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“Always keep Ithaca in your mind.
To arrive there is your ultimate goal.
But do not hurry the voyage at all.
It is better to let it last for many years;
and to anchor at the island when you are old,
rich with all you have gained on the way,
not expecting that Ithaca will offer you riches.

Ithaca has given you the beautiful voyage.
Without her you would have never set out on the road.
She has nothing more to give you.

And if you find her poor, Ithaca has not deceived you.
Wise as you have become, with so much experience,
you must already have understood what Ithacas mean.”

excerpt from Ithaca, by C.P. Cavafy
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Abstract

This dissertation studies the influence of uncertainty on spacecraft control. The sources

of the uncertainty are either imperfect state measurements or stochastic acceleration due

to thruster noise. First, we analyze the impact of uncertainty in state measurements on

the long-term cost of controlling an unstable periodic system. Under a specific procedure

for updating control laws, we show that for unstable systems, there is an optimal time to

perform updates in order to minimize the long-term cost per unit time.

Second, we consider the effect of stochastic acceleration due to thruster noise, which

results in multiplicative noise on the control. Feedback control laws are obtained by numeri-

cally solving the stochastic Hamilton-Jacobi-Bellman equation using the spectral method.

The optimal feedback control law for realistic noise levels is shown to differ significantly

from the deterministic control. This suggests that trajectory planning would benefit from the

inclusion of these stochastic effects.

Finally, we show that Taylor series expansions can be also be used to solve the stochastic

Hamilton-Jacobi-Bellman equation under the fairly nonrestrictive assumption that the ex-

pansion is performed about an equilibrium point and that the gradient of the value function

about the expansion point is zero. The Taylor series approach produces a system of ordinary

differential equations describing the evolution of the coefficients in the power series. We

show that in steady-state, a proper Taylor series may not exist, and that the proper solution

is obtained through a Frobenius series expansion.

xii



Chapter 1

Introduction

This dissertation studies the effects of uncertainty on the optimal control of spacecraft using

low-thrust propulsion systems. Low-thrust electric propulsion systems are an enabling

technology for several space missions including Deep Space 1, SMART-1, and Dawn. The

primary benefit of electric propulsion is a dramatic reduction in propellant mass, and there-

fore mission cost, due to the high exhaust velocity of the thruster as compared to chemical

propulsion. The necessary drawback of low thrust is that the thrusters must operate for long

periods of time to achieve mission goals. This long thrusting time allows for uncertainty

and stochastic effects to play a significant role in the dynamical evolution of a thrusting

spacecraft.

We study these effects in two parallel approaches; in the first, we consider deterministic

dynamics, but imperfect state measurements. Our goal is then to determine how to optimally

update feedback control laws to minimize long-term cost. In the second approach, we

assume perfect state knowledge, but allow for stochastic dynamics resulting from thruster

noise. In this case, the problem is to derive the optimal feedback control law considering that

increasing thruster force results in increased thrust fluctuations. In either case, knowledge of

the future, conditioned on information in the present, is uncertain.

The initial motivation for this work was the desire to expand on Renault and Scheeres’

work dealing with optimal timing of impulsive correction maneuvers for libration point

orbiters [1]. Our extension was to consider the case of continuous control.

Additional motivation was drawn from experiments performed by Reid et al. [2], which
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characterized the variations in thrust level for a Hall thruster. It is clear that significant

discharge current fluctuations of about 10%-20% about the mean occur in the discharge

chamber up to high frequencies (greater than 105 Hz). These current fluctuations are directly

proportional to thrust variations. This suggests that analyzing the control force as stochastic,

rather than deterministic, could be a more appropriate modelling approach.

1.1 Contributions and Outline
The following list is a summary of the primary contributions of this research:
• Development of a general theory that describes how best to schedule updates to the

control law for unstable systems with continuous control and imperfect, discrete
measurements.
• Analysis of stochastic optimal feedback control laws for spacecraft using the Spectral

Method to numerically solve the stochastic Hamilton-Jacobi-Bellman equation.
• Taylor series (time-varying) and Frobenius (steady-state) series solutions of the

stochastic Hamilton-Jacobi-Bellman equation.

The structure of the dissertation is as follows: Chapter 2 discusses the results for the

case of imperfect measurements and deterministic dynamics. This approach uses tools

familiar to aerospace engineers: Gaussian covariance propagation, deterministic optimal

feedback control laws, dynamical systems theory, etc. The contribution of this chapter is the

development of a general theory that describes how best to schedule updates to the control

law for unstable systems with continuous control and imperfect, discrete measurements.

The theory is applied to control about the relative equilibria and halo orbits in the Hill

Three-Body Problem (H3BP).

Chapter 3 deals with our approach to numerically solving the optimal feedback con-

trol law for the stochastic case. We begin the chapter with some background information

on stochastic calculus and proper stochastic modeling, which is typically unfamiliar to

aerospace engineers. The remainder of the chapter discusses the solution method we use,

the spectral method, and applications again to the H3BP. The primary contribution of this

chapter is not the theoretical development or solution method, but the analysis of stochastic
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optimal feedback control laws for spacecraft, which, to our knowledge, has not yet been

performed. The result is a strong argument that control laws for spacecraft using noisy

low-thrust propulsion are more properly developed in a stochastic framework instead of the

standard deterministic one.

The final contribution of the dissertation is presented in Chapter 4, which describes an

alternate approach to the stochastic optimal control problem. While Chapter 3 takes a global

approach with the spectral method, Chapter 4 takes a local approach using Taylor series

expansions. The contributions are the conditions under which these expansions are feasible,

as well as applications to the Hill Restricted Three-Body Problem equilibrium points. Also,

we develop the steady state solutions using Frobenius expansions.

1.2 Relevant Publications
The following publications are related to the subject matter of this dissertation.
• Gustafson, E. D. and Scheeres, D. J., “Optimal Timing of Control-Law Updates

for Unstable Systems with Continuous Control,” Journal of Guidance, Control, and
Dynamics, Vol. 32, No. 3, May-June 2009, pp. 878–887.
• Gustafson, E. D. and Scheeres, D. J., “Spacecraft Stochastic Optimal Control,”

AIAA/AAS Spaceflight Mechanics Meeting, No. AAS 10-109, 2010.
• Gustafson, E. D. and Scheeres, D. J., “Optimal Timing of Control Law Updates for

Unstable Systems with Continuous Control,” American Control Conference, 2008.
Awarded Best Paper in Session Award.
• Gustafson, E. D. and Scheeres, D. J., “Dynamically Relevant Local Coordinates for

Halo Orbits,” Astrodynamics Specialist Conference, 2008.
• Gustafson, E. D. and Scheeres, D. J., “Optimal Control of Uncertain Trajectories

Using Continuous Thrust,” AIAA/AAS Spaceflight Mechanics Meeting, 2007.

1.3 Deterministic, Uncertain, and Stochastic Systems

Deterministic Systems Astrodynamic systems are typically modeled with ordinary dif-

ferential equations to describe how the positions and velocities of objects evolve under

the influence of Newtonian gravity and other deterministic forces [8]. A primary concern

of space mission design is the optimization of spacecraft trajectories to minimize fuel

3



consumption. Deterministic optimal control has a rich, well-established history and has

been successfully applied to many space missions. Tools such as Pontryagin’s Maximal

Principle have provided the basis for many numerical approaches to efficiently solve for

deterministic optimal control [9]. The Maximal Principle results in a Hamiltonian system,

and Chan, et al. [10] have shown that Hamiltonian Systems theory may be used to obtain

series solutions to the optimal feedback control law. The remarkable aspect of this approach

is that truncation of the dynamics at a given order results in the terms of the true control law

at that order. For example, if the dynamics are truncated at n-th order, then the resulting n-th

order approximate control law will be the n-th order terms of the Taylor series expansion of

the full nonlinear control law.

In practical applications, however, deterministic analysis is typically not sufficient. For

example, spacecraft orbit maintainance and targeting require the analysis of state uncertainty.

Often times, preliminary analysis will be performed in a deterministic framework, then

uncertainty will be “superimposed” on top of the solution in an open-loop fashion.

Uncertain Systems The next level of realism past deterministic systems in to assume

uncertainty throughout the analysis. In this approach, statistical maneuvers and targeting

correction costs can be estimated a priori. An example of the benefits of this approach are

given in the work by Renault and Scheeres [1], in which the authors estimate the cost of

controlling a spacecraft in an unstable system using impulsive control.

When considering natural dynamics (uncontrolled dynamics), recent advances in un-

certainty propagation have been made by Park and Scheeres [11], where the evolution of

uncertainty distributions is computed using high order expansions of the dynamics. Also,

their work develops the concept of “Nonlinear Statistical Targeting,” i.e., how to best target

a future state given the uncertainties in the current state. The uncertainty analysis in this

dissertation is limited to the linear case; however, the concepts developed by Park and

Scheeres could be used to extend these results.
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Stochastic Systems One further step of realism is to consider stochastic forces on the

spacecraft. The source of such a random force could be natural, such as atmospheric drag,

or it could be due to thruster noise. To our knowledge, the inclusion of thruster noise in the

computation of optimal control laws has not been performed prior to this work. Despite this,

the analysis of noisy control is very interesting, and is a field of active research. When the

control itself is a source of noise, the optimal controller must balance increasing control

against minimizing uncertainty.

The primary goal of considering stochastic accelerations in the control law design is

to achieve better expected performance. We show that an optimal stochastic controller

can outperform its deterministic counterpart for the systems studied. Although we restrict

ourselves to fairly simple systems, the results are encouraging, and suggest that stochastic

controllers also have a significant benefit when applied to more realistic spacecraft models.

Ultimately, the most realistic analysis would consider the combination of uncertain

measurements and stochastic dynamics simultaneously, but this is left as future work.
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Chapter 2

Uncertain Optimal Control: Control
Law Update Timing

In this chapter, we describe a method to analyze the average (or ensemble) cost of optimal

control near a periodic unstable trajectory. Specifically, we focus on control of the time-

varying linear system resulting from linearizing the full dynamics about a nominal periodic

trajectory. We consider a specific control strategy to take into account the finite horizon of

the continuous control and uncertainty in the estimate of the state. This analysis is of direct

application to the determination of mission operations for halo orbiters and for the budgeting

of statistical fuel costs, especially for spacecraft in the highly unstable Earth-Moon system.

Previously, Renault and Scheeres [1] conducted a similar study of optimal statistical

control which considered the placement of impulsive control maneuvers near an unstable

equilibrium point. The results of this paper serve to reinforce key results in Renault and

Scheeres such as the correlation between optimal control maneuver timing and the charac-

teristic time of the instability of a system. Also, trends derived in Scheeres’ previous work

[12] concerning the qualitative impact of the update time on control cost using impulsive

maneuvers are developed here for the continuous control case, and shown to be similar.

The control force and system dynamics are assumed to be deterministic, and the state

estimates are assumed to have a Gaussian probability distribution. The Gaussian assumption

is justified for this analysis because spacecraft uncertainties are almost always reported

according to Gaussian statistics; more detailed information is not typically available. Ad-

ditionally, this allows for the availability of analytical control laws for linear systems with
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state uncertainty. Further analysis could be performed under non-Gaussian statistics. All

system uncertainty is assumed to be adequately described by uncertainties in the estimation

of the state. In addition, it is worthwhile to note that we focus on optimally updating control

laws in the presence of uncertainty, not optimal control per se.

The motivation for these control law updates is as follows:

1. At some time t1, we have an estimate of the state with a certain uncertainty level.

The uncertainties at this point can be viewed as the steady-state uncertainties of an

estimation process.

2. Based on the estimate of the state at t1, we choose and implement a controller which

would nominally cause the state to converge to the target state at time t2 (in the absence

of uncertainty).

3. At time t2, error exists again due to uncertainties at time t1.

This process repeats, and therefore there is a statistical cost associated with the steady-

state control. It is also similar to the actual process used in spacecraft trajectory control

[12]. To estimate this statistical cost, we evaluate the expected cost of the control from

time interval ti to ti+1 due to propagated uncertainties from interval ti−1 to ti. During each

interval, the control force is continuous; however, at the boundary between each interval, a

discontinuity results from the choice of a new optimal control for the next control period.

In order to minimize the cost of regulating the system, we seek to minimize the average

cost over time. To achieve this, one must find the time-between-updates that minimizes the

expected cost per segment divided by the time-between-updates; E [J]/Tu, where J is the

cost incurred and Tu is the time-between-updates. That is, the optimal time-between-updates,

T ∗u , is given by

T ∗u = argmin
Tu

E [J]
Tu

. (2.1)

The time-between-updates is assumed to be a constant parameter over the analysis period

of interest. This choice fits with our desire to develop a “steady state” control, and is
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particularly appropriate considering our analysis of control in the vicinity of a periodic

system, which naturally lends itself to a repetative control strategy.

We split the control problem into two pieces:

1. Determination of a control that targets the nominal periodic trajectory/state in a finite

time, Tu.

2. Determination of the effect of state uncertainty on the nominal control, and how we

can decrease the overall cost in the presence of uncertainty.

In problem (1) above, the control time, Tu, is a free parameter and, in the absence of

noise, cost is reduced by taking Tu→ ∞, even for unstable systems.

For problem (2), where we do not know the precise initial state, we find that the error can

have a catastrophic penalty if our dynamical system is unstable. Hence, this injects a specific

“structure” or “natural time scale” into our control problem. This optimal update time is

nominally related to the characteristic time scale of the instability. Although the control

update time cannot be solved in closed form, even for simple linear systems, the natural

dynamics still provide insight to its value. A simple control law elucidates the practical

relevance of the unstable characteristic time when estimating the optimal update time, as

will be discussed.

This combined control and measurement strategy is a periodic update procedure where

the optimal control problem is solved using a finite-horizon time span equal to the time

between control updates. This can be viewed as an extreme case of receding horizon control

(RHC, or model predictive control, MPC) where the execution horizon is equal to the

planning horizon. In RHC, the execution horizon is typically much shorter than the planning

horizon [13, 14]; however, spacecraft state estimates are made using data from ground-based

radar tracking stations, which perform measurements infrequently compared to typical RHC

applications. This necessitates a relatively long execution horizon. Extending the planning

horizon does allow for a lower expected cost; however, this also increases the steady-state
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uncertainty, as shown later. For simplicity, we assume that the control update time equals

the planning horizon. One could relax this assumption by modifying the cost function to be

a weighted combination of fuel-based cost as well as some uncertainty cost, then solving for

optimal values of both the update time and the horizon time. To further clarify, the typical

application of RHC is to approximate a feedback control law, which is not the goal here.

Instead, we are interested in optimizing the time between control law updates, which is the

key parameter to our overall optimization process.

2.1 Deterministic Optimal Control Law

The system resulting from the linearization near a desired trajectory is a linear, time-varying

system, written as

~̇x = A(t)~x+B~u.

Our control objective is to minimize the energy expended over a finite horizon,

J∗(t0, t f ) = min
~u

1
2

∫ t f

t0
~u ·~u dt, (2.2)

subject to the boundary conditions of a given initial state and a hard terminal constraint;

~x(t0) =~x0, given

~x(t f ) =~0.

Our method of choice to integrate this system numerically is the sweep method [9],

which is an efficient and robust method for linear systems with terminal constraints. The

sweep method for this optimization problem involves the numerical integration of two linear
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matrix differential equations:

Ṙ(t; t0, t f ) =−ATR(t; t0, t f ),

Q̇(t; t0, t f ) = RT(t; t0, t f )BBTR(t; t0, t f ),

subject to the terminal constraints

R(t f ; t0, t f ) = I,

Q(t f ; t0, t f ) = 0.

Once these equations are integrated backward in time, the costate vector as a function of the

initial state is given by

λ (t; t0, t f ) =−R(t; t0, t f )Q−1(t0; t0, t f )RT(t0; t0, t f )~x(t0).

From this, the deterministic optimal control is defined as

~u(t; t0, t f ) =−BT
λ (t; t0, t f )

=−BTR(t; t0, t f )Q−1(t0; t0, t f )RT(t0; t0, t f )~x(t0).

If we define the matrix L as

L(t; t0, t f ) =−BTR(t; t0, t f )Q−1(t0; t0, t f )RT(t0; t0, t f ),

and the Grammian matrix G as

G(t0, t f ) =
∫ t f

t0
LT(τ; t0, t f )L(τ; t0, t f )dτ,

then the form of the deterministic optimal control and the deterministic optimal cost function
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are

~u∗(t; t0, t f ) = L(t; t0, t f )~x(t0), (2.3)

J∗(t0, t f ) =
1
2
~xT

0 G(t0, t f )~x0

=
1
2

Tr
[
G(t0, t f )~x0~xT

0
]
. (2.4)

This form of J∗ provides for straightforward computation of the expected value of the cost

function because the statistics of~x0 are assumed to be given. Also, this linear method may

be extended to a nonlinear method by using the generating function approach for optimal

control [15].

2.2 Control Law Updates

We start by studying three simple linear systems to demonstrate the control and measure-

ment strategy as well as the derivation of the expected cost and optimal time between

measurements.

In our analysis of the timing of the control law updates, the state is assumed to be a

Gaussian random vector (GRV), with the mean and covariance taken as outputs of an esti-

mation process. Specifically, we assume that these are the mean and covariance conditioned

on the past history of observations. In practice, this estimation/filtering process would run

on-line with the control determination; however, we assume that the estimation is performed

external to this analysis. This greatly simplifies the control computation – only the most

current mean and covariance are needed to compute the control law with this method.

The multivariate Gaussian probability distribution function for a vector ~x ∈ Rn with

mean ~m ∈ Rn and covariance matrix P ∈ Rn×n is defined as[16]

p(~x) =
1√

(2π)n detP
exp
(
−1

2
(~x−~m)TP−1(~x−~m)

)
.
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The expected value of a function of the GRV is

E [ f (~x)] =
∫

∞

f (ξ )p(ξ ) dξ ,

with mean, ~m, and covariance, P,

~m = E [~x] =
∫

∞

ξ p(ξ ) dξ

P = E
[
~x~xT]−~m~mT =

∫
∞

ξ ξ
T p(ξ ) dξ −~m~mT.

The concepts involved in this analysis will be explained in the context of three illustrative

systems. The choice of the three simple systems is motivated by previous results [12] for

impulsive control. Consider the following 2-dimensional system with one scalar input,

~̇x = A~x+Bu.

The three different cases result from three different A matrices:

1. the oscillatory case: A =

 0 1

−β 2 0



2. the double-integrator case: A =

0 1

0 0



3. the hyperbolically unstable case: A =

 0 1

+β 2 0


For all three systems, B = [0 1]T. The cost function for the deterministic optimal control is

J =
1
2

∫ t f

t0
u(t)2 dt,

and the deterministic optimization problem to be solved is to find u(t) such that u(t)
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minimizes J subject to given initial and final states.

We can conclude that if the deterministic optimal control is applied from time t0 to time

t1, with a GRV of initial conditions,

E [~x0] =~0, (2.5)

Var [~x0] = P0, (2.6)

the expectation and covariance describing the state at time t1 are given by

E [~x1] =~0, (2.7)

Var [~x1] = P1 = Φ(t1− t0)P0Φ
T(t1− t0). (2.8)

For the three systems listed above, the state transition matrices and covariance matrices are

as follows.

1. oscillatory case:

Φ(t,0) =

 cos(β t) 1
β

sin(β t)

−β sin(β t) cos(β t)


,

P11(t) =
β 2(1+ cos(2β t))P11 +2β sin(2β t)P12 +(1− cos(2β t))P22

2β 2 ,

P12(t) = P21(t) =
−β 2 sin(2β t)P11 +2β cos(2β t)P12 + sin(2β t)P22

2β
,

P22(t) =−β 2(1+ cos(2β t))P11 +2β sin(2β t)P12 +(1− cos(2β t))P22

2
.

2. double-integrator case:

Φ(t,0) =

1 t

0 1



13



,

P11(t) = P11 +2P12t +P22t2,

P12(t) = P21(t) = P12 +P22t,

P22(t) = P22.

3. hyperbolically unstable case:

Φ(t,0) =

 cosh(β t) 1
β

sinh(β t)

β sinh(β t) cosh(β t)


,

P11(t) =
β 2(1+ cosh(2β t))P11 +2β sinh(2β t)P12 +(cosh(2β t)−1)P22

2β 2 ,

P12(t) = P21(t) =
−β 2 sinh(2β t)P11 +2β cosh(2β t)P12 + sinh(2β t)P22

2β
,

P22(t) =
β 2(cosh(2β t)−1)P11 +2β sinh(2β t)P12 +(1+ cosh(2β t))P22

2
.

2.3 Statistical Cost of Control

Let the state be denoted by the GRV ~X(t). At time t, t0 < t < t f , the state is given by

~X(t) = Φ(t, t0)~X(t0)+F(t; t0, t f )~X(t0),

where

F(t; t0, t f ) =
∫ t

t0
Φ(t,τ)BL(τ; t0, t f )dτ.

Suppose that after a long period of time, we are at the end of an update period just

before we take a measurement. The GRV has a statistical distribution with zero mean and
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covariance

Pss = E
[
~X(Tu)~XT(Tu)

]
.

After taking a new measurement, the GRV is

~X(t0+) = ~M +~V ,

where ~M ∼N (~0,Pss), ~V ∼N (~0,Pm), and ~M and ~V are independent; the + subscript on t0

indicates an instant just after a measurement. At the update time,

~X(Tu) = Φ(Tu, t0)~X(t0+)+F(Tu; t0, t f )~M

=
(
Φ(Tu, t0)+F(Tu; t0, t f )

)
~M +Φ(Tu, t0)~V .

For convenience, let Φ = Φ(Tu, t0) and F = F(Tu; t0, t f ). The covariance is

E
[
~X(Tu)~XT(Tu)

]
= (Φ+F)E

[
~M ~MT

]
(Φ+F)T +ΦE

[
~V~V T

]
Φ

T

Pss = (Φ+F)Pss (Φ+F)T +ΦPmΦ
T.

This is in the form of the discrete-time Lyapunov equation. The solution may be computed

efficiently in many software packages, for example, the command ‘dlyap’ in MATLAB.

Alternatively, a direct solution for Pss maybe be written with the vectorization (or stacking)

operator and the Kronecker product:

vec(Pss) = vec
(
(Φ+F)Pss (Φ+F)T

)
+vec

(
ΦPmΦ

T)
= [(Φ+F)⊗ (Φ+F)]vec(Pss)+vec

(
ΦPmΦ

T)
= [I− (Φ+F)⊗ (Φ+F)]−1 vec

(
ΦPmΦ

T) .
Pss is obtained by unstacking vec(Pss). If Tu = t f , then F = −Φ and the above equation
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simplifies to

Pss = ΦPmΦ
T.

The relevant covariance matrix for calculating the expected cost is the covariance just

after taking a measurement, P+;

P+ = E
[
~X(t0+)~XT(t0+)

]
= Pss +Pm.

Continuing with the prior examples, we may partition the initial state for convenience.

Let r0 be the initial position and v0 be the initial velocity. Then~x0 = [r0 v0]T. Similarly,

partition G from Equation (2.4) as

G = 2J∆

 Jr Jrv

Jrv Jv

 ,

where the factor J∆ is pulled out for convenience. This yields the following expression for

the deterministic cost:

J = J∆(Jrr2
0 +2Jrvr0v0 + Jvv2

0), (2.9)

where J∆, Jr, Jrv, and Jv are functions of the linear dynamics and the update time, given in

Table 2.1.
Double-integrator Oscillatory Hyperbolically Unstable

J∆ 1/T β 2

cos(2βT )+2β 2T 2−1
β 2

cosh(2βT )−2β 2T 2−1
Jrr 6/T 2 β sin(2βT )+2β 2T β sinh(2βT )+2β 2T
Jrv 3/T 1− cos(2βT ) cosh(2βT )−1
Jvv 2 2T − 1

β
sin(2βT ) 1

β
sinh(2βT )−2T

Table 2.1 Summary of Cost Coefficients

Once the deterministic cost is known, the expected value and variance of the cost can be
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computed. Taking the expectation, E [·], of Equation (2.4) yields

E [J] =
1
2

Tr
{

G
(
P+ +E [~x0]E

[
~xT

0
])}

, (2.10)

or in the form of Equation (2.9),

E [J] =J∆

(
JrE
[
r2

0
]
+2JrvE [r0v0]+ JvE

[
v2

0
])

(2.11)

=J∆

(
Jr

(
σ

2
r (t0)+E [r0]

2
)

+2Jrv

(
σ

2
rv(t0)+E [r0]

T E [v0]
)

+ Jv

(
σ

2
v (t0)+E [v0]

2
))

, (2.12)

where σ denotes the (co)variance of the subscripted quantities at the beginning of the update

interval, just after a measurement.

Now, since the control law was chosen so that the expected values of the state is the zero

vector
(

E [~r0] = E [~v0] =~0
)

, Equations (2.10) and (2.12) simplify to

E [J] =
1
2

Tr{GP+} (2.13)

= J∆

(
Jrσ

2
r (t0)+2Jrvσ

2
rv(t0)+ Jvσ

2
v (t0)

)
. (2.14)

It is worthwhile to note that this expected cost is only a function of the time-between-updates,

Tu, and the initial covariances, Pm, because for a given system, G is determined completely

by Tu and P+ is determined by Pm.

The variance of J, Var [J], is given by

Var [J] = E
[
J2]− (E [J])2 . (2.15)
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Computing E
[
J2] using the Gaussian joint characteristic function yields

E
[
J2]=

1
2

Tr
{
(GP+)2}+

1
4

Tr2(GP+) (2.16)

=J2
∆

{
3J2

r (σ2
r )2 +4J2

rv
(
2(σ2

rv)
2 +σ

2
r σ

2
v
)

+3J2
v (σ2

v )2 +8JrJrvσ
2
r σ

2
rv

+2JrJv(σ2
r σ

2
v +2(σ2

rv)
2)+12JrvJvσ

2
rvσ

2
v

}
. (2.17)

Substituting Equation (2.14) and Equation (2.17) into Equation (2.15) yields the variance of

J:

Var [J] =
1
2

Tr
{
(GP+)2} (2.18)

=2J2
∆

{
J2

r (σ2
r )2 +2J2

rv
(
(σ2

rv)
2 +σ

2
v σ

2
v
)

+ J2
v (σ2

v )2 +4JrJrvσ
2
r σ

2
rv

+2JrJv(σ2
rv)

2 +4JrvJvσ
2
rvσ

2
v

}
. (2.19)

As with the expected value of J, the variance of J is only a function of Tu and Pm.

2.4 Steady-State Minimum Expected Cost

Due to the complicated form of the expression for E [J]/Tu, even for simple time-invariant

systems, Equation (2.1) cannot typically be solved for T ∗u in closed-form. Some statements

can be made, however, about the behavior of T ∗u , depending on the dynamics of the linear

systems under study. For any double-integrator and oscillatory type dynamics, it can be

shown that E [J]/Tu achieves its minimum by letting Tu → ∞ and that the actual value

of E [J]/Tu approaches zero. This is analogous to the impulsive control result previously

obtained [12] and implies that maneuver execution errors dominate the uncertainty. The

behavior is different for a hyperbolically unstable system. As Tu increases, the hyperbolic
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instability of the system causes E [J] to grow exponentially and drives E [J]/Tu toward ∞.

For all three cases, E [J]/Tu goes toward ∞ as Tu approaches zero. Thus, for the oscillatory

and double-integrator cases it is optimal to let the time between measurements go to infin-

ity, however, for hyperbolically unstable dynamics, there exists an optimal time between

measurements.

This can be shown more formally with the limits of E [J]/Tu as Tu→ 0 and as Tu→∞. For

all three example systems limTu→0 E [J]/Tu is undefined, i.e., E [J]/Tu grows without bound

as Tu approaches zero. For the oscillatory and double-integrator dynamics, limTu→∞
E[J]
Tu

= 0,

but for the hyperbolically unstable case, limTu→∞ E [J]/Tu is undefined (E [J]/Tu also grows

without bound as Tu tends toward infinity in this case). Since E [J]/Tu is still finite for any

finite value of Tu, this implies the existence of a minimum by continuity. Numerical studies

of a wide range of systems show that the value of T ∗u is closely tied to the characteristic time

of the unstable mode (1/α), although it also depends on the initial values of the covariance

matrix. This is also analogous to previously obtained results for impulsive control [1]. For

an ideal one degree of freedom unstable system, it can be shown that the optimal update

time for impulsive control equals the characteristic time [12]. For our continuous control,

time-varying systems, the relationship is not exact, but numerical simulations support the

extension as a “rule of thumb.” This relationship breaks down when applied to periodic

trajectories that are too far from their initial origin, as shown in the example implementation.

An example of the cost as a function of Tu for the three linear cases described above is

shown in Figure 2.1. For all three cases, P011 = P022 = 1 and P012 = 0. For the hyperbolically

unstable and oscillatory cases, β = .1.

The overall trends of the cost are very predictable as β changes. Figure 2.2 shows

the expected cost per unit time in the unstable system with three different values of β ,

normalized on each axis so that the update time is scaled by β and the cost is scaled such

that the minimum value equals unity. Although β varies by two orders of magnitude, the

normalized optimal values of Tu only change by about 10%. Since E [J] scales linearly with
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Figure 2.1 Example cost as a function of update time for three example systems – double integrator,
oscillatory, and unstable

Pm, scaling Pm does not change the location of the optimal update time.

The effect of t f on E [J]/Tu in the unstable example is shown in Figure 2.3. As the

horizon is extended, a cost reduction can be obtained. However, as a practical matter, the

reduction in cost must be weighed against the growth in ‖Pss‖ as shown in Figure 2.4. For

the examples in this paper, we assume Tu = t f , as this is common for spacecraft control due

to the limited ability for communication of new control laws.

2.5 Estimates for Control Costs

In spacecraft control, one is often concerned with minimizing ∆V – the total velocity change

required by the propulsion system to follow a given trajectory. For our continuous control
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Figure 2.2 Example cost as a function of update time for three unstable example systems

case, the ∆V between two time periods, t0 and t0 +Tu, is given by

∆V =
∫ t0+Tu

t0
‖~u(t)‖dt (2.20)

=
∫ t0+Tu

t0

√
~u(t) ·~u(t)dt. (2.21)

The analysis methods in this paper use an energy cost function as in Equation (2.2),

although we may obtain an upper bound on the ∆V spent per unit time from our energy cost
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per unit time. Using the Cauchy-Schwarz inequality,

∫ t0+Tu

t0

√
~u(t) ·~u(t)dt ≤

√∫ t0+Tu

t0

(√
~u(t) ·~u(t)

)2
dt ·
∫ t0+Tu

t0
dt (2.22)

=

√∫ t0+Tu

t0
~u(t) ·~u(t)dt ·Tu. (2.23)

Therefore, a bound on the ∆V used in each control segment is

∆V ≤
√

2Tu
√

J. (2.24)
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Taking the expectation of this yields

E [∆V ]≤
√

2TuE
[√

J
]

(2.25)

≤
√

2Tu
√

E [J], (2.26)

where the last inequality comes again from the Cauchy-Schwarz inequality. The expected

∆V spent per unit time is then bounded by

E [∆V ]
Tu

≤

√
2

E [J]
Tu

. (2.27)
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2.6 Example Implementation

In this section we will study two cases of spacecraft control in the Hill Three-Body Problem

(H3BP) using continuous thrust. In the first case, we limit ourselves to the planar motion of

a spacecraft in the vicinity of one of the relative equilibrium points, and in the second, we

study a spacecraft perturbed from a nominal halo orbit. A previous study of the equilibrium

point control problem [1] considered control using impulsive maneuvers. In addition, we

show that the results obtained for the linear time-invariant case can be extended to linear

time-varying systems.

The equations of motion for a spacecraft’s position in the H3BP are [1]

ẍ−2ω ẏ =− µ

r3 x+3ω
2x+ax (2.28)

ÿ+2ω ẋ =− µ

r3 y+ay (2.29)

z̈ =− µ

r3 z−ω
2z+az, (2.30)

where x, y, and z are the positions of the spacecraft in the rotating frame relative to the

secondary body, ax, ay, and az are the spacecraft control accelerations, ω is the angu-

lar velocity of the secondary body about the primary, µ = GM, M is the mass of the

secondary body, and r is the radius (r =
√

x2 + y2 + z2). These equations may be nondi-

mensionalized using the length scale l = (µ/ω2)1/3 and time scale τ = 1/ω . For the

Earth-Sun system, µ = 3.986×105 km3/s2, ω = 1.991×10−7 rad/s, l = 2.158×106 km,

and τ = 5.023×106 s.

The dimensional covariance matrix associated with the state estimates is assumed to be

a 6×6 diagonal matrix with entries Pr and Pv,

Pd =

Pr · I3 03×3

03×3 Pv · I3

 .
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The covariance from an actual on-line filter would likely have off-diagonal terms, but for

the examples shown here, the qualitative results are the same. This covariance matrix may

be nondimensionalized to obtain

P =

Pr/l2 · I3 03×3

03×3 Pv/(ωl)2 · I3


= Pr/l2

 I3 03×3

03×3 Pv/(Prω
2) · I3

 .

This may be parameterized to yield further insight into how the uncertainties affect the

optimal update time and cost using the parameters σr =
√

Pr/l and λ = ω
√

Pr/Pv. This

nondimensionalization and parameterization yields the following form for Pm:

Pm = σ
2
r

 I3 03×3

03×3 1/λ 2 · I3

 . (2.31)

Typical values of Pr = (10 km)2 and Pv = (10−6 km/s)2 relating to typical spacecraft

uncertainties are used for the simulations, resulting in the nondimensional parameters

σr = 4.633× 10−6 and λ = 1.991 in the Sun-Earth system and σr = 1.13× 10−4 and

λ = 26.6 in the Earth-Moon system.

Given a nondimensional expected cost per unit time, E [J]/Tu, the dimensional cost per

unit time is given as (
E [J]
Tu

)
l2

τ4 .

To convert nondimensional ∆V/Tu values to their dimensional values, scale by l/τ2 instead

of l2/τ4. The results may also be reported as a cost per period of the secondary body, 2π/ω .

The dimensional cost per secondary body period is (E [J]/Tu)2πl2/τ3 and the dimensional

∆V per secondary body period is (E [∆V ]/Tu)2πl/τ .

For reference, a nondimensional expected value of J/Tu equal to 1×10−7 corresponds
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to an upper bound on the dimensional ∆V per period of 1.21×10−3 km/(s ·period) in the

Sun-Earth system or 6.62×10−4 km/(s ·period) in the Earth-Moon system.

2.6.1 Planar Equilibrium Point Control

When the system is nondimensionalized by setting µ = ω = 1 in Equations (2.28) and (2.29),

the system has two equilibrium points using no control at x =±3−1/3, y = 0. Linearizing

about either of these points and defining the perturbed state δ~x = [δx δy δ ẋ δ ẏ]T yields

the linear system

δ~̇x =



0 0 1 0

0 0 0 1

9 0 0 2

0 −3 −2 0


δ~x+



0 0

0 0

1 0

0 1


ax

ay

 .

This system has an unstable mode, a stable mode, and an oscillatory mode, associated

with the eigenvalues +
√

1+2
√

7≈ 2.5,−
√

1+2
√

7≈−2.5, and± j
√

2
√

7−1≈±2.1 j,

respectively. The unstable mode’s characteristic time is then 1/
√

1+2
√

7≈ 0.4, leading

us to expect the optimal update time to be approximately 0.4 time units.

In this example, the cost function, J, being minimized during each update interval is the

“energy” used,

J =
1
2

∫ t0+Tu

t0

(
a2

x +a2
y
)

dt.

The deterministic optimal control law, and hence the trajectories themselves, depend on

the final time and are plotted in Figure 2.5 for three different final times and various initial

conditions. We will show that using an update time of 0.5 time units, corresponding to

Figure 2.5b, is optimal. Note this optimal update time of 0.5 is near the characteristic time

of the unstable mode, 0.4.

A plot of the expected cost as a function of update time is shown in Figure 2.6, using

the uncertainty parameters given above. Due to the hyperbolically unstable dynamics, an
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Figure 2.5 Example trajectories in the planar H3BP with varying transfer times. Dots are placed
every 0.05 time units.

optimal value of Tu clearly exists which minimizes the expected cost.

These cost values may also be compared to similar studies. For the impulsive con-

trol strategy in Renault and Scheeres [1], the estimate for ∆V per period is 4.70×

10−4 km/(s ·period) in the Sun-Earth system, although that assumes slightly larger un-

certainties than those used in this study. When using their uncertainties, we obtain a ∆V per

period of 6.21×10−4 km/(s ·period) with our continuous thrust method.

Figure 2.7 shows the effect of the nondimensional parameter λ on the optimal update

time for the H3BP using the parameters described above. The variation in the optimal

update time over the range of λ shown is about 1.75 days for the Earth-Sun system. It is

important to note that the optimal update time does not depend on σr itself, only the ratio

λ . For reference, a nondimensional time value of 0.5 corresponds to about 29 days in the
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Figure 2.6 Expected cost divided by Tu as a function of Tu in the planar H3BP

Earth-Sun H3BP and 2.2 days in the Earth-Moon HR3BP. Interestingly, even though the

formulations for the previous impulsive studies[1] are quite different from this continuous

control derivation, the results are consistent in that the ∆V computed from the continuous

thrust method is reasonably close to the impulsive ∆V and that the optimal update times for

each method are close to the characteristic time of the unstable mode.

Figures 2.8 and 2.9 show the effect of λ on the value of the cost incurred over an update

interval divided by the optimal update time, i.e.

min
~u,Tu

E [J(~u,Tu)]/Tu.

As can be seen in Figure 2.8, if σr is fixed, it is optimal to let λ go to infinity, which is

equivalent to letting Pv approach zero, i.e., low uncertainty in the velocity components.
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Figure 2.7 Optimal nondimensional update time as a function of λ , for fixed σr in the planar H3BP

However, if |P| is held constant as λ varies, note the presence of an optimal value of λ in

Figure 2.9, λ ≈ 0.34, indicating that given a certain amount of uncertainty (measured by

a constant |P|), there is an optimal way to distribute the position and velocity uncertain-

ties. For the Earth-Sun system, λ = 0.34 corresponds to a ratio between 1-σ uncertainties√
Pr/Pv ≈ 1.7×106, which is close to our assumed ratio between these measurement un-

certainties. For the Earth-Moon system, the optimal ratio of uncertainties is approximately

1.3×105. For a position uncertainty of 1 km, the “optimal” velocity uncertainty is about

0.75 cm/s.

The curve in Figure 2.9 scales with |P|, so that the value of λ yielding the mini-

mum value does not change with |P|. From Equation (2.13), the expected value of the

cost divided by the optimal update time scales linearly as the entries in P are scaled.
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Figure 2.8 Optimal nondimensional cost as a function of λ , σr fixed in the planar H3BP

Since |cP| scales in proportion to cn|P|, where c is a scalar and P ∈ Rn×n, we have that(
min~u,Tu E [J(~u,Tu)]/Tu

)
∼ |P|1/n. In this planar case, n = 4, so the cost scales with |P|0.25.

E [J]/Tu ∆V/period Optimal Update
(non-dimensional) (km/s/period) Time (seconds)

Sun-Earth 1.79×10−7 6.21×10−4 2.71×106

Earth-Moon 2.88×10−5 4.22×10−3 2.01×105

Jupiter-Europa 5.72×10−4 3.22×10−2 2.61×104

Jupiter-Io 9.56×10−4 6.46×10−2 1.30×104

Saturn-Titan 3.90×10−5 7.19×10−3 1.17×105

Saturn-Enceladus 1.18×10−1 8.34×10−2 1.01×104

Table 2.2 Summary of results for control about the H3BP equilibrium point for various systems.
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Figure 2.9 Optimal nondimensional cost as a function of λ , |P| fixed in the planar H3BP

2.6.2 Halo Orbit Control

From the two oscillatory modes mentioned in the previous section, we see that near the

equilibrium point, the linearized system is capable of producing planar periodic orbits. These

orbits can also be found in the full nonlinear dynamics by examining the monodromy matrix,

Φ(T,0). The monodromy matrix locally captures the dynamics in a discrete-time, linear,

time-invariant mapping, and thus allows the system to be analyzed by eigenvalue methods.

As the amplitude of these periodic orbits is increased, the eigenvalues of the monodromy

matrix bifurcate and a new family of periodic orbits is produced. This new family is called

the family of “halo orbits”, which are no longer in the plane and cannot be predicted using

the equilibrium point linearization. The halo orbits used in this paper, denoted as orbits A

though E in Figure 2.10, may be parameterized by their initial x-coordinate, x0. The values
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Figure 2.10 Nominal halo orbit trajectories

of x0 for orbits A through E are 0.769, 0.7, 0.6, 0.5, 0.45, respectively. The other initial

conditions for the halo orbits were obtained using a method developed by Howell [17] which

takes advantage of symmetry in the system. We developed software to numerical integrate

the equations of motion using an 8th-order arbitrary-precision symplectic Runge-Kutta

method [18] with 256 bits of precision [19].

In the previous time-invariant example, each segment of control had the same statistical

cost. Therefore, we only needed to consider the cost of one segment of control in order to

draw conclusions about the long-term average cost. However, in this time-varying case, each

segment will generally have a different cost. We may still determine the long-term average

cost by considering only a finite length of time, due to the periodic nature of our system. We

simply need to consider a period of time long enough such that the cost associated with all
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segments of the nominal trajectory are included. A natural choice for this is to choose two

positive integers, n and m, such that the update time is approximated by Tu ≈ n
mT , where T

is the period of the system. We then only need to include the cost of segments up to time nT

because any segments after that will have already been included in the average long-term

cost. An additional complication is that for each update time, the average cost per unit

time will vary with the starting point of the algorithm along the orbit. Therefore, in order

to obtain a statistical result that is independent of an arbitrary starting time, an average is

performed with respect to the starting time. The unaveraged expected cost per update time

for a halo orbit that is highly sensitive to the starting time is shown in Figure 2.11, along

with the average value for comparison. Another view of the same data is show in Figure

2.12, which displays the data in a similar manner to Figure 2.6.

Significant computational effort can be saved when computing the cost associated with

multiple update times by choosing n and m wisely. By setting m to be the number of starting

times we wish to average over, the expected cost of control for each segment can be stored

for each starting time, and each n of interest. An illustration of this is shown in Figure 2.13

for m = 6, with n = 1 and n = 2. In this analysis, we used m = 100 with n ranging from 5 to

95 for orbits A through D, and m = 200 with n ranging from 10 to 190 for orbit E. This gives

a worst case resolution of Tu equal to 0.031 nondimensional time units, corresponding to

orbit A. Once the expected cost for each segment has been calculated, an arithmetic average

is taken with respect to each starting time.

To determine whether a given periodic orbit is stable or not, we define the Lyapunov

characteristic exponent using the associated monodromy matrix, similar to the definition in

[12]:

α =
lnmaxi |λi|

T
,

where λi are the eigenvalues of Φ(T,0). The characteristic exponent gives an idea of how

quickly the state of the system will grow in time (on the order of eαt). If α > 0, the system

is unstable. The characteristic time is then 1/α , which gives a time scale on which the
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Figure 2.11 Contours of the unaveraged expected cost per update time as a function of the update
time and starting time for halo orbit E. Each axis is scaled by the orbit period and the average value
for a given update time is shown as the dashed white line.

exponential effects develop. For linear time-invariant systems, this simplifies to the usual

condition on the eigenvalues of the dynamics matrix, i.e., the system is unstable if any of

the eigenvalues have a real part greater than zero. For Hamiltonian systems, the existence of

a stable manifold implies the existence of an unstable manifold.

The primary result of this analysis is that an optimal control law update time exists for

unstable time-varying systems, just as in the time-invariant case, as shown in Figure 2.14.

For halo orbit A using the same levels of uncertainty, the characteristic time of the instability

was 0.42 time units, with the actual value occurring at about 0.61 time units (about 35
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orbit E. Each solid line corresponds to a different starting time and the thick dashed line is the average
over all starting times.

days for the Earth-Sun system and about 2.7 days for the Earth-Moon system). The cost

associated with using the characteristic time as the update time is only 10% higher than the

true minimum cost for this orbit, supporting a correlation between the characteristic time of

the instability and the actual optimal update time. Note that the minimum cost per unit of

time occurs very near to Tu = 1/α for orbits A, B, and C.

As seen in Figure 2.14, the structure of the cost for orbits D and E bifurcates into a

double minimum case. This is due to the interesting dynamics of the halo orbits; as the orbits

move farther out of plane, they make a closer approach to the secondary body, resulting in

dynamics that are very strong compared to the rest of the orbit. Combining (2.28) through

(2.30) into standard first-order form with state ~x = [x y z ẋ ẏ ż]T and linearizing
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Figure 2.13 An example halo orbit and control segments divided into m = 6 equal-time segments,
with n = 1 on the left and n = 2 on the right.

about the periodic orbit, we find δ~̇x = A(t)δ~x. The induced norm of A(t) gives an indication

of how the eigenvalues of A(t) vary along the orbit, which in turn make the trajectory sensi-

tive to uncertainties. The larger the norm, the stronger the sensitivity. Figure 2.15 shows a

plot of log‖A(t)‖ and log‖Φ(t,0)‖ for two halo orbits; one highly out-of-plane, the other

more in-plane. Note that for the highly out-of-plane orbit, the sensitivity varies by up to 1.5

orders of magnitude throughout the orbit, whereas in the more in-plane orbit, it varies by

less than 0.3. Due to this variation, the cost of control along a halo orbit varies depending on

where measurements are taken. For example, consider a control segment where ‖A‖ is large

initially, then decreases quickly. In this, the unstable effect on the probability distribution is

greatly enhanced, resulting in a higher control cost for the next segment. For a given update

time, if the segments are structured such that ‖A‖ is large when measurements are made, the

cost is much higher than if ‖A‖ were only large between measurements. This behavior is

strong enough to hold even through the orbit average, and is clearly visible in Figure 2.14,

particularly in orbits D and E. Each local maxima occurs just before the halfway point of the

corresponding orbit, where ‖A‖ is large, as in Figure 2.15. In practice, orbit determination
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Figure 2.14 Expected cost divided by Tu as a function of Tu (scaled by the characteristic time of
the unstable mode) near several halo orbits.

may be more accurate near periapsis, which could potentially be weighed against the higher

statistical control cost.

The optimal update time for this time-varying system has a dependence on λ that is very

similar to the equilibrium point example. Figure 2.16 shows the effect of λ on the optimal

update time for orbit A, using the same parameters as in the equilibrium point analysis. The

variation in the optimal update time over the range of λ shown is about 3.74 days for the

Earth-Sun system.

We find a strong correlation between the characteristic time of an unstable trajectory and

the optimal update time for the control of this trajectory. For strongly varying trajectories

we also find additional structure in the optimal time update due to interactions between

the trajectory and the gravitating bodies. These interactions raise interesting questions
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Figure 2.15 Plots of r(t) (the distance from the secondary body), log‖A(t)‖, and log‖Φ(t,0)‖ for
halo orbits D (solid) and A (dashed), plotted against a fraction of their respective orbit periods, T .

about how the interplay of measurement uncertainty, instability, and statistical costs are

interrelated. We plan to further study these issues in the future, and to consider the effect of

stochastic accelerations on the system.

The actual nondimensional minimum expected value of J/Tu for orbit A in the Sun-Earth

system is 4.55× 10−8, corresponding with Tu = 0.55 nondimensional time units. There-

fore, the upper bound on the expected ∆V per period from Equation (2.27) is 8.15×10−4,

whereas the actual value is 5.97×10−4, or 73.2% of the upper bound. As dimensional value,

this equates to E [∆V ]/period = 5.97× 10−4 km/(s ·period). The expected value of ∆V

was calculated by a Monte Carlo simulation with 10,000 trials for each of the 100 starting

points along the orbit. Confidence interval analysis shows that E [∆V ]/Tu is within 1.7% of

the reported value with 99% confidence. More accurate performance estimates could be
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Figure 2.16 Halo orbit A optimal nondimensional update time as a function of λ , σr fixed

performed with more information about detailed spacecraft specifications such as engine

efficiencies.

Also, Hill et al., [20] conducted a study of a Lunar L2 orbiter with measurement un-

certainties of Pr = 1 km2 and Pv = 0 km2/s2 and obtained a ∆V estimate of approximately

16 cm/s per year, although they budget 1 m/s per year. Using a similar halo orbit and

those uncertainties, we obtain an upper bound of 12.3 cm/s per year, an actual value of

11.2 cm/s per year, and an optimal update time of 3.00 days. If we instead use a velocity

uncertainty of Pv = (10−5)2 km2/s2, we obtain an upper bound of 20.5 cm/s per year, an

actual value of 19.7 cm/s per year, and an optimal update time of 3.13 days. It should be

noted that the dynamics of the Earth-Moon system are not well represented by the H3BP;

however, the approximation is adequate for relative cost comparison. [1]
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Chapter 3

Spectral Method for Stochastic Optimal
Control

This chapter discusses computation of the optimal feedback control law for stochastic sys-

tems with control-dependent noise. Solutions are obtained by numerical integration of the

stochastic Riccati equation for linear systems, and by numerical solution of the stochastic

Hamilton-Jacobi-Bellman (SHJB) equation for nonlinear systems. The spectral method for

partial differential equations (PDEs) is summarized, along with two useful transformations

on the domain and range of the HJB equation. The primary contribution here is an analysis

showing that noise levels present in current electric propulsion technology are large enough

to significantly impact the optimal feedback control laws.

Experiments performed by Reid et al. [2] characterized the variations in thrust level for

a Hall thruster. The experiments show that significant discharge current fluctuations of about

10%-20% about the mean occur in the discharge chamber up to high frequencies (greater

than 105 Hz). These current fluctuations are directly proportional to thrust variations. This

suggests that analyzing the control force as stochastic, rather than deterministic, is the more

appropriate modelling approach. We assume the resulting system may be defined by an Itô

stochastic differential equation. Additionally, we assume the system is driven by just one

Brownian motion process, which is equivalent to assuming that there is only a single thruster

on the spacecraft. For most missions, this is the case; however, the Japanese Space Agency’s

Hayabusa mission used four independent thrusters [21]. NASA’s Dawn mission has three

ion thrusters; however, only one operates at a time. Dealing with multiple Brownian motions
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is much more difficult than the single case because one must compute multiple stochastic

integrals [22, p. 167], which cannot be expressed simply in terms of Brownian motion

increments. Technical intricacies such as this are common when dealing with stochastic

differential equations. The following section describes the details one must consider when

modeling stochastic systems.

3.1 Technical Background

Stochastic systems have many interesting differences from their deterministic counterparts.

For mathematical rigor, stochastic systems are not described by ordinary differential equa-

tions (ODEs) like deterministic systems, but by stochastic differential equations (SDEs).

Unlike ODEs, SDEs allow for different interpretations as to which form of calculus is

appropriate. Additionally, the notion of a solution to an SDE is also up to interpretation;

one may choose between “strong” or “weak” solutions as discussed Section 3.1.2. It is also

worth noting that within the realm of SDEs, there is a qualitative difference between noise

that is purely additive and noise that is multiplied by a function of the state.

3.1.1 Modeling: Itô, Stratonovich, and Langevin Forms

Starting with a deterministic ODE such as

dXt

dt
= f (t,Xt), (3.1)

where Xt = X(t), we may heuristically add noise to obtain the Langevin form of a stochastic

differential equation (SDE);

dXt

dt
= f (t,Xt)+b(t,Xt)ξt . (3.2)
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Here, b(t,Xt) is a time and state-dependent scaling term multiplying a standard Gaussian

random process, ξt . The white noise in the Langevin form may be thought of informally as

the derivative of Brownian motion (which does not mathematically exist). To be mathemati-

cally precise, we must write Equation (3.2) as a SDE, which may be interpreted as either an

Itô SDE or a Stratonovich SDE. For physical systems, the Gaussian white nose in Equation

(3.2) is often only an idealization of the physical noise, which is usually smooth to some

extent. In this case, the Stratonovich approach is the correct one [22]. However, both forms

are mathematically valid and useful in their own ways. For example, Stratonovich calculus

mirrors most of the deterministic calculus results such as the chain rule, but Itô coefficients

must be used in the Fokker-Planck equation and moment equations.

An Itô SDE, is written as

dXt = f (t,Xt)dt +b(t,Xt)dWt , (3.3)

where Wt is a Brownian motion process. In the stochastic integral form, Equation 3.3 is

equivalent to

Xt = Xt0 +
∫ t

t0
f (s,Xs)ds+

∫ t

t0
b(s,Xs)dWs, (3.4)

where the second integral is an Itô integral. The following notation is used to describe

Stratonovich SDEs:

dXt = f (t,Xt)dt +b(t,Xt)◦dWt , (3.5)

or in integral form,

Xt = Xt0 +
∫ t

t0
f (s,Xs)ds+

∫ t

t0
b(s,Xs)◦dWs, (3.6)

When noise is additive
(

∂b
∂X = 0

)
, the Itô and Stratonovich solutions are equivalent. In

the general case, each form can be converted to the other by transforming the coeffiecents

in the SDE. If Xt is a solution to the Itô equation (3.3), then it is also a solution to the
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Stratonovich equation

dXt = f̃ (t,Xt)dt +b(t,Xt)◦dWt , (3.7)

where the ith component of f̃ (t,Xt) is

f̃i(t,X) = fi(t,X)− 1
2

n∑
j=1

m∑
k=1

b j,k(t,X)
∂bi,k

∂X j
(t,X). (3.8)

The dimensions are f , f̃ ,X ∈ Rn, b ∈ Rn×m, W ∈ Rm.

The interpretation of the Langevin equation (3.2), is somewhat tricky. If the noise

process, ξt , is taken to be a piecewise linear approximation of Brownian motion, then it

approaches a Brownian motion process as samples are taken close together. However, the

approximate solution, Xt , does not approach the solution of the Itô SDE (3.3). Instead, the

approximation approaches the solution of the corresponding Stratonovich SDE, which can

be converted to the Itô SDE:

dXt = f (t,Xt)dt +b(t,Xt)dWt , (3.9)

f (t,Xt) = f (t,Xt)+
1
2

n∑
j=1

m∑
k=1

b j,k(t,X)
∂bi,k

∂X j
(t,X). (3.10)

3.1.2 Strong vs. Weak Solutions to SDEs

The concept of a solution to a determinstic ODEs is clearly defined, along with properties

such as existence and uniqueness [23]. In the stochastic case, however, we have two types

of solutions: strong and weak. The strong solution captures actual sample paths for a given

realization of the noise process while the weak solution only captures moments.

Following the nomenclature in Kloeden and Platten [22], a strong solution of an SDE is

an actual sample path of the system, given a realization of the noise process. In contrast, a

weak solution is one which has the same distribution as the strong solution, but does not

depend on the particular noise realization. An approximation, Y , converges in the strong
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sense with order γ if there exists a finite constant K and positive constant δ0 such that

E [|XT −YN |]≤ Kδ
γ , (3.11)

for any time discretization with maximum step size δ ∈ (0,δ0). In the limit as the noise

goes to zero, this becomes the traditional convergence criterion.

Weak solutions don’t necessarily capture sample paths, but still preserve functions of

the process at some time. For example, a weak solution would still give the correct mean,

covariance, and expectation of a general function of the solution. An approximation, Y ,

converges in the weak sense with order β if for any polynomial g there exists a finite constant

K and positive constant δ0 such that

|E [g(XT )]−E [g(YN)] | ≤ Kδ
β , (3.12)

for any time discretization with maximum step size δ ∈ (0,δ0).

3.1.3 Scalar Linear System with Multiplicative Noise Example

In this section, we begin with an example physical system; then we discuss the explicit

form of the strong solution and the statistics of the solution. The statistics can be somewhat

misleading when compared to the actual sample paths. The choice of Itô vs. Stratonovich

calculus can make a large difference in system stability and long-term behavior.

We begin with the simple scalar, time-invariant, linear system with multiplicative noise,

given in the Langevin form:
dXt

dt
= aXt +DXtξt . (3.13)

To properly analyze this, we may either interpret this using Itô or Stratonovich stochastic

44



calculus. The Itô form is given by

dXt = aXtdt +DXtdWt , (3.14)

and the Stratonovich form is

dX̃t = aX̃tdt +DX̃t ◦dWt . (3.15)

Strong Solutions The solution to Equation (3.14) is

Xt = X0 exp
[(

a− 1
2

D2
)

t +DWt

]
, (3.16)

and the solution to Equation (3.15) is

X̃t = X̃0 exp [at +DWt ] . (3.17)

From the properties of Brownian motion, we may make some statements about the asymp-

totic behavior of sample paths [24]. For the Itô solution, as t → ∞, Xt → 0 almost surely

(a.s.) if a < 1
2D2, and Xt→∞ a.s. if a > 1

2D2. This is notably different than the deterministic

case. For the Stratonovich solution, we recover the deterministic criteria: as t→ ∞, X̃t → 0

a.s. if a < 0, and X̃t → ∞ a.s. if a > 0.

Statistics Intuition might suggest that if the solution to an SDE approaches zero asymp-

totically a.s., then the expected value of the solution should tend towards zero as well.

Unfortunately, this is not the case in systems with multiplicative noise, and illustrates that

the statistics of a solution do not give good insight into the actual sample paths.
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Taking the expectation of the Itô solution, Equation (3.16) gives

E [Xt ] = X0 exp
[(

a− 1
2

D2
)

t
]

E [exp(DWt)]

= X0 exp
[(

a− 1
2

D2
)

t
]

exp
(

1
2

D2t
)

= X0eat .

So, for a satisfying 0 < a < 1
2D2, the expectation of the Itô solution grows exponentially

even though the solution converges to zero with probability one.

The expectation of the Stratonovich solution is

E
[
X̃t
]
= X̃0eatE

[
eDWt

]
= X̃0eate

1
2 D2t

= X̃0e(a+ 1
2 D2)t .

If a satisfies −1
2D2 < a < 0, then the expectation of the Stratonovich solution grows expo-

nentially even though the solution converges to zero with probability one.

In summary, within the Itô framework, the addition of multiplicative noise can cause

samples paths to converge to zero even when the system’s deterministic counterpart is

unstable. On the other hand, addition of such noise in the Stratonovich framework does not

change the sample path behavior, but it can cause the mean to diverge.

The probability distribution function (PDF) of Xt is not Gaussian as it would be with

only additive noise; however, if the noise is small, then the PDF may be close to Gaussian.

The PDF may be extremely skewed so that the peak is near zero, but with a significant tail.
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3.1.4 Numerical Solution of SDEs

In light of Section 3.1.1, it is not surprising that deterministic numerical integration schemes

cannot generally be used to simulate stochastic systems. Even when a deterministic al-

gorithm can be modified for stochastic systems, the order of convergence may be lower.

For example, the Euler scheme is valid for stochastic systems, but the strong order of

convergence is only 1/2 (the weak order is 1).

Another interesting facet of stochastic simulation is that when approximating weak

solutions, the noise doesn’t necessarily have to correspond to the underlying physical model.

For example, in an inegrator driven by standard Gaussian white noise, dWt , the mean and

variance are

E [dWt ] = 0 (3.18)

E
[
(dWt)2]= ∆, (3.19)

where ∆ is the time step. Instead of simulating a Gaussian random process, we may use an

approximating process with similar moments. For the Euler scheme, we may use a two-point

random process, ∆Ŵ such that P(∆Ŵ = ±
√

∆) = 1/2. As the convergence order of the

scheme is increased, more points may be added to the distribution. For a 2nd order weak

scheme, we can choose a three-point random process such that P(∆Ŵ = ±
√

3∆) = 1/6,

P(∆Ŵ = 0) = 2/3.

Scalar Milstein Scheme The Milstein scheme is the correct generalization of the Euler

scheme for stochastic systems. It is strong order 1.0 accurate. When computing a numerical

approximation, Yt of the true solution Xt of Equation (3.3), the Milstein scheme is

Yn+1 = Yn + f (tn,Yn)∆+b(tn,Yn)∆Wn +
1
2

b(tn,Yn)
∂b(t,X)

∂X

∣∣∣∣
X=Yn

(
(∆Wn)2−∆

)
, (3.20)

where ∆ is the time step and ∆Wn is a random process of Brownian motion increments.
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Multi-Dimensional Milstein Scheme Numerical integration of multi-dimensional sys-

tems is much more complicated than the scalar counterpart with the exception of a few

special cases. For the general case of multi-dimensional noise (state dimension d, noise

dimension m), we have

Y k
n+1 = Y k

n + f k
∆+

m∑
j=1

bk, j
∆W j

n +
m∑

j1, j2=1

d∑
`=1

b`, j1 ∂bk, j2

∂x`
I( j1, j2), (3.21)

where I( j1, j2) is a multiple stochastic integral that cannot generally be expressed in terms of

∆W . In general, it must be approximate by a sum.

In the case where the noise is scalar (m = 1), Equation (3.21) reduces to

Y k
n+1 = Y k

n + f k
∆+

m∑
j=1

bk
∆Wn +

1
2

(
d∑

`=1

b` ∂bk

∂x`

)(
(∆Wn)2−∆

)
. (3.22)

Another simplifying case is diagonal noise, in which case Equation (3.21) reduces to

Y k
n+1 = Y k

n + f k
∆+bk,k

∆W k
n +

1
2

bk,k ∂bk,k

∂xk

(
(∆W k

n )2−∆

)
. (3.23)

Scalar noise and diagonal noise are special cases of commutative noise, which satisfies

d∑
`=1

b`, j1 ∂bk, j2

∂x`
=

d∑
`=1

b`, j2 ∂bk, j1

∂x`
(3.24)

for all j1, j2, and k. The Milstein scheme for commutative noise simplifies to

Y k
n+1 = Y k

n + f k
∆+

m∑
j=1

bk, j
∆W j

n +
1
2

m∑
j1, j2=1

d∑
`=1

b`, j1 ∂bk, j2

∂x`
∆W j1∆W j2. (3.25)
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3.2 Dynamic Programming: the Stochastic Hamilton Bell-
man Jacobi Equation

In the general case, the dynamics are given by

dx(t) = b(t,x(t),u(t))dt +σ(t,x(t),u(t))dW (t), (3.26)

with cost function

J = E
[∫ t f

t0
f (t,x(t),u(t))dt +h(x(t f ))

]
. (3.27)

The stochastic HJB equation describing the evolution of the value function V is

Vt = sup
u∈U

[
−V T

x b(t,x,u)− f (t,x,u)− 1
2

Tr
{

Vxxσ(t,x,u)σ(t,x,u)T}] , (3.28)

with boundary condition that V (t f ,x(t f )) = h(x(t f )).

If we restrict the system in Equation (3.26) to be linear in the control and the cost func-

tion to be quadratic in the control, we have b(t,x,u) = a(t,x)+Bu, σ(t,x,u) = C(t,x)+Du,

and f (t,x,u) = d(t,x)+ 1
2uTRu:

dx(t) = (a(t,x)+Bu)dt +(C(t,x)+Du)dW (t), (3.29)

J = E
[∫ t f

t0

(
d(t,x)+

1
2

uTRu
)

dt +h(x(t f ))
]
. (3.30)

We may solve for the control that achieves the supremum in Equation (3.28) as

u =−(R+DTVxxD)−1(BTVx +DTVxxC). (3.31)

When this control is substituted into the HJB equation, it becomes

Vt =−V T
x a−d− 1

2
CTVxxC+

1
2
(CTVxxD+V T

x B)(R+DTVxxD)−1(BTVx +DTVxxC). (3.32)
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In our case we’re only interested in control-dependent noise (no state-dependent noise, so

C = 0) because in typical spacecraft environments, the thruster noise is orders of magnitude

larger than other stochastic effects. When C = 0, the control is

u =−(R+DTVxxD)−1BTVx, (3.33)

with corresponding HJB equation

Vt =−V T
x a−d +

1
2

V T
x B(R+DTVxxD)−1BTVx. (3.34)

This is the form of the equation we consider subsequently.

3.3 The Spectral Method for Numerical Solutions of the
Stochastic HJB Equation

When solving partial differential equations numerically, one needs a means of approximating

spatial derivatives of the solution. Most numerical methods such as finite differencing take a

local approach where the derivatives are approximated by a function of nearby grid points.

The idea behind spectral methods is to take a global approach by fitting a set of basis

functions to the solution over a given domain. The numerical derivatives are then functions

of the bases. A thorough introduction to the spectral method is given in the book by Boyd

[25].

Common choices for the basis functions are elements in a Fourier series, Chebyshev

series, Hermite polynomials, sinc functions, and more. We use Chebyshev polynomials

because they can exactly fit common solutions, and are very computationally efficient. Large

computational savings can be obtained if knowledge of symmetry is included. For example,

an even function only needs to include even terms of Chebyshev polynomials. This cuts the

required number of coefficients in half.
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3.3.1 Chebyshev Polynomials

Chebyshev polynomials are a set of orthogonal polynomials over the interval [−1,1]. The

standard definition for the Chebyshev polynomials is the recurrence relation

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)−Tn−1(x).

They also satisfy the trigonometric identities

Tn(x) = cos(narccosx) = cosh(narccoshx).

The roots of Chebyshev polynomials, known as Chebyshev nodes, are very useful as

interpolation points. The values of the N +1 nodes for the N-th order Chebyshev polynomial

are given by

xk = cos
(

π
2k +1

2(N +1)

)
, k = 0,1, . . . ,N

The approximation to a scalar function f (x), where x is a scalar, over the interval [−1,1] by

Chebyshev polynomials is given as

f (x)≈ 1
2

c0T0(x)+
N∑

n=1

cnTn(x),

where

cn =
2

N +1

N∑
k=0

f (xk)Tn(xk).

These two equations may be used to compute the value of the approximating function and

the coefficients. However, since they are really just discrete cosine transforms, it is easier

and more efficient to compute them using a fast Fourier transform library[26].
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It is important to note that the information contained in the coefficients of the expansion

is equivalent to the information in the values of the function evaluated at the Chebyshev

nodes – this is key for nonlinear PDEs. Given a sequence of coefficients approximating

f (x), cn, it is easy to obtain the coefficients, c′n, that approximate d f (x)/dx:

c′i−1 = c′i+1 +2ici, (i = N−1,N−2, . . . ,1).

This allows us to compute the spatial derivatives easily.

3.3.2 Spectral Method for Nonlinear Time-Varying PDEs

Suppose we have a PDE describing the solution V that has the form

∂V (t,x)
∂ t

= F
(

t,x,V,
∂V
∂x

,
∂ 2V
∂x2

)
,

where F is some function of time, state, the function V (t,x), and its derivatives. The basic

spectral method is as follows:

1. Calculate and store the initial values of the V (t,x) at the Chebyshev nodes, xk.

2. Convert the node values to coefficients of the Chebyshev series, cn.

3. From these coefficients, find the coefficients for the first and second spatial derivatives,

c′n and c′′n .

4. Evaluate the approximations for ∂V
∂x , and ∂ 2V

∂x2 at the Chebyshev nodes, xk.

5. Evaluate F
(

t,x,V, ∂V
∂x , ∂ 2V

∂x2

)
at the Chebyshev nodes and propagate the node values

by an ODE method:

dV (t,xk)
dt

= F

(
t,xk,V (t,xk),

∂V
∂x

∣∣∣∣
xk

,
∂ 2V
∂x2

∣∣∣∣
xk

)
.
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6. Return to step 2.

3.3.3 Transformations

The HJB equation has both an infinite domain and range. The domain of the independent

variable, x (the state variable), can take any real value. Also, the value function, V , may take

any positive real value. Therefore, both the domain and range are unbounded, and this can

cause computational complications.

To handle the range, we use a transformation that maps the infinite range to a bounded

range. For the domain we either apply a similar mapping, or simply scale the domain to a

region of interest. The transformations used here are not the only ones that accomplish this,

and other transformations could have other nice properties or better accuracy.

If using a domain transformation that compresses an infinite domain to a finite domain,

the range transformation should ensure that the transformed function decreases rapidly

enough near the edges of the transformed domain boundary. The transformations used here

certainly aren’t the only ones that accomplish this, and other transformations could have

useful properties or better accuracy. For example, the nice quadratic property of these two

transformations doesn’t hold in multiple dimensions. On the other hand, an exponential

mapping would be able to be split the value function into factors easily.

For a general range transformation V = f (W ), we have

∂V
∂ t

=
∂ f
∂W

∂W
∂ t

, (3.35)

∂V
∂~x

=
∂ f
∂W

∂W
∂~x

, (3.36)

∂ 2V
∂~x2 =

∂ 2 f
∂W 2

(
∂W
∂~x

)(
∂W
∂~x

)T

+
∂ f
∂W

∂ 2W
∂~x2 . (3.37)
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Using subscript notation for partial derivatives, the range-transformed HJB equation is

Wt =−W~xa− 1
fW

d +
1
2

fWW T
~x B
[
R+DT ( fWWW~xW

T
~x + fWW~x~x

)
D
]−1

BTW~x,

with the optimal control given by

u =−
[
R+DT ( fWWW~xW

T
~x + fWW~x~x

)
D
]−1

BT fWW~x.

It is often the case that fWW can be written as g(W ) fW for some function g, in which case,

the HJB equation and control may be written as

Wt =−W~xa− 1
fW

d +
1
2

W T
~x B
[

1
fW

R+DT (g(W )W~xW
T

~x +W~x~x
)

D
]−1

BTW~x, (3.38)

u =−
[

1
fW

R+DT (g(W )W~xW
T

~x +W~x~x
)

D
]−1

BTW~x. (3.39)

Table 3.1 lists some feasible range transformations. In subsequent simulations, we used the

third choice in the table:

W = exp(−(V +δ )γ)/β )⇐⇒V = (−β lnW )1/γ −δ ,

with β = 1, γ = δ = 1/2.

Transformation fW g(W )
W = 1

(γ+V )n −1
nW (−1/n−1) −

(1
n +1

)
W−1

W = exp(−V/L2) −L2W−1 −W−1

W = exp(−(V +δ )γ)/β ) (−β lnW )(1/γ)/(γW lnW ) −(γ(1+ lnW )−1)/(γW lnW )

Table 3.1 Common range transformations

For the domain transformation, we used linear scaling from the Chebyshev nodes, yi, to

the domain values, xi, as xi = Liyi, for each dimension i. The spatial derivatives are needed
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as well for use in Equations (3.38) and (3.39):

dyi

dxi
=

1
L

(3.40)

d2yi

dx2
i

= 0 (3.41)

[
∂W
∂~x

]
i
=

∂W
∂yi

dyi

dxi
(3.42)

[
∂ 2W
∂~x2

]
i j

=


∂ 2W
∂y2

i

(
dyi
dxi

)2
+ ∂W

∂yi

d2yi
dx2

i
, i = j

∂ 2W
∂yi∂y j

dyi
dxi

dy j
dx j

, i 6= j
(3.43)

3.4 Spectral Method Verification and Error Analysis

In this section, we present three different 1-D linear systems to verify this method. Time-

stepping was performed with the 2nd order accurate implicit Crank-Nicolson scheme. Errors

are computed in both the value function V and the resulting optimal control, u. The truth

values are obtained from solutions to the Riccati equation. The system for each case is

defined to be

dx(t) = (ax+u)dt +udW (t),

J = E
[∫ 1

0

1
2

u2dt + x(1)2
]
,

with a = 1 for the unstable system, a =−1 for the stable system, and a = 1/3 for stationary

system.

When the V →W transformation is applied to the HJB equation (3.34), we obtain

Wt =−Wxa− 1
2

W 2
x

W 2

αL2 +(2/W )W 2
x −Wxx

. (3.44)
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The control is calculated by substituting the transformation into Equation (3.33) to obtain

u =
Wx

W 2/(αL2)+(2/W )W 2
x −Wxx

. (3.45)

The derivatives Wx and Wxx are computed by calculating Wy and Wyy from the Chebyshev

series, and then using Equations (3.42) and (3.43).

We also apply another transformation, this time to the domain. For each spatial dimen-

sion, i, define the new independent variable yi as

xi =
Lyi√
1− y2

i

⇐⇒ yi =
xi√

L2 + x2
i

.

Since each xi ranges from −∞ to ∞, yi is bounded between -1 and 1, as shown in Figure 3.1.

When the nodes of y are chosen to be Chebyshev nodes,

yk = cos
(

π
2k +1

2(N +1)

)
, k = 0,1, . . . ,N,

then the corresponding values of x are given by

xk =
L

tan
(

π
2k+1

2(N+1)

) .

It is useful to know the range of x based on our choice of L and N. The maximum value of

yk is given when k = 0:

ymax = y0 = cos
(

π

2(N +1)

)
giving the maximum x value of

xmax = x0 =
L

tan
(

π

2(N+1)

) ≈ 2L(N +1)
π

,

where the approximation holds for large N (really when π/(2(N +1)) is small). Therefore,
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the maximum value of x scales linearly in both L and N.
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Figure 3.1 x to y transformation for L = 1

It is worth noting that for the scalar case, when V = αx2 and we apply the two transfor-

mations, x = Ly√
1−y2

, and W = 1
1+V/(αL2) , we have that W = 1− y2 for all α and L, plotted

in Figure 3.2.
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Figure 3.2 W vs. y for all α and L

The global behavior seems to be very promising. Between the collocation points in the x

domain, the percent error was independent of L. At large values of x, the percent error for

both V and u appears to grow like O(ln lnx), which is very slow.

The following are 15 cases for the stable and unstable system – combinations of N and
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L, where N ∈ {20,30,40,50,60} and L ∈ {0.5,1,2}. The extent of the collocation points is

given in Table 3.2. It’s interesting that although the maximum value of x is only 77.65 over

all cases, the transformations still include information from the entire domain, so the error

does not grow quickly outside of those bounds.
L

N 0.5 1 2
20 6.67 13.34 26.69
30 9.86 19.72 39.44
40 13.04 26.09 52.18
50 16.23 32.46 64.91
60 19.41 38.83 77.65

Table 3.2 Maximum x value

3.4.1 Stationary Solution

With the parameters chosen in this problem, the solution for V is time-invariant when

a = 1/3 (Vt(t,x) = 0 for all t,x. Since the initial condition can be expressed as a quadratic

function, we only need to expand the solution to order N = 2 to obtain the exact solution.

The maximum percent error for u was 2.19×10−13% and the maximum percent error for

V was 4.03×10−12% over the collocation range. Over the x range of [−1000,1000], the

maximum percent errors are summarized in Table 3.3 and Table 3.4. These errors are entirely

due to numerical roundoff.
L Max. % error in u

0.5 2.13×10−7

1 6.39×10−8

2 1.86×10−8

Table 3.3 Maximum percent error in u over x range [−1000,1000] for stationary system

L Max. % error in V
0.5 1.06×10−7

1 3.19×10−8

2 9.30×10−9

Table 3.4 Maximum percent error in V over x range [−1000,1000] for stationary system
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3.4.2 Unstable System

The unstable system shows very good accuracy over the collocation range as listed in Table

3.5 and Table 3.6. Over the large x range [−1000,1000], the algorithm still gives very good

results, summarized in Table 3.7 and Table 3.8. Figure 3.3 shows the percent error over the

collocation range – the curve with higher error is the solution at the initial time (the end of

the PDE integration). The collocation nodes are clearly visible by the low error at those

points. Figure 3.4 shows the percent error over a very large range – again, the higher error is

at t = 0. Each axis is a log scale, and the error is linear, indicating a growth proportional to

ln lnx. Even though the collocation points range from x≈−78 to x≈ 78, the error is less

than 1% all the way up to x≈ 5×105. Towards very large values of x (x > 107), rounding

errors dominate as opposed to truncation error in the approximation.
N Max. % error in u
20 2.85×100

30 1.08×10−2

40 3.68×10−5

50 1.08×10−7

60 1.74×10−8

Table 3.5 Maximum percent error in u over collocation range for unstable system

N Max. % error in V
20 2.72×10−1

30 7.79×10−4

40 2.10×10−5

50 2.10×10−5

60 2.10×10−5

Table 3.6 Maximum percent error in V over collocation range for unstable system

L
N 0.5 1 2
20 3.92×105 3.92×105 3.92×105

30 6.30×101 2.31×101 6.52×100

40 2.11×10−1 5.27×10−2 1.32×10−2

50 3.99×10−4 9.97×10−5 2.50×10−5

60 4.67×10−5 1.18×10−5 2.96×10−6

Table 3.7 Maximum percent error in u over x range [−1000,1000] for unstable system
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L
N 0.5 1 2
20 9.95×101 9.99×101 9.22×101

30 5.09×101 9.21×100 2.15×100

40 6.535×10−2 1.63×10−2 4.08×10−3

50 1.21×10−4 2.84×10−5 2.11×10−5

60 2.19×10−5 2.12×10−5 2.11×10−5

Table 3.8 Maximum percent error in V over x range [−1000,1000] for unstable system
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Figure 3.3 Percent error in u for unstable system over collocation range with N = 60, L = 2

Another nice feature of the spectral method is ease of convergence analysis. In finite

differencing approaches, you typically have to perform a grid-refinement study to ensure

that the solution has converged appropriately. In a spectral method, you can get a good

idea of the convergence just by looking at the coefficients. As n increases, the sequence

of coefficients, an, typically decreases exponentially. Figure 3.5 is a plot of the coefficient,

an, for the unstable expansion – both at the initial and final times. At all odd values of

n, an should be zero because V is an even function. Moreover, the exponential decay of

the coefficients is clearly visible. At n = 60, the coefficients are on the order of machine

precision, indicating good convergence.
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Figure 3.5 Chebyshev coefficients for unstable system with N = 60, L = 2

3.4.3 Stable System

The unstable system also shows good accuracy, although not quite as good as the unstable

case. Over the collocation range, the maximum percent errors are listed in Table 3.9 and

Table 3.10. Over the large x range [−1000,1000], the results are summarized in Table 3.11

and Table 3.12.
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N Max. % error in u
20 8.89×100

30 8.78×10−1

40 4.83×10−2

50 3.55×10−3

60 1.25×10−4

Table 3.9 Maximum percent error in u over collocation range for stable system

N Max. % error in V
20 4.24×100

30 1.09×10−1

40 7.07×10−3

50 5.09×10−4

60 2.39×10−4

Table 3.10 Maximum percent error in V over collocation range for stable system

3.5 Spectral Method Applied to the Hill Three-Body Prob-
lem

These methods can now be applied to the Hill Three-Body Problem (H3BP).

For illustrative purposes, we will focus on the planar system where z = 0. When the sys-

tem is nondimensionalized by setting µ = ω = 1 in Equations (2.28) and (2.29), the system

has two equilibrium points using no control at x =±3−1/3 ≈ 0.69336, y = 0. Linearizing

about either of these points and defining the perturbed state δ~x = [δx δy δ ẋ δ ẏ]T yields

the linear system

δ~̇x =



0 0 1 0

0 0 0 1

9 0 0 2

0 −3 −2 0


δ~x+



0 0

0 0

1 0

0 1


ax

ay

 .

This system has an unstable mode, a stable mode, and an oscillatory mode, associated

with the eigenvalues +
√

1+2
√

7≈ 2.5,−
√

1+2
√

7≈−2.5, and± j
√

2
√

7−1≈±2.1 j,

respectively. The unstable mode’s characteristic time is then 1/
√

1+2
√

7≈ 0.4.
The domain of analysis is a four-dimensional hypercube centered at the equilibrium

point associated with x = +3−1/3. Unless specifically noted, the parameters of each run are
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L
N 0.5 1 2
20 1.00×102 1.00×102 9.99×101

30 9.98×101 9.78×101 8.17×101

40 7.21×101 2.85×101 7.45×100

50 5.19×100 1.29×100 3.20×10−1

60 2.24×10−1 5.58×10−2 1.39×10−2

Table 3.11 Maximum percent error in u over x range [−1000,1000] for stable system

L
N 0.5 1 2
20 9.98×101 9.93×101 9.74×101

30 9.62×101 8.65×101 6.14×101

40 5.26×101 2.17×101 6.47×100

50 4.61×100 1.19×100 3.00×10−1

60 2.10×10−1 5.26×10−2 1.32×10−2

Table 3.12 Maximum percent error in V over x range [−1000,1000] for stable system

the same, except for the value of noise. All common parameters are as follows:
• Number of gridpoints: 9 along each dimension (6561 points total)
• Terminal time: 0.4 non-dimension time units
• Scaling parameters, Li: 0.1 along the position dimensions and 0.2 along the velocity

dimensions
• Time-stepping algorithm: Crank-Nicolson
• Crank-Nicolson iteration limit: 3
• Iteration tolerances: absolute and relative tolerances of 1×10−14

The Crank-Nicolson scheme is implicit, numerically stable, and second-order accurate in

time, [27]. The implicit nature necessitates iterations to solve for the updates, and we use

the number of required iterations to guide our time step choice. At each timestep, we begin

by computing an initial guess with a forward Euler step. If this initial guess cannot converge

to the required tolerances within 3 iterations, then we reduce the timestep and try again.

3.5.1 Verification

To verify the accuracy of the spectral solution, we begin by comparing the solution obtained

using the stochastic Riccati equation [28] with the solution obtained by the spectral method

with linear dynamics. We computed the control magnitude at a corner of the domain grid

63



and compared this to the Riccati result. This gives us a worst-case error over the domain.

Figure 3.6 show the control-magnitude percent errors of three spectral cases (taking the

Riccati solution as truth). The first two cases are low-accuracy runs with zero noise and

10% noise. The noise does not appear to impact accuracy. The third case is with zero noise,

but tighter integration tolerance which results in a decrease in error of about an order of

magnitude for the optimal control. The worst error under tight integration tolerances is

about 0.3%.
The matrices defining the dynamics are cost function for the verification runs are as

follows:
• R = I2

• B =
[

02×2
I2

]
• D = ε

[
02×2

I2

]
, where ε is the noise level

• The terminal cost is h(~x(T )) = 1
2~x

T~x.

A benefit of the spectral method is that it gives a self-contained measure of accuracy

through the spectral coefficients. For a well-converged solution, the high-order coefficients

should be near machine precision. Since the computation of the basis functions are done

by Cartesian product along the grid, these coefficients may be grouped by their index’s

Manhattan distance from the index. For example, the coefficient corresponding to index (1, 2,

2, 3) is computed using the first order basis function along the first dimension, second order

basis functions along the second and third dimension, and third order basis function along

the fourth dimension. The “index distance” for this coefficient would be 1+2+2+3 = 8.

Enough gridpoints should be used such that, for all time during the simulation, the co-

efficients with the largest index distances should be as close to zero as possible. Figure

3.7 shows a poorly-converged nonlinear solution with 10% noise, 5 gridpoints in each

dimension, and iteration tolerances of 1×10−10. The coefficients with large index distances

are significantly above machine precision by the end of the simulation. On the other hand,

Figure 3.8 shows a well-converged solution with 10% noise, 9 gridpoints in each dimension,

and iteration tolerances of 1×10−14.
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Figure 3.6 Control magnitude error between spectral and Riccati solutions

3.5.2 Results

For these runs, the following parameters were used to give higher preference towards achiev-

ing a smaller terminal state by using more control. The weights and control horizon were

chosen such that when the control value is re-dimensionalized, the thrust level corresponds

to the thrusters on NASA’s Dawn mission [29].

• R = 0.1I2

• B =
[

02×2
I2

]
• D = ε

[
02×2

I2

]
, where ε is the noise level

• The terminal cost is h(~x(T )) = 1
2~x

Tdiag(4,4,2,2)~x.
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Figure 3.7 Spectral coefficients for poorly-converged run

To compare how the transformed value function changes with noise level, we compute

the root-mean-square (RMS) difference between the deterministic and stochastic cases

across all nodes. This RMS difference is shown in Figure 3.9 for 1%, 5% and 10% noise.

Note that the transformed value function itself does not change dramatically as noise in-

creases. However, since the control is a function of the first and second derivatives of the

value function, the change in optimal control is much more pronounced. The RMS percent

difference in control across all nodes is reaches a peak of about 10-20% for the case with

10% noise as shown in Figure 3.10. However, the maximum percent difference in noise
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Figure 3.8 Spectral coefficients for well-converged run

ranges from 100% to 1,000% as shown in Figure 3.11.

3.5.3 Monte Carlo Analysis

Once the spectral method has solved the dynamic programming problem, we may perform

a Monte Carlo analysis. Four runs were simulated with varying dynamics noise level and

control laws.

1. Stochastic dynamics with ε = 0.01, corresponding stochastic control law

2. Stochastic dynamics with ε = 0.05, corresponding stochastic control law

3. Stochastic dynamics with ε = 0.1, corresponding stochastic control law

4. Stochastic dynamics with ε = 0.1, deterministic control law
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Figure 3.9 RMS difference between deterministic and stochastic transformed value functions

A benefit of having solved the SHJB equation is that we already know the expected cost.

The cost obtained via Monte Carlo simulation should be in good agreement with the cost

from the dynamic programming approach. (If not, then either more Monte Carlo samples

must be taken, or the accuracy of the SHJB equation must be verified.) Table 3.13 shows the

difference between the expected cost computed via the spectral method vs. the Monte Carlo

method. As a preliminary check, the deterministic control law was simulated in one trial

with the Monte Carlo code under deterministic dynamics to verify accuracy. All other cases

use 10,000 samples. The worst case deviation was for the 10% noise case, where the SHJB

cost differed from the Monte Carlo cost by about 4.3%. This difference could be reduced by

taking more sample paths, nonetheless, the results are still quite useful.
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Figure 3.10 RMS difference between deterministic and stochastic optimal control values

Dynamics SHJB Cost MC Cost Percent Difference
deterministic 0.0098277110 0.0098256024 0.021

stochastic, ε = 0.01 0.0098308309 0.0098271528 0.037
stochastic, ε = 0.05 0.0099055748 0.0099285040 0.231
stochastic, ε = 0.1 0.0101374922 0.0105716199 4.282

Table 3.13 Expected costs for SHJB vs. Monte Carlo methods.

Although the dynamic programming approach gives the expectation of the overall cost, it

doesn’t give any information on how much of the cost is due to the terminal penalty and how

much is due to the control cost (the integral term in the cost function). On the other hand,

this information is easily obtained from the Monte Carlo method. Figure 3.12 shows the

distribution of the control costs. An interested point of note is that the stochastic controllers

results in a distribution that is much more Gaussian than the deterministic controls in the
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Figure 3.11 Maximum difference between deterministic and stochastic optimal control values

presence of noise. The top row of Figure 3.12 use the same level of noise in the dynamics,

but different controllers. Also worth noting is that the overall expected cost increases as the

noise level increases, however, the cost of control decreases because the optimal controller

trades terminal penalty for reduced control. This is a manifestation of the balance between

achieving control objectives and minimizing the effects of random perturbations. Figure

3.13 shows the histogram of the overall cost.

The time-histories of the Monte Carlo runs are also very interesting. Figure 3.14 shows

the vector norm of the expected value of the control – the stochastic controllers clearly

reduce their effort near the terminal time to avoid introducing any late uncertainty. With

10% noise, the value differs from the deterministic case by up to 35%. The differences of

the angle at which the control is applied is much less drastic. As shown in Figure 3.15, the
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Figure 3.12 Histogram of control cost for Monte Carlo runs

control angle varies by less than 8%.

A clear advantage of using a stochastic control law can be seen in Figure 3.16. The

standard deviation of uncertainty in the control when using a deterministic control law for a

stochastic system was always higher than when using a stochastic controller. In the case

of 10% noise, the terminal standard deviation in the deterministic controller was over 3

times that of the stochastic controller. This indicates that the stochastic controller is acting

to reduce uncertainty.
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Figure 3.13 Histogram of overall cost for Monte Carlo runs

The deviation of the state is also of concern for spacecraft navigation. Figure 3.17 shows

the vector norm of the expected value of the state. The terminal difference in the 10% noise

case is about 18%, as compared to about 35% difference in control. Also, the deviation in

the state is less than for the control. Figure 3.18 shows a state deviation of about 20% for

both deterministic and stochastic controllers.

72



−0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
||E[u]||

 

 

det

det,eps=.1

eps=.01

eps=.05

eps=.1

−0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
0

5

10

15

20

25

30

35
% Difference from Deterministic

t

Figure 3.14 Vector norm of control for Monte Carlo runs
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Figure 3.15 Angle of control for Monte Carlo runs
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Figure 3.16 Standard deviation of control for Monte Carlo runs
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Figure 3.17 Vector norm of the state for Monte Carlo runs
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Figure 3.18 Standard deviation of the state for Monte Carlo runs
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Chapter 4

Taylor Series Solution for Stochastic
Optimal Control

This chapter discusses the series solution of the Stochastic Hamilton-Jacobi-Bellman (SHJB)

equation. A straightforward expansion of the SHJB equation using Taylor series would

appear at first to be an ineffective solution method. However, under common assumptions

discussed later, a Taylor series expansion provides a suitable local approach for solution

of the HJB equation. This allows for the construction of a system of ODEs describing the

time-evolution of the expansion coefficients.

Another interesting outcome of this series approach is the study of stationary solutions

to the HJB equation. This steady-state analysis is applicable to systems with a long control

horizon. Proper analysis of the steady-state solution requires the use of a Frobenius series

approach. This yields insight into the properties of the Taylor series coefficients. Also, we

describe some numerical considerations for accurate computation of the Frobenius solution.

4.1 Local Approach for the Stochastic Hamilton-Jacobi-
Bellman Equation

Consider the scalar SDE

dx(t) = (a(t,x)+Bu)dt +DudW (t), (4.1)
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with cost function

J = E
[

1
2

∫ T

0
Ru2dt +h(x(T ))

]
. (4.2)

The stochastic Hamilton-Jacobi-Bellman (SHJB) equation for this system is

Vt =−Vxa+
1
2

B2V 2
x (R+D2Vxx)−1, (4.3)

with terminal condition V (T,x) = h(x).

Expanding the cost function and dynamics in an infinite power series about the origin,

we obtain

V (t,x) =
∞∑

i=0

Ṽi(t)xi and a(t,x) =
∞∑

i=0

ãi(t)xi. (4.4)

Note that the first and second derivatives of V are

Vx(t,x) =
∞∑

i=0

(i+1)Ṽi+1(t)xi and Vxx(t,x) =
∞∑

i=0

(i+2)(i+1)Ṽi+2(t)xi. (4.5)

If we substitute these expansions into the SHJB equation (4.3), we obtain ordinary differen-

tial equations (ODEs) for the coefficients Ṽi. The expansion can be truncated at a given order

to obtain a finite dimensional system of ODEs which can be numerically solved backwards

in time using the terminal conditions given. The apparent limitation in this approach is that

the ODE describing ˙̃Vn will depend on Ṽn+1 and Ṽn+2, due to the second derivative of V in

the SHJB equation. Therefore, the system of ODEs resulting from truncating an expansion

of Ṽ results in a system that is not closed. The n-th order coefficient cannot be computed

directly with this approach; it can only be approximated by solving for the coefficients up to

an order much higher than n. We now show that under a common assumption on the system

dynamics and terminal cost, this limitation is removed.
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4.1.1 Implications of Expansion about an Equilibrium Point and Lo-
cal Minimum/Maximum of the Cost Function

When the origin of the expansion is an equilibrium point of the system, and the gradient

of the value function is zero at the expansion point, then the resulting system of ODEs is

closed. (As an aside, all systems whose dynamics are described by an odd function, and

whose terminal cost function is even, satisfy these conditions.)

Specifically, in order to compute the expansion coefficients at n-th order, we only need

to solve for the 2nd through n-th order coefficients. In other words, increasing the order of

the expansion does not change the coefficients at lower orders. Therefore, the expansion is

the actual expansion of the solution, not just an approximation that only converges as many

terms are added. The 0-th order term, Ṽ0 is constant for all time, and all other coefficients

are independent of Ṽ0.

To begin the proof, first note that expanding about an equilibrium point implies that

ã0 = 0. Second, expanding about a local minimum or maximum of V implies that Ṽ1 is

initially 0. Third, the previous results imply that Ṽ1 is actually zero for all time. To see this,

let us simply write out the complete expression for ˙̃V1:

˙̃V1 =−Ṽ1[Ṽ1B2D2Ṽ3 +2(D2Ṽ2 +R)(ã1D2Ṽ2−B2Ṽ2 + ã1R)]+ ã0[2Ṽ2(D2Ṽ2 +R)2]
2(D2Ṽ2 +R)2 . (4.6)

If ã0 is zero and Ṽ1 is initially zero, then ˙̃V1 = 0, and Ṽ1 will stay zero for all time. This is

essential to the remainder of the proof.

Next, let the first term in the SHJB equation be expanded as follows;

−Vxa≡−
∞∑

i=0

rixi, (4.7)

where

ri =
i∑

j=0

( j +1)Ṽj+1ãi− j. (4.8)
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Generally, ri depends on Ṽi+1. However, under our assumptions, ri only depends on Ṽ2

through Ṽi. Table 4.1 shows the terms in the summation of Equation (4.8). Since any term

in ri that would generally depend on Ṽi+1 is multiplied by Ṽ1(= 0), we may conclude that ri

only depends on Ṽ2 through Ṽi. Also, r0 = Ṽ1ã0 = 0, so this term has no linear dependence

on x.
j Ṽj+1ãi− j

0 Ṽ1ãi = 0
1 Ṽ2ãi−1
...

...
i−1 Ṽiã1

i Ṽi+1ã0 = 0

Table 4.1 Terms in the summation defining ri.

The behavior of the second term in Equation (4.3) can be studied by analyzing the

quantity V 2
x (R+D2Vxx)−1. First, let V 2

x be expanded as

V 2
x =

∞∑
i=0

sixi, (4.9)

where si is defined as

si =
i∑

j=0

( j +1)(i− j +1)Ṽj+1Ṽi− j+1. (4.10)

From this, we see that si generally depends on Ṽi+1. However, we can limit the depen-

dence to just Ṽi by the same reasoning as the Vxa term; the terms are listed in Table 4.2. Just

like ri, si only depends on Ṽ2 through Ṽi. Also, later we will use the fact that s0 = s1 = 0.
j Ṽj+1Ṽi− j+1

0 Ṽ1Ṽi+1 = 0
1 Ṽ2Ṽi
...

...
i−1 ṼiṼ2

i Ṽi+1Ṽ1 = 0

Table 4.2 Terms in the summation defining si.
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Now, let (R+D2Vxx)−1 be expanded as

(R+D2Vxx)−1 ≡
∞∑

i=0

tixi. (4.11)

Generally, ti is given by the standard Taylor formula

tn =
[

1
n!

dn

dxn (R+D2Vxx)−1
]

x=0
. (4.12)

Using the fact that

Ṽn =
1
n!

∂ nV
∂xn

∣∣∣∣
x=0

(4.13)

we see that the coefficient at a given order depends directly on the derivative of V at that

order, evaluated at the origin. We wish to show that tn depends of V of orders Ṽ2 through

Ṽn+2, or equivalently, on V (2) through V (n+2). This proof can be done using induction, as

follows. The explicit dependence of tn on V (2) through V (n+2) can be seen by writing tn in a

specific form:

tn =
[

fn(V (2), . . . ,V (n+1))− D2

n!(R+D2Vxx)2V (n+2)
]

x=0
, n≥ 1, (4.14)

where fn is some function of V (2) through V (n+1). For the basis step of the induction process,

note that

t1 =
[
− D2

(R+D2Vxx)2V (3)
]

x=0
. (4.15)

We see that the form in Equation (4.14) holds for n = 1 with f1(V (2)) = 0. Now, for the

induction step, assume form (4.14) holds for a general n, and let us compute tn+1, given by

tn+1 =
[

1
n+1

∂

∂x

{
fn(V (2), . . . ,V (n+1))− D2

n!(R+D2Vxx)2V (n+2)
}]

x=0
(4.16)
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tn+1 =

[
1

n+1

{
n+1∑
i=2

∂ fn(V (2), . . . ,V (n+1))
∂V (i) V (i+1) +

2D4V (3)

n!(R+D2Vxx)3V (n+2)

}

− D2

(n+1)!(R+D2Vxx)2V (n+3)

]
x=0

. (4.17)

Therefore, the form holds for tn+1 with

fn+1(V (2), . . . ,V (n+2)) =

1
n+1

{
n+1∑
i=2

∂ fn(V (2), . . . ,V (n+1))
∂V (i) V (i+1) +

2D4V (3)

n!(R+D2Vxx)3V (n+2)

}
. (4.18)

So, in general, ti is a function of Ṽ2 through Ṽi+2.

Also, define the entire term as

V 2
x (R+D2Vxx)−1 ≡

∞∑
i=0

uixi, (4.19)

where

ui =
i∑

j=0

s jti− j. (4.20)

The terms of ui are listed in Table 4.3.
j s jti− j

0 s0ti = 0
1 s1ti−1 = 0
2 s2ti−2
...

...
i−1 si−1t1

i sit0

Table 4.3 Terms in the summation defining ui.

The first two terms of the summation vanish because s0 = s1 = 0, as mentioned previously.

Therefore,

ui =
i∑

j=2

s jti− j. (4.21)
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Now, from this, we see that ui depends s2 through si and t0 through ti−2. Therefore, ui

only depends on V2 through Vi. This allows us to compute the n-th order coefficient without

knowledge of any higher order coefficients.

4.2 Steady State Frobenius Solution to the Stochastic
Hamilton-Jacobi-Bellman Equation

Expanding the cost function and dynamics as a Taylor series about the origin, we obtain

V (t,x) =
N∑

i=0

Vi(t)
n!

xi and a(t,x) =
N∑

i=0

ai(t)
n!

xi. (4.22)

When these series expansions are substituted into the SHJB, we obtain ordinary differential

equations (ODEs) describing the time-evolution of the coefficients, Vi. Assuming that the

dynamics are odd and the terminal cost function is even, Vi does not depend on higher orders.

The ODEs for the first few coefficients are:

V̇0 = 0

V̇1 = 0

V̇2 =−V2
(2a1D2−B2)V2 +2a1R

2D2V2 +2R

In trying to understand the nature of solution, one could seek a steady state solution by

setting the time derivatives equal to zero. The second order term gives

V2 = 0 or V2 =
−2a1R

2a1D2−B2 (4.23)

as possible steady state solutions. If V2 = 0, then all higher order terms are zero as well,

indicating the trivial steady state solution. Alternatively, if we choose the nontrivial solution
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for V2 and compute the steady state values for the higher order coefficients, we obtain

V4 =
2a3B2R

(2a1D2−B2)(6a1D2−B2)
(4.24)

V6 =
2B2R(6a1a5D2−20a2

3D2−a5B2)
(2a1D2−B2)(6a1D2−B2)(10a1D2−B2)

. (4.25)

As the order, n, is increased, the final factor in the denominator is 2(n− 1)a1D2−B2.

For a system with no noise (D = 0), these factors are all equal to −B2, which causes no

problems. However, if D is a finite value, then the steady steady coefficients will be well

defined only up to a certain order. That is, the steady state terms are finite only up to order

b1+B2/(2a1D2)c. (b·c is the floor operator.) Figure 4.1 show the relationship for a system

with B = a1 = 1. Figure 4.2 shows the plot of coefficients of order 2, 4, and 6 for a system

with dynamics a(x) = x− (1/6)x3, B = R = 1. Figure 4.1 tells us that the order 2, 4, and

6 coefficients in Figures 4.2a and 4.2b all converge to a finite steady-state value, but only

orders 2 and 4 converge in Figure 4.2c, and only order 2 converges in Figure 4.2d.

4.2.1 Steady State Solution to the SHJB Equation

In order to study this effect rigorously we may set Vt equal to zero in the HJB to obtain a

PDE describing any possible steady-state solution:

0 =−Vxa+
1
2

B2V 2
x (R+D2Vxx)−1. (4.26)

Factoring out Vx and rearranging gives

0 = Vx

[
Vxx +

−B
2D2a(x)

Vx +
R

D2

]
. (4.27)
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Figure 4.1 Maximum Valid Order of Steady-State Taylor Expansion (n) vs. Noise (D)

For this to hold, we have either

Vx = 0 or Vxx +
−B

2D2a(x)
Vx =− R

D2 (4.28)

The first case yields the trivial solution V (x) = 0. The second is a second order inhomo-

geneous PDE with initial conditions V (0) = 0 and V ′(0) = 0. Since the dynamics are odd,

a(0) = 0, and if we assume that a1 6= 0, then the origin is a “regular singular point”. This

precludes the possibility of a standard Taylor expansion. Instead, the Frobenius method

provides the proper series expansion [30].
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Figure 4.2 V coefficients vs. time for different levels of noise, D

Frobenius Method for Series Solution About a Regular Singular Point The Frobenius

method finds a solution to the homogeneous equation

y′′+ p(x)y′+q(x)y = 0, (4.29)

of the form

y(x) = xr
∞∑

n=0

bnxn =
∞∑

n=0

bnxr+n, (4.30)

where r is not necessarily a positive integer and b0 6= 0. We assume that x > 0 without loss

of generality because V is an even function. For the origin to be a regular singular point, we

need the limits

p0 = lim
x→0

xp(x), and q0 = lim
x→0

x2q(x) (4.31)
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to exist. In general, the roots of the indical equation, F(r), give the possible values of r

F(r) = r(r−1)+ p0r +q0. (4.32)

In our case, q0 is zero, so the values of r are r = 0 and r = 1− p0. The following recurrence

relation gives the values of bn:

F(r +n)bn +
n−1∑
k=0

bk(r + k)pn−k = 0, n≥ 1. (4.33)

Letting r = 1− p0, and the arbitrary b0 = 1, a solution to the general homogeneous equation

is then

y1(x) = xr
∞∑

n=0

bnxn. (4.34)

Since the other possible value of r is zero, then the other possible solution is just the constant

solution y2(x) = 1 (assuming that r is not an integer)

For the steady state homogeneous SHJB equation

Vxx +
−B

2D2a(x)
Vx = 0, (4.35)

the first solution is of the form

y1(x) = xrS(x), (4.36)

where

S(x) =
∞∑

n=0

bnxn. (4.37)

Variation of Parameters We may now compute the general solution to the actual non-

homogeneous SHJB equation by the variation of parameters method. Since finding the

analytic form of the antiderivatives in the method would be difficult or impossible, we may
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use definite integrals which can be computed numerically. Taking y2(x) = 1, we have

V (x) = y1(x)
(

g
∫ x

α

1
y′1(s)

ds+ c1(α)
)
−g
∫ x

α

y1(s)
y′1(s)

ds+ c2(α), (4.38)

where α is some value greater than zero and c1(α) and c2(α) are constants that depend on

α . Letting the integrals be

I1(x;α) =
∫ x

α

1
y′1(s)

ds,

I2(x;α) =
∫ x

α

y1(s)
y′1(s)

ds,

then

V (x) = y1(x)(gI1(x;α)+ c1(α))−gI2(x;α)+ c2(α). (4.39)

To solve for the constant c2(α), we may use the condition that limx→0V (x) = 0 to obtain

g lim
x→0

[y1(x)I1(x;α)]−gI2(0;α)+ c2(α) = 0. (4.40)

The limit may be evaluated by L’Hôpital’s rule;

lim
x→0

[y1(x)I1(x;α)] = lim
x→0

I1(x;α)
[y1(x)]−1

= lim
x→0

1/y′1(x)
−[y1(x)]−2y′1(x)

=− lim
x→0

(
y1(x)
y′1(x)

)2

=− lim
x→0

x2[S(x)]2

[rS(x)+ xS′(x)]2

= 0.

Therefore,

c2(α) = gI2(0;α). (4.41)
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Another condition on V (x) at the origin is that ∂V (x)/∂x is zero, however, limx→0 ∂V (x)/∂x

is always zero regardless of c1(α), so this condition does not help us solve for c1(α). In-

stead, we must use the condition that V (x) > 0 for all x. Splitting I1(x;α) into two parts,

I1(x;α) = I1(∞;α)− I1(∞,x), gives further insight into the behavior of V (x):

V (x) =−gy1(x)I1(∞;x)+ y1(x) [gI1(∞;α)+ c1(α)]−gI2(x;α)+ c2(α). (4.42)

From the preceding equation, V (x) is greater than or equal to zero as long as

c1(α)≥−gI1(∞;α). (4.43)

Therefore, as long as c1(α) is greater than a certain threshold, then V (x) will be a valid cost

function. If c1(α)≡−gI1(∞;α), then the second term vanishes.

In summary, the steady state solution of the HJB equation for this system is given by

V (x) =−gy1(x)I1(∞;x)+ y1(x) [gI1(∞;α)+ c1(α)]−gI2(x;α)+ c2(α), (4.44)

where

I1(x;α) =
∫ x

α

1
y′1(s)

ds, I2(x;α) =
∫ x

α

y1(s)
y′1(s)

ds, (4.45)

and

c1(α)≥−g lim
x→∞

I1(x;α), c2(α) = gI2(0;α). (4.46)

Linear System We can solve for the general steady state solution of a linear system in

closed form. In this case, the dynamics are simply a(x) = a1x. From this, the S(x) term in

the Frobenius expansion is equal to 1, therefore y1(x) = xr and y′1(x) = rxr−1. The integrals

88



I1(x;α) and I2(x;α) may be computed analytically:

I1(x;α) =
1

r(r−2)
(
α

2−r− x2−r) ,
I2(x;α) =

1
2r

(
x2−α

2) .
The constants c1 and c2 must satisfy

c1(α)≥−g lim
x→∞

I1(x;α) =
−g

r(r−2)
α

2−r,

c2(α) = gI2(0;α) =
−g
2r

α
2.

The nontrivial steady state cost function is then given by

V (x) =
[

g
r(r−2)

α
2−r + c1

]
xr +

−g
2(r−2)

x2. (4.47)

The steady state cost will always have a quadratic term, and possibly an ‘xr’ term, depending

on the value of c1. If the initial V (x) is quadratic, it will remain that way, and c1 must

necessarily be equal to −g/[r(r−2)]α2−r, giving

V (x) =
−g

2(r−2)
x2. (4.48)

Properties of Solution The solution,

V (x) =−gy1(x)I1(∞;x)+ y1(x) [gI1(∞;α)+ c1(α)]−gI2(x;α)+ c2(α), (4.49)

has several properties which yield information about the nature of the solution.

1. The term I2(x;α) has a valid Taylor expansion (to infinite order) about zero, and its

computation does not pose a problem for any x≥ 0. For a finite order truncation of

S(x), I2(x;α) grows in proportion to x2 as x→ ∞.
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2. The first term, T1(x) =−gy1(x)I1(∞;x), also grows in proportion to x2 as x→ ∞ for a

finite order truncation of S(x). The derivative of T1 may be written as

dT1(x)
dx

=−g[y′1(x)I1(∞;x)− y1(x)
y′1(x)

]

=
−gy′1(x)y1(x)I1(∞;x)

y1(x)
+g

y1(x)
y′1(x)

=
y′1(x)
y1(x)

T1(x)+g
y1(x)
y′1(x)

=
(

r
x

+
S′(x)
S(x)

)
T1(x)+

gx
r + xS′(x)/S(x)

.

Since T1(x)→ ∞ as x→ ∞, we may use L’Hôpital’s rule to evaluate the limit

lim
x→∞

T1(x)
x2 =

1
2

lim
x→∞

{
[r + xS′(x)/S(x)]

T1(x)
x2 +

g
r + xS′(x)/S(x)

}
. (4.50)

Now, assuming that the limits

L1 = lim
x→∞

T1(x)
x2 and L2 = lim

x→∞
[r + xS′(x)/S(x)] (4.51)

both exist and are finite, then we obtain

L1 =
1
2

{
L2L1 +

g
L2

}
, (4.52)

which gives us the result for L1:

lim
x→∞

T1(x)
x2 = L1 =

g
L2(2−L2)

. (4.53)

Therefore, If S(x) is truncated at order N, then L2 = r +N.

3. T1(x) only has derivatives up to order brc at the origin. Assuming r is not an integer,
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then T1(x) may be expanding by using integration by parts recursively to obtain

T1(x) =
−gS(x)

r−2

{
x2

K−2∑
n=0

(−1)nΓ(3− r)
Γ(3− r +n)

dnU(x)
dxn xn

+
(−1)KΓ(3− r)
Γ(1− r +K)

xr
∫

∞

x
sK−r dK−1U(s)

dsK−1 ds

}
, (4.54)

where

U(x) =
1

rS(x)+ xdS(x)/ds
, (4.55)

and K can be any integer greater than 2. If we choose K = dre, then the final remain-

ing integral has no singularity near the origin, and direct computation of T1(x) is not

difficult. The last term in Equation (4.54) contributes nothing to the Taylor series (up

to order brc).

Deterministic System For a deterministic system, the steady state HJB equation simplifies

to

Vt =−Vxa+
1
2

B2

R
V 2

x . (4.56)

The steady state cost function may be computed directly as given by

V (x) = 0 or V (x) =
2R
B2

∫ x

0
a(s)ds. (4.57)

Since V (x) ≥ for all x, we may infer that the dynamics must be unstable in order for a

nontrivial solution to exist.

4.2.2 Computational Considerations

Since I1(∞;x) diverges as x→ 0, even though the product y1(x)I1(∞;x) converges to zero, it

is useful to compute the product itself instead of directly calculating I1(∞;x) and multiplying

by y1(x). Let us denote the first term of V (x) as T1(x) =−gy1(x)I1(∞;x). The derivative of
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T1 is then

dT1(x)
dx

=−g[y′1(x)I1(∞;x)− y1(x)
y′1(x)

]

=
−gy′1(x)y1(x)I1(∞;x)

y1(x)
+g

y1(x)
y′1(x)

=
y′1(x)
y1(x)

T1(x)+g
y1(x)
y′1(x)

=
(

r
x

+
S′(x)
S(x)

)
T1(x)+

gx
r + xS′(x)/S(x)

.

This is equivalent to a time-varying linear system describing the evolution of T1(x) with

initial conditions T1(α) =−gy1(α)I1(∞;α). If c1 is taken as the minimum possible value,

then T1(α) = y1(α)c1(α). This may be easily computed with standard ODE packages such

as ode45 in MATLAB. Alternatively, we may partially solve for the state transition matrix,

Φ(x,x0). For this system,

Φ(x,x0) = exp
[∫ x

x0

(
r
s
+

S′(s)
S(s)

)
ds
]

= exp
[

r(lnx− lnx0)+
∫ x

x0

S′(s)
S(s)

ds
]

=
(

x
x0

)r

exp
[∫ x

x0

S′(s)
S(s)

ds
]
.

The solution for T1(x), is given by

T1(x) = Φ(x,α)T1(α)+
∫ x

α

Φ(x,s)
gs

r + sS′(s)/S(s)
ds. (4.58)

4.2.3 Connection Between the Taylor and Frobenius Expansions

From Equation 4.44, there will generally be a term that scales as xr as x approaches the

origin. Therefore, we can only evaluate brc= b1+B2/(2D2a1)c derivatives at the origin.

This limits the order of Taylor expansions near the origin in exactly the same way as the
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direct Taylor expansion.

If the general solution for V (x) is expanding in a Taylor series, then the first nonzero

term is

V (x) =
−g

2(r−2)
x2 + . . . , (4.59)

which also matches the original Taylor results.

4.3 Example Implementation

Following the previous chapters, we now apply this theory to the relative equilibria of the

planar H3BP, using the same parameters as the spectral method examples in Chapter 3. We

compute the Taylor series coefficients of the value function for orders 2, 3, and 4. From

the value function, we may then compute control values. The following figures show the

root-mean-square (RMS) error, assuming the spectral results are the truth values. The errors

are computed separately over two domains: the closest one-third of the nodes to the origin,

and the farthest third. This gives an indication of how the accuracy of the Taylor solution

degrades with increasing distance from the expansion point. Figure 4.3 shows the errors for

the deterministic case. The solid lines are the RMS errors for the closest third of the nodes,

and the dashed line is for the farthest third. The value function results for the stochastic

case with 10% noise are shown in Figure 4.4. Each case shows similar trends; lower errors

occured at higher order expansions and closer to the origin.

Figures 4.5 and 4.6 show the RMS error for the vector norm of the control over the same

domain. The same trends hold – lower errors occured at higher order expansions and closer

to the origin; however, the control error is much higher than the value function error. This is

because the control is a function of the first and second derivatives of the value function,

hence any errors become magnified. The worst case control error of 64% occurs for the

second order expansion in the farthest third of the nodes. The best case error is 2%, which

occurs in the fourth order expansion for the closest third of the nodes.
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Figure 4.3 RMS Error in the value function for ε = 0 (deterministic). The solid lines are for the
closest third of the nodes, and the dashed line is for the farthest third.
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Figure 4.4 RMS Error in the value function for ε = 0.1. The solid lines are for the closest third of
the nodes, and the dashed line is for the farthest third.
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Figure 4.5 RMS Error in the control norm for ε = 0 (deterministic). The solid lines are for the
closest third of the nodes, and the dashed line is for the farthest third.
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Figure 4.6 RMS Error in the control norm for ε = 0.1. The solid lines are for the closest third of
the nodes, and the dashed line is for the farthest third.
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Chapter 5

Conclusions

The primary purpose of this dissertation is to study the impact of uncertainty in spacecraft

control. The uncertainty is introduced through either imperfect state measurements or

stochastic dynamics. We show that consideration of uncertainty, even in the initial stages

of mission planning, can be beneficial by allowing for more accurate prediction of control

costs, as well as reducing the expected control cost.

5.1 Summary

The primary result from Chapter 2 is that the inclusion of uncertainty in state measurements

can affect how control law updates should be performed. We show that under a common

method of spacecraft measurements/updates for unstable systems, there exists an optimal

time at which these updates should be performed. These results assume continuous control

force, and serve as an extension of previous work done with impulsive control.

Chapter 3 deals with the numerical computation of optimal feedback control laws for

stochastic systems. We use the spectral method to solve the stochastic Hamilton-Jacobi-

Bellman (SHJB) equation; then we provide analysis of several systems via the Monte Carlo

method.

Finally, Chapter 4 deals with the series solutions of the SHJB equation. We conclude

that, under a fairly non-restrictive assumption, the SHJB equation permits solution via a

Taylor series. This results in a closed system of ordinary differential equations describing

the evolution of the coefficients in the power series. Also, we show that in steady-state, the
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SHJB may not have a valid Taylor series expansion, and instead may be described by a

Frobenius series.

5.2 Future Work

There are many interesting directions that could be pursued based on this work. In Chapter

2, we assume a fixed amount of time between control update intervals, and the problem

is to find the best interval to minimize the cost function. Alternatively, a topic of future

investigation could be to formulate the problem in a slightly more general way, for example

finding the best way to distribute n control law updates over m periods. Another interesting

topic that merits further analysis is the optimal distribution between position and velocity

uncertainty to obtain optimal costs.

From Chapter 3, it would be interesting to work on expanding the domain of application

for the spectral method. One could cast the dynamics of the H3BP in a different frame

which would remove the singularity. In theory, it is then possible that one could solve the

SHJB over the entire domain. Also, it would be interesting to investigate the benefit of

discontinuous Galerkin methods, which would allow for discontinuities in the solution of

the value function.

The Taylor series approach from Chapter 4, which was shown to work for the SHJB

equation under certain assumptions, also works for the Fokker-Planck equation (under the

same assumptions). This provides the ability to propagate probability distribution functions

(PDFs) through the full nonlinear dynamics. Potentially, this could provide the basis for

both optimal control and estimation. One difficulty is that the PDF must satisfy the integral

constraint that the volume integral over the domain must be unity. This property of PDFs is

not satisfied by a truncated power series. However, the mapping between nonlinear functions

and polynomials is not one-to-one; there are many functions that can be expressed by a

given polynomial. Hence, it should be possible to construct functions whose Taylor series
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match to a given order, but also satisfy the integral constraint.

Other work to be done in the future is move beyond simplified uncertainty analysis. The

goal is to demonstrate the techniques developed in this dissertation for actual spacecraft

trajectories.
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Appendix A

Numerical Considerations for the
Spectral Method with Chebyshev

Polynomial Bases

A.1 Even/Odd Symmetry

Often times, the cost function possesses even symmetry, V (~x) = V (−~x), along with system

dynamics that possess odd symmetry, ~a(~x) =−~a(−~x). When these two conditions are met,

the cost function will retain even symmetry as the solution is propagated backwards in time.

Even and odd symmetry allows for more efficient storage and computation as only half of

the data describing the full domain needs to be stored. For a general M dimensional problem,

with ni data points along the i-th dimension, the spectral coefficients, C are given by

CK0···KM−1 =

2M
n0−1∑
i0=0

· · ·
nM−1−1∑
iM−1=0

Vi0···iM−1 cos
(

π(i0 +1/2)K0

n0

)
· · ·cos

(
π(iM−1 +1/2)KM−1

nM−1

)
, (A.1)

where Ki ranges from 0 to ni−1, and Vi0···iM−1 are the values of V stored at the Chebyshev

nodes. This definition matches the form of the type II discrete cosine transform (DCT),

and can be computed quickly using an FFT library (see Section A.2). If V is an even or

odd function, then this sum may be evaluated using only half of the data. The following

formulae use the first half of the data along the last dimension, although other approaches
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are possible. If V is even, then Equation (A.1) evaluates to

CK0···KM−1 = 0, (A.2)

if
M−1∑
j=0

K j is odd,

and

CK0···KM−1 =

2M+1
n0−1∑
i0=0

· · ·
nM−1/2−1∑

iM−1=0

Vi0···iM−1 cos
(

π(i0 +1/2)K0

n0

)
· · ·cos

(
π(iM−1 +1/2)KM−1

nM−1

)
,

(A.3)

if
M−1∑
j=0

K j is even.

Alternatively, if V is an odd function, then

CK0···KM−1 =

2M+1
n0−1∑
i0=0

· · ·
nM−1/2−1∑

iM−1=0

Vi0···iM−1 cos
(

π(i0 +1/2)K0

n0

)
· · ·cos

(
π(iM−1 +1/2)KM−1

nM−1

)
,

(A.4)

if
M−1∑
j=0

K j is odd,

and

CK0···KM−1 = 0, (A.5)
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if
M−1∑
j=0

K j is even.

It is worth noting that these forms do not directly correspond to a DCT along the last

dimension.

These coefficients may be packed into an array such that the zero elements are not stored.

If V is even and we denote the packed form as C̃, we have

C̃K0···KM−1 =


CK0···(2KM−1),

M−2∑
j=0

K j is even

CK0···(2KM−1+1),
M−2∑
j=0

K j is odd
(A.6)

where K0 through KM−2 span the same range as before, but now KM−1 ranges from 0 to

nM−1/2−1. For the first case,

CK0···(2KM−1) =

2M+1
n0−1∑
i0=0

· · ·
nM−1/2−1∑

iM−1=0

Vi0···iM−1 cos
(

π(i0 +1/2)K0

n0

)
· · ·cos

(
π(iM−1 +1/2)KM−1

nM−1/2

)
,

(A.7)

which is a DCT of type II along all dimensions. For the second case,

CK0···(2KM−1+1) = 2M+1
n0−1∑
i0=0

· · ·
nM−1/2−1∑

iM−1=0

Vi0···iM−1 cos
(

π(i0 +1/2)K0

n0

)
· · ·

cos
(

π(iM−1 +1/2)(KM−1 +1/2)
nM−1/2

)
, (A.8)

which is a DCT of type II along all dimension except the last, which is a DCT of type IV.
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For an odd function, the coefficients may be packed as follows:

C̃K0···KM−1 =


CK0···(2KM−1+1),

M−2∑
j=0

K j is even

CK0···(2KM−1),
M−2∑
j=0

K j is odd
(A.9)

A.2 Discrete Cosine Transforms

The following are the 1-D forms of the four versions of the DCT, transforming input X to

output Y , as defined in FFTW [26]. Multidimensional transforms are simply the separable

product of the specified 1-D transforms along each dimension.

Type I: Yk = X0 +(−1)kXn−1 +2
n−2∑
j=1

X j cos[π jk/(n−1)]

Type II: Yk = 2
n−1∑
j=1

X j cos[π( j +1/2)k/n]

Type III: Yk = X0 +2
n−1∑
j=1

X j cos[π j(k +1/2)/n]

Type IV: Yk = 2
n−1∑
j=1

X j cos[π( j +1/2)(k +1/2)/n]

The type II transform is the inverse of the type III and vise verse; the type I and type IV

transforms are their own inverses.
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Appendix B

Stochastic Maximum Principle

The stochastic maximum principle is the extension of Pontryagin’s maximum principle to

stochastic systems. For deterministic systems, the maximum principle leads to two coupled

ODE’s with initial states and terminal costates given, resulting in a boundary value problem

which gives necessary conditions for optimality. The idea is similar in the stochastic case,

but more involved due to the proper mathematical treatment of the probability space. The

two primary complications are due to the need for second-order costates (adjoint variables)

and the need for a properly adapted solution. The second order costates are necessary to

obtain the correct balance between control and uncertainty. The adapted solution ensures

that the non-anticipatory nature of the solution is preserved.

In a deterministic system, time is easily reversed; given a state at some time, the state

at any other time (future or past) can be determined. In a stochastic system, we only

have knowledge of the past. This information asymmetry complicates the time-reversal

of solutions, causing the solution to backward SDEs to be a pair of processes. For the

dynamics given in Equation (3.26) and cost function in Equation (3.27), the first order

adjoint backward SDE is

d p(t) =−

bx(t,x∗,u∗)T p(t)+
m∑

j=1

σ
j

x (t,x∗,u∗)Tq j(t)− fx(t,x∗,u∗)

dt +qdW (t) (B.1)

p(t f ) =−hx(x∗(t f )), (B.2)

where x∗ is the optimal trajectory, u∗ is the optimal control, and q(t) is the unique process
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such that (p,q) is an adapted solution. The dynamics and first order adjoint equations can

be written analogously to the deterministic Hamiltonian system;

dx(t) = Hp(t,x(t),u(t), p(t),q(t))dt +Hq(t,x(t),u(t), p(t),q(t))dW (t) (B.3)

d p(t) =−Hx(t,x(t),u(t), p(t),q(t))dt +q(t)dW (t) (B.4)

x(t0) = x0 −hx(x(t f )), (B.5)

where

H(t,x,u, p,q) = pTb(t,x,u)+Tr{qT
σ(t,x,u)}− f (t,x,u). (B.6)

The second order adjoint backward SDE is

dP(t) =−
[
bx(t,x∗,u∗)TP(t)+P(t)bx(t,x∗,u∗)

+
m∑

j=1

(
σ

j
x (t,x∗,u∗)TP(t)σ j

x (t,x∗,u∗)+σ
j

x (t,x∗,u∗)TQ j(t)+Q j(t)σ j
x (t,x∗,u∗)

)
+Hxx(t,x∗,u∗, p,q)

]
dt +

m∑
j=1

Q jdW (B.7)

P(t f ) =−hxx(x∗(t f )), (B.8)

where Q(t) is the unique process such that (P,Q) is an adapted solution.

The maximum condition is given by

H (t,x∗(t),u∗(t)) = max
u∈U

H (t,x∗(t),u(t)), (B.9)
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with

H (t,x,u) = H(t,x,u, p(t),q(t))− 1
2

Tr
{

σ(t,x∗,u∗)TP(t)σ(t,x∗,u∗)
}

+
1
2

Tr
{
[σ(t,x,u)−σ(t,x∗,u∗)]TP(t)[σ(t,x,u)−σ(t,x∗,u∗)]

}
. (B.10)

B.1 Forward-Backward SDEs and the Four-step Scheme

The stochastic maximum principle results in what is known as a forward-backward stochastic

differential equation (FBSDE). A general form of an FBSDE is as follows:

dX(t) = b(t,X(t),Y (t),Z(t))dt +σ(t,X(t),Y (t),Z(t))dW (t) (B.11)

dY (t) = h(t,X(t),Y (t),Z(t))dt +Z(t)dW (t) (B.12)

X(0) = X0, Y (T ) = g(X(T )). (B.13)

If we assume Y (t) = θ(t,X(t)), where θ is some function to be determined, then the

expansion of Y by Itô’s formula is

dY (t) =
[

θt(t,X)+bT(t,X ,θ ,Z)θx(t,X)+
1
2

Tr
{
(σσ

T)(t,X ,θ ,Z)θxx(t,X)
}]

dt

+θx(t,X)σ(t,X ,θ ,Z)dW (t). (B.14)

Equating the dt and dW terms in Equations (B.12) and (B.14) yields the “four-step scheme”

[28].

1. From the dW term, find z(t,x,y,ρ) such that

z(t,x,y,ρ) = ρσ(t,x,y,z(t,x,y,ρ)), ∀t,x,y,ρ. (B.15)
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2. From the dt term, we need to solve the following PDE for θ(t,x)

h(t,x,θ ,z(t,x,θ ,θx)) = θt(t,X)+bT(t,X ,θ ,z(t,x,θ ,θx))θx(t,X)

+
1
2

Tr
{
(σσ

T)(t,X ,θ ,z(t,x,θ ,θx))θxx(t,X)
}

, (B.16)

θ(T,x) = g(x). (B.17)

3. Use θ and z, solve the SDE

dX(t) = b(t,x,θ(t,X),z(t,X ,θ(t,X),θx(t,X)))dt +σ(t,X ,θ(t,X),θx(t,X)))dW (t).

(B.18)

4. Set

Y (t) = θ(t,X(t)), (B.19)

Z(t) = z(t,X(t),θ(t,X(t)),θx(t,X(t))). (B.20)

B.2 System Linear in Control

When the above results are applied to a system defined Equations (3.29) and (3.30) with

C = d = 0, the equations simplify substantially. The adjoint equations are

d p(t) =−
[
aT

x p
]

dt +qdW (B.21)

dP(t) =−
[
aT

x P+Pax +∂
2(pTa)/∂x2]dt +

m∑
j=1

Q jdW j. (B.22)

We may solve for the optimal control from the maximum condition in terms of p and q:

u∗ = R−1(BT p+DTq). (B.23)
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Substituting this control into the dynamics gives

dx(t) =
[
a(t,x)+BR−1BT p+BR−1DTq

]
dt +

[
DR−1BT p+DR−1DTq

]
dW. (B.24)

If we assume that p is some deterministic function of t and x, p = θ(t,x), then we can

expand p with the Itô formula to obtain

d p =
[
θt +

(
a+BR−1BT p+BR−1DTq

)T
θx

+
1
2

Tr
{(

DR−1BT p+DR−1DTq
)(

DR−1BT p+DR−1DTq
)T

θxx

}]
dt

+
[
θ

T
x
(
DR−1BT p+DR−1DTq

)]
dW. (B.25)

When this is compared with Equation (B.21), the dW gives q in terms of p (this is step one

of the four-step scheme):

q = θ
T
x DR−1BT p+θ

T
x DR−1DTq (B.26)

=⇒ q =
(
I−θ

T
x DR−1DT)−1

θ
T
x DR−1BT p (B.27)

=
(
θ
−1
x −DR−1DT)−1

DR−1BT p, (B.28)

assuming that the inverse exists and θx is symmetric. Substituting this into the control gives

u∗ =
[
R−1 +R−1DT (

θ
−1
x −DR−1DT)−1

DR−1
]

BT p, (B.29)

which can be simplified with the matrix inversion lemma, Equation (B.31), to

u∗ =
(
R−DT

θxD
)−1

BT p. (B.30)
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The matrix inversion lemma, also know as the Woodbury identity is

(
A+CBCT)−1

= A−1−A−1C
(
B−1 +CTA−1C

)−1
CTA−1. (B.31)

Comparing this form of u∗ to Equation (3.33), it is clear that the first-order costate is

just the gradient of the value function, just as in the deterministic case:

p = θ(t,x) =−∂V
∂x

, (B.32)

∂θ

∂x
=−∂ 2V

∂x2 . (B.33)
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Appendix C

Stochastic Systems with Multiplicative
Noise

C.1 Optimal Control of Linear System with Multiplica-
tive Noise

In the case of linear systems with additive noise, the well-known certainty-equivalence

principle states that the form of the optimal feedback control law is unchanged from the

deterministic case. When multiplicative noise is considered, the certainty-equivalence prin-

ciple is no longer valid, although the optimal feedback law is still linear. A continuous-time

linear system with multiplicative noise is [31]

dXt = A(t)Xtdt +B(t)Utdt +D(t,Xt)dW1t +F(t)dWt . (C.1)

The matrix D is of the form

D(t,x) =
n∑

i=1

xiDi(t), (C.2)

where each Di is a matrix. The cost (soft constraint) is

J = E
[∫ T

t0

(
XTQ(t)X +UTR(t)U

)
dt +XTQ f X

]
. (C.3)

The optimal control is given by

U∗ =−L(t)X , (C.4)
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where

L(t) = R−1(t)BT(t)S(t), (C.5)

Ṡ(t) =−AT(t)S(t)−S(t)A(t)+S(t)B(t)R−1(t)BT(t)S(t)−Q(t)+∆(t,S(t)) (C.6)

[∆(t,S)]i j = Tr{DT
i (t)SD j(t)}, (C.7)

S(T ) = Q f . (C.8)

In Equation (C.6), the only term differing from the deterministic case is ∆(t,S(t)).

As mentioned, in the previous section, multiplicative noise can actually help stabilize

a system. The following are example solutions for varying system parameters. Common

parameters for all cases are B = 1, F = 1, Q = 0, R = 1/2. The remaining parameters are as

follows:

1. Borderline Stable: A = .5, D = 1, t f = 10, Q f = 10

2. Stable: A = .25, D = 1, t f = 10, Q f = 10

3. Very Stable: A = .25, D = 2, t f = 10, Q f = 10

4. Borderline Stable with High Terminal Cost: A = .5, D = 1, t f = 10, Q f = 1000

5. Stable with High Terminal Cost: A = .5, D = 1.5, t f = 10, Q f = 1000

6. Stable with Long Horizon: A = .5, D = 1.5, t f = 50, Q f = 10

For all cases, the interval was divided into 20,000 time steps and numerical integration was

performed using the Milstein scheme, which is strongly convergent with order 1.0. (The

Milstein scheme is the proper generalization of the Euler scheme to stochastic systems.)

Notice that although all of the following systems would be unstable without noise, some

of the control values are extremely small – essential zero. These are the cases where the

noise actually causes sample paths to converge to zero without effort.
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C.1.1 Borderline Stable

Figure C.1 Sample Path

Figure C.2 Control
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C.1.2 Stable

Figure C.3 Sample Path

Figure C.4 Control
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C.1.3 Very Stable

Figure C.5 Sample Path

Figure C.6 Control

114



C.1.4 Borderline Stable with High Terminal Cost

Figure C.7 Sample Path

Figure C.8 Control
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C.1.5 Stable with High Terminal Cost

Figure C.9 Sample Path

Figure C.10 Control
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C.1.6 Stable with High Terminal Cost and Long Horizon

Figure C.11 Sample Path

Figure C.12 Control
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C.2 Multi-Dimensional Linear System with Multiplica-
tive Noise Example

This is an example of optimal feedback control of a 1 degree of freedom linear system with

scalar control and multiplicative noise in the form of Equations (C.1) through (C.3). The

system is driven by scalar Brownian motion and defined by the following:

A =

 0 1

ηβ 2 0




η =−1, oscillatory

η = 0, double integrator

η = 1, unstable

B =

0

1

 , D = X2

0

ε

 , ε = 0.2 F = Q = 0, R = 1/2, Q f = 10, T = 10.

Note that this system is driven by noise that is proportional to the velocity (X2). Since the

noise is purely multiplicative, the system becomes smooth again as the velocity goes to zero.

The following are some examples (all with the same noise realization) with initial condition

[2;1].

C.2.1 Oscillatory
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Figure C.13 Oscillatory phase-plane trajectory

Figure C.14 Oscillatory time history of states

119



Figure C.15 Oscillatory time history of control
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C.2.2 Double Integrator

Figure C.16 Double integrator phase-plane trajectory

Figure C.17 Double integrator time history of states
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Figure C.18 Double integrator time history of control

122



C.2.3 Unstable

Figure C.19 Unstable phase-plane trajectory

Figure C.20 Unstable time history of states
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Figure C.21 Unstable time history of control
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C.3 Optimal Control of a Stochastic Linear System with
Control-Dependent Noise with Quadratic Cost

This section is a summary of Chapter 6 in [28]. For a general linear system with inhomo-

geneous terms, along with both state and control dependent noise, with multi-dimensional

noise, the dynamics are given by

dx(t) = [A(t)x(t)+B(t)u(t)+b(t)]dt +
m∑

j=1

[C j(t)x(t)+D j(t)u(t)+σ j(t)]dW j(t). (C.9)

Let the cost function be

J = E
[

1
2

∫ T

t0
[xT(t)Q(t)x(t)+2xT(t)ST(t)u(t)+uT(t)R(t)u(t)]dt +

1
2

xT(T )Gx(T )
]
.

(C.10)

For compactness, define Z1, Z2, and Z3 as

Z1 =

(
BTP+S +

m∑
i=1

DT
i PCi

)
, (C.11)

Z2 =

(
R+

m∑
i=1

DT
i PDi

)−1

, (C.12)

Z3 =

(
BT

φ +
m∑

i=1

DT
i Pσi

)
. (C.13)

The stochastic Riccati equation is

Ṗ+PA+ATP+
m∑

j=1

CT
j PC j +Q−ZT

1 Z2Z1 = 0. (C.14)

with P(T ) = G. If the system dynamics are non-homogeneous (b or σ j are not zero), then

the following must also be integrated:

φ̇ +[A−BZ2Z1]
T

φ +
m∑

j=1

[
C j−D jZ2Z1

]T Pσ j +Pb = 0, (C.15)
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with φ(T ) = 0.

Define Ψ and ψ as

Ψ = Z2Z1 (C.16)

ψ = Z2Z3. (C.17)

The optimal feedback control is then

u(t) =−Ψ(t)x(t)−ψ(t). (C.18)

The optimal cost-to-go is given by

V (t,x) =
1
2

xTPx+φx+ f , (C.19)

where f (T ) = 0 and

ḟ =
1
2

∣∣∣Z−1/2
1 ψ

∣∣∣2−ψ
Tb− 1

2

m∑
i=1

σ
T
i Pσi.
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