid-IR is demonstrated for the first time. In

particular, a two-beam, integrated optic, combiner is fabricated on a lithium niobate

substrate for operation in the vicinity of 3.4 µm. White light, mid-infrared, fringes,

as well as electro-optic on-chip fringe scanning, is demonstrated in the laboratory

for the first time using an integrated optical device. Some interferometric imaging

applications, such as nulling, require achromatic, i.e., wavelength insensitive, beam

combining. As proposed by Bracewell, one important use of nulling interferometers

is to search for planets lying outside of our solar system. Integrated optic reversed

Y-junction beam combiners are achromatic, but suffer a 3 dB power loss. On the

other hand, the widely used asymmetric two waveguide directional couplers are in

principle lossless, but they do not achieve broadband, achromatic, beam combining.

In this thesis, a theoretical design technique, based on a three waveguide directional

coupler, is developed to achieve fully achromatic, broadband, polarization-insensitive,

lossless beam combining. This design may make it possible to achieve the very deep

broadband nulls needed for exoplanet searching.
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CHAPTER I

Introduction

1.1 Overview

The concept of integrated optics (IO) was first conceived by Miller at AT&T Bell

Laboratories in 1969 [1]. In the intervening years, this field has attracted significant

attention and has led to the development of multi-functioned, miniaturized, optical

devices on a single chip. Integrated optical devices are free from the alignment and

stability issues that bedevil bulk optical devices and systems. Integrated optics has

much in common with semiconductor integrated circuit technology. As with this

later technology, integrated optical devices can be produced using batch processing

techniques, such as optical and e-beam lithography, thin film deposition and etch-

ing. Integrated optical circuits, comprising optical devices interconnected via channel

optical waveguides, have been fabricated on a wide range of substrates, including

crystals, glasses, polymers and semiconductors. Integrated optical devices are now

widely deployed in fiber optic telecommunication systems and as sensor components.

During the past decade, there has been a rapidly growing interest in new classes

of IO-based sensors. These sensors have been implemented using a wide variety of

waveguide components, including interferometers, resonators and couplers. IO sensors

are compact, immune to electromagnetic interference, free of alignment issues and

can provide high sensitivity. Furthermore active functionalities, such as electro-optic,

1



acousto-optic, and thermo-optic control can be incorporated on-chip.

This thesis is a theoretical and experimental study of two new integrated opti-

cal sensors. The first is an integrated optic ring resonator gyroscope for measuring

angular rotation rate, and the second is an integrated optic beam combiner for astro-

nomical stellar interferometry. Although passive integrated optic ring resonators for

gyroscopes have been previously reported, little work has been performed for active

rings. The operation of a ring resonator gyroscope is based on the Sagnac effect.

According to this effect, optical beams counter-propagating along the ring will ex-

perience a phase difference proportional to the ring’s rotation rate. The sensitivity

of the gyroscope is limited by the propagation losses in the ring, and hence can be

improved by the introduction of loss-compensating gain inside the ring. In this thesis

the first active ring resonator for gyroscopic applications is designed, fabricated and

characterized. The device is a 1.6 cm diameter active ring resonator fabricated in

a neodymium-doped glass by silver ion exchange. The finesse of the ring resonator

is measured and is observed to increase from approximately 11 to 250 when the

neodymium ions inside the ring are optically pumped to produce gain. The satura-

tion of the gain medium is also observed as the injected signal strength increases. The

ultimate sensitivity of a ring resonator gyroscope is shown from theoretical considera-

tions to be fundamentally limited by the spontaneous emission noise generated within

the gain medium. In a passive cavity ring resonator gyroscope the improvement in

the noise-limited sensitivity is inversely proportional to the increase in the resonator

finesse. In this thesis it is demonstrated that the noise-limited sensitivity of an active

(i.e., one with gain) ring resonator gyroscope only increases as the reciprocal of the

square-root of the improvement in resonator finesse, and thus the full benefit of the

gain cannot be realized.

Astronomical imaging techniques based on interferometric (i.e., beam combining)

methods have a long history dating back to Albert Michelson’s seminal work at the

2



Mt. Wilson observatory in 1890. Starting with Kern’s work in 1996 [2], the use of

integrated optics for telescope beam combining has been pursued. In the context of

interferometric imaging, integrated optic beam combiners offer many advantages over

conventional bulk optic implementations, including spatial mode filtering, enhanced

stability and a small, robust platform. To date, integrated optic beam combiners

have only been demonstrated at wavelengths below 2 µm. Operation in the mid-

IR, however, is highly desirable. In this thesis an integrated optic beam combiner for

stellar interferometry that operates in the mid-IR is demonstrated for the first time. In

particular, a two-beam, integrated optic, combiner is fabricated on a lithium niobate

substrate for operation in the vicinity of 3.4 µm. White light, mid-infrared, fringes,

as well as electro-optic on-chip fringe scanning, is demonstrated in the laboratory

for the first time using an integrated optical device. Some interferometric imaging

applications, such as nulling, require achromatic, i.e., wavelength insensitive, beam

combining. As proposed by Bracewell, one important use of nulling interferometers

is to search for planets lying outside of our solar system. Integrated optic reverse

Y-junction beam combiners are achromatic, but suffer a 3 dB power loss. On the

other hand, the widely used asymmetric two waveguide directional couplers are in

principle lossless, but they do not achieve broadband, achromatic, beam combining.

In this thesis, a theoretical design technique, based on a three waveguide directional

coupler, is developed to achieve fully achromatic, broadband, polarization-insensitive,

lossless beam combining. This design may make it possible to achieve the very deep

broadband nulls needed for exoplanet searching.

1.2 Dissertation outline

This dissertation consists of five chapters and several appendices. In Chapter

II, the design of a 1.6 cm diameter neodymium-doped, glass waveguide, active ring

resonator is described, and the fabrication and characterization of the device is pre-

3



sented. The finesse of the resonator, operating in the vicinity 1.06 µm, is measured

and shown to increase from approximately 11 to 250 when the neodymium medium

inside the ring is pumped to produce optical gain. The finesse value of 250 corre-

sponds to an effective propagation loss on the order of 0.013 dB/cm, which we believe

to be the lowest value reported to date for rings of this size. The fundamental sen-

sitivity of an optical ring resonator gyroscope is also investigated in Chapter II, and

it is shown to be limited by the spontaneous emission noise generated by the gain

medium. A closed form expression for the quantum-limited noise performance of the

device is derived.

In Chapter III, the design, fabrication and characterization of integrated optic,

astronomical, two-beam and three-beam, interferometric combiners for operation in

the astronomical L band (3 µm - 4 µm) are described for the first time. The devices are

fabricated in titanium-indiffused, x-cut lithium niobate substrates. White light fringes

are demonstrated in the laboratory using a thermal source, and on-chip, electro-optic

fringe scanning is also demonstrated.

In Chapter IV, we describe the theoretical design of a broadband, achromatic,

polarization-insensitive, lossless astronomical beam combiner. The device is designed

to operate in the mid-infrared and is based on three coupled waveguides. The inner

waveguide is uniform along the propagation direction, while the two outer waveguides

vary identically along the direction of propagation. Device operation is modeled using

coupled mode theory. The three-waveguide structure supports three local normal

modes, and the operation of the device is based on the adiabatic evolution of these

modes as they propagate along the length of the structure. Adiabatic mode evolution

is generally achieved by requiring the waveguide parameters to vary slowly along the

direction of propagation. Using a technique introduced by Ishikawa [3], an alternate

and more general method of achieving adiabatic operation is used in this chapter to

design the beam combiner. This technique allows adiabatic operation to be achieved
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with a device of relatively short length. The operation of the device is confirmed

using numerical beam propagation. Possible candidate material systems for mid-IR

waveguides are also studied in Chapter IV. One particular system, Ge strip waveguides

on a silicon substrate is analyzed for operation in the astronomical N band (8 µm -

12 µm).

Finally, the contributions of this thesis are summarized and future work is sug-

gested in Chapter V.
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CHAPTER II

Planar Glass Waveguide Ring Resonators with

Gain

2.1 Introduction

Planar integrated optic ring resonators have been well-studied and find a host of

applications in both telecommunications and sensing. These include optical filtering

[4, 5], nonlinear optics [6], optical switching [7], chemical and biological sensing [8]

and angular rotation rate sensing [9]. Many of these applications require a resonator

of high finesse, and thus a resonator having low loss. When the application also

necessitates the use of a large diameter ring, as is the case for an optical gyroscope

rotation rate sensor, glass becomes an ideal substrate material because it permits the

fabrication of very low loss waveguides.

When two counter-propagating beams of light propagate along a common path in

a rotating reference frame, they will experience a phase difference proportional to the

rate of rotation. This phenomena, known as the Sagnac effect, is the basis upon which

all optical gyroscopes operate [10, 11]. The first passive, free-space, ring resonator

gyroscope was proposed and demonstrated by Ezekiel and Balsamo [12] in 1977. Their

gyroscope was constructed by a HeNe laser, a pair of acousto-optic (AO) frequency

shifters, and a square-shaped cavity made out of aluminum with length 17.5 cm on
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a side. Two beams splitters and two mirrors were placed in the four corners of the

cavity, and one of the cavity mirrors was mounted on a piezoelectric transducer so

that the cavity length can be modulated. The gyro operation was closed-loop and

the AO frequency shifts were adjusted in such a way that the counter-propagating

beams were driven to their respective cavity resonances. The uncertainty in the

measured rotation rate was estimated to be 0.05 deg/hr. Later in 1981, Meyer et

al. demonstrated a gyroscope based on Ezekiel and Balsamo’s idea where the bulk

optics cavity was replaced by a fiber optic loop [13]. The device was constructed

using a passive fiber-optic ring resonator of length 3.1 m, and a sensitivity of 0.5

deg/hr was achieved. The first planar ring resonator were reported by Haavisto and

Pajer in polymethyl methacrylate films and this work was later extended to glass

using ion exchange [14, 15]. These resonators had large propagation losses on the

order of 2 dB/cm. Losses of approximately 0.1 dB/cm can now be achieved by ion

exchange for ring radii on the order of 1 cm [16], and losses half as large have been

reported for similarly sized waveguide rings fabricated using CVD-deposited silica on

silicon together with reactive ion etching of the waveguide structure [17]. Currently

there are no known methods for achieving even lower loss value for rings of this size.

Waveguide losses can be attributed primarily to inhomogeneities in the glass and/or

surface roughness at the core-cladding interface. Both of these contributing factors

can be reduced by decreasing the refractive index contrast between the core and

cladding. Such a decrease, however, will result in significant bending losses unless

the ring diameter is increased commensurately. It is possible, however, to reduce the

effective resonator loss below the values quoted above by incorporating gain inside

the ring. With the presence of gain, lasing in erbium-doped, planar, waveguide, ring

resonators has been reported in both glass [18] and LiNbO3 [19] substrates. When

operated below the lasing threshold, these devices exhibited a modest reduction of

their resonant bandwidths, and hence an increase in finesse. In this chapter we
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will study active, integrated optic, ring resonator gyroscopes. The remainder of this

chapter is divided into five sections.

In Section 2.2, the basic configurations and the operating principle of an optical

rate gyroscope will be discussed.

In Section 2.3, the spectral resolution of an active ring resonator is analyzed. The

spectral resolution of a passive ring resonator is limited by shot noise and is a function

of the finesse of the resonator and the input signal power level. When gain is added to

the ring, the resolution is ultimately limited by spontaneous emission noise generated

by the gain medium. In Section 2.3, we derive an expression for this resolution using

an analysis previously developed for ring laser gyroscopes [20]. Our analysis shows

that in the quantum limit with gain present, the spectral resolution decreases as one

over the square root of the product of the finesses of the resonator measured with

gain and without gain. We apply this result to determine the minimum, rms, angular

rotation rate, random walk error achievable by an active, ring, resonator gyroscope in

the quantum limit. A closed-form expression is also derived for the absorbed pump

power required by an active ring resonator gyroscope as a function of the launched

signal power and the finesse.

In Section 2.4, the fabrication and the characterization of silver ion exchanged

waveguides are presented.

The fabrication of an active, waveguide, ring resonator in a neodymium-doped

glass by silver ion exchange is described in Section 2.5 and the device is experimentally

characterized. When the neodymium gain medium is pumped by a laser diode, the

finesse of the 1.6 cm diameter device increases from approximately 10 to 250 at

a signal wavelength of 1060 nm, with the later finesse value corresponding to an

effective propagation loss value of approximately 0.013 dB/cm. We believe that this

is the lowest effective propagation loss and highest finesse reported to date for glass,

waveguide, ring resonators of this size. We also observe gain saturation in this ring
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resonator as the launched signal power is increased, and we report lasing action at

sufficiently high pump powers.

Additional comments on active ring resonator gyroscopes are given in Section 2.6.

2.2 Background

2.2.1 Types of gyroscopes

The ability to navigate in the absence of external markers is known as inertial

navigation, and it is an essential element of many commercial and military systems.

Inertial navigation systems were originally developed by Germans during World War

II.

By measuring the force exerted on a small mass attached to a platform, the linear

acceleration of the mass, and hence that of the platform, can be determined in the

platform’s coordinate system. This information, however, is insufficient to determine

the linear acceleration of the platform relative to a fixed external coordinate system,

since the accelerometers are attached to the platform and rotate with it. Thus the

motion of a platform has six degrees of freedom, three of which are associated with

its linear acceleration (in its own frame of reference), and three of which are associ-

ated with its angular orientation. Knowledge of the platform’s angular orientation,

together with its linear acceleration (in its own frame of reference), can be used to

determine the linear acceleration of the platform in some fixed external frame of ref-

erence. By twice integrating the values of the linear acceleration, computed in this

external reference frame, the location of the platform relative to a fixed external ref-

erence frame can be found at any future time provided the platform’s initial position

is known.

Linear accelerometers are relatively easy to construct. For example, the displace-

ment of a small mass attached to a spring, with known spring constant, will yield
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a measurement of the applied force and hence the linear acceleration of the mass.

Angular orientation, or equivalently angular rotation rate, is more difficult to mea-

sure. Rotation rate sensors can be either mechanical or non-mechanical. Until fairly

recently, mechanical rotation sensors relied on gimbaled spinning mechanical gyro-

scopes. The gimbals holding the gyroscope are a set of three rings, initially oriented

at right angles to one another, and each gimbals has its own set of bearings. As the

platform rotates so do the gimbals, but the spinning gyroscope maintains its orien-

tation. By measuring the angular position of the gimbals relative to the axis around

which the gyroscope is spinning, the rotation of the platform may be determined.

Mechanical spinning gyroscope rotation rate sensors have, for the most part, been

replaced by a newer generation of devices.

There are three general types of gyroscopes that are widely deployed today for

inertial navigation and rotation rate sensing. For any particular application, the

selection of the type of gyroscope will depend upon performance, complexity, and cost

considerations. The first gyro type is a Micro-Electro Mechanical System (MEMS)

device [21, 22]. For this gyro, rotation sensing relies on vibrating mechanical elements.

In one particular implementation, the out-of-plane motion of a vibrating element will

be induced by rotation, and the amount of this motion is electrically sensed and

converted to a rotation rate. MEMS gyros are relatively inexpensive and can be

easily fabricated using standard semiconductor batch processing methods. MEMS

gyros, however, have relatively low sensitivity and accuracy, and these devices are

susceptible to errors induced by mechanical vibration and acceleration. The second

and the third types of gyros are ring laser gyros (RLG) and interferometric fiber

optical gyros (IFOG), respectively, and the operation of both of these are based on

the Sagnac effect.

In 1913, G. Sagnac demonstrated inertial rotation sensing by optical means for the

first time. When two counter-propagating beams of light propagate along a common
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path in a rotating frame of reference, these beams will experience a phase difference

that is proportional to the rate of rotation. This phenomenon is known as the Sagnac

effect. By combining this effect with optical interferometry, inertial rotation rate

sensing devices that have no moving parts can be built [23]. Although RLG and

IFOG optical gyros are highly sensitive, accurate, robust, and immune to mechanical

vibrations, they are difficult to build and are expensive.

A variant of the IFOG and RLG is the integrated optic ring resonator gyro

(IROG), and the active version of this device is the subject of this chapter. The

IROG is a promising candidate for some applications due to its small size and the

fact that it can be manufactured using standard, low-cost, batch, semiconductor pro-

cessing. Furthermore, IROGs are also compact, robust, and immune to environmental

effects. The basic configurations for RLG, IFOG and IROG optical gyroscopes are

shown in Figure 2.1. The operation of RLG requires a bi-directional ring gas laser,

where the counter-propagating laser beams are coupled out of the ring laser cavity

and beat against each other. Due to the Sagnac effect, the beat frequency is pro-

portional to the angular rotation rate of the ring. An IFOG consists of a fiber loop

and a directional coupler. An external optical source, launched into the input port

of the device, is split by the directional coupler to produce two counter-propagating

beams inside the loop. These beams combine interferometrically at the output port

to yield an optical intensity that varies sinusoidally as a function of the relative phase

difference between the counter-propagating beams. According to the Sagnac effect,

the phase difference is proportional to the angular rotation rate of the fiber loop.

Thus by measuring the intensity at the output port, the angular rotation rate can

be determined. Generally, long fiber coils (i.e., several km) are required for IFOG to

achieve high sensitiviy and accuracy for rotation rate measurements. The operation

of IROG is described in Section 2.3.
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Figure 2.1: Three basic configurations of optical gyroscope for rotation rate sensing:
(a) RLG (b) IFOG (c) IROG.
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Figure 2.2: Double arm ring resonator.

2.2.2 Equations of ring resonators

Consider the double-arm ring resonator shown in Figure 2.2 consisting of a circular

ring located in close proximity to two straight waveguides that serve to couple light

into and out of the ring. The electric field amplitudes, A, A0, B and B0, indicated in

Figure 2.2 can be related to one another by [24]

A = A0

√
1−Kcw − jB0

√
Kcw (2.1)

B = −jA0

√
Kcw +B0

√
1−Kcw (2.2)

B0 = B
√

1−Kccw exp(−ρ
2
L− jβL) (2.3)

where the coupling coefficient, Kcw, equals the fraction of optical power coupled into

the ring from the top straight waveguides, L is the ring circumference, 1 − exp(−ρL)

equals the fraction of optical power lost upon one round-trip around the ring neglect-

ing coupling losses to the straight waveguides and β is the propagation constant. For

simplicity, we have neglected any excess insertion losses associated with the coupling
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between the straight waveguides and the ring. Combining Eqs. (2.1)– (2.3) yields [24]

T (φ) ≡
∣∣∣∣ AA0

∣∣∣∣2 = 1− (1− x2)(1− y2)

(1− xy)2 + 4xy sin2(φ/2)
(2.4)

where

x ≡
√

1−Kccw exp(−ρ
2
L) (2.5)

y ≡
√

1−Kcw (2.6)

φ ≡ βL =
2π

λ
NeffL = ωNeffL/c (2.7)

and the coupling coefficient, Kccw, is the fraction of power coupled into the ring from

the lower straight waveguide, λ is the free-space optical wavelength, ω is the optical

frequency in rad/s and Neff is the effective index of the guided mode. It will be

assumed that light is launched into the ring only from the top straight waveguide.

The transmittance T achieves a minimum when φ equals an even integer multiple

of π, corresponding to resonance in the ring. Using Eq. (2.4), the depth, D, of the

resonance ”dip” can be expressed as

D ≡ Tmax − Tmin
Tmax

=
4xy(1− x2)(1− y2)

(1− xy)2(x+ y)2
(2.8)

and the full-width of the resonance at half maximum, δφFWHM , is equal to

δφFWHM = 2 cos−1

(
2xy

1 + x2y2

)
(2.9)

where this width is defined by the relationship

T (mπ ± δφFWHM/2)− Tmin
Tmax − Tmin

= 1/2 (2.10)
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The resonator finesse, F , is given by

F ≡ 2π

δφFWHM

=
2πc/NeffL

δωFWHM

(2.11)

where δωFWHM is the full-width-half-maximum of the resonance in rad/s. Eqs. (2.9)

and (2.11) reduce to

F ≈ π

1− xy
(2.12)

when xy ≈ 1. The ratio of the power in the ring at resonance to that of the launched

power in the straight waveguide is given by

∣∣∣∣ BA0

∣∣∣∣2 =
1− y2

(1− xy)2
(2.13)

According to Eq. (2.8) the dip will be maximized, achieving a value of 1, when x = y.

Furthermore when x = y ≈ 1, Eqs. (2.12) and (2.13) can be combined to yield

∣∣∣∣ BA0

∣∣∣∣2 ≈ F/π (2.14)

By measuring the dip and finesse, both the coupling efficiency,
√

1−Kccw exp(−ρL/2)

and Kcw can be found using Eqs. (2.8), (2.9) and (2.11). When light is launched

into the ring using only the bottom straight waveguide, all of the expressions given

above remain valid provided that the two coupling coefficients, Kcw and Kccw, are

interchanged in these formula.

2.3 Spectral resolution of active ring resonator in quantum

limit

Figure 2.2 shows a double arm ring resonator functioning as a resonant optical

gyroscope. Light is launched into each of the two resonator arms from separate
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laser sources and these two light beams counter-propagate along the ring. In the

absence of rotation, the resonance frequencies for propagation in both the clockwise

and counter-clockwise directions are given by

fm = m
c

NeffL
(2.15)

where c is the vacuum speed of light andm is positive integer. Due to the Sagnac effect

the resonant frequencies, fm,cw and fm,ccw, corresponding to the counter-propagating

beams will differ when angular rotation takes place about an axis normal to the plane

of the ring. The difference in these frequencies is given by [23]

fm,ccw − fm,cw =
4A

λmL
Ω (2.16)

where A is the area enclosed by the ring, L is the perimeter of the ring, λm = c/fm

and Ω is the angular rate of rotation around an axis normal to the plane of the

ring. Thus the angular rotation rate can be determined by measuring this frequency

difference. Resonant optical gyroscopes were proposed and demonstrated using fiber

optics by Ezekiel et al. [12, 13]. Several groups have implemented these gyros using

planar, glass, waveguide rings in place of optical fibers [25, 26].

The ultimate accuracy with which the frequency difference, fm,ccw− fm,cw, can be

measured using a passive resonant optical gyro is limited by shot-noise and is given

by [13]

δΩrms ≈
(
λmL

4A

)√2δωFWHM/(2π)√
ηD

Pin
hfm

τint


=

(
λmc

4ANeff

) √
2

Fc

√
ηD

Pin
hfm

τint

 rad/s (2.17)

where δΩrms is the rms, angular rotation rate, random walk error, ηD is the detector’s
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quantum efficiency, h is Planck’s constant, τint is the observation interval (i.e., detector

integration time) and Pin is the total power launched bi-directionally into the ring,

with half of the power propagating in each direction. Thus the accuracy of the passive

resonant gyro can be improved by reducing the width of the resonance,δωFWHM , or

equivalently by increasing the finesse,Fc, of the ring resonator by reducing propagation

losses in the ring. A resonant optical gyroscope of ring perimeter L can, in theory,

achieve the same shot noise-limited accuracy as a Sagnac-based interferometric fiber

optic gyroscope of fiber length LFc/3 [12, 23]. This effective length enhancement by a

factor of LFc/3 is the principal theoretical advantage of a resonant optical gyroscope

as compared to a nonresonant, fiber-optic, interferometric gyroscope. The complexity

of a resonant optical gyroscope, however, is considerably higher, and other parasitic

effects, like Kerr nonlinearities, may make it difficult to achieve the fundamental

performance limits given by Eq. (2.17).

The finesse of the resonator can be increased by including gain inside the ring

to compensate for propagation loss. Fiber-based, active, ring resonators have been

studied both theoretically and experimentally [27–29]. In the presence of gain, the

ultimate accuracy of a resonant optical gyroscope will be limited by the spontaneous

emission noise inside the ring rather than by shot noise at the detector. Using an

analysis technique similar to that employed for ring laser gyroscopes [20], it will be

shown below that, in the presence of gain, spontaneous emission noise limits the

accuracy of a resonant optical gyroscope to a value given by

δΩrms ≈
(

λmc

4ANeff

) 1
√
FcFa

√
Pin
hfm

τint

 rad/s (2.18)

where Fc is the (”cold” cavity) finesse of the resonator in the absence of gain and Fa

is the finesse when gain is present.

For simplicity, a number of assumptions will be made in our analysis. It will be
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Figure 2.3: Effect of spontaneous emission on frequency.

assumed that the gain is produced by a transition between two levels of an atomic

system, e.g., the 4F3/2 → 4I11/2 neodymium transition. The atomic population in the

upper excited level (4F3/2) will be denoted by N2, while the lower level (4I11/2) of the

transition will be assumed to be unpopulated. The atomic transition will be assumed

to be purely homogeneously broadened with a center transition frequency of fa Hz

(wavelength λa), a full-width-half-maximum linewidth of δωa rad/s, a stimulated

emission cross-section of σe and a spontaneous emission lifetime of τfl. The losses

in the resonator in the absence of gain will be assumed to be relatively low, and

when gain is present, it will be assumed that the gain compensates nearly all of the

propagation losses in the ring.

Let < n > denote the average number of photons inside the ring cavity. Thus the

strength of the electric field inside the cavity will be proportional to
√
n and can be

represented by a vector as shown in Figure 2.3. The angular position of the vector

indicates the phase of the optical field. The short vector in Fig. 2.3 has a length

of 1 and represents the spontaneous emission of a single photon from an excited
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atom of the gain medium into a single cavity mode. The angular orientation, β, of

this vector relative to the dashed reference line shown in Figure 2.3 is random and

uniformly distributed over the interval [0, 2π). The addition of this spontaneously

emitted photon changes the phase of the optical field in the cavity by δθ. Assuming

that < n >� 1, it may be concluded that

δθ ≈ 1 · cos β√
< n >

(2.19)

and thus

< (δθ)2 >≈ 1

2 < n >
(2.20)

Therefore the total change, δφ, in phase of the optical signal field after M photons

have been produced by M independent spontaneous emission events that occur in a

time interval of duration τint will be given by

< [δφ(τint)]
2 >≈ M(τint)

2 < n >
(2.21)

In a time interval of τint seconds the number of photons, M(τint), that are sponta-

neously emitted into a single cavity mode is given by

M(τint) =
τint
τfl

N2

s
(2.22)

where s is the number of cavity modes in the ring resonator. s can be found by using

the fact that the number of modes per unit volume per unit Hertz is given by [30]

ρb(f) =
8π

λ2
a

n3
r

c
(2.23)

where nr is the refractive index of the ring. A homogeneous transition has the fol-
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lowing Lorentzian spectral lineshape

S(f) =
1

1 + [2(f−fa)
δfa

]2
(2.24)

and the area under this lineshape curve is equal to πδfa
2

. Thus it follows that

s =
8π

λ2
a

n3
r

c
V
δωa
4

=
2π

λ2
a

n3
rV

c
∆ωa (2.25)

where V is the volume occupied by the ring resonator cavity and λa is the wavelength

at the center of the atomic transition. The cold cavity photon lifetime, τp, is given by

τp =
nrL/c

1− x2y2
(2.26)

where x and y are given by Eqs. (2.5) and (2.6). The reciprocal of the cold cavity

photon lifetime is approximately equal to the full-width-half-maximum of the cold

cavity resonance provided the resonator loss is small, i.e.,

1

τp
≈ δωFWHM =

2πc

nrLFc
(2.27)

where the second equality in Eq. (2.27) follows from Eq. (2.11). The round trip gain,

G, in the ring is given by

G = exp(σeN2L/V ) ≈ 1 + σeN2L/V (2.28)

It is assumed that the gain nearly compensates the resonator loss, and therefore the

following condition is met

x2y2G ≈ 1 (2.29)
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Combining Eqs. (2.26), (2.28), (2.29) yields

N2 ≈
V

σeL
(1− x2y2) =

nrL

σec

1

τp
(2.30)

From the Einstein A and B relationship, it follows that [31]

σe =
1

2π

1

τfl

λ2
a

n2
r∆ωa

(2.31)

The total optical power, Pc, circulating in the resonator can be related to the average

number of photons, < n >, in the resonator propagating in each direction by

< n >=
nrPcL

2hfac
(2.32)

Combining Eqs. (2.21), (2.22), (2.25), (2.27) and (2.30)– (2.32) yields

< [δφ(τint)]
2 >=

2πτinthfac
2

FcPcn2
rL

2
(2.33)

Now according to Eq. (2.14)

Pc ≈
1

π
FaPin (2.34)

Also note that

< [δfcw]2 >=< [δfccw]2 >=< [δφ(τint)]
2 > /(2πτint)

2 (2.35)

Combining Eqs. (2.33)– (2.35) yields the following expression for the frequency reso-

lution of an active ring resonator in the quantum limit.

(δfcw)rms = (δfccw)rms ≈
c√

2nrL

1
√
FcFa

√
Pin
hfa
τint

(2.36)
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It follows from Eqs. (2.16) and (2.35) that

δΩrms =< [δΩ]2 >1/2=
λaL

4
√

2πAτint
< [δφ(τint)]

2 >1/2 (2.37)

Combining Eqs. (2.33), (2.34) and (2.37) yields the final result for the gyro sensitivity

in the quantum limit

δΩrms ≈
(
λac

4Anr

) 1
√
FcFa

√
Pin
hfa
τint


=

(
λac

4Anr

) 1

Fc
√
Fa/Fc

√
Pin
hfa
τint

 rad/s. (2.38)

A comparison of Eqs. (2.17) and (2.38) indicates that in the quantum limit, the reduc-

tion in the rms, angular rotation rate, random walk measurement error is proportional

to 1/
√
Fa/Fc rather than to 1/(Fa/Fc) when gain is included in the resonator ring.

Thus doubling the finesse by using gain only reduces the quantum-limited measure-

ment error by a factor of
√

2 rather than by a factor of 2.

Consider now the operation of the resonant optical gyroscope shown in Figure 2.2

operating under the following conditions: (1) Kcw = Kccw ≈ 0, (2) the gain exactly

cancels the propagation loss along the ring, i.e., ρa = 0, and (3) ρc ≈ 0, where ρc

and ρa denote the propagation loss coefficient, ρ, in the ring when gain is absent and

present, respectively. It follows from Eq. (2.12) that

Fc ≈
π

1− (1−Kcw) exp(−ρcL/2)
≈ 2π

ρcL
(2.39)

and

Fa ≈
π

Kcw

(2.40)

Therefore the inclusion of gain will reduce the rms angular rotation measurement
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error by a multiplicative factor equal to

Reduction Factor =

√
Fa
Fc
≈
√

ρcL

2Kcw

(2.41)

As a numerical example suppose the propagation loss in the ring, without gain, is

0.05 dB/cm, the ring diameter is 2 cm and the coupling coefficient is 0.1%, then

Fc ≈ 86, Fa ≈ 3140 and the measurement error reduction factor due to the inclusion

of gain is approximately 6. According to Eq. (2.41), an arbitrarily large improvement

in performance should be attainable, in theory, by reducing the coupling coefficient,

Kcw. According to Eqs. (2.34) and (2.40), however, the power, Pc, circulating in the

ring at resonance is inversely proportional to Kcw. i.e.,

Pc =
Pin
Kcw

(2.42)

where Pin is the power launched into the straight waveguides. Thus as Kcw is re-

duced, the power in the ring increases, and this in turn increases the gain saturation.

Furthermore as the gain saturation increases additional pump power is required to

maintain the required level of loss compensation, i.e., ρa = 0. An expression for the

required absorbed pump power is derived below

σeN
(sat)
2 ≈ ρc (2.43)

N
(sat)
2 ≈ N

(unsat)
2

1 + 2Pc/Psat
(2.44)

Psat ≈
hfa
σeτfl

Awg (2.45)

where Awg is the cross-sectional area of the ring waveguide. Eq. (2.43) expresses the

condition that the gain compensates the losses in the ring, i.e., ρa = 0, Eq. (2.44) is the

relationship between the saturated and unsaturated (i.e., when Pin = 0) population in
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the upper level, and Psat is the saturation power of the gain transition. The absorbed

pump power, Pp, at wavelength λp required to maintain an unsaturated upper level

population, N
(unsat)
2 , is given by

Pp =
hc/λp
τfl

N
(unsat)
2 AwgL (2.46)

Combining Eqs. (2.41)– (2.46) and invoking the fact that Pc � Psat when the gain

is highly saturated yields the following final result for the required absorbed pump

power.

Pp ≈ 4
λa
λp

Fa
Fc
Pin (2.47)

We can see that, from Eq. (2.47), the required absorbed pump power is proportional

to the improvement in the resonator finesse, i.e., the square of the reduction factor

in the rms angular rotation measurement error as given by Eq. (2.41) when gain is

introduced into the ring cavity.

2.4 Silver ion exchanged waveguides

2.4.1 Introduction of silver ion exchange

Ion exchange is a mature technology for the fabrication of both passive and ac-

tive glass integrated optical devices. The first IO waveguide was fabricated by ion

exchange in 1972 [32]. Since 1972, a large number of studies and reviews on ion ex-

change in glass have been published [33–36]. There are several types of ion exchange

for optical waveguide fabrication in glass substrate [33]. In the discussion to follow,

we will only consider ion exchange from a liquid melt in the absence of an externally

applied electric field. Under such conditions, sodium cations (Na+) in the glass are

generally exchanged with either silver cations (Ag+) or potassium cations (K+) from

the melt. Silver ion exchange is advantageous over potassium ion exchange in sev-
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eral aspects: lower processing temperature, shorter exchange times, larger refractive

index changes, and the absence of stress-induced birefringence [33]. Proper selection

of glass substrate, however, is required to fabricate very low propagation loss waveg-

uides using silver ion exchange. The silver ion exchange process occurs in a mixture of

molten salt bath of silver nitrate (AgNO3) and sodium nitrate (NaNO3), where Ag+

ions are introduced into the glass at an elevated temperature to replace the Na+ ions

in the glass. This process modifies the local concentrations of Ag+ and Na+ inside

the glass, thus inducing a local refractive index change. The resulting ion-exchanged

waveguide profiles for planar or channel waveguides are directly related to the ion ex-

change conditions, i.e., melt concentration, diffusion temperature, time and the size

of the mask opening used to delineate the channel waveguide.

2.4.2 Properties of glass substrate

The glass substrate used to fabricate our active ring resonator is IOG10 glass

doped with 2 weight percent Nd2O3 (Nd-doped IOG10). The glass was produced

in a small melt and hence its optical quality was limited. IOG10 is a commercially

available silicate glass developed by Schott Glass for silver ion exchange. The glass

composition of IOG10 is shown in Table 2.1. The measured absorption spectrum of

IOG10
Oxide (weight %)
SiO2 63.6
Na2O 9.2
K2O 6.8

Al2O3 3.0
MgO 2.8
ZnO 12.5

Ba2O3 1.0
TiO2 0.6

Traces2 0.5

Table 2.1: Glass composition of IOG10.

the Nd-doped IOG10 is shown in Figure 2.4. There are several strong absorption
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Figure 2.4: Absorption spectrum of neodymium-doped IOG10 glass.

peaks at 580 nm, 740 nm and 808 nm. For our device, optical pumping is achieved

using a laser diode operating at a wavelength of λp ≈ 830 nm. For the 4F3/2 → 4I11/2

neodymium transition, the peak fluorescence occurs around λ = 1064 nm.

2.4.3 Characterization of silver ion exchanged waveguides

The single mode condition for the channel waveguide fabricated by silver ion

exchange was estimated by the previous modeling work of silver ion exchange [37].

E-beam evaporation was used to deposit a 150 nm thick layer of titanium onto the

glass substrate, and then a conventional photolithographic process was utilized to

pattern the titanium layer for straight waveguides with different mask openings. For

the silver ion exchange parameters, different melt concentrations, diffusion times,

and post-annealing cycles are investigated to search for the best recipe to obtain

low propagation loss and single mode operation at λ = 1064 nm. During silver

ion exchange, metallic silver clustering can occur at the edges of the titanium mask

26



openings resulting in large propagation losses. In order to mitigate this effect, the

titanium mask was oxidized by placing the wafer in a pure NaNO3 melt at 330oC

for one hour. After this step, the ion exchange was performed in a mixed melt of

silver nitrate and sodium nitrate (0.35 mol%:99.65 mol%) at 320oC for 15 minutes.

Following the exchange, the titanium mask was removed, the waveguide edges were

polished and the sample was cleaned. The device was subjected to four cycles of

thermal annealing, each of 5 minute duration at a temperature of 320oC. The profile

of the induced refractive index change (increase) ∆n for the channel waveguide after

four cycles of thermal annealing is obtained using a commercial RNF profilometer

(Rinck Elektronik, Germany) operating at λ = 658 nm and is shown in Figure 2.5.

Though not strictly true, for our modeling efforts, the refractive index change (∆n) is

assumed to be independent of wavelength. The fundamental mode profile at λ = 1064

nm for the channel waveguide given in Figure 2.5 is calculated by beam propagation

and is shown in Figure 2.6. The calculated mode profile is used later to design the

signal and pump beam waveguide couplers for the active ring resonator described in

next section.

2.5 Device design and experimental results

A prototype active ring resonator was designed and fabricated in an ion exchange-

able silicate glass doped with 2 weight percent Nd2O3. The ring resonator consists of

a pair of straight waveguide arms, a pair of directional couplers and a racetrack ring

as shown in Figure 2.7. The racetrack consists of two half circles of radii 8 mm joined

together by two 2.915 mm long straight sections. For the directional couplers, the

fraction of power coupled from the signal arm into the ring at the signal and pump

wavelengths is given by Ks(λs) and Ks(λp), respectively, while Kp(λs) and Kp(λp) de-

notes the corresponding coupling coefficients for the pump arm. In order to achieve

a high finesse at moderate launched pump powers, the couplers should have small
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Figure 2.5: 2D profile of refractive index change ∆n (at λ = 658 nm) of fabricated
silver ion exchanged channel waveguide.

Figure 2.6: Fundamental mode profile at λ = 1064 nm for fabricated silver ion ex-
changed channel waveguide.
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Figure 2.7: Mask layout for single-arm racetrack active ring resonator with pump
coupler W = 1.3 µm, Ds = 8.4 µm, Lp = 2.915 mm, Dp = 7.55 µm.
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values for Ks(λs), Kp(λs) and Ks(λp), while Kp(λp) should be kept as close to one

as possible. Given that the gain medium was chosen to be neodymium-doped glass,

λs ≈ 1060 nm and a pumping of λp ≈ 830 nm was chosen.

Device fabrication is carried out by the silver ion exchange process described in

Section 2.4.3 with the device layout shown in Figure 2.7. The un-pumped spectral

response of the device was measured after each annealing step using a tunable, ex-

ternal cavity, diode laser manufactured by New Focus operating with a linewidth

below 300 KHz. From these measurements, finesse and dip values were found. The

pump coupler efficiencies, Kp(λp) and Kp(λs), were also measured using separate sets

of test couplers that were fabricated together with the resonator on the same chip.

The finesse and dip values, along with knowledge of Kp(λs), allowed us to compute

the values of ρ and Ks(λs). During the thermal annealing steps, diffusion causes the

previously indiffused Ag+ ion concentration profile to increases in width and depth,

decrease in peak magnitude and assume a smoother shape. These changes reduce the

propagation losses due to scattering, but increase the bending loss due to a reduction

in ∆n. The overall propagation loss is minimized for some optimal amount of thermal

annealing [16]. The coupling efficiencies of the directional coupler will also change

as the device is annealed, and these efficiencies are very sensitive to changes in the

refractive index profile, thus making accurate design work difficult. Based on our pre-

vious experience fabricating passive ring resonators in un-doped version of a similar

glass and the corresponding measured refractive index profiles of these devices, the

mask parameters specified in Figure 2.7 were chosen [16]. Coupled mode calculations

indicated that these parameters should yield small values for Ks(λs), Kp(λs) and

Ks(λp) and a relatively large value for Kp(λp). Several devices with different pump

coupler interaction lengths, Lp, were fabricated, thus allowing us to select the device

that achieved the most favorable values for Kp(λp) and Kp(λs), while simultaneously

obtaining low values for Ks(λs) and Ks(λp). In the absence of pumping, the measured
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finesse and dip of the final device were found to be 10.8 and 6.2%, respectively. From

these measured values, the propagation loss, ρ, and the coupling efficiency, Ks(λs),

for the signal were deduced to be 0.45 dB/cm and 0.94%, respectively. Kp(λp) and

Kp(λs) were measured to be 52.3% and 3.5%, respectively, using separate sets of test

couplers as described above. The high propagation loss for the device reported here

is likely due to the small volume of the glass melt used to produce the Nd-doped sub-

strates. Smaller volume melts often result in glasses of lower optical quality. Using

similar ion exchange processing, propagation losses on the order of 0.1 dB/cm have

been obtained in the un-doped, commercially available version of a similar glass [16].

Losses on the order of 0.01 dB/cm have been achieved for slightly larger sized rings

using CVD-deposited silica on silicon films and patterning using RIE [17]. The use

of RIE patterning together with such a material system would also simplify the cou-

pler design process and enhance the ability to repeatedly fabricate nearly identical

devices.

The output of a 150 mW, single spatial mode, TE-polarized, laser diode operating

in the vicinity of 830 nm was coupled into the pump arm of the device described above

as shown in Figure 2.7. The spectral response of the resonator was measured using

the New Focus tunable source, and the results are shown in Figure 2.8. A long-pass

filter, having a cut-off near 900 nm, and a narrow bandpass filter centered at the signal

wavelength were placed between the output of the signal arm and the detector in order

to remove the residual pump signal and spontaneous emission noise, respectively. The

measured, off-resonance, signal power level at the detector during this measurement

was 1.7 µW . The spectral response shown in Figure 2.8 corresponds to a free-spectral

range (FSR) of 3.8 GHz, a full-width-half-maximum resonance bandwidth of 15 MHz,

a finesse of 250 and a dip of 89%. Using these finesse and dip values, Ks(λs) and the

effective propagation loss inside the ring (including signal loss at the pump coupler)

was computed to be 0.84% and 0.013 dB/cm, respectively.
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Figure 2.8: Spectral response of active ring resonator.

Figure 2.9: Spectral response of active ring resonator as a function of pump power at
fixed signal power.
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Figure 2.10: Spectral response of active ring resonator as a function of signal power
at fixed pump power.

Figure 2.11: Lasing characteristic.
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Spectral measurements were repeated at a variety of laser diode pump powers

and the results are shown in Figure 2.9. As expected, the effective loss decreases

and the finesse increases as the pump power is increased. At a fixed pump power, a

decrease in finesse due to gain saturation was also observed as more signal power was

coupled into the ring. These gain saturation results are shown in Figure 2.10 as a

function of the output signal power measured off-resonance at the detector. Without

any launched input signal, the pump power at the device input was increased. A

plot of the output signal power, measured at the pump output port, versus input

pump power is shown in Figure 2.11. The output signal power vs input pump power

curve shows an abrupt slope change at 110 mW indicating the onset of lasing. The

high pump power required to achieve lasing can be attributed to high losses in the

passive ring resonator together with poor coupling from the diode pump laser into

the straight-arm of the pump waveguide. Thus it was difficult to achieve lasing with

our pump diodes and unwanted laser action was not observed. In general, however,

the launched pump and/or signal powers may need to be carefully controlled in order

to inhibit lasing.

The spectral analysis performed in Section 2.3 assumed a purely homogeneously-

broadened transition and thus a population inversion that saturates uniformly across

the gain transition. If the transition is inhomogenously-broadened, then to first or-

der only the spontaneous emission originating from the homogeneously-broadened

spectral packet lying closest to the launched signal’s frequency will limit the fre-

quency resolution. Consequently, the basic results Eqs. (2.36) and (2.38) will remain

unchanged. When operated as a resonant optical gyro, lasing must be prevented.

Because of spectral hole burning, however, the signal inside the resonator may only

inhibit lasing at the cavity modes in the vicinity of the signal frequency. In order to in-

hibit the more distant spectral modes from lasing, it may be necessary to incorporate

a course spectral filter into the cavity.
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2.6 Discussion

Different platforms will have different performance requirements for navigation

and/or guidance. The performance of angular rotation rate sensors are usually spec-

ified in terms of several parameters, including angle random walk (ARW), bias drift,

scale factor linearity, maximum rotation rate and bandwidth. ARW specifies the rms

variation of the measured angular rotation rate due to noise. Noise-induced errors

can be reduced by increasing the integration time associated with the measurement,

but the maximum angular acceleration of the platform will determine the maximum

allowable integration time. If the integration time is larger than this maximum value,

then the rate sensor will not be able to follow rapid changes of the rotation rate.

For this reason, the ARW is typically specified in a normalized form that does not

depend on the integration time. According to Eq. (2.18), the ARW of an active ring

resonator gyro can be expressed in units of deg/
√
hr as

ARW =
δΩrms√
BW

≈
(

λmc

4ANeff

) 1
√
FcFa

√
Pin
hfm

 deg/
√
hr (2.48)

where

BW =
1

τint
(2.49)

is the measurement bandwidth.

The bias error and scale factor linearity do not depend on noise, and hence these

quantities are not fundamentally limited by nature. Any nonreciprocity in the device

will induce a relative phase shift between the counter-propagatin beams that gives

rise to an apparent rotation even when the platform is stationary. Such affects will

lead to a bias error, i.e., a fixed offset between the true and the measured rotation

rate even when the integration time is very large.

Imperfections in the device or its electronics may also lead to an output signal
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that is not exactly proportional to the rotation rate. These deviations from linearity

are referred to as scale factor errors.

Since phase can only be measured modulo 2π, rotation rates that introduce phase

differences between the counter-propagating beams that are the same modulo 2π can

not be distinguished by an IFOG. Similarly for the RLG and IROG, the location

of spectral dips that are equal, modulo the free spectral range of the resonator, can

not be distinguished. These factors limit the maximum rotation rate that can be

measured using an optical gyro. Furthermore it is easy to see that the maximum

rotation rate is inversely proportional to the cavity length for a RLG and an IROG

and inversely proportional to the fiber length for an IFOG.

It is common to place gyro performance into one of three broad categories - rate

grade, tactical grade and inertial grade - as indicated in Table 2.2.

ARW Bias Drift Scale Factor Error

(deg/
√
hr) (deg/hr) (ppm)

Inertial grade <∼ 0.001 <∼ 0.01 <∼ 5
Tactical grade ∼ 0.5-0.05 ∼ 0.1-10 ∼ 10-1000

Rate grade >∼ 0.5 ∼ 10-1000 ∼ 1000-10000

Table 2.2: Performance of different grade gyroscopes.

Honeywell is one of the largest manufactures of gyroscopes, the specifications of

their commercially available gyroscopes can be found on the Honeywell website and

in several publications [38]. A partial list of some of its products along with their

associated specifications are given in Table 2.3.

ARW Bias Drift Scale Factor Error

(deg/
√
hr) (deg/hr) (ppm)

GG1320AN Laser Gyro 0.0035 0.0035 5.0
GG1230AN01 Laser Gyro 0.01-0.04 0.01-0.04 50

GG5300 MEMS gyro 0.2 70 50000
High Performance IFOG 0.0007 0.006 30

Table 2.3: Specifications of select Honeywell gyroscopes.

The principle advantage of MEMS gyros are their small size and their low cost.
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The low cost is due to the fact that MEMS can be mass produced using standard

semiconductor processing techniques. MEMS devices, however, are mechanical. Al-

though more than $100 million dollars has been spent for the R&D of MEMS gyros, it

is not clear whether these devices can ever deliver more than rate grade performance.

Ring laser gyros were the first optical gyros capable of delivering inertial-grade

performance. A massive engineering effort has gone into developing RLG that are cost

effective, small in size and which can achieve inertial-grade performance. Like IROG,

the primary source of noise for these devices is spontaneous emission noise from the

gain medium. The ARW of these devices depends on the output power of the laser

and the finesse of the lasing cavity. The mirrors in RLG, which determine the cavity

finesse, already extremely low losses and are unlikely to be improved much beyond

their current state. Thus the ARW of a RLG can only be improved by increasing the

cavity length, and hence the size of the device. Space, however, is often very limited

on a platform, and thus increasing the size of the device is often not practical. Current

single-axis laser gyros weigh only about 1 lb, occupy volumes under 20 inches3 and

cost less than $10,000. Bidirectional lasing, however, is not possible in a solid state

laser due to the gain competition between the counter-propagating beams. Thus all

RLG have gas as their gain medium (i.e., HeNe). Gas lasers are generally less reliable

and have shorter lifetimes than solid state lasers, and thus for some applications there

is a desire to move away from RLG.

Of all the gyros, IFOG can offer the best performance in a very small package.

Unlike RLG and IROG, the ARW performance of an IFOG is limited by shot noise

at the detector and not by spontaneous emission noise of a gain medium. Thus the

ARW can be decreased by increasing the length of the fiber coil. As with all gyros,

parasitics such as polarization effects, optical nonlinearities, ... etc., can greatly

degrade performance. High precision IFOG are extremely difficult to build and thus

are very expensive, i.e., hundreds of thousands of dollars. Consequently, not many
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high performance IFOG have been deployed.

A limited amount of work, including industrial R&D efforts undertaken by Hon-

eywell and BAE Systems, has gone into developing passive IROG. Three advantages

of IROG are their small size, the fact that they are solid state devices (no gases), and

they have the potential to be manufactured at low cost using standard semiconductor

batch processing techniques. The ARW of an IROG will depend on the finesse of the

ring, which in turn depends on the propagation losses in the ring. As opposed to

optical fibers, that typically have losses below several tenths of a dB/km, the best

planar waveguides have losses of approximately 0.01 dB/cm. A 2-cm diameter ring

with such a loss could achieve at best an ARW of ∼ 0.05 deg/
√
hr, and thus would

not be suitable for inertial grade applications. Furthermore an IROG is a rather

complicated device, since it requires either a tunable laser source or a tunable path

length ring in order to locate the resonant dip. In contrast, the counter-propagating

outputs of a RLG merely need to be combined on a detector in order to measure the

beat frequency and hence the rotation rate. If the losses of planar waveguides could

be reduced by one or two orders of magnitude, then passive IROG might become an

attractive option. This later observation was the motivation for investigating active

IROG that contain a solid state gain medium inside the ring.

We have determined the minimum ARW achievable by an active, ring resonator

gyroscope in the quantum limit in this chapter, and the reduction in the ARW is equal

to the square root of the improvement in resonator finesse (i.e.,
√

Fa
Fc

). To date, losses

of approximately 0.01 dB/cm can be achieved by passive waveguide rings fabricated

using CVD-deposited silica on silicon together with reactive ion etching of the waveg-

uide structure for ring radii on the order of 1 cm. This loss value corresponds to a cold

cavity finesse value of approximately 125 and a dip value of 2% for Ks(λs) ≈ 0.025%.

If we improve the finesse value to 12500 by incorporation of gain into the ring cavity,

then the ARW error can be estimated to be ∼ 0.005 deg/
√
hr by using Eq. (2.38) and
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assuming that Pin = 1 mW, nr = 1.5, λa = 1.064 µm. This ARW performance value

is comparable to that of a good laser gyro. Other practical considerations, however,

such as high required pump power, Pp (approximately 500 times Pin in our example),

Kerr nonlinearities due to large circulating cavity power, Pc (approximately 104 times

Pin), and the engineering of small bias drifts and small scale factor errors may make

it difficult to achieve the fundamental performance limit estimated here. In principle,

as technology advances, active IROG may become promising candidates for inertial-

and/or tactical-grade navigation gyroscopes. Extensive engineering efforts will be

required to solve the practical issues raised above.
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CHAPTER III

An Infrared Integrated Optic Astronomical Beam

Combiner for Stellar Interferometry

3.1 Introduction

The ultimate resolution of a single aperture telescope is limited by diffraction be-

cause of the wave nature of light. The angular size of the smallest resolvable image

feature is directly proportional to the viewing wavelength and inversely proportional

to the diameter of the telescope’s aperture. It is well known that high-angular res-

olution astronomical imaging can be achieved interferometrically by combining the

wavefronts from spatially separated single aperture telescopes. The resulting resolu-

tion depends not on the diameters of the individual apertures (which are limited by

practical considerations) but rather on the separations between the telescopes, which

can be made rather large. The Michelson stellar interferometer measures the com-

plex amplitude correlation between two optical fields measured at spatially separated

apertures. According to the van Cittert-Zernike theorem [39], this correlation is pro-

portional to the Fourier transform of the object’s intensity distribution at a spatial

frequency equal to the projected separation of the apertures divided by the observing

wavelength [40]. By changing the baseline of the apertures, the Fourier transform

of the object’s intensity distribution may be obtained at a large number of spatial
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frequencies, thus allowing an image of the object to be reconstructed. In 1891 on

the twelve-inch aperture of a telescope at the Lick observatory, Michelson used stellar

interferometry to measure the diameter of the four moons of Jupiter [41]. Recently,

stellar interferometry has been applied to other areas of astrophysics such as high res-

olution imaging of binary stars, direct imaging of rapid rotating stars, the observation

and modeling of circumstellar dust shells and the search for exoplanets [42].

There is a longstanding quest to find planets orbiting other stars (i.e., exoplanets),

especially Earth-like planets in habitable zones where the surface temperature is able

to support liquid water over a range of surface pressures. Since 1995, more than

350 planets beyond our solar system have been discovered indirectly by Doppler

spectroscopy, astrometry, transit methods, and microlensing effects [43]. Most of

the exoplanets discovered so far are giants similar to Jupiter and Saturn, which are

unfavorable for supporting life. Inteferometric imaging offers a direct method for

observing exoplanets. The main difficulty in imaging an exoplanet is separating the

faint light of the planet from the bright emission of its host star. At mid-infrared

wavelengths (7 µm – 20 µm) a planet is over 106 times fainter than its host star,

with this ratio increasing to 1010 in the visible band. High resolution interferometric

imaging requires that more than two apertures be combined.

One of the major advantages of integrated optic (IO) beam combiners, as opposed

to purely optical fiber implementations, is the ability to combine multiple apertures

on a single chip in a scalable manner. IO interferometers offer additional advantages

over bulk implementations, including spatial filtering, enhanced stability, electrically-

controlled, on-chip, phase modulation, and wavelength conversion [44]. IO beam

combiners for astronomical imaging were first proposed by Kern et al. in 1996 [2].

Using silicate-based glass IO devices, laboratory and on-sky measurements of stellar

interferograms were demonstrated by Berger et al. at astronomical H (1.5 µm – 1.8

µm) and K (2.0 µm – 2.4 µm) bands [45–49]. Star-to-planet brightness ratios make
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operation in the infrared beyond 3 µm attractive, but classical silicate-based glasses

are not transparent in this spectral band. On-sky interferometric measurements have

been performed in the L band using a two-beam fluoride glass fiber coupler, but this

fiber-based technology is not easily scalable to multiple apertures [50].

Some preliminary measurement results for an integrated optic beam combiner,

made by annealed proton-exchanged (APE) waveguides in lithium niobate (LiNbO3),

have been previously reported [51]. Electro-optic (EO) modulation in Ti-diffused

LiNbO3 at 3.39 µm has also been demonstrated [52]. In this chapter, we describe the

development of a prototype, single-mode, IO, astronomical beam combiner fabricated

by titanium-indiffusion in x-cut LiNbO3. The device operates in 3.2 µm – 3.8 µm

region, which lies in the L band, and has on-chip, EO-controllable fringe scanning.

Using a broadband thermal source in the laboratory, a white-light interferogram,

along with on-chip EO fringe scanning, is demonstrated with an IO beam combiner

operating in the L band for the first time. In the following section, a brief history, as

well as the basic theory, of interferometric imaging is presented. In Section 3.3, the

fabrication and the characterization of titanium-indiffused waveguides in LiNbO3 are

described. In Section 3.4 the design and characterization of the IO beam combiner is

presented. In Section 3.5 laboratory measurements of a white-light interferogram pro-

duced by the IO beam combiner operating in the L band are described. In Section 3.6,

our results are discussed.

3.2 Background

3.2.1 History of astronomical interferometers

An astronomical interferometer consists of an array of spatially separated tele-

scopes and/or mirrors and the apparatus to combine the light collected from these

elements. Astronomical interferometers are widely used in astronomy at optical,
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infrared, submillimeter, and radio wavelengths. A Fourier-based technique, called

aperture synthesis, can be used to perform high resolution imaging using astronom-

ical interferometers. At optical wavelengths, astronomical interferometers have been

used to form images with resolution higher than what can be obtained by conventional

single aperture telescopes. Fizeau first introduced the idea of stellar interferometry

in 1868. In 1874 Stéphan put the idea into practice by deducing the upper limit of

the diameter of an observed star. Michelson independently re-invented the concept

of stellar interferometry nearly two decades later. At the Lick observatory in 1891,

he measured the diameter of four moons of Jupiter using an interferometer. Between

1920 and 1921, the red giant star Betelgeuse was the first star to have its diameter

determined using stellar interferometry. The field of optical stellar interferometry re-

mained fallow for nearly the next three decades. During this period, interest shifted

to the field of radio astronomy where interferometric imaging techniques based on

aperture synthesis (i.e., use of van Cittert-Zernike theorem) were developed. M. Ryle

received the Nobel Prize for these developments in 1974. After three decades of

domination at radio frequencies, interferometry was extended to measurements using

separated telescopes at infrared wavelengths by Johnson et al. in 1974 [53] and by

Labeyrie in 1975 [54] at the visible wavelengths. In late 1970’s, the first fringe tracking

interferometer was constructed, and its operation was made possible by the advances

in computer processing power. These advancements resulted in the MK I, II, and III

series of interferometers, which are capable of achieving high resolution even in the

presence of atmospheric turbulence. Other astronomical telescope arrays, such as the

Keck Interferometer and the Palomar Testbed Interferometer, were based on similar

techniques. In the 1980s the aperture synthesis interferometric imaging technique,

first used by radio astronomers, was extended to visible light and infrared astron-

omy by the Cavendish Astrophysics Group. The first very high resolution images

of nearby stars were obtained using aperture masking interferometry on the William
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Herschel Telescope. In 1995 this technique was demonstrated on an array of separate

optical telescopes for the first time. Further improvements in resolution and even

high resolution imaging of stellar surfaces have been achieved. In 1996, the closure

phase method was combined with measured visibility amplitudes for the first time by

the COAST interferometer. These methods have now been applied to several other

astronomical telescope arrays, including the Navy Prototype Optical Interferometer,

the Infrared Spatial Interferometer and the IOTA array.

Recently, the use of interferometers to search for extrasolar planets has been a

topic of interest. Space-based interferometry is a promising method to search and to

characterize earth-like planets at high contrast and high angular resolution. NASA’s

Terrestial Planet Finder (TPF) program [55] and ESA’s Darwin mission [56] are

ambitious efforts to realize this goal. The TPF program spans several different mission

concepts, including internal coronagraphs (TPF-C), external occulters (TPF-O) and

nulling interferometers (TPF-I) [57]. The last of these, the nulling interferometer,

was proposed by Bracewell in 1978 [58]. A nulling interferometer is able to cancel the

light coming directly from a bright star, thus making it possible to see relatively faint

orbiting planets [58]. The TPF-I mission’s goal is to build and deploy a mid-infrared,

space-based, nulling interferometer based on Bracewell’s basic idea. The space-based

interferometer will be designed to find and measure the mid-infrared spectra of the

atmospheres of Earth-like exoplanets around nearby stars. The TPF-I mission will

search for evidence of key biomarkers, such as ozone, water, and carbon dioxide so

that the possible presence of planetary life can be inferred [59, 60].

3.2.2 Principles of optical long baseline stellar interferometry

The resolution of a ground-based telescope is limited by the wave nature of light

and the turbulence in the Earth’s atmosphere. In the absence of atmospheric tur-

bulence, the angular resolution ϑ of a perfect telescope is limited by the diffraction
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pattern of a point source (Airy pattern) and is given by

ϑ = 1.22
λ

D
(3.1)

where λ is the wavelength of light and D is the diameter of the telescope. Each point

on the source produces an Airy pattern and these patterns overlap, thus degrading

the fine detail of the structure. Therefore, shorter wavelengths and/or larger tele-

scope apertures are required for high resolution astronomical imaging. Alternately

high resolution can be achieved by using optical long baseline stellar interferometry.

The principle of operation of an optical long baseline stellar interferometer can be

illustrated by considering Figure 3.1. The stellar interferometer shown in this figure

consists of two widely separated small diameter telescopes, a delay line unit, and a

beam combining unit. We consider a two-dimensional, monochromatic, spatially in-

coherent source that lies in the η-ξ plane. The source is viewed by two small apertures

in the X-Y plane a large distance, L, away as shown in Figure 3.2. The apertures

in the X-Y plane are located at points P1 = (x1, y1) and P2 = (x2, y2), and the

corresponding complex-value field amplitudes at these points are denoted as A(P1)

and A(P2), respectively. The spatial distribution of the source intensity is given by

I(η, ξ). Since each point on the source can be considered to radiate as a spherical

wave, the field amplitude at a point (xi, yi) in the X-Y plane produced by the source

at point (η, ξ) in the η-ξ plane is given by

√
I(η, ξ) exp(jk0Ri)

Ri

(3.2)

where k0 = 2π
λ

, λ is the source wavelength, and

Ri =
√

(η − xi)2 + (ξ − yi)2 + L2. (3.3)

45



Figure 3.1: Illustration of the principle of operation of an optical long baseline stellar
interferometer.
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Figure 3.2: Geometry of the two-dimensional, monochromatic, spatially incoherent
source distribution and the observing apertures, P1 and P2.

The complex visibility function, V (P1,P2), is defined as

V (P1,P2) =< A(P1)A∗(P2) >=

+∞∫
−∞

+∞∫
−∞

I(η, ξ)
exp[jk0(R1 −R2)]

R1R2

dη dξ (3.4)

where < > denotes a time average. When L is quite large compared to the physical

size of the object and the region of observation in the X-Y plane, then Ri can be

approximated by

Ri ≈ L+
(η − xi)2 + (ξ − yi)2

2L
. (3.5)
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Combining Eqs. (3.4) and (3.5) yields

V (P1,P2) = < A(P1)A∗(P2) >

=
exp[jΨ(P1,P2)]

L2

+∞∫
−∞

+∞∫
−∞

I(η, ξ) exp[−j(ηu+ ξv)] dη dξ (3.6)

where

Ψ(P1,P2) = k0
(x2

1 + y2
1)− (x2

2 + y2
2)

2L
≈ 0 (3.7)

u = k0
x2 − x1

L
(3.8)

v = k0
y2 − y1

L
(3.9)

Note according to Eq. (3.7), we can neglect the term exp[jΨ(P1,P2)] appearing in

Eq. (3.6). Thus for a monochromatic, spatially incoherent source, Eq. (3.6) indicates

that the complex visibility function is proportional to the Fourier transform of the

spatial intensity distribution of the source object. This result is known as the van

Cittert-Zernike theorem [39].

The system shown in Figure 3.1 can be used to measure the complex visibility

function V (P1,P2). The fields at the two apertures are combined (i.e., added) with a

relative phase delay of φ introduced (by the delay line shown in Figure 3.1) between

the two fields. 1 The time-averaged intensity Ix−y(P1,P2) of the combined fields is

given by

Ix−y(P1,P2) = < |A(P1) + exp(−jφ)A(P2)|2 >

= < |A(P1)|2 > + < |A(P2)|2 > +2Re[< A(P1)A∗(P2) > exp(jφ)]

(3.10)

1Note that if the interferometer is to be operated over a broad wavelength band, then the intro-
duced phase delay, φ, must be wavelength independent. In addition, the beam combining operation
described by Eq. (3.10) must be achromatic.
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Combining Eqs. (3.6) and (3.10) yields

Ix−y(P1,P2) = < |A(P1) + exp(−jφ)A(P2)|2 >

=
2

L2

+∞∫
−∞

+∞∫
−∞

I(η, ξ) dη dξ

+
2

L2

+∞∫
−∞

+∞∫
−∞

I(η, ξ) cos[(ηu+ ξv)−Ψ(P1,P2)− φ] dη dξ

=c0 + c1(P1,P2) cos(φ) + c2(P1,P2) sin(φ) (3.11)

where

c0 =
2

L2

+∞∫
−∞

+∞∫
−∞

I(η, ξ) dη dξ (3.12)

c1(P1,P2) =
2

L2

+∞∫
−∞

+∞∫
−∞

I(η, ξ) cos[(ηu+ ξv)−Ψ(P1,P2)] dη dξ (3.13)

c2(P1,P2) =
2

L2

+∞∫
−∞

+∞∫
−∞

I(η, ξ) sin[(ηu+ ξv)−Ψ(P1,P2)] dη dξ (3.14)

By introducing the quantities r and θ defined by

r(P1,P2) =
√
c2

1(P1,P2) + c2
2(P1,P2) (3.15)

θ(P1,P2) = tan−1 c2(P1,P2)

c1(P1,P2)
, (3.16)

Eq. (3.11) becomes

Ix−y(P1,P2) = c0 + r cos(φ− θ). (3.17)

Thus Ix−y(P1,P2) will vary sinusoidally as the phase delay φ is varied. It is easily
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verified that the fringe visibility is given by

maxφ Ix−y −minφ Ix−y
maxφ Ix−y + minφ Ix−y

=
r

c0

(3.18)

and θ is equal to the value of φ for which Ix−y is maximum. From Eqs. (3.6) and

(3.12)-(3.14), we see that

V (P1,P2) =c1(P1,P2)− jc2(P1,P2)

=r(P1,P2) exp[−jθ(P1,P2)] (3.19)

Thus the complex visibility function for a given pair of telescope apertures at points P1

and P2 can be determined by measuring r(P1,P2) and θ(P1,P2) interferometrically

as the phase delay φ is varied. By changing the location of telescope apertures in the

X-Y plane and making repeated fringe visibility measurements, data for the complex

visibility function is obtained for a wide range of spatial frequencies u and v. Using

this data, the inverse Fourier transform can be performed to obtain the intensity

distribution of the source object using Eq. (3.6). It is convenient to re-write Eq. (3.6)

in terms of angular coordinates, η′ and ξ′, and normalized spatial frequencies, u′ and

v′, defined by

(η′, ξ′) = (η/L, ξ/L) (3.20)

(u′, v′) = k0(x2 − x1, y2 − y1). (3.21)

In terms of these new quantities, Eq. (3.6) can be expressed as

V (u′, v′) ∝
+∞∫
−∞

+∞∫
−∞

I(η′, ξ′) exp[−j(η′u′ + ξ′v′)] dη′ dξ′ (3.22)
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Taking the inverse Fourier transform of Eq. (3.22) yields

I(η′, ξ′) ∝
+∞∫
−∞

+∞∫
−∞

V (u′, v′) exp[j(η′u′ + ξ′v′)] du′ dv′ (3.23)

In general, the visibility measurements can only be taken over a limited region of the

u′-v′ plane. In fact if the region is limited to

√
(u′)2 + (v′)2 ≤ k0Ds (3.24)

where Ds corresponds to the maximum separation between the apertures in the X-Y

plane, then it follows from the properties of Fourier transforms and Eq. (3.23) that

∫ ∫
V (u′, v′) exp[j(η′u′ + ξ′v′)] du′ dv′︸ ︷︷ ︸√

(u′)2+(v′)2≤k0Ds

∝ I(η′, ξ′) ∗
[
J1(
√

(η′)2 + (ξ′)2
k0Ds

2
)

]

(3.25)

where J1( ) is the Bessel function of order 1. Thus the reconstructed angular distri-

bution of the source intensity is the true source intensity distribution convolved with

an Airy pattern that has a peak-to-null width of

1.22λ

Ds

. (3.26)

Therefore according to Eq. (3.1) and (3.26), a stellar interferometer with a maximum

baseline separation of Ds achieves the same angular resolution as a single aperture

telescope of diameter Ds.

For ground-based telescopes, the phase, θ, of the complex visibility function can

not be well-measured because of phase changes induced by atmospheric fluctuations at

the two telescope apertures. If three or more observations are made at different tele-
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scope apertures simultaneously, the relative phases of the complex visibility function

can be obtained by a technique called phase closure, in which the atmospherically-

induced phase fluctuations cancel out [61]. Although the phase closure technique

applies to any number of apertures greater than three, a large number can always

be broken down into independent groups of three (n = 1, 2, 3). The complex visibil-

ity function is measured simultaneously for each pair in the group. We assume that

the amplitude and phase signals from each aperture contain a slowly changing atmo-

spheric phase error of unknown values ϕi0. The apparent complex visibility function,

V a, can be calculated and is given by

V a(Pi,Pj) = < A(Pi) exp(jϕi0)A∗(P2) exp(−jϕj0) >

=V (Pi,Pj) exp[j(ϕi0 − ϕj0)] (3.27)

since ϕi0 and ϕj0 are independent of time during the measurement period. As a result,

the product of the pair-wise complex visibility functions around a closed loop (i.e.,

(1,2), (2,3), (3,1)) is independent of the atmospheric phases and is given by

V a(P1,P2)V a(P2,P3)V a(P3,P1) =V (P1,P2)V (P2,P3)V (P3,P1)

=r12r23r31 exp(−jθc) (3.28)

where rnm exp(−jθnm) is the complex visibility function associated with the aperture

pair n and m and θc = θ12 + θ23 + θ31 is called the closure phase. If the phase

closure value, θc, is measured for different positions of the three apertures and some

of these pairwise positions are redundant, then the individual pairwise phases θnm

can be estimated. This technique allows the optical image of the source object to be

reconstructed by aperture synthesis even in the presence of atmospheric turbulence.

IO beam combiners are well suited for the aperture synthesis of star images because

these IO devices are capable of combining multiple apertures on a single chip in
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a scalable manner. In addition to stellar interferometry, IO beam combiners can

play a useful role for exoplanet searches that rely on nulling interferometry. The

requirements related to the wavelength insensitivity of beam combining are much

more stringent for nulling interferometers than they are for stellar interferometers.

The design of an IO beam combiner with broadband achromatic beam combining

features will be presented in Chapter IV. In the following sections of this chapter,

we will focus on the design, fabrication, and the characterization of astronomical IO

beam combiners operating in the L band for stellar interferometry.

3.3 Fabrication and characterization of titanium-indiffused

waveguides in LiNbO3

In order to obtain accurate visibility measurements the waveguides in the beam

combiner must be single mode at the operating wavelengths. The beam combiner was

fabricated in LiNbO3 because this substrate has excellent transparency from visible

wavelengths to approximately 4 µm, and it may be easily EO phase modulated [52].

There are two widely used methods for fabricating waveguides in LiNbO3: annealed

proton-exchanged (APE) and titanium in-diffusion (Ti:LiNbO3). The later method

produces low-index contrast waveguides, and thus the radius of curvature of the

waveguide bends must be kept large in order to avoid significant bending losses.

On the other hand, APE waveguides only support the mode polarized along the z-

axis of the substrate, while both TE- and TM-modes can be supported by Ti:LiNbO3

waveguides. Furthermore, APE waveguides show strong, broad OH absorption peaks

around 3500 cm−1 ( 2.8 µm), which have the potential to significantly increase the

propagation losses in 3 µm – 4 µm band [62]. Therefore the Ti-indiffusion method

was chosen to fabricate the astronomical beam combiners reported here.
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3.3.1 Waveguide fabrication

The fabrication of titanium-indiffused waveguides is straightforward. Although

there are slight variations, the typical steps to fabricate channel waveguides by lift-off

patterning are shown in Figure 3.3. The polished LiNbO3 crystal is cleaned and spun

with photoresist. The desired waveguide pattern of the design mask is transferred onto

photoresit by tranditional photolithographic process. After developing photoresist,

a clear window corresponding to the waveguide pattern is left in the photoresist.

Titanium is E-beam deposited over the entire crystal and the crystal is then placed in

a photoresist solvent which removes the photoresist along with the unwanted titanium

film.

The crystal is then placed in a covered ceramic tray inside a diffusion furnace for

diffusion at temperatures ranging from 980oC to 1050oC for duration of few hours to

tens of hours. The lower temperature leads to a long diffusion time while the upper

limit is set by the Curie temperature ( 1125oC ) of the crystal. The furnace is cooled

down to room temperature after diffusion.

3.3.2 Waveguide characterization

Both planar and channel waveguides were obtained by diffusing an E-beam de-

posited, 1600Å-thick Ti layer into congruent x-cut LiNbO3 for 35 hours at 1050oC

in a covered ceramic tray [52]. For the channel waveguides, the width, W , of the

pre-diffused Ti strips was chosen to be 18 µm. In the y-z plane of the x-cut LiNbO3

wafer, the channel waveguides were oriented parallel to the y-axis. A prism cou-

pling technique was used to measure the effective indices of the TE planar waveguide

modes at λ = 0.633 µm. In this method, a laser beam strikes the base of a high-

index prism and is normally totally reflected at the prism base onto a photodetector.

At certain discrete values of the incident angle, Θ, photons can tunnel across the

air gap between the prism base and the fabricated planar waveguide and excite the
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Figure 3.3: Procedure for fabricating strip Ti:LiNbO3 waveguides.
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guided optical propagation modes of the planar waveguide, thus causing a sharp drop

in the intensity of light reaching the photodetector. To a rough approximation, the

angular location of the modes determines the effective refractive index of the mode,

while the angular difference between the modes determines the thickness of the pla-

nar waveguide. From the measured mode effective indices, a 1-D refractive index

profile was constructed using the inverse WKB method devised by Chiang [63]. The

resulting refractive index profile along with a corresponding Gaussian fit is shown

in Figure 3.4(b). From this data, the surface refractive index difference ∆n and 1/e

diffusion depth Dx were deduced to be 0.0136 and 8.0 µm, respectively. The effective

indices were measured with a commercial (Metricon 2010) prism coupling instrument

to a manufacturer’s estimated accuracy of ±0.0005. The results are shown in Fig-

ure 3.4(a) along with calculated effective indices assuming the Gaussian profile given

in Figure 3.4(b).

In order to estimate the channel waveguide modes and thus determine whether

single-mode operation was possible, it was assumed that the 2-D refractive index

profile n(x, z) of the x-cut, Ti-indiffused channel waveguides could be approximated

as follows [64]

n(x, z) = ns + ∆n · 1

2

[
erf

(
W/2 + z

Dz

)
+ erf

(
W/2− z
Dz

)]
exp(− x

2

D2
x

) (3.29)

In Eq. (3.29), ns is the substrate index and W is the pre-diffusion width of the E-

beam deposited Ti strips. Furthermore for simplicity, the lateral and longitudinal

diffusion depths Dz and Dx, respectively, were assumed to be equal. Using Eq. (3.29)

and scanning strip width, W , the range of the single TE mode operation for channel

waveguide at λ = 3.39 µm were determined to be W = 8 µm – 21 µm by the beam

propagation method. The ∆n and Dx values used in this calculation were 0.0136 and

8.0 µm, respectively, as given by our planar measurements (at λ = 0.63 µm) described
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Figure 3.4: (a) Comparison of the measured effective indices and calculated effective
indices for a Gaussian profile (b) Extraordinary index profile of planar
waveguide.
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Figure 3.5: (a) Contour map of Refractive index (b) Computed TE-mode profile.
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above. The substrate refractive index ns was taken to be 2.0823 at λ = 3.39 µm for the

TE mode [65], though the results are relatively independent of the exact value used.

With choice of W = 18 µm, the beam propagation results indicated that the channel

waveguides should only support a single TE and a single TM mode at λ = 3.39 µm.

Furthermore, the TM mode was very close to cut-off. The assumed refractive index

profile given by Eq. (3.29) and the corresponding calculated TE mode profile are

shown in the Figure 3.5(a) and 3.5(b), respectively. In these figures, the air-LiNbO3

boundary is located at x = 0 µm. Since we do not know the explicit wavelength

dependence of ∆n much beyond 1.5 µm, our prediction that the waveguides will not

be multi-moded at 3.39 µm relies on the expectation that ∆n does not increase with

wavelength. Such an assumption is consistent with data presented for the visible and

near IR bands out to approximately 1.5 µm [64].

For the fundamental TE-polarized mode at λ = 3.39 µm, the calculated effec-

tive index, neff (2.0844), lies 0.0021 above the substrate refractive index. A similar

calculation shows that TM-polarized mode is near cut-off, and thus is expected to

experience very high bending losses. The EO modulation results shown in Figure 3.12

indicate that the waveguide is single-moded in the L band, since the output response

is quasi-periodic. Different spatial modes are orthogonal and thus do not beat against

one another. Consequently if there were two (or more) discrete modes, each one will

separately produce a quasi-periodic intensity variation as the optical path length in

one arm is varied. The period of this variation (corresponding to each spatial mode)

will depend on the wavelength and the effective index of the mode. Since the two

modes have different effective indices, two (or more) intensity variations with different

periods will be superimposed. Such a superposition does not yield a quasi-periodic

variation.
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3.4 Design, fabrication, and characterization of the device

The overall size of the fabricated three-beam combiner chip, as illustrated in Fig-

ure 3.6(a) is 60 mm (long) x 20 mm (wide) by 1 mm (thick). The device itself,

excluding the electrical contact pads, occupies only 1.25 mm of the total chip width.

A two-beam combiner, containing components similar to those contained in the three-

beam device, is shown in Figure 3.6(b). This later device was characterized in our

laboratory. The beam combiners contain three optical functions: spatial filtering

based on single-mode waveguides with sufficient length, interferometric beam com-

bining based on 3 dB symmetric directional couplers, and electrically-controlled phase

modulation based on thin film metal electrodes. For the three-beam combiner, the

photometric signal levels can be determined using linear combinations of the interfer-

ometric outputs (I12+, I12−,I13+, I13−, I23+, and I23−) using a scheme similar to that

reported in [66].

3.4.1 Characterization of bending losses

The relatively small increase of refractive index obtained by Ti-indiffusion leads

to weak confinement of optical modes, and thus greatly increases the losses in the

bending regions. Therefore, waveguide bends of large radius of curvature must be

used to minimize bending losses and keep the device size reasonable.

In order to characterize the bending losses, a set of S-shaped waveguide bends

consisting of two back-to-back semi-circular arcs of constant radius of curvature R

were fabricated as shown in Figure 3.7. The losses, including pure bending losses and

those arising from abrupt curvature changes due to waveguide-to-waveguide transi-

tions, were measured by comparing the throughput of these S-shaped bends to straight

waveguide sections. The results are shown in Figure 3.8, along with an exponential

fit, for values of R between 6 and 22 cm. For circular arcs of radius R, the pure
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Figure 3.6: Layout of (a) fabricated three-beam combiner (b) two-beam combiner for
device characterization (figures not drawn to scale).
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Figure 3.7: Two semi-circular arcs with radius of curvature R.

bending loss coefficient can be modeled as

α(R) = C1 exp(−C2R)dB/cm (3.30)

where parameters C1 and C2 are independent of R, but are functions of the waveguide

parameters [67].

Although not excellent, the quality of the exponential fit indicates that the losses

are dominated by pure bending as opposed to transition losses. According to the fit

shown in Figure 3.8, the values of C1 and C2 at λ = 3.39 µm are 21.5 dB/cm and 0.16

cm−1 for TE-mode and 18.2 dB/cm and 0.1 cm−1 for TM-mode, respectively. Thus,

the TM-mode experiences much higher losses. In order to minimize the TE-mode

losses, the radius of curvature of the S-bends for the couplers was chosen to be as

large as possible, i.e. 22 cm, while still allowing the 3-beam combiner to be fabricated

using a 3 inch diameter LiNbO3 wafer. The corresponding bending losses were 0.64

dB/cm and 2 dB/cm for the TE-mode and TM-mode, respectively.

By launching optical power, P1, into a single input port of the two-beam combiner
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Figure 3.8: Bending loss measurements and exponential fit.

(without Y-splitter), the insertion loss of the device (i.e., −10 log(P12+ +P12−)/P1) for

the TE-mode was found to be 4.7 dB larger than that of a straight waveguide of the

same length. We separately measured the excess loss of the two-beam integrated Y-

splitter together with its associated waveguide bend and found it to be approximately

2 dB. Generally, Ti-indiffused LiNbO3 waveguides exhibit low propagation loss (< 0.1

dB/cm). Thus the large losses reported here come primarily from the bending losses

that are due to the weak confinement of the guided mode at λ = 3.39 µm. The use

of larger LiNbO3 wafers and/or thicker Ti-indiffused strips would allow us to increase

the radii of curvature of the S-bends and/or to increase the mode confinement, greatly

reducing insertion losses.

A waveguide intersected by another waveguide will perturb the electric field distri-

bution of the modes, producing both excess loss and cross-talk [68]. Excess losses and

cross-talk generally becomes more severe as the angle of crossing decreases. On the

other hand, decreasing the crossing angle enables one to use bends with a larger radius
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of curvature and/or to build smaller devices. Thus some compromise between perfor-

mance and size must be reached. For the 3-beam combiner shown in Figure 3.6(a),

the crossing angles were approximately 4o. A series of X-shaped waveguide crossings

with different crossing angles were fabricated in order to estimate the cross-talk that

the 3-beam combiner would experience. The cross-talk (i.e., output power from cross

port/sum of output powers from the two output ports) for these X-shaped waveguide

crossings was measured to be below 20 dB. The excess loss was not measured directly,

but it is expected to be relatively small given the small value of the cross-talk.

3.4.2 Directional coupler design

For phase-matched operation of the directional coupler, the power transfer effi-

ciency η is given by the expression [69]

η = sin2(κLd + ϕ) (3.31)

where κ is the coupling coefficient and Ld is the interaction length of the straight

section. The phase term ϕ corresponds to the coupling in the S-bend regions where

κ is not a constant. A set of directional couplers with center-to-center spacing Dd =

26 µm, S-bend radius of curvature R = 6 cm, and coupling lengths Ld ranging from

3 to 9 mm were fabricated. The power transfer efficiencies of these couplers were

measured, and the results are plotted in Figure 3.9 along with a fit to Eq. (3.31).

From this fit, the value of κ was found to be 0.48 mm−1 for both the TE and TM

fundamental modes.

For the final design with R = 22 cm, power splitting ratios were measured for

three different values of Ld (3.34, 3.44, and 3.54 mm). By fitting these three data

points to Eq. (3.31) with same κ experimentally determined in Figure 3.9, the ϕ value

corresponding to R = 22 cm was found to be 0.95. Thus it follows from Eq. (3.31)
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Figure 3.9: Experimentally determined coupling characteristics.

that an interaction length of approximately Ld = 2900 µm will correspond to the

required 3 dB coupler. Using the HeNe laser operating at 3.39 µm, the measured

power splitting ratio η for TE-mode (TM-mode) of the directional coupler with Ld =

2900 µm and R = 22 cm was measured to be 48% (54%), corresponding to a fringe

visibility of 99.9% (99.7%).

3.4.2.1 Wavelength-dependent response

Long baseline, stellar interferometry measures fringe visibilities and phase closure.

Deep nulling, as well as high contrast broadband fringe formation, requires that the

beam combiner and fringe scanner operate achromatically. A lossless directional

coupler is a four-port device. For monochromatic operation at wavelength λ, the

squared-magnitudes of the complex-valued electric field amplitudes, Aout and Bout,
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measured at the two output ports can be written as [70]

|Aout|2 = |Ain|2[1− C(λ)] + |Bin|2C(λ)− 2|Ain| · |Bin|
√
C(λ)[1− C(λ)]

· sin(∠Ain − ∠Bin + φint(λ) + θext(λ))

|Bout|2 = |Ain|2[1− C(λ)] + |Bin|2C(λ) + 2|Ain| · |Bin|
√
C(λ)[1− C(λ)]

· sin(∠Ain − ∠Bin + φint(λ) + θext(λ)) (3.32)

where Ain and Bin are the complex-valued electric fields with amplitudes |Ain|, |Bin|

and phases ∠Ain, ∠Bin measured at the two input ports, C(λ) is the directional

coupler’s wavelength-dependent power cross-over ratio (i.e., |Bout|2/|Ain|2 when Bin

= 0), φint(λ) is the wavelength-dependent phase introduced by the directional coupler,

and θext(λ) is an externally-induced phase shift between the two input beams. For

the EO scanning reported here, the last of these quantities is given by

θext(λ) =
2π

λ
∆neo(λ)Le (3.33)

where ∆neo(λ) is the wavelength-dependent EO-induced refractive index change and

Le is the physical path length of the EO waveguide section. For broadband sources,

Eq. (3.32) must be integrated across the source spectrum to derive the final fringe

intensity. The directional coupler will be achromatic if and only if C and φint are not

wavelength-dependent. It is also clear from Eq. (3.33) that the path-length difference

introduced by EO scanning is wavelength-dependent.

Symmetrical directional couplers are not achromatic devices. Several techniques,

including the use of asymmetrical couplers, have been proposed and demonstrated to

realize ”wavelength-flattened” operation [71]. It is interesting to note, however, that

most proposals to realize wavelength-flattened device operation consider only the di-

rectional coupler’s power transfer characteristic (i.e., C(λ) and ignore the wavelength-
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dependent phase shift φint. The phase shift determines the fringe position, and ob-

taining a wavelength-independent fringe position may be as important as realizing a

wavelength-flattened intensity response. This is especially true for nulling applica-

tions. It is easily demonstrated that the phase response of a symmetrical directional

coupler is wavelength-independent [70], while this is not the case for previously pro-

posed wavelength-flattened, asymmetrical, directional couplers. The development of

IO directional couplers and fringe scanners with enhanced achromaticity warrants

further investigation.

3.4.3 Phase modulator

The push-pull configuration of electrodes was fabricated on the beam combiners

using traditional photolithographic processing. 60 µm wide, 500 nm thick gold strips

were evaporated next to the waveguides with an edge-to-edge electrode spacing Dgap

of 24 µm as shown in Figure 3.6(b). The electrode lengths Le on both the two-beam

and three-beam combiners were chosen to be 1 cm. The direction of the applied

electric field lies primarily along the optical axis (z-axis) of LiNbO3, and thus the

largest EO coefficient r33 was utilized for the TE-mode. The EO-induced phase shift

is given by Eq. (3.34)

∆ϕ = 2 · Γeff · π · n3 · r V

Dgap

Le
λ

(3.34)

where n is the refractive index of the LiNbO3 substrate, r is the EO coefficient (r33

for the TE-mode and r13 for the TM-mode) and Γeff is factor between 0 and 1 that

accounts for the spatial overlap between the applied electric field and the mode. A

HeNe laser operating at 3.39 µm was launched into the Y-splitter of the two-beam

combiner shown in Figure 3.6(b), while a triangular-shaped voltage waveform was

applied to the electrodes and the power coming from one output arm of the directional

coupler was measured. The results are shown in Figure 3.10 and correspond to a Vπ

for the on-chip phase modulator of approximately 29 V/cm. This value is consistent
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Figure 3.10: The oscilloscope traces of applied MZI voltage and output signal power.

with earlier reports [52], and corresponds to a Γeff of approximately 0.5. Similarly,

the measured Vπ (not shown) and the corresponding Γeff for the TM-mode were found

to be 165 V/cm and 0.25, respectively. It is worth noting that Γeff is wavelength

dependent. However, we are unable to characterize it due to lack of tunable IR source

within the L band.

3.5 Laboratory white-light fringe measurement

The experimental set-up used to generate white-light fringes for the two-beam

combiner in the laboratory is shown in Figure 3.11. HeNe lasers at 633 nm and 3.39

µm were used to facilitate alignment so that maximum power from the white light

source could be coupled into the on-chip Y-splitter. Using UV fused silica aspheric

lenses with focal length 15 mm, an 8 W thermal source (Boston Electronics IR-
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Figure 3.11: Experimental set-up for measurement of white-light interferograms.

12) operating at a blackbody temperature of 1170 K was coupled into the on-chip

Y-splitter. The output of the directional coupler was imagined onto a liquid-nitrogen-

cooled IR InSb detector after passing through a linear polarizer (TE) and a bandpass

filter centered at 3.5 µm with a nearly 500 nm wide rectangular-shaped pass band.

Due to the small amount of power that could be coupled into the waveguide from the

broadband IR source, the signal at the InSb detector was buried in thermal noise and

background light, and thus a lock-in amplifier was used to make the measurement.

A DC voltage, which could be scanned from -175 V to +175 V, was applied to the

electrodes. A small 1 KHz sinusoidal dither was added to this DC voltage, and a

lock-in amplifier was used to synchronously measure the detector output. The value

of the DC bias determined the position along the fringe.

The lock-in measurement technique did not permit us to measure the absolute

value of the fringe visibility when using the broadband thermal source, but the deriva-

tive of the fringe. The measured derivative of the interferogram (TE-mode) is shown
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Figure 3.12: Derivative of white-light fringe and that of theoretical fringe with 500
nm bandwidth.
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in Figure 3.12. Also shown in Figure 3.12 is the theoretically predicted derivative of

the fringe given by Eq. (3.35) below

I0 =
1

∆λ

λ0+ ∆λ
2∫

λ0−∆λ
2

1

2
cos(

2π∆nLe
λ

) dλ

≈ 1

2
cos ∆ϕ0 ·

sin(∆ϕ0 · ∆λ
2λ0

)

∆ϕ0 · ∆λ
2λ0

(3.35)

where λ0 = 3.5 µm, ∆λ = 500 nm, and ∆ϕ0 = 2π∆nLe/λ0 = (πV )/Vπ(λ0) is the EO

induced phase shift at λ0. In deriving Eq. (3.35) the wavelength-dependent behavior

of the directional coupler has been ignored, i.e., C(λ) in Eq. (3.32) has been assumed

to be equal to 0.5 independent of wavelength. In Figure 3.12 the Vπ for TE-mode was

chosen to be 26.2 V, which is close to the value previously reported in Section 3.4.3,

and gives the best fit to the experimental data. Based on the power splitting ratio

reported in Section 3.4.2, the fringe visibility at 3.39 µm is approximately 99.9%.

At the present time, we cannot fully explain the deviation of measured data from

the theoretical fit at the larger electrode voltages. The wavelength dependence of

the coupler as well as the wavelength dispersion of the EO-induced refractive index

change would not result in the asymmetry of the fringes shown in Figure 3.12.

3.6 Discussion

Integrated-optic, astronomical, two-beam and three-beam, interferometric com-

biners have been designed and fabricated for operation in the L band, and the

broadband on-chip electro-optic fringe scanning in titanium-indiffused, x-cut lithium

niobate waveguides has been demonstrated for the first time. White-light fringes

(TE-polarization) were produced in the laboratory using the two-beam combiner in-

tegrated with an on-chip Y-splitter. Using an applied electrode voltage of 350 V, it

was possible to scan through approximately six fringes.

71



The devices exhibited relatively high waveguide losses in the bending regions due

to the low-index contrast of the waveguides. Loss reduction is a key aspect of fu-

ture development. Further optimization of the device layout, the use of larger wafers

and/or thicker indiffused titanium strips is expected to reduce the losses to reason-

able values. It should also be possible, using on-chip, polarization splitters to design

devices that utilize both the TE and TM polarized light, thus capturing 3 dB more

signal power. As discussed in Section 3.4.2.1, the response of directional couplers and

EO-induced fringe scanners is generally not achromatic. Techniques need to be de-

veloped to suppress the wavelength-dependent operation of these devices, especially

for applications that require deep nulls [72]. This three-beam combiner (shown in

Figure 3.6) is equivalent to the most complex IO combiner that has been used for

on-sky measurements. Its on-sky measurement potential, however, surpasses previous

IO combiners because it operates in the L band and has on-chip fringe scanning ca-

pability. In the following chapter, the theoretical design of a broadband, achromatic,

and polarization insensitive beam combiner is presented.

72



CHAPTER IV

Theoretical Design of Broadband Achromatic

Astronomical Beam Combiner for the

Mid-infrared Wavelength Region

4.1 Introduction

The direct imaging and characterization of Earth-like planets, especially those

capable of supporting life, is one of the outstanding goals of modern astrophysics

and science in general. Currently, stellar interferometry is one of the most promising

approaches for achieving this goal. We have shown in Chapter III that IO devices are

well suited to perform the beam combining function for stellar interferometry. In the

infrared wavelength region, a host star is normally a million times brighter than the

planet orbiting it, which is a major problem when trying to image the planet directly.

Nulling interferometry offers the possibility to overcome this problem by attenuating

the stellar light, thus enhancing the visibility of the planet. Generally, achromatic

phase shifting and broadband achromatic beam combining functions are required

for deep nulling, with nulling depths of 10−6 or better over the infrared spectrum.

Although we can image the planet by nulling at a single wavelength, there are key

reasons to use a broad wavelength band. First, there are several key biomarkers in

the infrared spectrum from 6 µm to 18 µm. Second, the total integration time needed
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to detect a planet increases as the spectral bandwidth is reduced.

In this chapter, we propose and present a theoretical design of an achromatic,

broadband, polarization-insensitive, mode-evolution beam combiner suited for space-

based nulling interferometry. The design is based on a system of three coupled

waveguides. In Section 4.2, nulling interferometers and achromatic phase shifters

are described, and different types of IO beam combiners are compared and discussed.

In Section 4.3, the theory of normal modes of a three coupled waveguide system

is presented. A design of an achromatic, polarization-insensitive, mode evolution

beam combiner is proposed in Section 4.4. In Section 4.6 and the Appendices A

- E, the derivation of the coupled mode equations that describe the mode coupling

between the local normal modes is given, and a condition for adiabatic operation is

presented. In Section 4.7, a numerical design example of the proposed achromatic

beam combiner, based on candidate technologies for waveguide fabrication in mid-

infrared wavelength region, is presented and the device performance is numerically

evaluated. In Section 4.8, the fabrication of a practical mid-infrared achromatic IO

beam combiner is discussed.

4.2 Principle of operation for nulling interferometry

A nulling interferometer, based on a configuration proposed by Bracewell [58],

consists of two collecting apertures separated by baseline length B as shown in Fig-

ure 4.1. The difference in the optical path lengths for paths 1 and 2 is chosen such

that the light from an on-axis source is canceled at the beam combiner. Suppose

that the Bracewell telescope is oriented with its baseline in the XY -plane at an angle

θ from the X-axis, pointing at a star along the Z-axis as shown in Figure 4.2. Each

point in the star’s neighborhood can be identified either by its angular coordinates

φ and ϕ as shown in the figure or by the Cartesian coordinates x and y of its image

in the beam combining plane of the telescope. The image location is related to the
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Figure 4.1: Nulling interferometer of single Bracewell configuration.
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Figure 4.2: The Bracewell telescope with its baseline lying in the XY -plane and ori-
ented at an angle θ from the X-axis, targeting a star along the Z-axis.
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angular coordinates by the equation

(x, y) = Msfp tanφ(cosϕ, sinϕ) (4.1)

where fp is the focal length of the primary mirror and Ms is the magnification of

the secondary mirror of the telescope apertures 1 and 2. For the light coming from

the direction (φ, ϕ) in the sky at wavelength λ, the phase difference between optical

paths 1 and 2 is given by [58]

∆Φ =
2π

λ

√
B2

4
+Br sinφ cos(ϕ− θ) + r2 −

√
B2

4
−Br sinφ cos(ϕ− θ) + r2

≈ 2πB

λ
sinφ cos(ϕ− θ), for r � B. (4.2)

By introducing an achromatic π phase-shift as shown in Figure 4.1, the two beams

interfere destructively at the beam combining optics when ∆Φ = 0, and constructively

when ∆Φ = π. The resulting intensity can be expressed as [58]

I(∆Φ) = I(0) sin2(
1

2
∆Φ) = I(0) sin2[π(B/λ) sinφ cos(ϕ− θ)] (4.3)

A binary plot of I/I(0) in the beam combining plane is shown in Figure 4.3 for θ

= 45o. Each point in this plane corresponds to a point (φ, ϕ) in the sky according

to Eq. (4.1). The field of view is centered at (x, y) = (φ, ϕ) = (0, 0), which is the

location of the target star. Any planet or other source of radiation located in the

bright fringes of Figure 4.3 will produce a bright Airy pattern in the beam combining

plane of that location. However, planets located in the dark fringes disappear from

the image due to destructive interference. If the telescope is rotated around Z-axis

while pointing at the fixed target star, θ will change continuously and the pattern

of Figure 4.3 will rotate around its center. However, the image of a planet within

the field of view will remain fixed while the fringes rotate. The planet’s image thus
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Figure 4.3: Binary plot of I/I(0) in the beam combining plane for B = 5 m, θ =
45o, λ = 10 µm as a function of coordinates x and y where Ms = 20 and
fp = 25 cm is assumed.

waxes and wanes as the bright and dark fringes cross it one after the other. This is

Bracewell’s basic idea of searching for exoplanets orbiting other stars by using nulling

interferometry.

4.2.1 Achromatic phase shifter

One of the the key components for achieving a deep broadband infrared null is

the achromatic phase shifters. We do not address achromatic phase shift as part

of this thesis. Currently, there are four promising techniques to achieve the required

broadband deep null for exoplanet detection [73, 74]. The first approach uses multiple

dispersive elements to achieve a quasi-achromatic phase shift across the passband.

For a single wavelength λ0, the nulling condition can be met by introducing a path

delay difference between the two arms that results in a phase shift of π. For a
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broadband spectrum, the phase shift, φ(λ), will not be achromatic and can be modeled

as φ(λ) = π(λ0/λ). By introducing an air delay in one optical path and some dielectric

delay in the other path, the wavelength dependence of φ(λ) can be minimized. For

example, a combination of ZnSe and ZnS plates will allow nulling depths of 10−8 over

a 30% bandwidth centered at 10 µm [73].

The second approach for achieving an achromatic phase shift is called the through-

focus field flip, which introduces an achromatic π phase shift by exploiting diffrac-

tion [75]. When the beam passes through a focus, it acquires an achromatic phase

change. This technique was first proposed by Jean Gay, et. al. [76]. The method is

by nature broadband. Polarization sensitivity, however, is a known problem with this

method. The angle of incidence varies across the pupil and creates a pupil-dependent

change in the s-p polarization phase delay. Field flipping, an inversion of one pupil

relative to the other, is a third approach that can be used to realize an achromatic

phase shift. Due to the geometric nature of the field flip, this periscope architecture

is also intrinsically achromatic.

The last approach is to use a deformable mirror to correct the intensity and phase

as a function of wavelength from 8 µm to 12 µm. A novel compensator, the Adaptive

Nuller, proposed by Peters et al. [74] uses a deformable mirror, with a continuous

face sheet, to apply a high order independent adjustment to the amplitude and phase

prior to injecting the combined light into a single-mode fiber. A schematic of the

Adaptive Nuller, adapted from [74], is shown in Figure 4.4. This compensator has

been used to produce rejection ratios of 82000:1 over a bandwidth of 3.2 µm centered

at 10 µm.

4.2.2 Selection of integrated optic beam combiner

The other key component for achieving a broadband deep null is the broadband

achromatic beam combiner. Generally, there are two basic types of planar, integrated
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Figure 4.4: Schematic of the Adaptive Nuller [74]. Light in one arm of a nulling in-
terferometer is balanced by splitting the polarizations and dispersing the
wavelength, then adjusting the phases in each part of the spectrum with
a deformable mirror prior to recombining the polarizations and wave-
lengths.

optic beam combiners: reversed-Y combiners and directional couplers as shown in

Figure 4.5. The operation of a reversed-Y combiner is achromatic by symmetry.

However, when used as a nulling interferometer, the reversed-Y combiner suffers an

inevitable 3 dB loss of signal. On the other hand, directional coupler type beam com-

biners can capture the entire signal, and hence are theoretically lossless if we record

both interferometric outputs and subtract them. Unfortunately, the operation of the

directional coupler shown in Figure 4.5 is chromatic, and this wavelength dependence

prevents the device from achieving deep broadband nulls. Various approaches have

been suggested to mitigate this effect and achieve a wavelength flattened response

by using asymmetric 2 by 2 directional couplers, where the coupling coefficients and

waveguide widths are varied along the device length. This approach, however, does

not yield an ultra-broadband achromatic response nor does it preserve the initial

phase difference of the input beams at the interference outputs. Consider the beam

combining function of a uniform directional coupler with a 3 dB coupling length of 300

80



Figure 4.5: Schematic of (a) reversed-Y combiner (b) directional coupler.

µm and a 3 dB asymmetric directional coupler design (the magnitude of the rotation

vector, |Ω(z)|, is chosen at point A as described in the work of Paloczi et al. [77]).

The wavelength dependence of the cross coupled power (i.e., the ratio of the power

at output 2 to that at output 1 when the signal is launched into input 1) and the

phase difference between the two outputs (when identical signals are launched into

the two inputs) is shown in Figure 4.6. Although the phase response is achromatic

for uniform coupler, its power splitting is highly chromatic. The asymmetric coupler

has a flattened cross coupling power response, but its phase response is chromatic.

Both chromaticity issues can seriously ruin the deep nulling condition required for ex-

oplanets search. We will design a fully achromatic, polarization-insensitive, IO beam

combiner based upon a three waveguide design.

4.3 Normal modes of three coupled waveguides

Before we go into the details of the design of the proposed fully-achromatic, broad-

band, mode-evolution beam combiner, we first develop representations for the normal
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Figure 4.6: (a) Cross coupled power response and (b) phase difference response of the
uniform directional coupler with a 3 dB coupling length of 300 µm and
the asymmetric coupler.
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modes of a symmetric three coupled waveguide system as shown in the Figure 4.7 [78].

The waveguides shown in Figure 4.7 are assumed to be uniform, i.e., do not change

along the direction of propagation z. We also assume 1 that the total scalar (TE or

TM) field,E(x, y, z), of the combined three waveguide structure can be approximately

written as the weighted sum of the normalized waveguide modes, Φ1(x, y), Φ2(x, y),

Φ3(x, y), associated with each individual waveguide expressed in the single x, y,z

coordinate system shown in Figure 4.7. Thus,

E(x, y, z) = Ψ(x, y) exp(jβz) =
3∑
l=1

al(z)Φl(x, y) (4.4)

+∞∫
−∞

+∞∫
−∞

Φ2
l (x, y) dxdy = 1, and l=1, 2, 3. (4.5)

where Ψ(x, y) is a real-valued quantity which describes the spatial profile of the mode

and β is the associated propagation constant. Coupled-mode equations describing

this system are as following [78]:

da1

dz
= jβ1a1 + jκ12a2 + jκ13a3

da2

dz
= jκ12a1 + jβ2a2 + jκ23a3

da3

dz
= jκ13a1 + jκ23a2 + jβ3a3 (4.6)

where β1 and β3 are mode propagation constants for outer waveguides and β2 is that

of center waveguide, κij is the coupling coefficient between waveguides i and j, and

a1, a2, and a3 are the complex-valued mode amplitudes associated with the individual

waveguide modes in waveguides 1, 2 and 3, respectively. We further assume that the

outer waveguides are identical and equidistant from the center waveguide, and thus

κ12 = κ23 and β1 = β3. It is easily verified that a1(z) = −a3(z) = exp(jβ0z), a2(z) = 0

1This assumption is valid when the waveguides are weakly coupled.
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Figure 4.7: Three coupled channel waveguides. Waveguides 1 and 3 are identical and
equidistant from waveguide 2.

with β = β1 − κ13 is a solution of Eq. (4.6) and hence a (antisymmetric) mode. The

total field of this antisymmetric (as viewed about the x-z plane) mode of the original

three waveguide structure can be written as

E0(x, y, z) = Ψ0(x, y) exp(jβ0z) (4.7)

where

Ψ0(x, y) =

[
1√
2

Φ1(x, y)− 1√
2

Φ3(x, y)

]
(4.8)

β0 = β1 − κ13 (4.9)

Eq. (4.8) can be re-written as

Ψ0(x, y) =

(
Φ1(x, y) Φ2(x, y) Φ3(x, y)

)
A0 (4.10)

where

A0 =


1/
√

2

0

−1/
√

2

 (4.11)
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It will be convenient to refer to A0 as the antisymmetric mode of the three waveg-

uide structure. Similarly, if we consider the (symmetric modes) case a1(z) = a3(z),

Eq. (4.6) reduces to

da

dz
= jβaa+ jKb

db

dz
= jKa+ jβbb (4.12)

where

a(z) = a2(z)

b(z) =
√

2a1(z) (4.13)

and

βa = β2

βb = β1 + κ13

K =
√

2κ12. (4.14)

In Appendix A, the two nonzero solutions of Eqs. (4.12) are shown to be

a+(z) = d exp(jβ+z)

b+(z) = e exp(jβ+z) (4.15)

and

a−(z) = −e exp(jβ−z)

b−(z) = d exp(jβ−z) (4.16)
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respectively, where

e2 + d2 = 1 (4.17)

β̄ =
1

2
(β1 + β2 + κ13) (4.18)

∆β = β2 − β1 − κ13 (4.19)

X =
∆β

2K
(4.20)

d =

√
1

2
(1 +

X√
1 +X2

) (4.21)

e =

√
1

2
(1− X√

1 +X2
) (4.22)

β± = β̄ ±K
√

1 +X2. (4.23)

The solutions given by Eqs. (4.15) and (4.16) correspond to the following pair of

symmetric (with respect to the x-z plane) modes of the original three waveguide

structure

E+(x, y, z) = Ψ+(x, y) exp(jβ+z) (4.24)

where

Ψ+(x, y) =

[
e√
2

Φ1(x, y) +
e√
2

Φ3(x, y)

]
+ dΦ2(x, y) (4.25)

and

E−(x, y, z) = Ψ−(x, y) exp(jβ−z) (4.26)
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where

Ψ−(x, y) =

[
d√
2

Φ1(x, y) +
d√
2

Φ3(x, y)

]
− eΦ2(x, y) (4.27)

It is shown in Appendix A, that Ψ+(x, y) is the lowest order (i.e., β+ > β0, β−) of

the three modes. As with the antisymmetric mode given by Eqs. (4.10) and (4.11),

it will be convenient to represent the Ψ+(x, y) and Ψ−(x, y) symmetric modes by

A+ =


e/
√

2

d

e/
√

2

 (4.28)

and

A− =


d/
√

2

−e

d/
√

2

 (4.29)

respectively. Thus

Ψ+(x, y; z) =

(
Φ1(x, y) Φ2(x, y) Φ3(x, y)

)
A+ (4.30)

Ψ−(x, y; z) =

(
Φ1(x, y) Φ2(x, y) Φ3(x, y)

)
A−. (4.31)

The total field for both symmetric modes and antisymmetric mode can be written as

E(x, y, z) = a(z)Φ2(x, y) + b(z)

[
1√
2

Φ1(x, y)± 1√
2

Φ3(x, y)

]
, (4.32)

where the + sign corresponds to symmetric modes and the − sign corresponds to

antisymmetric mode. The Eqs. (4.32) can be considered to describe an equivalent
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two waveguide system where the two outer waveguides are considered as a single

waveguide unit with mode 1√
2
Φ1(x, y) ± 1√

2
Φ3(x, y). The coupling coefficient, K,

and the propagation constants, βa and βb, of this equivalent two waveguide system

are related to the coupling coefficients, κ12 and κ13, and the propagation constants,

β1 and β2, of the original three waveguide system through Eqs. (4.14). For the +

and − normal modes given by Eqs. (4.28) and (4.29), the relative power distribution

between the center and outer waveguides (i.e., the ratio of d2 to e2) depends only on

the waveguide parameter X as indicated by Eqs. (4.21), (4.22), (4.28), and (4.29).

Using Eqs. (4.8), (4.20) - (4.22), (4.25) and (4.27), the normal modes for X = 0,

X = −∞ and X = +∞, are computed below and plotted in Figure 4.8. The values of

the corresponding propagation constants give below also assume that the waveguides

are sufficiently far apart so that κ13 ≈ 0 and thus when β1 6= β2, κ13 < |β1 − β2|.

Case (a): X = −∞

A0 =


1/
√

2

0

−1/
√

2

 , propagation constant = β0 = β1 − κ13 (antisymmetric mode)

A+ =


1/
√

2

0

1/
√

2

 , propagation constant = β+ = β1 + κ13 (lowest order mode)

A− =


0

−1

0

 , propagation constant = β− = β2 (the third mode) (4.33)
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Figure 4.8: Mode profiles of the normal modes of a three waveguides system: (a)
X = −∞ (b) X = 0 (c) X = +∞.
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Case (b): X = 0

A0 =


1/
√

2

0

−1/
√

2

 , propagation constant = β0 = β1 − κ13 (antisymmetric mode)

A+ =


1/2

1/
√

2

1/2

 , propagation constant = β+ = β1 + κ13 +K (lowest order mode)

A− =


1/2

−1/
√

2

1/2

 , propagation constant = β− = β1 + κ13 −K (the third mode)

(4.34)

Case (c): X = +∞

A0 =


1/
√

2

0

−1/
√

2

 , propagation constant = β0 = β1 − κ13 (antisymmetric mode)

A+ =


0

1

0

 , propagation constant = β+ = β2 (lowest order mode)

A− =


1/
√

2

0

1/
√

2

 , propagation constant = β− = β1 + κ13 (the third mode) (4.35)

In contrast to the normal modes of a structure that does not vary along the direction

of propagation, the amplitudes of the local normal modes in a longitudinally varying

waveguide structure are not constant as a function of position along the waveguide.
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These longitudinally-varying local normal modes will be designated by Ψ0(x, y; z),

Ψ+(x, y; z) and Ψ−(x, y; z) and expressed as

El(x, y; z) = Ψl(x, y; z) exp(jβl(z)z)

= a
(l)
1 (z)Φ1(x, y; z) + a

(l)
2 (z)Φ2(x, y; z) + a

(l)
3 (z)Φ3(x, y; z) (4.36)

where l = +,−, 0 and Φn(x, y; z), n = 1, 2, 3 are the local normal modes of the n

individual waveguides. Thus we define Al(z) as

Al(z) = exp(−jβl(z)z)


a

(l)
1

a
(l)
2

a
(l)
3

 , l = +,−, 0 (4.37)

and write

Ψl(x, y; z) =

(
Φ1(x, y; z) Φ2(x, y; z) Φ3(x, y; z)

)
Al(z), l = +,−, 0 (4.38)

in analogy to Eqs. (4.10), (4.30) and (4.31). In general, the mode profile of a single lo-

cal normal mode will evolve as it propagates along a longitudinally-varying waveguide

structure. If we consider the three local normal modes of the combined longitudinally-

varying three-waveguide structure, it is easily verified that A0(z), associated with the

antisymmetric mode, remains constant along the whole structure. The other two

symmetric local normal modes are identified by their mode order, i.e., by the relative

magnitudes of their propagation constants, β+(z) and β−(z), respectively. The lowest

order mode will be identified by the subscript +, and the third mode is identified by

the subscript − (β+ > β−). Generally, power transfer occurs between the local normal

modes of a longitudinally-varying structure. As will be shown shortly, the degree of

power transfer between the local normal modes is a function of the overlap parameter
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between their spatial mode profiles, Ψi(x, y; z) and Ψj(x, y; z) where i, j ∈ {−, 0,+}.

This overlap parameter is given by

< Ψi|
∂

∂z
|Ψj >≡

+∞∫
−∞

+∞∫
−∞

Ψ∗i (x, y; z)
∂

∂z
Ψj(x, y; z) dxdy (4.39)

It will also be shown later that, when < Ψi| ∂∂z |Ψj >= 0, as occurs for a structure

that does not change along the propagation direction z, there is no power exchange.

Similarly if the structure varies slowly enough in z, then ∂
∂z

Ψj(x, y; z) will be small and

< Ψi| ∂∂z |Ψj > will be approximately zero. Thus there will be little power exchange

between the local normal modes. It will be demonstrated in Section 4.6 that it is also

possible to design waveguide structures that are neither invariant along z nor vary

slowly along z for which < Ψi| ∂∂z |Ψj >≈ 0. When there is very little power transfer

between the local normal modes, the mode propagation is said to be adiabatic.

4.4 Proposed design

Based on the functional forms of the local normal modes of a three coupled waveg-

uide system obtained in Section 4.3, we propose the symmetric three coupled waveg-

uide structure shown in Figure 4.9 to achieve broadband achromatic beam combining.

The waveguide parameters are given in Table 4.1. We will assume for the moment

that the device operation is adiabatic, and thus there is no power exchange between

the local normal modes. The requirements needed to achieve adiabatic operation

will be studied in Section 4.6. If we let the complex amplitudes of monochromatic

input beams entering the outer waveguides port 1 and port 3 be |a1| exp(jφ1) and

|a3| exp(jφ3), respectively, then the excited input field at z = 0 can be expressed as

the linear combination of the local normal modes A+(0) and A0(0) of the coupled
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structure at z = 0 as indicated below

|a1| exp(jφ1)


1

0

0

 = |a1| exp(jφ1)[
1

2


1

0

−1

+
1

2


1

0

1

]

= |a1| exp(jφ1)[
1√
2
A0(0) +

1√
2
A+(0)] (4.40)

|a3| exp(jφ3)


0

0

1

 = |a3| exp(jφ3)[
−1

2


1

0

−1

+
1

2


1

0

1

]

= |a3| exp(jφ3)[
−1√

2
A0(0) +

1√
2
A+(0)] (4.41)


|a1| exp(jφ1)

0

|a3| exp(jφ3)

 = [
1√
2
|a1| exp(jφ1)− 1√

2
|a3| exp(jφ3)]A0(0)

+ [
1√
2
|a1| exp(jφ1) +

1√
2
|a3| exp(jφ3)]A+(0) (4.42)

At the output of the device we wish to recover the input phase difference φ1 − φ3

and the full power, i.e., |a1|2 + |a3|2, of the incoming beams. The width of the center

waveguide is kept fixed while the widths of the outer waveguides are equal to one

another at all points along z but are varied along z to achieve the desired dephasing

term ∆β = β2 − β1. The coupling term, κ12, and the dephasing term, ∆β = β2 − β1,

of the waveguide structure are chosen as indicated in Table 4.1.

Since the waveguide transition is assumed to be adiabatic, the power in each local

normal mode will remain constant as the mode propagates along the length of the
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Figure 4.9: Schematic plot of proposed achromatic beam combiner.

z = 0 z = L/2 z = L
Parameter X −∞ 0 +∞
Dephasing ∆β < 0 0 > 0

Coupling Coefficient κ12 0 κmax 0
Coupling Coefficient κ13 0 0 0

Table 4.1: Device parameters are varied adiabatically along the structure from z = 0
to z = L.
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structure, although the shape of each local normal mode will gradually evolve due

to the adiabatic change of the waveguide parameters. According to Eqs. (4.33) and

(4.35), the antisymmetric mode A0(0) and the lowest order symmetric mode A+(0)

at z = 0 will evolve into the following forms,

A0(L) =


1√
2

0

−1√
2

 exp(−j
L∫

0

β0(z) dz) (4.43)

A+(L) =


0

1

0

 exp(−j
L∫

0

β+(z) dz) (4.44)

respectively, at the output z = L. Thus the total output at z = L becomes

(|a1| exp(jφ1)− |a3| exp(jφ3)) exp(−j
L∫

0

β0(z) dz)
1

2


1

0

−1


+

(|a1| exp(jφ1) + |a3| exp(jφ3)) exp(−j
L∫

0

β+(z) dz)
1√
2


0

1

0

 (4.45)

Therefore, the intensities at output port 1, 2, and 3 at z = L are

1

4
| |a1| exp(jφ1)−|a3| exp(jφ3) |2 =

1

4
(|a1|2 + |a3|2)− 1

2
|a1||a3| cos(φ1 − φ3)

: at output ports 1 and 3 (4.46)

1

2
| |a1| exp(jφ1)+|a3| exp(jφ3) |2 =

1

2
(|a1|2 + |a3|2) + |a1||a3| cos(φ1 − φ3)

: at output port 2 (4.47)
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From these expressions we see that the total power in all three waveguides combined

is |a1|2 + |a3|2, and thus there is no loss in power. Furthermore, the input phase

difference, φ1 − φ3, is preserved in the output interference term, |a1||a3| cos(φ1 − φ3),

which is wavelength and polarization independent, guaranteeing fully achromatic and

polarization-insensitive operation.

4.5 Chromatic operation of directional couplers

In order to understand why two waveguide directional couplers are not achromatic,

consider the device shown in Figure 4.5(b). For simplicity, we will assume that the

waveguides are weakly coupled and uniform along z 1. The two local normal modes,

as shown in Appendix A, of the combined structure can be written as

E+(x, y, z) = Ψ+(x, y) exp(jβ+z) (4.48)

E−(x, y, z) = Ψ−(x, y) exp(jβ−z) (4.49)

where

Ψ+(x, y) =
1√
2

Φ1(x, y) +
1√
2

Φ2(x, y) (4.50)

Ψ−(x, y) =
1√
2

Φ1(x, y)− 1√
2

Φ2(x, y) (4.51)

As with the local normal modes of a three waveguide system, Ψ+(x, y) and Ψ−(x, y)

can be conveniently represented by

A+ =

 1√
2

1√
2

 (4.52)

1The conclusions given below can also be extended to the case where the waveguides are non-
uniform along the direction of propagation.
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and

A− =

 1√
2

− 1√
2

 (4.53)

respectively. If we let the complex amplitudes of monochromatic input beams entering

the input waveguides 1 and 2 be |a1| exp(jφ1) and |a2| exp(jφ2), respectively, then the

excited input field at z = 0 can be expressed as the linear combination of the local

normal modes A+(0) and A−(0) of the coupled structure at z = 0 as indicated below

 |a1| exp(jφ1)

|a2| exp(jφ2)

 =

[
1√
2
|a1| exp(jφ1) +

1√
2
|a2| exp(jφ2)

]
A+(0)

+

[
1√
2
|a1| exp(jφ1)− 1√

2
|a2| exp(jφ2)

]
A−(0) (4.54)

The operation of the coupler as a beam combiner can be described by propagating

each local normal modes A+ and A− separately to the end of the device and combining

them at the output. Since the device is uniform along the propagation direction z

there will be no coupling between the local normal modes. The total output at z = L

becomes

[
1√
2
|a1| exp(jφ1) +

1√
2
|a2| exp(jφ2)

]
exp(jβ+L)

 1√
2

1√
2


+

[
1√
2
|a1| exp(jφ1)− 1√

2
|a2| exp(jφ2)

]
exp(jβ−L)

 1√
2

− 1√
2

 (4.55)
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Therefore, the intensities at outputs 1 (Io1) and 2 (Io2) at z = L are

Io1 =
1

2
|a1|2[1 + cos(∆βL)]

+
1

2
|a2|2[1− cos(∆βL)]

− |a1||a2| cos(∆φ) cos(∆βL)

+ |a1||a2| cos(∆φ−∆βL) (4.56)

Io2 =
1

2
|a2|2[1 + cos(∆βL)]

+
1

2
|a1|2[1− cos(∆βL)]

− |a1||a2| cos(∆φ) cos(∆βL)

+ |a1||a2| cos(∆φ+ ∆βL) (4.57)

where ∆β = β+ − β− and ∆φ = φ1 − φ2, respectively. We can see that the output

intensities depend on the difference of propagation constants, ∆β, of the local normal

modes. If ∆βL = π/2 independent of wavelength, then Eqs. (4.56) and (4.57) reduce

to

Io1 =
1

2
[|a1|2 + |a2|2 + |a1||a2| sin(∆φ)] (4.58)

and

Io2 =
1

2
[|a1|2 + |a2|2 − |a1||a2| sin(∆φ)] (4.59)

respectively. Thus if ∆β is not wavelength dependent, then the input phase difference,

∆φ, appears in the output interference terms, ±|a1||a2| sin(∆φ), unperturbed and

without any wavelength dependence. The difference, ∆β, of the local normal mode

propagation constants, however, is wavelength dependent, and hence device operation

will not be achromatic according to Eqs. (4.56) and (4.57). Note that the operation of
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the two beam combiner described in this section relies on the interference of the two

local normal modes and this interference is inherently wavelength dependent since ∆β

is wavelength dependent. In contrast the three beam combiner described in Section 4.4

does not rely on the interference between the local normal modes. In fact the A0 and

A+ modes are spatially separated at z = L. The A0 mode at z = L is confined

to the two outer waveguides and the A+ mode at z = L is confined to the central

waveguide. Thus the three beam combiner yields achromatic operation provided there

is no coupling between the local normal modes. Furthermore if the inner waveguide of

the three beam combiner is uniform along the direction of propagation, and if the two

outer waveguides are identical and symmetrically offset from the center waveguide,

then the device achieves an achromatic null when the beams launched into waveguide

1 and 3 are of equal amplitude and 180 degrees out of phase. This achromatic null

will exist even if there is coupling between the A+ and A− local normal modes.

4.6 Coupling of local normal modes

The definition of a slow or adiabatic waveguide transition is a transition between

two waveguide structures that occurs gradually with propagation distance so that

negligible power transfer occurs between the normal modes as they propagate from

one structure to the other. Lack of mode conversion facilitates device design and can

lead to wavelength insensitive operation as seen in Section 4.4. Conventionally, the

suppression of mode conversion has been achieved by slowly varying the waveguide

structure along the direction of propagation. It was recently suggested, however, that

slow longitudinal variation, though sufficient, is not necessary to achieve adiabatic

operation. More generally, the suppression of mode conversion is rooted in the small

magnitude of the nonadiabatic term itself [3]. Thus conventional notions of adiabatic-

ity based on the slow interaction can be abandoned, and a new and different type

of adiabaticity based on a controlled interaction can be exploited. In the following
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sections, the coupling equations governing the power transfer between local normal

modes and the expression for the nonadiabatic term will be derived.

4.6.1 Quasi-vector wave equation

In order to calculate the spatial variation of electric field E(x, y, z) and magnetic

field H(x, y, z) of an optical waveguide, we will derive the vector wave equation start-

ing with time-harmonic form of Maxwell’s equations. The time dependence of the

field is of the form exp(−jωt). The dielectric constant ε(x, y, z) of a waveguide is

related to its refractive index n(x, y, z) by ε = ε0n
2, where ε0 is the free space electric

permittivity, and the magnetic permeability is assumed to be its free space value

(µ = µ0) everywhere. Under these conditions and assuming that the regions are free

of charges and current, Maxwell’s equations are written as

∇× E = jωµH (4.60)

∇×H = −jωεE. (4.61)

Taking the curl of Eq. (4.60) and substituting Eq. (4.61), we obtain

∇×∇× E = jωµ∇×H = ω2µεE. (4.62)

Using the vector identity ∇×∇× E = ∇(∇ · E)−∇2E, we obtain

⇒ ∇(∇ · E)−∇2E = ω2µεE = k2
0n

2E

⇒ ∇2E + k2
0n

2E−∇(∇ · E) = 0, (4.63)

where k0 = ω/c = 2π/λ0 is the free space wavenumber, c = 1/
√
µε0 and λ0 are the

speed and the wavelength of light in free space respectively. From ∇ · D = ρ and

the condition that the regions are free of charges (ρ = 0), we can express ∇ · E =
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−2(∇ lnn) ·E and substitute this into Eq. (4.63) to obtain the vector wave equation

(∇2 + k2
0n

2)E + 2∇((∇ lnn) · E) = 0. (4.64)

Now let’s consider quasi-TE mode (i.e., Ey � Ex and Ey � Ez) or quasi-TM mode

(i.e., Ex � Ey and Ex � Ez) in Cartesian coordinate and write the scalar (either

y-component TE or x-component TM) electric field of the waveguide as

Ei(x, y; z) = Φi(x, y; z) exp(jβ
(i)
0 z), i = x or y (4.65)

where Φi(x, y; z) is the slowly varying field profile along the propagation direction z

and β0 = n0k0 is the nominal propagation constant and n0 is the nominal effective in-

dex of the optical mode. If we substitute Eq. (4.65) into Eq. (4.64), apply the paraxial

approximation (i.e., |∂
2Φi(x,y;z)
∂z2 | � β0|∂Φi(x,y;z)

∂z
|), and replace the vector operator ∇2

by the scalar Laplacian ∇2, we obtain

−j ∂
∂z

Φx =
1

2n0k0

(
∂Φx

∂x2
+
∂Φx

∂y2

)
+
k0(n2(x, y; z)− n2

0)

2n0

Φx

+
1

n0k0

(
∂2 lnn(x, y; z)

∂x2
+
∂ lnn(x, y; z)

∂x

∂

∂x

)
Φx for TM; (4.66)

−j ∂
∂z

Φy =
1

2n0k0

(
∂Φy

∂x2
+
∂Φy

∂y2

)
+
k0(n2(x, y; z)− n2

0)

2n0

Φy

+
1

n0k0

(
∂2 lnn(x, y; z)

∂y2
+
∂ lnn(x, y; z)

∂y

∂

∂y

)
Φy for TE; (4.67)

Next if we substitute Φx = Ex exp(−jβ(x)
0 z) or Φy = Ey exp(−jβ(y)

0 z) back into

Eq. (4.66) or (4.67), we obtain the following equation

−j ∂
∂z
Ei(x, y; z) = Bi(z) · Ei(x, y; z), (4.68)

101



where i = y for the quasi-TE mode and i = x for the quasi-TM mode. The propaga-

tion operator Bi(z) is given by

Bx(z) =
1

2n0k0

(
∂

∂x2
+

∂

∂y2

)
+
k0(n2(x, y; z) + n2

0)

2n0

+
1

n0k0

(
∂2 lnn(x, y; z)

∂x2
+
∂ lnn(x, y; z)

∂x

∂

∂x

)
for TM; (4.69)

By(z) =
1

2n0k0

(
∂

∂x2
+

∂

∂y2

)
+
k0(n2(x, y; z) + n2

0)

2n0

+
1

n0k0

(
∂2 lnn(x, y; z)

∂y2
+
∂ lnn(x, y; z)

∂y

∂

∂y

)
for TE. (4.70)

In an attempt to simplify the analysis, we will neglect the vector nature of the electric

field and use scalar wave equation as an approximation to vector wave equation. The

propagation operator Bi(z) of Eq. (4.68) can be approximated by neglecting the last

two terms involving lnn(x, y; z) in Eqs. (4.69) and (4.70). The resulting propagation

operator Bi(z) can be expressed as

Bx(z) ≈ 1

2n0k0

(
∂

∂x2
+

∂

∂y2

)
+
k0(n2(x, y; z) + n2

0)

2n0

for TM; (4.71)

By(z) ≈ 1

2n0k0

(
∂

∂x2
+

∂

∂y2

)
+
k0(n2(x, y; z) + n2

0)

2n0

for TE. (4.72)

As shown in Appendix B, the operator Bi(z) is Hermitian. For the sake of simplicity

in exposition, we will restrict the remaining discussion to the TE-mode and will

designate the operator By(z) simply as B(z). The analysis for the TM-mode is

similar. The three local normal modes Ψ0(x, y; z), Ψ+(x, y; z) and Ψ−(x, y; z) of the

waveguide structure shown in Figure 4.9 are eigenfunctions of Eq. (4.68), i.e.,

B(z)Ψl(x, y; z) = βl(z)Ψl(x, y; z), l = +,−, 0. (4.73)
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4.6.2 Coupling equation of local normal modes

In the following analysis, the derivation of the coupling equation of the local

normal modes will be carried out. Consider a system of three coupled waveguides

with corresponding local normal modes Ψ0(x, y; z), Ψ+(x, y; z) and Ψ−(x, y; z), which

are assumed to be real-valued (without loss of generality) since the operator Bi(z)

appearing in Eq. (4.73) is Hermitian. The local normal modes will be normalized

such that

< Ψ0(x, y; z)|Ψ0(x, y; z) > =< Ψ+(x, y; z)|Ψ+(x, y; z) >

=< Ψ−(x, y; z)|Ψ−(x, y; z) >

= 1, (4.74)

and the inner product < f(x, y; z)|g(x, y; z) > written in bra-ket notation is defined

as

< f(x, y; z)|g(x, y; z) >=

+∞∫
−∞

+∞∫
−∞

f ∗(x, y; z)g(x, y; z) dxdy. (4.75)

It follows from Eq. (4.74) and the fact that Ψ0(x, y; z), Ψ+(x, y; z) and Ψ−(x, y; z) are

real-valued that

< Ψl(x, y; z)| ∂
∂z
|Ψl(x, y; z) >= 0, l = 0,+,−. (4.76)

Since the operator B(z) is Hermitian it also follows that the local normal modes are

orthogonal, that is

< Ψl(x, y; z)|Ψk(x, y; z) >= 0, l 6= k, {l, k} = 0,+,−. (4.77)
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and therefore

< Ψl(x, y; z)| ∂
∂z
|Ψk(x, y; z) > = − < Ψk(x, y; z)| ∂

∂z
|Ψl(x, y; z) >, (4.78)

l 6= k, {l, k} = 0,+,−

Radiation modes will be neglected, and thus the total electric field, E(x, y, z), in the

coupled waveguides can be written as the following linear combination of the local

normal modes

E(x, y, z) = a0(z)Ψ0(x, y; z) + a+(z)Ψ+(x, y; z) + a−(z)Ψ−(x, y; z). (4.79)

Substituting the above equation into the paraxial wave equation (4.68)

−j ∂
∂z
E(x, y, z) = B(z)E(x, y, z) (4.80)

yields

− j ∂a0(z)

∂z
Ψ0(x, y; z)− ja0(z)

∂Ψ0(z)

∂z

− j ∂a+(z)

∂z
Ψ+(x, y; z)− ja+(z)

∂Ψ+(z)

∂z

− j ∂a−(z)

∂z
Ψ−(x, y; z)− ja−(z)

∂Ψ−(z)

∂z

= a0(z)B(z)Ψ0(x, y; z) + a+(z)B(z)Ψ+(x, y; z) + a−(z)B(z)Ψ−(x, y; z)

= a0(z)β0(z)Ψ0(x, y; z) + a+(z)β+(z)Ψ+(x, y; z) + a−(z)β−(z)Ψ−(x, y; z) (4.81)
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where β0(z), β+(z) and β−(z) are the local propagation constants associated with the

local normal modes Ψ0(x, y; z), Ψ+(x, y; z) and Ψ−(x, y; z). Thus

B(z)Ψ0(x, y; z) = β0(z)Ψ0(x, y; z) (4.82)

B(z)Ψ+(x, y; z) = β+(z)Ψ+(x, y; z) (4.83)

B(z)Ψ−(x, y; z) = β−(z)Ψ−(x, y; z). (4.84)

Multiplying both sides of Eq. (4.81) by Ψ+(x, y; z), integrating over x, y and using

Eqs. (4.74), (4.76) and (4.77), yields

−j ∂a+(z)

∂z
− ja0(z) < Ψ+(x, y; z)| ∂

∂z
|Ψ0(x, y; z) >

− ja−(z) < Ψ+(x, y; z)| ∂
∂z
|Ψ−(x, y; z) >= a+(z)β+(z). (4.85)

Similarly by multiplying both sides of Eq. (4.81) by Ψ0(x, y; z) or Ψ−(x, y; z) and

integrating over x, y yields

−j ∂a0(z)

∂z
− ja+(z) < Ψ0(x, y; z)| ∂

∂z
|Ψ+(x, y; z) >

− ja−(z) < Ψ0(x, y; z)| ∂
∂z
|Ψ−(x, y; z) >= a0(z)β0(z). (4.86)

−j ∂a−(z)

∂z
− ja0(z) < Ψ−(x, y; z)| ∂

∂z
|Ψ+(x, y; z) >

− ja+(z) < Ψ−(x, y; z)| ∂
∂z
|Ψ+(x, y; z) >= a−(z)β−(z). (4.87)

Equations (4.85), (4.86) and (4.87) can be written in matrix form as follows

−j ∂
∂z


a0(z)

a+(z)

a−(z)

 =


β0(z) +jξ0+(z) +jξ0−(z)

−jξ0+(z) β+(z) +jξ+−(z)

−jξ0−(z) −jξ+−(z) β−(z)

 ·


a0(z)

a+(z)

a−(z)

 (4.88)
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where

ξlk(z) ≡< Ψl(x, y; z)| ∂
∂z
|Ψk(x, y; z) >, l 6= k, {l, k} = 0,+,−. (4.89)

When there is no coupling (i.e., power exchange) between the local normal modes

Ψ0(x, y; z), Ψ+(x, y; z) and Ψ−(x, y; z), the modes are said to evolve adiabatically.

From Equation (4.88), it is clear that mode evolution will occur adiabatically when

ξlk(z) = 0, l 6= k {l, k} = 0,+,− for all z. It follows from Eq. (4.89) that mode

evolution will be adiabatic when the waveguide structure is uniform or changes slowly

along the propagation direction z since for these cases

∂

∂z
Ψl(x, y; z) = 0 or ≈ 0, l = 0,+,−. (4.90)

Equation (4.90), however, need not be satisfied for adiabatic operation, and the more

general condition is given by ξlk(z) = 0, l 6= k {l, k} = 0,+,−. In future discussions,

ξlk(z) will be referred to as the nonadiabatic terms. According to the results in

Section 4.3, the three local normal modes of the three waveguide structure can be

written as

Ψ+(x, y; z) = a
(+)
1 (z)Φ1(x, y; z) + a

(+)
2 (z)Φ2(x, y; z) + a

(+)
1 (z)Φ3(x, y; z)

Ψ−(x, y; z) = a
(−)
1 (z)Φ1(x, y; z) + a

(−)
2 (z)Φ2(x, y; z) + a

(−)
1 (z)Φ3(x, y; z)

Ψ0(x, y; z) = a
(0)
1 (z)Φ1(x, y; z)− a(0)

1 (z)Φ3(x, y; z) (4.91)

where Φl(x, y; z), l = 1, 2, 3 are the local normal modes of each of the three individual

waveguides. Without loss of generality, the Φl(x, y; z), l = 1, 2, 3 will be assumed to

be real-valued and normalized such that

< Φl(x, y; z)|Φl(x, y; z) >= 1, l = 1, 2, 3. (4.92)
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It follows from Eq. (4.92) that

< Φl(x, y; z)| ∂
∂z
|Φl(x, y; z) >= 0, l = 1, 2, 3. (4.93)

Since the two outer waveguides are identical and symmetrically placed relative to the

central waveguide, it also follows that

< Φ1(x, y; z)| ∂
∂z
|Φ1(x, y; z) > =< Φ3(x, y; z)| ∂

∂z
|Φ3(x, y; z) >

< Φ1(x, y; z)| ∂
∂z
|Φ3(x, y; z) > =< Φ3(x, y; z)| ∂

∂z
|Φ1(x, y; z) >

< Φ2(x, y; z)|Φ1(x, y; z) > =< Φ2(x, y; z)|Φ3(x, y; z) > (4.94)

Combining Eqs. (4.91)- (4.94), it may be easily verified that

ξ0+(z) =< Φ0(x, y; z)| ∂
∂z
|Φ+(x, y; z) >= 0

ξ0−(z) =< Φ0(x, y; z)| ∂
∂z
|Φ−(x, y; z) >= 0. (4.95)

Consequently,

−j ∂
∂z


a0(z)

a+(z)

a−(z)

 =


β0(z) 0 0

0 β+(z) +jξ+−(z)

0 −jξ+−(z) β−(z)

 ·


a0(z)

a+(z)

a−(z)

 . (4.96)

Thus for adiabatic operation we need only consider the coupling between the sym-

metric local normal modes Ψ+(x, y; z) and Ψ−(x, y; z).

4.6.3 Waveguide structure and nonadiabatic term

Because the derivation of the nonadiabatic term, ξ+−(z), is similar for both quasi-

TE and -TM modes, we now will only consider the quasi-TE mode and denote the
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Figure 4.10: Cross-section view of the coupled two-waveguide system along with re-
fractive index values.

corresponding operator B(z) as B1+2+3(z), B1+3(z), and B2(z) for the coupled three-

waveguide system, the coupled waveguide system consisting of the individual waveg-

uides 1 and 3 alone, and the individual waveguide 2 alone, respectively, with the

following distribution of dielectric constants:

n2
1+2+3(x, y; z) =n2

cl + ∆n2
1(x, y; z) + ∆n2

2(x, y; z)

+ ∆n2
3(x, y; z) : coupled three-waveguide (4.97)

n2
1+3(x, y; z) =n2

cl + ∆n2
1(x, y; z) + ∆n2

3(x, y; z) : waveguides 1 and 3 (4.98)

n2
2(x, y; z) =n2

cl + ∆n2
2(x, y; z) : waveguide 2 alone (4.99)

∆n2
i (x, y; z) =n2

core − n2
cl : inside cores i, or 0 otherwise, (4.100)

where ncore and ncl are the refractive indices of the waveguide cores and cladding

regions, respectively. The waveguides and refractive index profiles are shown in Fig-

ure 4.10. The local normal modes of the coupled system and the constituent waveguide
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modes are defined as the eigenmodes of the corresponding B(z) operator.

B1+2+3(z) ·Ψq(x, y; z) = βq(z) ·Ψq(x, y; z) (4.101)

B1+3(z) ·Ψ1(x, y; z) = β1+3(z) ·Ψ1(x, y; z) (4.102)

B2(z) ·Ψ2(x, y; z) = β2(z) ·Ψ2(x, y; z). (4.103)

where the index q = {+,−} is used to distinguish the lowest (+) and the other (−)

symmetric local normal modes of the coupled three waveguides system (β+ > β−).

Ψ1(x, y; z) is the lowest order local normal mode associated with the coupled waveg-

uide system consisting of waveguides 1 and 3 alone. Ψ2(x, y; z) is the fundamental

mode associated with waveguide 2 alone. Since the B operators are Hermitian as

shown in Appendix B, the eigenfunctions of B1+2+3(z) at each fixed z (i.e. the lo-

cal normal modes) are orthogonal and the corresponding eigenvalues are real-valued.

Without loss of generality, the local normal modes are normalized as follows:

 < Ψ+(x, y; z)|Ψ+(x, y; z) > < Ψ+(x, y; z)|Ψ−(x, y; z) >

< Ψ−(x, y; z)|Ψ+(x, y; z) > < Ψ−(x, y; z)|Ψ−(x, y; z) >

 =

 1 0

0 1

 (4.104)

It is easily verified that Ψ1(x, y; z) and Ψ2(x, y; z) are given by

Ψ1(x, y; z) =
1√
2

[Φ1(x, y; z) + Φ3(x, y; z)] (4.105)

Ψ2(x, y; z) = Φ2(x, y; z) (4.106)

where Φ1(x, y; z), Φ2(x, y; z) and Φ3(x, y; z) are the fundamental waveguide modes of

the individual three waveguides. For this to be true, we are assuming weak coupling

between waveguides 1 and 3. S(z) is the overlap integral between Ψ1(x, y; z) and
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Ψ2(x, y; z), i.e., S(z) ≡< Ψ1(x, y; z)|Ψ2(x, y; z) >, and thus

 < Ψ1(x, y; z)|Ψ1(x, y; z) > < Ψ1(x, y; z)|Ψ2(x, y; z) >

< Ψ2(x, y; z)|Ψ1(x, y; z) > < Ψ2(x, y; z)|Ψ2(x, y; z) >


=

 1 S(z)

S(z) 1

 (4.107)

When the fundamental modes of the individual waveguides are known and the

coupling between the individual waveguides is not very strong, the local normal modes

of the coupled system can be approximated as a linear combination of the individual

waveguide modes and thus according to Eqs. (4.25) and (4.27)

 Ψ+(x, y; z)

Ψ−(x, y; z)


t

=

 Ψ1(x, y; z)

Ψ2(x, y; z)


t

·

 c1+(z) c1−(z)

c2+(z) c2−(z)

 (4.108)

Substituting Eq. (4.108) into the definition of the local normal modes of the coupled

system, i.e., Eq. (4.101) and Eq. (4.107), we obtain the following eigenvalue equation

for the coefficients ciq(z) as shown in Appendix C:

 B11(z) B12(z)

B21(z) B22(z)

 ·
 c1+(z) c1−(z)

c2+(z) c2−(z)

 =

 1 S(z)

S(z) 1


·

 c1+(z) c1−(z)

c2+(z) c2−(z)

 ·
 β+(z) 0

0 β−(z)

 (4.109)

where the matrix representation of the B(z) operator of the coupled system and the
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coupling coefficients between constituent waveguides are, respectively, defined as

 B11(z) B12(z)

B21(z) B22(z)

 =

 1 S(z)

S(z) 1

 ·
 β1(z) 0

0 β2(z)


+

 κ11(z) κ12(z)

κ21(z) κ22(z)

 (4.110)

κij(z) =
k0

2n0

< Ψi|∆N(3− j)|Ψj >

< Ψj|Ψj >
(4.111)

where

∆N(1) = ∆n2
1(x, y; z)+∆n2

3(x, y; z) (4.112)

∆N(2) = ∆n2
2(x, y; z) (4.113)

By taking the inner product of Eq. (4.108) with Ψq(z)(q = +,−) and making use

of the normalization condition Eq. (4.104) and Eq. (4.107), the following additional

constraint on ciq(z) is obtained

 c1+(z) c1−(z)

c2+(z) c2−(z)


t 1 S(z)

S(z) 1


 c1+(z) c1−(z)

c2+(z) c2−(z)

 =

 1 0

0 1

 (4.114)

The solution of the simultaneous equations (4.109) and (4.114) can be obtained using

the method developed by Haus et al. [79] and further expanded upon by Ishikawa [3]

as shown in Appendix D. Weak coupling will be assumed, so that |S(z)| � 1. It will

also be assumed that
∣∣∣κ12−κ21

κ12

∣∣∣� 1 and
∣∣∣β1−β2

β2

∣∣∣� 1. If we introduce new parameters
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θ(z) and φ(z) as

tan θ(z) =
κ′12(z)

δ′12(z)
(4.115)

tanφ(z) =
S(z)√

1− S(z)2
(4.116)

where

δ′12(z) =
β1 + κ11 − (β2 + κ22)

2
√

1− S2
(4.117)

κ′12(z) =
κ12 + κ21

2(1− S2)
− S

1− S2

κ11 + κ22

2
, (4.118)

the solution of Eqs. (4.109) and (4.114) can be expressed as

 c1+(z) c1−(z)

c2+(z) c2−(z)

 =
1

cosφ(z)

 cos θ(z)+φ(z)
2

− sin θ(z)+φ(z)
2

sin θ(z)−φ(z)
2

cos θ(z)−φ(z)
2

 (4.119)

β±(z) = β̄(z)±
√
δ′12(z)2 + κ′12(z)2 (4.120)

where

β̄(z) =
β1 + κ11 + β2 + κ22

2(1− S2)
− S

2(1− S2)
(κ12 + κ21 + Sβ1 + Sβ2). (4.121)

Using Eqs. (4.108) and (4.119), the nonadiabatic term, ξ+−(z) =< Ψ+| ∂∂z |Ψ− >, can

be expressed as follows according to Appendix E:

ξ+−(z) = −1

2

∂θ(z)

∂z
− cos θ(z)

2 cosφ(z)

∂φ(z)

∂z

− 1

cosφ(z)
< Ψ2(x, y; z)| ∂

∂z
|Ψ1(x, y; z) > . (4.122)

The nonadiabatic term is now expressed as a derivative of local waveguide parameters,

which allows us to minimize the nonadiabatic term and design a nearly adiabatic
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device. If the center waveguide is chosen to be uniform along its length, then

∂

∂z
Ψ2(x, y; z) = 0 (4.123)

and thus (since < Ψ2| ∂∂z |Ψ1 >= − < Ψ1| ∂∂z |Ψ2 >) the last term in Eq. (4.122)

vanishes.

4.7 Numercial simulation of achromatic beam combiner

In practice, the fully adiabatic transition cannot be achieved. Therefore, there will

be some power exchange between the local normal modes Ψ+(x, y; z) and Ψ−(x, y; z)

as they propagate down the structure. This power coupling, however, can be min-

imized by careful waveguide design. The design process will be illustrated in this

section by considering a germanium/silicon raised strip three coupled waveguide sys-

tem. Equation (4.122) will be used to estimate the magnitude of the nonadiabatic

term at each z for the design example. The power that couples from local normal

mode Ψ+(x, y; z) to Ψ−(x, y; z), as the local normal mode propagates from the begin-

ning (i.e., z = 0) to the end (i.e., z = L) of the device, will be determined by solving

Eq. (4.96) numerically.

4.7.1 Candidates of waveguide fabrication in mid-infrared region

Both chalcogenide elements [80, 81] and group IV elements, especially silicon and

germanium [82], have been studied as candidate materials for mid-IR waveguides.

There are several promising substrate materials and fabrication methods for realizing

mid-infrared waveguide circuits. The most promising candidates include:

1. chalcogenide rib waveguides on chalcogenide substrates

2. chalcogenide rib waveguides on silicon substrates
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3. silicon or germanium rib waveguide membranes with an air bridge underneath

the rib to serve as a lower cladding layer

4. Ge/Si heterostructure rib waveguides with the Ge rib on top of a Si substrate

5. hollow air core ARROW waveguides with a SiGe/Si antiresonant cladding

Channel waveguides have been fabricated and their losses measured in the mid-

infrared (8.4 µm) using the first of these technologies in 2006 [80]. Waveguides fab-

ricated using the second technology were demonstrated, but loss values were only

reported in the near-IR around 1.5 µm [81]. Finally, technologies 3 – 5 have been

theoretically investigated [82].

The widespread use of silicon-based electronics, especially Si-CMOS technology,

has become a major driving force beyond the development of silicon photonics [83].

The ability to integrate both electronic and photonic capabilities onto a single silicon

platform is one of the holy grails of optoelectronics. In 1985, Soref and Lorenzo [84]

were the first to demonstrate an all silicon integrated optical component, specifically,

an optical power divider. In 1987 Soref et al. analyzed the use of carrier injection

to electro-optically modulate light in silicon waveguides via the free carrier plasma

dispersion effect [85]. Up until 2004, only passive silicon photonic devices had been

demonstrated. In 2004, however, the carrier dispersion effect was used to demon-

strate optical switching and modulation speeds approaching 20 Gbit/s have now been

achieved [86]. Raman-based waveguide lasers have also been reported [86], as well

as gigahertz-speed optical detectors (GeSi), and silicon-based ridge waveguides with

propagation losses on the order of 0.3 dB/cm at 1.55 µm [86]. The successful devel-

opments of these devices have aroused interests in deploying silicon for mid-infrared

applications [82]. Silicon has low loss in the spectral bands 1.2 µm – 6 µm and 24

µm – 100 µm, while multiphonon absorption prevents its use between 6 µm and 24

µm. EO modulation using the free carrier plasma effect becomes more efficient at
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Figure 4.11: Proposed candidates for mid-infrared waveguide fabrication: (a) silicon
rib membrane waveguide (b) Ge/Si heterostructure raised strip wave-
guide.

wavelength beyond near IR, thus enhancing the functionality of silicon optical circuits

in the mid-infrared regions. Traditional substrate cladding materials, such as SiO2,

which are suitable at near-IR are too lossy to be used for device operation beyond ap-

proximately 2 µm. Suspended rib waveguides, as shown in Figure 4.11(a), consisting

of silicon membrane clad below and above by air have been proposed as a potential

solution [82]. Another promising approach is to use a Ge/Si heterostructure consist-

ing of a Ge raised strip waveguide of strain-relaxed crystal Ge epitaxially grown upon

a silicon substrate as shown in Figure 4.11(b) [82]. Crystalline Ge has low loss from

1.9 µm out to approximately 12.5 µm. The high refractive index difference between
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Ge and Si may permit Si to be used as the lower cladding level even though it is lossy

in the 6 µm – 12 µm band, since the optical field barely penetrates the cladding.

We will choose the Ge/Si heterostructure raised strip waveguide as the waveguide

fabrication technique for our design example because of its transparency in the band

of interest, i.e., the astronomical N band (8 µm – 12 µm). The other attractive reason

for this waveguide technology is that the heteroepitaxial growth of multiple microns

of high quality germanium film on silicon by multiple steps of growth and hydrogen

annealing has been successfully demonstrated [87]. The practical fabrication of the

proposed device seems promising.

4.7.2 Numerical design and calculation results

The schematic plot of the achromatic mode-evolution beam combiner and the

equivalent two-waveguide system is shown in Figure 4.12 along with cross-section

of the waveguide geometry based on Ge/Si raised strip waveguide. The refractive

indices of the germanium strip and silicon substrate in the N band are taken from

reference [88] and are summarized in Table 4.2.

Temperature λ(µm) n(Si) n(Ge)
8 3.4158 4.0048

20oC 10 3.415 4.0025
12 3.4145 4.0012

Table 4.2: Dispersion of Si and Ge at 20oC and different mid-infrared wavelengths.

Due to relatively large refractive index difference between germanium and silicon,

the optical mode of Ge/Si raised strip waveguide is well confined inside germanium

strip. Thus, the results obtained for the buried waveguide as described in previous

sections can be similarly applied to the waveguide geometry based on Ge/Si raised

strip waveguide. Using the 3D structure together with a commercial, semi-vectorial

3D mode solver (RSoft BeamPROP), the waveguide parameters that correspond to
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Figure 4.12: (a) Schematic of broadband achromatic beam combiner with on-chip
EO modulation (b) Equivalent two-waveguide coupler for local normal
mode coupling analysis of Ψ+(x, y; z) and Ψ−(x, y; z) (c) Cross-section of
Ge/Si raised strip waveguide geometry for fundamental mode calculation
by beam propagation method.
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single-mode operation in the N band at a nominal wavelength of λ0 = 10 µm for both

TE and TM modes are determined. The Ge strip height H is chosen to be 3.5 µm

and the strip width W for the center waveguide is fixed to be 3.5 µm as well, while

the widths of the outer waveguides shown in Figure 4.12(a) are varied from 3.58 µm

at z = 0 to 3.42 µm at z = L. Since the central waveguide is uniform with width W

= 3.5 µm, the last term of Eq. (4.122) vanishes, and thus the nonadiabatic term is

reduced to

ξ+−(z) = −1

2

∂θ(z)

∂z
− cos θ(z)

2 cosφ(z)

∂φ(z)

∂z
. (4.124)

Under weak coupling condition, S(z) ≈ 0, and thus φ(z) ≈ 0 according to Eq. (4.116).

Therefore ξ+−(z) is approximately given by

ξ+−(z) ≈ −1

2

∂θ(z)

∂z
. (4.125)

Thus, nearly adiabatic operation of the device can be achieved by minimizing ∂θ(z)
∂z

,

where (see Eq. (4.115))

tan θ(z) =
κ′12(z)

δ′12(z)
(4.126)

and (see Eqs. (4.117) and (4.118))

δ′12(z) ≈ β1(z) + κ11(z)− (β2(z) + κ22(z))

2
(4.127)

κ′12(z) ≈ κ12(z) + κ21(z)

2
(4.128)
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If the outer waveguides are identical to the center waveguide and uniform along the

direction of propagation, it can be easily verified that

κ11(z) = κ22(z) (4.129)

κ12(z) = κ21(z) (4.130)

according to Eqs. (4.111) - (4.113). Thus if the variation of the width of the outer

waveguides is much smaller than their nominal widths and the gap between the outer

and the center waveguides, then the following relations approximately hold

κ11(z) ≈ κ22(z) (4.131)

κ12(z) ≈ κ21(z) (4.132)

Therefore, Eqs. (4.127) and (4.128) can be approximately written as

δ′12(z) ≈ β1(z)− β2(z)

2
=

∆β(z)

2
(4.133)

κ′12(z) ≈ κ12(z) (4.134)

A three waveguide beam combiner is designed that achieves nearly adiabatic, achro-

matic operation for the TE mode at a center wavelength of λ0 = 10 µm. The waveg-

uide parameters (i.e., ∆β(z) and κ12(z)) from z = 0 to z = L are varied according

to Table 4.1 such that ∂θ(z)
∂z

is small along the length of the device to achieve desired

operation. The device’s operation at 8 µm and 12 µm is also numerically evaluated.

The fundamental TE and TM modes profiles for H = W = 3.5 µm, and λ0 =

10 µm are shown in Figure 4.13. The effective refractive index, neff , of TE and TM

modes are 3.6017 and 3.6454, respectively. The mode profiles are used to compute the

coupling coefficient, κ12, at different center-to-center gap spacings between outer and

center waveguides and the results are fitted and shown in Figure 4.14 for both TE and
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TM polarizations. The dephasing term, ∆β = 2π
λ0

(neff2−neff1), is also computed and

shown in Figure 4.15 as a function of the width of the outer waveguides. Although

not shown here, the coupling coefficients and the dephasing terms at 8 µm and 12 µm

wavelengths have also been computed for the purpose of device verification at other

wavelengths in the N band. The coupling coefficient κ12(z) between the outer waveg-

uides and the center waveguide is restricted to positive values, while the dephasing

term ∆β(z) = β2 − β1 can be either positive, 0 or negative. In order to estimate the

power transferred from the Ψ+(x, y; z) to the Ψ−(x, y; z) local normal mode, we use

the equivalent two-waveguide system described by Eq. (4.12) in Section 4.3. Recall

(see Eq. (4.13)) that

a(z) = a2(z)

b(z) =
√

2a1(z) =
√

2a3(z) (4.135)

where a1(z), a2(z), and a3(z) are the modal amplitude of each individual waveguide,

and a(z) and b(z) are the equivalent modal amplitudes of the straight and curved

waveguides as shown in Figure 4.12(a) and (b), respectively. The coupling coefficient

K(z) between the two waveguides in the two-waveguide system is related to the

coupling coefficient κ12(z) between the outer and center waveguides of the three-

waveguide system by K(z) =
√

2κ12 (see Eq. (4.14)). As indicated earlier the design

approach which will be taken is to vary ∆β(z) and κ12(z) along the length of the

device in a manner consistent with Table 4.1 and in such a way that ∂θ
∂z
≈ 0, where

tan θ(z) ≡ 2κ12(z)
∆β(z)

. Such a design can be realized by choosing

K(z) = Kmax sinϑ(z) (4.136)

∆β(z) = −∆βmax cosϑ(z) (4.137)

where Kmax is the maximum coupling coefficient (which occurs at the device center
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Figure 4.13: (a) TE mode profile at λ0 = 10 µm, neff = 3.6017 (b) TM mode profile
at λ0 = 10 µm, neff = 3.6454 with nominal design (H = W = 3.5 µm).
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Figure 4.14: Coupling coefficient κ12 with nominal design (H = W = 3.5 µm) for (a)
TE mode (b) for TM mode at λ0 = 10 µm.
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Figure 4.15: Plot of effective index difference, λ0

2π
∆β, as a function of the strip width

of the outer waveguides. The width of the center waveguide is 3.5 µm.

z = L/2), ∆βmax is the maximum dephasing term (which occurs at the beginning and

the end of the device, i.e., at z = 0 and L), and ϑ(z) is a monotonically (or nearly

monotonically) increasing function of z, with ϑ(0) = 0 and ϑ(L) = π, that controls

the rate of change of ∆β(z) and κ12(z). The waveguide parameter X(z) given by

Eq. (4.20) is equal to ∆β(z)
2K(z)

. The nonadiabatic term according to Eq. (4.125) can be

written as

ξ+−(z) ≈ −1

2

∂θ(z)

∂z
(4.138)

where tan θ(z) ≈ 1/X(z). Therefore, the nonadiabatic term can be expressed in

terms of the variation of the waveguide parameter, X(z), as follows

ξ+−(z) ≈ 1

2(1 +X2)

∂X

∂z
(4.139)

The coupling between the local normal modes Ψ+(z) and Ψ−(z) for the TE mode at

123



λ0 = 10 µm is computed with the nonadiabatic term described in Eq. (4.139) for the

different ϑ(z) functions listed below [89]:

ϑ(z) =
πz

L
: Linear Function (4.140)

ϑ(z) =
πz

L
− 0.5 sin

2πz

L
: Raised Cosine Function (4.141)

ϑ(z) =
πz

L
− 0.426 sin

2πz

L
: Hamming Function (4.142)

ϑ(z) =
πz

L
− 0.5952 sin

2πz

L
+ 0.0476 sin

4πz

L
: Blackman Function (4.143)

The maximum coupling coefficient, Kmax, and the maximum dephasing term, ∆βmax,

are chosen to be 0.0068 µm−1 and 0.012 µm−1, respectively. These values are selected

such that the single mode condition for each individual waveguide and the weak cou-

pling condition between outer and center waveguides are maintained at wavelengths

from 8 µm to 12 µm, as the waveguide parameters from z = 0 to z = L are varied

according to Table 4.1. The fraction of power transferred (i.e., −10 log10 |a−(L)|2)

from the Ψ+(x, y; z) local normal mode to the Ψ−(x, y; z) local normal mode is nu-

merically computed using Eq. (4.96) with a+(0) = 1 and a−(0) = 0. The result is

shown for L between 0 and 10000 µm for the various ϑ(z) functions and plotted in

Figure 4.16. Among different ϑ(z) functions, for L > 3000 µm, the Raised Cosine and

the Blackman functions outperform (i.e., smaller fractional power transferred from

Ψ+(x, y; z) to Ψ−(x, y; z)) the others and the Blackman function is slightly better

than the Raised Cosine function. Based on this observation, we choose L = 6000 µm

for our device. Better performance can always be achieved by using a longer value of

L. For the Blackman function and L = 6000 µm, the variation of the coupling term,

κ12(z), and the dephasing term, ∆β(z), along with the corresponding nonadiabatic

term, ξ+−(z), are shown in Figure 4.17, and the power transfer characteristics between

the local normal modes along the propagation direction z is shown in Figure 4.18.

Using the data presented in Figure 4.14 together with Eqs. (4.136), (4.137), and
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Figure 4.16: Power transferred to the TE local normal mode Ψ−(x, y; z) at λ0 = 10
µm.

(4.143) with Kmax = 0.0068 µm−1, ∆βmax = 0.012 µm−1, L = 6000 µm, and λ0 = 10

µm, the device layout is obtained. The width variation of the outer waveguides and

the separation between the outer and center waveguides, as a function of the position

z along the device, are plotted in Figure 4.19 and 4.20, respectively.

The performance of the device design is also numerically evaluated using Eq. (4.96)

at wavelengths of 8 µm and 12 µm and is summarized in Table 4.3.

Wavelength Residual Fraction of Power Residual Fraction of Power
in Ψ− TE Mode in Ψ− TM Mode

8 µm -34 dB -24.1 dB
10 µm -82.2 dB -39.5 dB
12 µm -33.4 dB -40.6 dB

Table 4.3: The residual power in Ψ− mode at other wavelengths for TE and TM
polarizations at z = 6000 µm.

Based on this data, it is seen that the performance of our mode-evolution beam com-
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Figure 4.17: (Left) The variation of the coupling coefficient, κ12(z), and the dephasing
term, ∆β(z), along propagation direction z (Right) The nonadiabatic
term, ξ+−(z), for the Blackman function for the TE mode at λ0 = 10
µm.
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Figure 4.18: (Top) Total fraction of power remaining when only the local normal
mode Ψ+ is excited at z = 0, i.e., a+(0) = 1 and a−(0) = 0. (Bottom)
Fraction of launched power in Ψ+ mode (a+(0) = 1 and a−(0) = 0)
transferred to the local normal mode Ψ−.

127



Figure 4.19: The width variation of the outer waveguides as a function of propagation
distance.

Figure 4.20: The gap variation between the outer and the central waveguides as a
function of propagation distance.
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Figure 4.21: The coupling coefficients along propagation direction z for different
wavelengths

biner is relatively insensitive to the operating wavelength and the polarization, even

though the coupling coefficient, κ12(z), and the dephasing term, ∆β(z), are highly

wavelength-dependent as shown in Figure 4.21 and 4.22. The coupling coefficient,

κ12(z), and the dephasing term, ∆β(z), are computed based on the waveguide geom-

etry shown in Figure 4.19 and 4.20.

The design parameters are converted to the equivalent two-waveguide system and

the device operation is verified by the beam propagation method as shown in Fig-

ure 4.23. The input excitation at a wavelength of λ0 = 10 µm is launched into the

curved waveguide, which represents the in-phase, equal amplitude input excitations

to the outer waveguides 1 and 3 of the coupled three-waveguide system. Thus the

local normal mode Ψ+(0) is excited. Except for the abrupt power drop at the inter-

face between the straight input section and the curved beam combiner section, all the

power is transferred nearly 100 % to the other straight waveguide in the end of sim-

ulation. The residual fraction power transferred from Ψ+ local normal mode to Ψ−
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Figure 4.22: The dephasing term along propagation direction z for different wave-
lengths

local normal mode is numerically determined to be approximately -30 dB. It is clear

that the excited local normal mode Ψ+(0) has already adiabatically mode-evolved to

the desired local normal mode Ψ+(L) at the output with negligible power coupling

to Ψ− local normal mode.

4.8 Discussion

We have presented the numerical design of a broadband, polarization insensitive,

achromatic beam combiner for the operation in the astronomical N band based on

Ge/Si heterostructure raised strip waveguides. The beam combining is intrinsically

achromatic because of the symmetric arrangement of the three coupled waveguides.

As opposed to a reversed-Y junction combiner which suffers a 3 dB loss, our device

is theoretically lossless. Furthermore on-chip EO modulation is also possible by uti-

lizing the free carrier plasma dispersion effect [85] in silicon-based waveguides. Most
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Figure 4.23: The mode evolution and power transfer characteristic for TE mode at λ
= 10 µm.
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importantly, the technology needed to actually fabricate the proposed design is quite

promising and plausible. We believe the realization of such beam combiner will in-

crease the possibility of replacing current beam combiners with the integrated optic

counterparts for space-based deep nulling interferometry.
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CHAPTER V

Conclusion

5.1 Summary of research contributions

There are two main goals of the research topics reported in this dissertation. The

first goal is to study the limitation and capabilities of optical rate gyroscopes for

tactical grade rotation sensing by the introduction of gain into passive integrated

optic ring resonator gyros. The ultimate spectral resolution obtainable using an

active ring resonator is studied. An expression is derived for this quantum-limited

resolution, and the result is applied to determine the fundamental performance limit

of a resonant optical gyroscope implemented using an active ring resonator. With

the addition of gain, the rms, angular rotation rate, random walk error is shown to

decrease by a multiplicative factor equal to the square-root of the ratio of the resonator

finesse measured with gain and without gain present. An active, integrated optic, ring

resonator is fabricated in a Nd-doped glass by silver ion exchange waveguides. When

the gain medium is pumped, the finesse of the 1.6 cm diameter ring resonator is

observed to increase from approximately 11 to 250, corresponding to an improvement

factor of approximately five.

The second goal is to study and to verify the limitation and capabilities of inte-

grated optic beam combining devices for astronomical imaging. Two-beam and three-

beam astronomical beam combiners are fabricated by titanium-indiffused LiNbO3
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waveguides. The devices operate in the astronomical L band and the white light

fringe in the L band measured by the fabricated two-beam combiner was demon-

strated for the first time in the laboratory environment. This result extends the

previous integrated optic work for astronomical beam combining to wavelength up

to 4 µm and proves the suitability of replacing traditional beam combining function

by integrated optic counterparts for stellar interferometry. Furthermore, the on-chip

electrooptic modulation is implemented for our beam combiners utilizing the large

EO coefficients of LiNbO3, which provides the potential fringe tracking application

for stellar interferometry.

Theoretical design work of a broadband, fully achromatic, polarization-insensitive,

mode evolution beam combiner operating in the astronomical N band is presented.

The mathematical formulations for the analysis of the proposed device are detailed.

The candidates of possible practical device fabrication technology are discussed. The

design based on the heterostructure germanium on silicon raised strip waveguide is

verified by the numerical simulation and the beam propagation methods. We believe

the realization of such device will greatly contribute to the area of nulling interfer-

ometry, especially for the space-based mid-infrared nulling interferometers designed

for the direct detection and the characterization of Earth-like planets around nearby

stars.

5.2 Future work

We have demonstrated in this dissertation that active integrated optic devices

for sensing applications are beneficial. For the active ring resonator project, we have

shown the possibility of the realization of high finesse active ring resonators and lasers

through rare earth doping of the ring, and also derived an expression to estimate the

gyro performance in quantum limit. In the future, it will be very interesting to

verify this performance prediction by optimized design of the optical gyro and the
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experiments.

As for the astronomical beam combiners projects, efforts are on-going in our labo-

ratory to characterize the three-beam combiner using a thermal source and an astro-

nomical InSb focal plane array. The on-sky white light fringe measurement will be a

good illustration of the application of IO devices to stellar interferometry. The recent

and widespread introduction of the photonic devices for the astronomical instrumen-

tation has led to a new field and the associated neologism astrophotonics [90]. The

field of mid-infrared integrated optics is still in its infancy. There is every reason to

believe, however, that the IO results presented in this dissertation can be extended be-

yond 4 µm to the mid-IR (7 µm – 20 µm). This effort will require substrate materials

that are transparent at mid-infrared wavelengths, such as the chalcogenides [80, 91],

germanium, or silicon. Future work includes exploring these longer wavelength mate-

rials, associated waveguide fabrication methods, and the fabrication and application

of the new broadband, achromatic, IO beam combiners for the next generation stellar

and nulling interferometers.
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APPENDIX A

Derivation of Normal Modes of Three Waveguides

System

One normal mode of the three coupled waveguides is derived from Eq. (4.6) by

assuming that

a1(z) = −a3(z) = exp(jβ0z)

a2(z) = 0 (A.1)

Substituting Eq. (A.1) into Eq. (4.6) yields the antisymmetric normal mode

E0(x, y, z) = Ψ0(x, y) exp(jβ0z) (A.2)

where

β0 = β1 − κ13 (A.3)

Ψ0(x, y) =

(
Φ1(x, y) Φ2(x, y) Φ3(x, y)

)
A0 (A.4)
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and

A0 =


1/
√

2

0

−1/
√

2

 (A.5)

Similarly to obtain the two symmetric normal modes we substitute a1(z) = a3(z) =

exp(jβ±z) into Eq. (4.6). The two symmetric normal modes can then be expressed

as a linear combination of the uncoupled modes Φa and Φb, where Φa = Φ2 and

Φb = 1/
√

2(Φ1 + Φ3). The amplitudes are chosen such that the normal modes are

orthogonal:

ϕ+ = dΦa + eΦb

ϕ− = −eΦa + dΦb. (A.6)

where d2 + e2 = 1 and e, d > 0. Therefore, the symmetric normal modes of the

coupled three waveguides system are of the following forms:

E+(x, y, z) = Ψ+(x, y) exp(jβ+z) (A.7)

E−(x, y, z) = Ψ−(x, y) exp(jβ−z) (A.8)

where

Ψ+(x, y) =

[
e√
2

Φ1(x, y) +
e√
2

Φ3(x, y)

]
+ dΦ2(x, y) (A.9)

Ψ−(x, y) =

[
d√
2

Φ1(x, y) +
d√
2

Φ3(x, y)

]
− eΦ2(x, y) (A.10)

β+ and β− are the corresponding propagation constants of these normal modes. Sub-
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stituting E+(x, y, z) into Eq. (4.6), we obtain

e · (β+ − κ13 − β1) = κ12

√
2 · d

d · (β+ − β2) = κ12

√
2 · e (A.11)

Letting

β̄ =
1

2
(β1 + β2 + κ13)

∆β = β2 − β1 − κ13

K =
√

2κ12

X =
∆β

2
√

2κ12

=
∆β

2K
, (A.12)

and eliminating d, e from Eq. (A.11), we obtain

β+ = β̄ +K
√

1 +X2. (A.13)

Substituting β+ into Eq. (A.11) and squaring both sides, we get

d2

e2
=

√
1 +X2 +X√
1 +X2 −X

(A.14)

From Eq. (A.14) and the constraints d2 + e2 = 1 and e, d > 0, we derive

d =

√
1

2
(1 +

X√
1 +X2

)

e =

√
1

2
(1− X√

1 +X2
) (A.15)

Applying a similar procedure to the E−(x, y; z) mode yields β− = β̄ −K
√

1 +X2 as

well as Eq. (A.15).
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APPENDIX B

Proof of Hermiticity of B(z) Operator

In order to show that B(z) operator is Hermitian, it is sufficient to show that

∂2/∂x2 and ∂2/∂y2 are Hermitian. We note that if operator p is Hermitian, so is

operator −p2 since

< Φ1| − p2|Φ2 > =< Φ1| − p · p|Φ2 >

= − < pΦ1|p|Φ2 > since p is Hermitian

= − < p(pΦ1)|Φ2 >=< −p2Φ1|Φ2 > (B.1)

Now let p = i ∂
∂x

or i ∂
∂y

, then

< Φ1|p|Φ2 > =

∫
y

∫
x

Φ∗1(i
∂

∂x
)Φ2 dxdy

=

∫
y

Φ∗1(iΦ2)|x=+∞
x=−∞ dy +

∫
y

∫
x

(−iΦ2)(
∂

∂x
)Φ∗1 dxdy

=

∫
y

∫
x

−iΦ2(
∂

∂x
)Φ∗1 dxdy =< pΦ1|Φ2 > . (B.2)

where the last line follows from the fact that Φ2(x, y) = 0 when x → ±∞ for any

physical waveguide mode. Therefore, i ∂
∂x

and ∂2/∂x2 are Hermitian. Similarly, i ∂
∂y
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and ∂2/∂y2 are Hermitian too. Thus the B(z) operator is Hermitian.
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APPENDIX C

Eigenvalue Equation for Coefficients Ciq(z)

Substituting the Ψ+(x, y; z) local normal mode of the coupled system as given by

Eq. (4.108) into Eq. (4.101), we obtain

B1+2+3 ·Ψ+ = c1+B1+2+3Ψ1 + c2+B1+2+3Ψ2

= c1+

(
B1+3 +

k2
0∆n2

2

2β0

)
Ψ1 + c2+

(
B2 +

k2
0(∆n2

1 + ∆n2
3)

2β0

)
Ψ2

= β1c1+Ψ1 + β2c2+Ψ2 + c1+
k0∆n2

2

2n0

Ψ1 + c2+
k0(∆n2

1 + ∆n2
3)

2n0

Ψ2

= β+Ψ+

= β+c1+Ψ1 + β+c2+Ψ2. (C.1)

By forming inner product of Eq. (C.1) with Ψ1 and using Eq. (4.107), we get

β1c1+ + β2c2+S + c1+κ11 + c2+κ12 = β+c1+ + β+c2+S, (C.2)

where κij is defined by Eq. (4.111), (4.112), and (4.113). Similarly, by forming inner

product of Eq. (C.1) with Ψ2, we get

β1c1+S + β2c2+ + c1+κ21 + c2+κ22 = β+c1+S + β+c2+. (C.3)

142



By applying a similar procedure to the Ψ−(x, y; z) local normal mode, we obtain

β1c1− + β2c2−S + c1−κ11 + c2−κ12 = β−c1− + β−c2−S, (C.4)

β1c1−S + β2c2− + c1−κ21 + c2−κ22 = β−c1−S + β−c2−. (C.5)

It is easily verified that Eqs. (C.2), (C.3), (C.4), and (C.5) can be written as

 B11(z) B12(z)

B21(z) B22(z)

 ·
 c1+(z) c1−(z)

c2+(z) c2−(z)

 =

 1 S(z)

S(z) 1


·

 c1+(z) c1−(z)

c2+(z) c2−(z)

 ·
 β+(z) 0

0 β−(z)

 (C.6)

where the matrix representation of the B(z) operator of the coupled system is defined

as  B11(z) B12(z)

B21(z) B22(z)

 =

 1 S(z)

S(z) 1

 ·
 β1(z) 0

0 β2(z)


+

 κ11(z) κ12(z)

κ21(z) κ22(z)

 (C.7)
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APPENDIX D

Derivation of Coefficients Ciq(z)

In order to solve equations (4.109) and (4.114) simultaneously, it is useful to

introduce a square root matrix Q such that

Λ =

 1 S(z)

S(z) 1

 =

 q11(z) q12(z)

q21(z) q22(z)


2

= Q2. (D.1)

Λ is a Hermitian matrix, and hence it can be diagonalized. Thus Q is easily found to

be

Q =

 q11(z) q12(z)

q21(z) q22(z)


=

1

2

 √1 + S +
√

1− S
√

1 + S −
√

1− S
√

1 + S −
√

1− S
√

1 + S +
√

1− S


=

 cos φ(z)
2

sin φ(z)
2

sin φ(z)
2

cos φ(z)
2

 . (D.2)
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Let a new matrix, C ′iq(z), be defined by

 c′1+(z) c′1−(z)

c′2+(z) c′2−(z)

 =

 q11(z) q12(z)

q21(z) q22(z)

 ·
 c1+(z) c1−(z)

c2+(z) c2−(z)

 (D.3)

Substituting Eq. (D.1), Eq. (D.2), and Eq. (D.3) into equations (4.109) and (4.114),

we obtain  B′11(z) B′12(z)

B′21(z) B′22(z)


 c′1+(z) c′1−(z)

c′2+(z) c′2−(z)


=

 c′1+(z) c′1−(z)

c′2+(z) c′2−(z)


 β+(z) 0

0 β−(z)

 (D.4)

 c′1+(z) c′1−(z)

c′2+(z) c′2−(z)


t c1+(z) c1−(z)

c2+(z) c2−(z)

 =

 1 0

0 1

 (D.5)

where  B′11(z) B′12(z)

B′21(z) B′22(z)

 = Q−1

 B11(z) B12(z)

B21(z) B22(z)

Q−1. (D.6)

From Eq. (D.2), we can compute the inverse of Q matrix to get

Q−1 =
1

2
√

1− S2

 √1 + S +
√

1− S
√

1− S −
√

1 + S
√

1− S −
√

1 + S
√

1 + S +
√

1− S


=

1

cosφ

 cos φ(z)
2

− sin φ(z)
2

− sin φ(z)
2

cos φ(z)
2

 . (D.7)
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Substituting Eq. (D.7) into Eq. (D.6) and using Eq. (4.110), we obtain

 B′11(z) B′12(z)

B′21(z) B′22(z)

 =

 β̄(z) + δ′12(z) κ′12(z)− γ(z)

κ′12(z) + γ(z) β̄(z)− δ′12(z)

 . (D.8)

where

β̄(z) =
β1 + κ11 + β2 + κ22

2(1− S2)
− S

2(1− S2)
(κ12 + κ21 + Sβ1 + Sβ2). (D.9)

δ′12(z) =
β1 + κ11 − (β2 + κ22)

2
√

1− S2
(D.10)

κ′12(z) =
κ12 + κ21

2(1− S2)
− S

1− S2

κ11 + κ22

2
, (D.11)

γ(z) =
1

2
√

1− S2
(Sβ1 − Sβ2 + κ21 − κ12). (D.12)

When the coupling is weak (i.e. S2 � 1), γ(z) can be approximated as 1 by neglecting

terms of order S2 and smaller in the numerator

γ(z) ≈ 1

2(1− S2)
(Sβ1 − Sβ2 + κ21 − κ12). (D.13)

If we further make the reasonable assumption that |β2−β1|
|β2| � 1 and |κ12−κ21|

|κ12| � 1, then

γ(z) can be neglected compared with κ′12(z). The matrix B′ is then Hermitian and

is of the following form

 B′11(z) B′12(z)

B′21(z) B′22(z)

 =

 β̄(z) + δ′12(z) κ′12(z)

κ′12(z) β̄(z)− δ′12(z)

 . (D.14)

By diagonalizing matrix B′, the eigenvalues and eigenvectors of Eq. (D.4) can be found

1 1√
1−S2

=
√
1−S2

1−S2 = 1+O(S2)
1−S2 .
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and the solutions automatically satisfy Eq. (D.5) since the matrix B′ is Hermitian

and its eigenvectors are orthogonal. The simultaneous eigensolutions are found to be

β±(z) = β̄(z)±
√
δ′12(z)2 + κ′12(z)2 (D.15)

and  c′1+(z) c′1−(z)

c′2+(z) c′2−(z)

 =
1√

(δ′12(z) +
√
δ′12(z)2 + κ′12(z)2)2 + κ′12(z)2

×

 δ′12(z) +
√
δ′12(z)2 + κ′12(z)2 −κ′12(z)

κ′12(z) δ′12(z) +
√
δ′12(z)2 + κ′12(z)2


≡

 cos θ(z)
2
− sin θ(z)

2

sin θ(z)
2

cos θ(z)
2

 (D.16)

where

tan θ(z) =
κ′12(z)

δ′12(z)
. (D.17)

Thus using Eq. (D.3) and (D.7), the coefficients Ciq(z) can be found

 c1+(z) c1−(z)

c2+(z) c2−(z)

 = Q−1 ·

 c′1+(z) c′1−(z)

c′2+(z) c′2−(z)


=

1

cosφ(z)

 cos φ(z)
2

− sin φ(z)
2

− sin φ(z)
2

cos φ(z)
2

 ·
 cos θ(z)

2
− sin θ(z)

2

sin θ(z)
2

cos θ(z)
2


=

1

cosφ(z)

 cos θ(z)+φ(z)
2

− sin θ(z)+φ(z)
2

sin θ(z)−φ(z)
2

cos θ(z)−φ(z)
2

 . (D.18)
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APPENDIX E

Derivation of Nonadiabatic Term ξ+−(z)

If we denote ∂
∂z

Ψi = Ψ̇i, then the nonadiabatic term, ξ+−(z), can be evaluated as

follows by using Eq. (4.108)

ξ+−(z) = < Ψ+|Ψ̇− >

= < c1+Ψ1 + c2+Ψ2|ċ1−Ψ1 + c1−Ψ̇1 + ċ2−Ψ2 + c2−Ψ̇2 >

=c1+ċ1− + c1+ċ2− < Ψ1|Ψ2 > +c1+c2− < Ψ1|Ψ̇2 >

+ c2+ċ1− < Ψ2|Ψ1 > +c2+c1− < Ψ2|Ψ̇1 > +c2+ċ2−

=c1+ċ1− + c1+ċ2−S + c1+c2− < Ψ1|Ψ̇2 >

+ c2+ċ1−S + c2+c1− < Ψ2|Ψ̇1 > +c2+ċ2−. (E.1)

Note that by integrating by parts, it is easily shown that

< Ψ1|Ψ̇2 >= − < Ψ2|Ψ̇1 > . (E.2)
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Therefore, the nonadiabatic term becomes

ξ+−(z) =c1+ċ1− + c1+ċ2−S − c1+c2− < Ψ2|Ψ̇1 >

+ c2+ċ1−S + c2+c1− < Ψ2|Ψ̇1 > +c2+ċ2−. (E.3)

Using Eq. (4.119) and the fact that S = sinφ (can be derived from Eq. (D.2)), each

term of right hand side of Eq. (E.3) can be calculated as follows

c1+ċ1− =
cos θ+φ

2

cosφ

[
− cosφ cos θ+φ

2
· (θ̇ + φ̇)

2 cos2 φ
−

sin θ+φ
2

sinφ · φ̇
cos2 φ

]
(E.4)

Sc1+ċ2− = sinφ
cos θ+φ

2

cosφ

[
− cosφ sin θ−φ

2
· (θ̇ − φ̇)

2 cos2 φ
+

cos θ−φ
2

sinφ · φ̇
cos2 φ

]
(E.5)

(c2+c1− − c1+c2−) < Ψ2|Ψ̇1 >= − 1

cosφ
(E.6)

Sc2+ċ1− = − sinφ
sin θ−φ

2

cosφ

[
cosφ cos θ+φ

2
· (θ̇ + φ̇)

2 cos2 φ
+

sin θ+φ
2

sinφ · φ̇
cos2 φ

]
(E.7)

c2+ċ2− =
sin θ−φ

2

cosφ

[
− cosφ cos θ−φ

2
· (θ̇ − φ̇)

2 cos2 φ
+

cos θ−φ
2

sinφ · φ̇
cos2 φ

]
(E.8)

After rearranging the terms, Eq. (E.3) can be further simplified as

ξ+−(z) =− 1

cosφ
< Ψ2|Ψ̇1 >

− θ̇

2 cos2 φ

[
1 + cos(θ + φ)

2
+

1− cos(θ − φ)

2
+ 2 sinφ sin

θ − φ
2

cos
θ + φ

2

]
+

φ̇

2 cos2 φ

{
cos θ cosφ+

sinφ[sin(θ + φ)− sin(θ − φ)]

cosφ
− 2 cos θ sin2 φ

cosφ

}
=− 1

cosφ
< Ψ2|Ψ̇1 > −

1

2
θ̇ − cos θ

2 cosφ
φ̇ (E.9)
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