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CHAPTER I

Introduction

1.1 Introduction and motivation

The analysis of clustered and multivariate longitudinal data arises in many sit-

uations. While mean structures dominate many applications involving these types

of data, in some important applications the primary interest is in the associations

between variables, or between individuals in a cluster. For example, when studying

family dynamics, or the environmental or genetic basis of traits, it is important to

understand how a particular trait covaries among family members. Here the family

is viewed as a cluster comprising individuals whose traits are dependent within and

across time. As another example, consider a collection of distinct but related traits

measured over time on unrelated individuals. In this case, the dependencies among

the traits describe patterns of comorbidity.

The motivating application for this work is data collected from a long term family

study conducted jointly by the University of Michigan and Michigan State University,

known as the Michigan Longitudinal Study (MLS) [Zucker et al. (1996)]. The fami-

lies in the MLS all had at least one young child at the time of enrollment, and were

ascertained following a complex strategy that enriched for families at high risk for

substance abuse. Subsets of the MLS will be used to illustrate the various method-

ological contributions of this dissertation.
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There are extensive research literatures on longitudinal data analysis, the analysis

of clustered data, and multivariate data analysis. Much less work has been done to

link these areas. For example, most of the literature on multivariate longitudinal

data focuses on marginal and conditional mean structures, and the literature on

clustered longitudinal data mainly focuses on the impact of within-cluster dependence

on uncertainty levels for estimated mean structures. In both cases, the dependency

structure enters primarily as a nuiscance, rather than as the primary object of interest.

In this dissertation, two distinct, but related ideas are developed. The first is to

explicitly model the dependency between variables in multivariate longitudinal data

as a function of time. This allows the dependency between two variables to become

stronger or weaker over time, and even to change in direction. This approach is

shown to provide new insight into the pattern of comorbidities between related traits

viewed over time. The second area developed here is motivated by the fact that all

longitudinal data for human subjects is simultaneously longitudinal in two senses –

it can be viewed as a longitudinal function of age, or as a longitudinal function of

time. When individuals are related, these two ways of indexing the data may interact

in subtle ways. We consider a generative model in which the unobserved events that

drive within-cluster dependencies are either functions of age, or of time. A major

focus is how and whether these two sources of covariation can be separated using

observational data.

1.2 Background and review

For perspective, we now provide the necessary background on several fundamental

concepts in the analysis of clustered and/or longitudinal data, with primary emphasis

on methods used to characterize the association structure. This begins with a review

of general random effects models and how they are used to describe the pattern of

coherence in multivariate data. Generalized Estimation Equations (GEE) are another

2



approach which bears mentioning due to the frequency of use in the analysis of cor-

related data. Covariance structure modeling (CSM) will also be mentioned, due to

the flexibile patterns of coherence they are capable of describing. Finally, log-linear

models for multivariate binary data, which does not explicitly fall into any of the

categories above, is mentioned.

1.2.1 Random effects models

Of fundamental importance in the field of modeling correlated responses is the

random effects model. The commonality between all random effects models is that

correlations between observed variables are assumed to arise from underlying unob-

served variables that are completely or partially shared between observations. Clas-

sical work from the early 20th century by R.A. Fisher and his contemporaries [e.g.

Fisher (1919)] utilized random effects models to estimate genetic and environmental

contributions to an observed trait, where estimation was based on the comparison

of identical and non-identical twin pairs. Much of the early work in random effects

models is built upon the framework of Charles Roy Henderson, a good review of which

is given in Searle (1968). The general model described by Searle was

Yi = Xiβ + Uiξi + εi (1.1)

Here Yi,Xi,Ui are the subject i response, predictor variables, and random effects

design matrix, respectively. β are fixed effects coefficents, ξi are mean 0 random

variables with covariance matrix σ2A, and εi are iid errors. Several methods were

described by Henderson to estimate the variance components, each of which involved

solving a system of equations generated by equating some type of mean squares to

their expectations. In addition, the methods of Henderson can be used to give best

linear unbiased predictors for the random effects. Quite general structures for A

may be used to describe very intricate patterns of correlation in a data set. One
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major advantage of the approaches advocated by Searle and Henderson are they they

do not require balance in the data and they do not explicitly assume an underlying

distribution for the random effects, only the existence of the first two moments of the

response variable. The other primary estimation technique contemporary to this was

to assume a multivariate normal distribution for the random effects and use maximum

likelihood (ML) estimation [e.g. Hartley and Rao (1967)].

Noting the computational difficulty of ML estimation of variance components, and

the questionable theoretical basis for the ANOVA-type methods used by Searle and

Henderson, Rao (1971) describes estimation of a linear combination of the variance

components,

c1σ
2
1 + ...+ ckσ

2
k, (1.2)

by a quadratic function of the responses, Y′AY. Rao describes a method of deter-

mining A by minimizing a particular matrix norm under certain constraints, such

as unbiasedness and invariance under translation of the covariates X. This general

approach is termed minimum norm quadratic unbiased estimation (MINQUE). It is

argued by Rao that this approach is computational simpler to its predecessors and is

appropriate for any experimental design, whereas with previous methods seemingly

arbitrary choices must be made, depending on the data conditions.

Due to the desirable asymptotic properties of ML estimation, interest in determin-

ing methods for calculating MLEs for variance parameters became of greatest interest

as computing power improved. Noting that ML estimators of variance components

in model (1.1) are generally biased downward in finite samples and ignore the loss in

degrees of freedom from estimation of β, a restricted maximum likelihood (REML)

approach to estimation was considered. This method was described by Harville (1977)

as ML analysis of a data set based on n − p? linearly independent error contrasts,

where p? = rank(X). REML produces unbiased (and in some cases, lower MSE than

4



ML) estimates of variance components and still maintains the validity of the likeli-

hood ratio test and Wald based confidence intervals under the standard regularity

conditions.

A seminal work on the random effects model, Laird and Ware (1982), takes a

different view. Instead of considering the marginal distribution, Yi|Xi ∼ N(Xiβ,V),

and maximizing the likelihood, the authors take a Bayesian view and consider the

distribution of Yi|Xi, ξi. The unconditional likelihood is calculated by integrating

over ξi and β and optimizing the resulting likelihood to get estimates of the random

effect variances and covariances. Estimates of the fixed effects and random effects can

be calculated by their posterior expectation, given the converged parameter values.

The authors show that when a flat prior is placed on the fixed effects with variance

approaching 0, this yields a REML estimator of the parameters in the model. This

work laid the foundation for modern random effects models and paved the way for

much subsequent progress.

Extending upon the work of Laird and Ware (1982), various models for mixed

effects analysis of categorical data were developed. Stiratelli et al. (1984) use an

exactly analogous approach to model the logit response probabilities λi = log( pi

1−pi
)

as

λi = Xiβ + Uiξi. (1.3)

Ochi and Prentice (1985) used the probit rather than logit link, noting its appropriate-

ness for use on equicorrelated binary data. Gilmour et al. (1985) built mixed models

for binomial outcomes by viewing them as thresholded normal random variables,

which highlights an important equivalence. Lindstrom and Bates (1990) proposed

a more general class of non-linear mixed models that is the basis of the most much

mixed model software. Retaining notation from above and denoting the t-th entry of

Yi by Yit, this model is

5



Yit = f(Aiβ + Uiξi,Xit) + εit (1.4)

where Ai,Ui are fixed and random effect design matrices. The authors assert that any

non-linear function of fixed and random effects can be written as (1.4) for the properly

chosen f . The estimation procedure is a combination of least-squares for non-linear

fixed effects models and ML/REML for linear random effects models. Generalizations

of such models for various types of data and analysis goals are discussed in Pinheiro

and Bates (2000) and implemented in the R package lme4. A good survey of the some

numerical techniques required for the approximation of the log-likelihood in mixed

effects models, which often involves high dimensional numerical integration, is given

by Pinheiro and Bates (1995).

Various other advancements have been made in recent years on the use of random

effects models. Particularly with random effects models for longitudinal data, the

view of responses as superpositions of random, smooth functions in the vein of Ramsey

and Silverman (1997) has received some attention. As noted by Gao et al. (2001),

several authors have used smooth functions to model fixed parameters in mixed effects

models, but this alone does not provide an extension to the functional data case. The

basic functional mixed effects model is the natural extension of Laird and Ware’s

formulation:

Yit = Xitβ(t) + Uitξi(t) + εi(t), (1.5)

where β(t) is a smooth function and each of ξi(t) are smooth random processes.

The fixed effects are typically estimated by either some basis expansion– Guo (2002)

used smoothing splines, Morris and Carroll (2006) used the wavelet basis– or by

some penalty [e.g. Ke and Wang (2001)] to ensure the estimated function is smooth.

Random effects are commonly envisioned as realizations of some Gaussian process

6



with smoothness quantified by some basis expansion or penalty [e.g. Guo (2002), Ke

and Wang (2001), Morris and Carroll (2006)].

1.2.2 Generalized estimating equations

Another tool that has found applicability in models for multivariate data is gen-

eralized estimating equations (GEE). Zeger and Liang (1986) introduced GEE as a

quasi-likelihood based method for estimating regression parameters in non-Gaussian

GLMs. The only distributional assumption made is that the data arises from an

exponential family, with the standard parameterization being that µj = h(Xjβ), for

some link function h. The GEE estimator solves

n∑
j=1

(
∂µj

∂β

)′
Vj(α, φ)−1(Yj − µj) = 0 (1.6)

where Vj(α, φ) = A
1/2
j Rj(α)A

1/2
j /φ, φ is a dispersion parameter and Aj is a di-

agonal matrix with elements g(µij), where g is a function linking the mean to the

variance. Vj is a surrogate for the covariance matrix of Yj, where Rj(α) is a work-

ing correlation matrix indexed by a parameter α. The authors show that, regardless

of misspecification in R, the β̂ arrived at by iteratively solving (1.6) and plugging in

empirical estimates of φ,α based on the residuals, is consistent. If the true covariance

matrix is within the family defined by Rj, then the resulting estimates are efficient.

The original formulation of GEE views the covariance structure as a nuisance

parameter. As shown by Liang et al. (1992) the estimates of α derived by ordinary

GEE are very inefficient, thus when the association structure is of interest, ordinary

GEE is not appropriate. Prentice (1988) extended GEE with a second set of estimat-

ing equations analogous to (1.6) for the pairwise correlations, with its own working

correlation matrix. The estimator is then the simultaneous solution to the two sets of

estimating equations. Lipsitz et al. (1991) did analogous work in binary data using

7



the odds ratio as a measure of association rather than correlation. Related work by

Zhao and Prentice (1990) and Prentice and Zhao (1991) extend GEE to the simulta-

neous estimation of means and covariances in more general data settings in what is

termed by Liang et al. (1992) to be ‘GEE2’. Other work on extending GEE2 to more

general settings with continuous and/or categorical responses can be found in Liang

et al. (1992), Zhao et al. (1992). Molenberghs and Ritter (1996) show a connection

between GEE2 and a class of likelihood-based marginal models using the quadratic

exponential family.

GEE2 does represent an improvement when the association structure of interest,

but some aspects are sacrificed. Depending on the size of the clusters, there may be a

substantial number of squares and cross products used in the second order equations.

In addition, the property that the estimates are consistent under misspecification is

lost [McCulloch (2003)]. GEE, even when no misspecification is present, does not

partition out variation into distinct sources the way random effects models do; in

many inquiries, such as genetic analysis, the relative impact of certain sources of

variation are the primary interest. Finally, when the overall goal of the analysis is to

estimate the association structure, GEE may be quite inefficient [McCulloch (2003)].

1.2.3 Covariance structure models

Structured covariance models (CSM), originated by Bock (1960) and further ex-

plicated in Bock and Bargmann (1966), represent a very broad class of models used

to represent a population covariance matrix, Σ as a function of a parameter vector

θ. When the covariance structure is of primary interest, this model introduces an

enticing possibility for readily interpretable components contributing to particular

variances and covariances. CSM has primarily found application in social sciences

where non-experimental data is very common. CSM is commonly used to measure

some underlying construct only from observation of noisy data meant to measure that
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construct, illuminating the relationship between CSM and factor analysis.

As noted by Joreskög (1978), much of the early work in covariance structure

modeling involved parameterizing Σ by a sum or product of matrices, with largely a

priori structures for each constituent matrix. A simple example of this would be

Σ(σ1, σ2) = σ2
1

 1 1

1 1

+ σ2
2

 1 0

0 1

 . (1.7)

The work of Joreskög (1978) was the first to consider the possibility of modeling

Σ(θ) directly by minimizing, over θ, the discrepancy between Σ(θ) and the sample

covariance matrix, S. This development largely gave birth to modern structural

equation modeling packages such as LISREL. The primary methods for estimation of

the CSMs described by Joreskög (1978) minimize:

1. Least Squares: L(θ) = Tr (S−Σ(θ))

2. Generalized Least Squares: L(θ) = Tr (I− S−1Σ(θ))

3. Maximum (Normal) Likelihood: L(θ) = Tr (Σ(θ)−1S)− log |Σ(θ)−1S| − p

where p is the dimension of S. Each criterion can be maximized using standard

derivative based methods. When normality is a reasonable assumption, the maximum

likelihood method is generally preferable, since twice the log of the likelihood ratio,

Λ(θ̂) = 2
(
L(S)− L(Σ(θ̂))

)
, (1.8)

has an asymptotic χ2
k distribution where L is the normal likelihood function, k =

1
2
p(p + 1) − D, and D is the number of elements in θ̂. Λ(θ̂) is generally used as

a measure of fit of a given CSM. In addition, nested CSMs can be compared by

calculating Λ(θ̂1)−Λ(θ̂2), which has a χ2 distribution with degrees of freedom equal

to the difference in dimension between the two models.
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Building upon the work of Joreskög (1978), many developments have made in

CSM. Covariate effects on the covariance structure can be included [e.g. Satorra

and Saris (1985)]. When the response variable is categorical and can be viewed

as a thresholded continuous variable, CSM analysis of thresholded responses [e.g.

Muthén and Muthén (2004)] is possible. When the dependent variable is continuous

and not directly observed, Muthén (1984) describes a method of discovering class

membership, known now as latent class analysis. This belongs to a more general

class of CSM models known as exploratory factor analysis where the user does not

have a priori beliefs about the association structure in the data. In addition, non-

random missingness has been investigated in [Muthén et al. (1987)]. A review of many

of the capabilities of modern computing packages for CSMs, particularly MPLUS, is

given in Skrondal and Rabe-Hesketh (2005).

CSM provides a general method of either discovering meaningful patterns of as-

sociation in the data or confirming previously posited hypotheses. The method is

attractive in that models can be constructed so parameters are interpretable and cor-

relation structures corresponding to some substantive theory can be formulated and

tested in a unified way. One drawback, as noted by Bentler and Dudgeon (1996), is

that the distributional assumptions are very seldom tested and can have a major im-

pact on inference. While inference procedures that do not depend on normality [e.g.

Browne (1984)] exist, not many are implemented in statistical packages for practioner

use [Bentler and Dudgeon (1996)]. In addition, approximate identifiability issues in

CSM, particularly in complicated models, are often very subtle and can lead to er-

roneous conclusions if gone unnoticed. The practioner would be well advised to test

for such subtle identifiability issues by examining the fisher information matrix for

approximate singularity at the converged point or checking covergence points from

different starting values.
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1.2.4 Log-linear models for multivariate binary data

Since no covenient analogue to the normal distribution exists for binary data,

methods which do not assume an underlying continuous construct (e.g. random

effects models, CSM) are relatively sparse. Much of the material below is reviewed

in greater depth by Pendergast et al. (1996). One common specification for the joint

distribution is that which is used in Zhao and Prentice (1990); the commonly termed

log linear model:

log (P (Yi = yi)) = Ψ′
iyi + Ω′

iwi − A(Ψi,Ωi). (1.9)

where wi is a vector of all pairwise and higher order cross products of yi, Ψi,Ωi

are parameters, and A(Ψi,Ωi) is a normalizing constant. The elements of Ψi are

interpreted as conditional probabilities, while the elements of Ωi are interpreted as log

conditional odds ratio contrasts and completely determine the association structure;

each are typically modeled by regression on number of discrete [e.g. Koch et al.

(1977)] or continuous [e.g. Fitzmaurice and Laird (1993)] predictors. This model

gives a straightforward way of testing covariate effects on the association structure,

as well as a framework for determining the presence of higher order associations.

For example, one can exclude anything beyond pairwise associations by specifying

the corresponding elements of Ωi to be 0, and compare this with the unconstrained

model. As noted by Pendergast et al. (1996), various incarnations of this model have

been used:

• Use (1.9) directly but set third and higher order interactions to zero. This yields

a sort of autoregressive binary model and has been studied by Besag (1974),

among others.

• Transform model (1.9) so as to model marginal, rather than conditional prob-

abilities, and do not place any constraints on the association structure [e.g.
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Fitzmaurice and Laird (1993)].

• Model the marginal probabilities and assume only pairwise associations are

nonzero. This is equivalent to the GEE model of Zhao and Prentice (1990), and

is the MLE when the higher order log conditional odds ratios truly are 0.

As noted by Laird (1991), the marginal models which result from transforming (1.9)

do not admit a similar form. A closely related method detailed by Carey et al.

(1993) describes estimation of marginal means and pairwise odds ratios by alternating

between logistic regression of each response on a number of covariates and on each

other response in a cluster.

1.3 Description and outline

Methodologies involving each of the two data structures described in the introduc-

tion represent the dichotomy of the work presented in this dissertation. In chapter 2

multiple binary variables observed on independent individuals over time is the setup.

In the bivariate case, a framework based on reparameterization of the sequence of

2×2 tables into the corresponding marginal probabilities and odds ratio. Each of the

parameters are modeled as smooth functions of time and are estimated with a pe-

nalized maximum likelihood approach. In the general multivariate case an estimator

based on conditional composite likelihood is used to estimate each of the pairwise log

odds ratios as smooth functions of time. This approach does not require specification

of the marginal probabilities or higher order associations, which are considered to be

nuisance parameters. Each method is demonstrated on a set of binary measurements

made on children from the MLS.

In Chapter 3 the focus is shifted to the analysis of a single variable observed on in-

dependent clusters of individuals, with the “cluster” in mind being a family. Building

on the conventional models for longitudinal family data, which are reviewed in detail,
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a unified framework for characterization of familial correlation is built. A key feature

of this framework is that longitudinal aspects of the correlation structure due to both

age and time, which are both argued to be potentially important, are accommodated.

The extent to which we can characterize and disaggregate these two effects is explored

through empirical studies. The resulting formulation reflects a previously unexplored

pattern of resemblance in longitudinal family data. ML estimation is described, as

well as details on identifiability, hypothesis testing, and computation. Results are also

displayed on quantitative measurements of child temperament from the MLS data.

Chapter 4 concerns the extension of the model in chapter 3 to the binary case.

The primary reason for this extension is that many traits of interest that would be

expected to cohere within families are binary. Complexities of the model are detailed,

including an explanation of why ML estimation is not possible in the binary case. To

mitigate this problem, an alternative criteria based on composite likelihood is used.

In this model it is found that binary data does not support the estimation of the

full model detailed in chapter 3 and a simplified model is settled for. Details on the

computation of the estimates in the simplified model are given, as well as some results

to display the ability to recover the data generating population structure.
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CHAPTER II

Functional analysis of Odds Ratio trajectories in

multivariate binary data

2.1 Introduction and illustrative examples

We consider multivariate binary responses made over multiple time points for a

sample of individuals. For example, in the longitudinal family study discussed below

we will analyze ratings of a child on a number of behavioral measures by his or her

mother. Such data can be viewed as arising from a sequence p× p contingency table

with cell probabilities Pt(x1, ..., xp) indexed by time, t. A common line of investigation

is to examine the cell marginal probabilities and their pattern of change over time.

However, it may also be of interest to examine the association structure between

variables and its change over time, which is our focus here.

As a concrete example, we consider a longitudinal study of children with ages

ranging from 3 to 18. A number binary behavioral measurements are taken, mostly

relating to characteristics like anxiety and aggression that are of interest to researchers

studying children exposed to adverse environments. In the data analyzed below,

children considered at high risk for substance abuse are observed at roughly 4 time

points.

In this data setting the mean trajectory is often of substantial interest. However,

the mean trajectory may only tell part of the story. For example, the some behaviors
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are considered “normative” for children of a particular age, so higher frequencies can

have different underlying meanings at different ages. Associations between variables

indicate whether certain behaviors tend to appear or disappear simultaneously at

specific ages. A set of behaviors with high pairwise association may be viewed as

defining a response to environmental adversity (or lack thereof) that is shared by

a subset of the study population. If this association appears for only, say, younger

children, then we can infer that this particular response pattern is one that originates

at a particular developmental stage.

There exists some previous work on the analysis of multivariate binary data. Of

primary importance is the log-linear model described in the introduction. The log-

linear model, which will be discussed more later, only models the odds ratio as implied

by the parameters in the model, rather than by explicit parameterization. For this

reason we seek an alternative. In other work, Wang (1997) looked at odds ratios

in a regression framework using smoothing spline ANOVA [Wahba et al. (1995)].

However, the “odds ratio” studied by Wang only quantifies changes in prevalence

from one time to another, rather than the measure of association we will consider

below. In addition there are a number of previous applications of composite likelihood

methods, which will be the focus of the second half of this chapter, to dependent

binary data [Heagerty and Lele (1998)] and longitudinal analysis [Molenberghs and

Verbeke (2005)]. Methods for dimension reduction have also been developed [e.g.

de Leeuw (2006)].

We begin by considering the case where p = 2, and develop a method to esti-

mate the marginal probabilities and log odds ratio as smooth functions of age. The

approach is based on penalized maximum likelihood estimation and borrows from

the regularized function estimation techniques described by Ramsey and Silverman

(1997). Second, we leave p unconstrained and described a conditional composite like-

lihood approach that is tractable and flexible in terms of how pairwise associations
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and their temporal change is specified, and is not burdened with the need to model

marginal rates and higher order associations. The higher order associations may have

their own complex structure, but are of lesser or separate interest in many applica-

tions. The first method is demonstrated on the MLS data, with this analysis omitted

on the second method due to substantial content overlap.

2.2 Penalized ML estimation for bivariate binary trajectories

A natural starting point is a cross-sectional analysis of a specific pair of behavioral

measures “Item 1” and “Item 2” at a particular child age a. These ratings can be

viewed as arising from a 2× 2 table

Y N

Y P11(a;X) P10(a;X)

N P01(a;X) P00(a;X)It
em

1

Item 2

where P11(a;X) denotes the probability that a child at age a is rated as symptomatic

on both items, P10(a;X) denotes the probability that a child at age a is rated as

symptomatic on item 1 but not on item 2, and so on. The symbol X denotes a vector

of covariates.

Focusing on the longitudinal structure of these contingency tables, an important

question is whether there are meaningful temporal patterns in the log-odds ratio

LOR(a;X) ≡ logP11(a;X) + logP00(a;X)− logP10(a;X)− logP01(a;X) (2.1)

between two items over time. Such patterns reflect comorbidities between distinct

behaviors that may vary in strength for children of different ages. Changes in the

marginal frequencies
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M1(a;X) ≡ P11(a;X) + P10(a;X) (2.2)

M2(a;X) ≡ P11(a;X) + P01(a;X) (2.3)

may also be of interest, but these could be evaluated in a univariate setting, while

the bivariate setting is especially suited for studying associations between items. The

marginal probabilities are considered nuisance parameters in this analysis. We also

consider covariate effects. In particular, we will consider how covariates may either

explain, or modulate the comorbidity between two items.

As a motivating example, consider the plots shown in Figure 2.1, which show

the sample log odds ratio trajectory for two item pairs from the Michigan Longitu-

dinal Study (MLS), which is discussed in more detail below. These trajectories are

constructed by calculating the sample log odds ratio for all children measured at a

particular age (left panel) or for the subgroups of children defined by a measure of the

father’s alcohol use (right). Since the children are generally measured at three-year

intervals, these cross-sectional estimates use approximately one-third of the sample,

roughly 200 children. The first item pairs shown in the figure suggest a degree of

positive association between the items. For example, for older children, the log odds

ratio between “feels unloved” and “screams” varies around 2.5. These positive asso-

ciations are expected given the overlapping content of the items being rated (being

broadly in the anxiety domain). In the right panel, it appears there is a qualitatively

different trajectory in the two strata defined by father alcohol use. The high level of

variability between time points may be acting to obscure interesting features of these

trajectories. Much of the year-to-year fluctuation is unlikely to be real. By estimating

the model parameters as smooth functions of time, it becomes possible to estimate

these trajectories more precisely, which greatly aids in making interpretations.
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Figure 2.1: Sample log odds ratios using available data for each age, for two MLS
item pairs. The left panel shows show log odds ratios for all children.
In the right panel, the log odds ratios are calculated separately for two
groups defined by their father’s alcohol use level (blue: alcoholic father,
green: non-alcoholic father).

2.2.1 Development of the model

The family of 2×2 tables given is in on-to-one correspondence with the three time

varying parameters:

M1(t;X) = P11(t;X) + P10(t;X) (2.4)

M2(t;X) = P11(t;X) + P01(t;X) (2.5)

LOR(t;X) = logP11(t;X) + logP00(t;X)− logP10(t;X)− logP01(t;X).(2.6)

Notice we have now substituted time (t) for age (a) for greater generality. The

domains of M1 and M2 are (0, 1), while the domain of LOR is (−∞,∞). We will

parameterize these functions of time as
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logit
(
M1(t;X)

)
= µ1t +

∑
k

Xtkφ1tk (2.7)

logit
(
M2(t;X)

)
= µ2t +

∑
k

Xtkφ2tk (2.8)

LOR(t;X) = θt +
∑

k

Xtkψtk. (2.9)

When no covariates are present, there are no parametric constraints between (2.4),

(2.5), (2.6) and (2.7), (2.8), (2.9). Covariate effects are assumed to be additive on

either the logistic scale (for marginal probabilities) or the logarithmic scale (for the log

odds ratio), with time-varying coefficients. For estimation, the trajectory parameters

µ1t, µ2t, θt, φ1tk, φ2tk, and ψtk are viewed as smooth functions of t. We aim to construct

estimators and inference procedures for these parameters that automatically adapt

to the degree of smoothness in a particular population and to the size of the sample.

2.2.2 Relationship to log-linear modeling

The most widely used tool for studying complex patterns of association in binary

data is the log-linear model discussed in the introduction. Suppose we let Nijt denote

the number of subjects responding at level i for item 1 and level j for item 2 at time

t. Then

logENijt = µ+ αit + βjt + γijt (2.10)

such that
∑

i αi =
∑

j βj =
∑

ij γijt = 0 defines a log-linear model. In this setting,

the log odds ratio function is

LOR(t) = γ11t + γ00t − γ10t − γ01t. (2.11)

Analogous expressions for the marginal probabilities can be derived. Thus, the model
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developed above is equivalent to this model, and it would be possible for either pa-

rameterization to work. However, our approach will directly model the marginal

probabilities and log odds ratios as functions. Treating the α, β, γ as the primary

functions of interest is less appealing, as these will not be the focus of our infer-

ence or interpretation. In addition, the penalized MLE we will describe below is not

invariant to invertible re-parameterizations whereas the MLE is.

2.2.3 Computation of the estimates

First we show that each 2 × 2 table can be parameterized by the odds ratio and

marginal probabilities. The log odds ratio at time t can be written in terms of

Θ = (P11(t;X),M1(t;X),M2(t;X)):

LOR(t;X) = logP11(t;X) + logP00(t;X)− logP10(t;X)− logP01(t;X)

= logP11(t;X) + log(1 + P11(t;X)−M1(t;X)−M2(t;X))−

log(M1(t;X)− P11(t;X))− log(M2(t;X)− P11(t;X)), (2.12)

where

max(0,M1(t;X) +M2(t;X)− 1) ≤ P11(t;X) ≤ min(M1(t;X),M2(t;X)). (2.13)

As P11(t;X) moves through this range, LOR(t;X) increases monotonically from

−∞ to +∞. Therefore a specified value of the LOR(t;X), M1(t;X), and M2(t;X)

uniquely determines the response distribution at time t.

Let Ritk ∈ {0, 1} be the response of subject i on item k ∈ {0, 1} at time t. The

bivariate outcome for subject i can be represented as
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Yitab = I(Rit1 = a) · I(Rit2 = b). (2.14)

The likelihood function can be explicitly parameterized in terms of Θ:

L(Θ) =
∑
itjk

Yit11 logP11t(Xit) + Yit10 logP10t(Xit)

+ Yit01 logP01t(Xit) + Yit00 logP00t(Xit)

=
∑
itjk

Yit11 logP11t(Xit) + Yit10 log(M1(t;X)− P11t(Xit))

+ Yit01 log(M2(t;X)− P11t(Xit)) + Yit00 log(1 + P11(t;Xit)

−M1(t;X)−M2(t;X)) (2.15)

Since there is a one-to-one mapping between P11(t;X) and LOR(t;X) (for given

values of M1(t;X) and M2(t;X)), this likelihood is implicitly parameterized in terms

of Θ̃ = (LOR(t;X),M1(t;X),M2(t;X)). The parameterization in terms of Θ̃ is of

more interest to us since these are the quantities being estimated as functions. The

details on calculating gradients of L with respect to Θ̃ are given in Appendix A.

The integrated squared second derivative penalty is commonly used to regularize

estimates of a functional parameter [Ramsey and Silverman (1997)]. We will discretize

this penalty in the form of a second difference penalty, to adaptively smooth the

estimates of all time varying parameters. For example, for the marginal probability

intercept µ1t, the penalty has the form

Q(µ1) ≡
∑

t

(µ1,t+2 − 2µ1,t+1 + µ1,t)
2. (2.16)

We will then use conjugate gradient optimization to maximize the penalized likelihood
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L(Θ)− λ

(
Q(µ1) +Q(µ2) +Q(θ) +

∑
k

Q(φ1k) +Q(φ2k) +Q(ψk)

)
, (2.17)

where each parameter is vectorized over t. Each trajectory is penalized by the same

weight λ. In fitting a single model, it would be just as easy to use different weights for

different trajectories, however it is difficult to jointly define individual weights that

perform well. Obtaining the derivatives of the penalty is straightforward, as they are

simply quadratic functions.

To display the utility of this penalty for estimation, we generate simulated data

from a population with demographic characteristics analogous to that of the MLS

and log odds ratio function increasing from 0 and plateauing at 2. In Figure 2.2 we

compare the functional estimate which maximizes (2.17) with the sample log odds

ratios at each age connected with lines. We can see the functional estimate captures

the true structure much more precisely. In particular, the key features of the true

function are captured by the functional estimate, whereas the fact that the function

plateaus at 2 is obscured by the simple empirical estimates.

As a second illustrative example we revisit the real data presented in Figure 2.1.

As noted above, interesting features of the association patterns may be clouded by the

“spikyness” of these plots. The functional estimates of these log odds ratio trajectories

are given in Figure 2.3. We can see the increasing pattern in the item pair “Feels

unloved”, “Screams” is more clear with the functional estimate. In addition, the effect

of the father alcoholism covariate on the association between “Worrying” and “Feels

other out to get” is much more pronounced when the functional estimate is used. It

appears that around age 12 there is a divergence between the strata, where children of

alcoholic fathers experience an increasing level of comorbidity and the items become

disassociated for children of non-alcoholic fathers.
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Figure 2.2: Ability to recover to the true data generating LOR(t) (top left) by esti-
mating LOR(t) as a smooth function (top right) and by connecting the
sample log odds ratios at each age (bottom).
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Figure 2.3: Functional log odds ratio estimates for two MLS item pairs. In the first
item pair (left) we fit the model without covariates. In the second item
pair (right), father alcohol use (blue: alcoholic father, green: non-alcoholic
father) was used as a covariate.

2.2.4 AIC based Model Inference

The Akaike Information Criterion (AIC), adjusted for penalized estimation as in

Shedden and Zucker (2008), will be used for identifying the smoothing parameter

λ, for assessing covariate effects, and for assessing whether model parameters are

time-invariant or time-varying. The standard AIC is equivalent to

L(Θ̂)− p (2.18)

where p is the dimension of Θ, Θ̂ is the maximum likelihood estimate (MLE) of Θ,

and L(·) is the log likelihood function. This estimates the out-of-sample expected

value of the maximized log-likelihood

EyExL(y|Θ̂(x)), (2.19)

which is linearly related to the out-of-sample divergence between the fitted and true
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likelihood functions. When a penalized estimate Θ̂λ is being used to estimate Θ,

the number of free parameters must be reduced to account for the penalization. For

example, in the setting described above, if the smoothing parameter λ = 0, then we

are estimating 3 · T parameters, where T is the number of distinct timepoints in the

data set. On the other hand, if λ is large, the trajectories are effectively constrained

to be linear, corresponding to only two parameters (the slope and the intercept) for

each function, yielding only 6 effective parameters in the model.

It turns out that an adjusted degrees of freedom p̃ can be defined so that

L(Θ̂λ)− p̃ (2.20)

estimates

EyExL(y|Θ̂λ(x)), (2.21)

where Θ̂λ is the argmin of (2.17). Let d = λ/n, where n is the sample size, and let

T1, . . . , Tq be the eigenvalues of F ′Ī−1F , where Ī is an estimate of the average Fisher

information matrix across the sample, and F is the p × (p − 2) second differencing

matrix. The following adjusted degrees of freedom can be used in (2.20):

p̃ = p−
q∑

j=1

2dTi

1 + 2dTi

. (2.22)

Based on (2.20), we can compare fits for different values of λ in a fixed model,

and also compare across models. Our strategy will be to use a small set of λ values,

typically 0, 10, 100, 1000, which range from the MLE (λ = 0), to a fit that is effectively

constrained to be linear (λ = 1000). After selecting the value of λ that maximizes

(2.20) separately in each model, we then compare across models using these selected

λ values.
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There are two model comparisons of particular interest. First, using no covariates,

we compare the model with a constant log odds ratio trajectory θt ≡ θ to a model

in which θt is allowed to vary with time. This is informative about whether the

comorbidity between the two measured traits varies with a subject’s age. Second,

we compare the model with covariate effects for both the marginal probabilities and

the log odds ratio, to the model in which only the marginal probabilities are linked

to covariates (i.e., where ψtk ≡ 0). This is informative about whether apparent

associations between traits are possibly due to known environmental factors.

For interpretation, it is useful to be able to calibrate differences in (2.20) between

models. A rule of thumb stated by Burnham and Anderson (1998) is that AIC gaps

of 1 or greater are indicative of “strong evidence” for the more complex model. To

calibrate this against type 1 and type 2 error rates, we carried out a simulation study.

Using the same sample size and pattern of observed measurements over time as the

MLS, models with θt ≡ θ were compared to models in which θt was allowed to vary

as a smooth function of t. Based 1000 simulation replications, we calculated the

empirical 95% range of the AIC gaps, and the proportion of simulated data sets in

which the AIC gap exceeds one. The AIC gap is based on the AICs which correspond

to the optimal choice of λ in each fitted model. The results, shown in Table 2.1,

suggest that using an AIC gap of one unit in defining time-varying log odds ratio

trajectories provides type 1 error rates below 0.05 with very high power, for the

simulation models considered. In addition, the inference does not seem particularly

sensitive to the structure of the marginal probabilities. Similar results (not shown)

were observed for testing the covariate effects.

2.2.5 Delta method based pointwise confidence intervals

Following model selection, pointwise confidence bands for the log odds ratio and

marginal probability trajectories can be calculated using an approximation based on
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1 logitM1(t) ≡ logitM2(t) ≡ 0 LOR(t) ≡ 1 (-2.12,1.41) .03
2 logitM1(t) ≡ −logitM2(t) ≡ −3/2 + t/10 LOR(t) ≡ 1 (-2.33,1.32) .03
3 logitM1(t) ≡ logitM2(t) ≡ 0 LOR(t) ≡ t/10 (4.97,26.40) 1.00
4 logitM1(t) = −logitM2(t) = −3/2 + t/10 LOR(t) ≡ t/10 (1.83,21.50) .99

Table 2.1: Calibration of AIC gaps to type I/II error rates. For each of four simu-
lation models (column 1/2), the AIC gap (AIC’s maximized over λ) was
calculated comparing a model with time-varying log odds ratio to a model
with time-invariant log odds ratio. The 95% range of the AIC gaps, and
the proportion of AIC gaps exceeding 1 are shown in columns 3 and 4,
respectively.

a Taylor expansion of the score function. Let S(Θ) denote the score function and let

Θ0 denote the true value of the parameter. The penalty functions of the form (2.16)

can be written in matrix form µ′Mµ, and the overall penalty function for Θ can be

written Q = diag(M, · · · ,M). A Taylor expansion of S around Θ0 gives

S(Θ) ≈ S(Θ0) +∇S(Θ0)(Θ−Θ0). (2.23)

Let Q̇ denote the derivative of the second differencing operator and λ the optimally

chosen smoothing parameter. Evaluating (2.23) at Θ̂λ, adding λQ̇(Θ0 − Θ̂λ) to each

side, using that S(Θ̂λ)− λQ̇Θ̂λ = 0, and rearranging terms, we have

Θ̂λ −Θ0 ≈ [∇S(Θ0)− λQ̇]−1[λQ̇Θ0 − S(Θ0)] (2.24)

Replacing ∇S(Θ0) with its limit, −I, where I is the fisher information matrix at Θ0,

we have

Θ̂λ −Θ0 ≈ [I + λQ̇]−1[S(Θ0)− λQ̇Θ0] (2.25)

Taking the variance of both sides, we have that Σ = var(Θ̂λ) is approximately

Σ ≈ [I + λQ̇]−1var(S(Θ0))[I + λQ̇]−1. (2.26)
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The fisher information is defined as the variance of the score function, thus var(S(Θ0)) =

I and we finally have

Σ ≈ [I + λQ̇]−1I[I + λQ̇]−1 (2.27)

as a consistent estimator of Σ. A similar calculation can be done to derive the

approximate bias but, in practice, we find that AIC selects λ values for which the

bias is very small. In simulations (not shown), the 95% confidence intervals formed by

ignoring the bias covered > 90% of the time. Therefore we will use non-bias-corrected

intervals below.

2.2.6 Example: The Michigan Longitudinal Study

The Michigan Longitudinal Study [Zucker et al. (1996)], is a prospective long-

term study of initially intact families at high risk of substance abuse. Behavioral

assessments of children began at ages 3-5, and the study is ongoing today with the

core group now at ages 18-20. The data used here are binary parent ratings on 34

behavioral items (coded “never true” or “sometime/always true”) from the aggression

and anxiety/depression subscales of the Child Behavior Checklist (CBCL) originated

by Achenbach and Edelbrock (1983). The CBCL is the most widely used child be-

havioral assessment instrument in the United States. Using our model, we are able

to estimate symptom endorsement probabilities and comorbidities for any two CBCL

items, and understand how they vary with a child’s environment, measured by the

father’s problem alcohol use.

The MLS includes data on 637 children in 323 families observed over some part

of the age range 3 to 18. Interviews and questionnaire assessments with the mother

of each child were carried out at 3-year intervals, with up to 6 assessments per child

obtained, with a mean of 3.19 assessments. For the analysis presented here, the

time variable t is taken to be the child’s age at a given assessment (rounded to the
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nearest year). Thus the fitted model parameters describe developmental trends in

incidence and comorbidities among the behavioral items. The 637 children in our

sample include some siblings. Dependencies resulting from family structure are not

considered here.

The 34 behavioral items analyzed here cover a range of behavioral content span-

ning aggression to anxiety/depression. The variation in endorsement patterns among

these items is complex but some prior expectations can be given. There is significant

content overlap in certain items pairs, so some degree of comorbidity (i.e. positive

odds ratios) is expected. Regarding marginal probabilities, some measurements are

expected to decrease in frequency with age (e.g. “Demands attention”, “Destroys own

things”) while other are expected to increase with age (e.g. “Unhappy”, “Disobedient

at school”). For all items, father alcoholism is expected to exacerbate symptoms.

Expectations regarding comorbidity patterns and covariate effects are harder to

gauge. Co-occurrence can reflect a progression of related behaviors, such as when an

argumentative child progresses to physical violence. But, since the ratings are given

by the parent, co-occurrence can also reflect changes in the parent over time in terms

of awareness and interpretation of their child’s behavior. The father’s alcohol use may

create an environment which leads to greater rates of comorbidity, but may also lead

to situation where the parents are less aware of their child’s behavior. To minimize

this last effect, we used mother ratings while assessing the effect of father alcoholism.

One possible explanation for an association between two items is population strat-

ification. For example, if some stratifying variable which causes broadly different

endorsement probabilities in different strata is unobserved (such as social status), an

apparent association would result. If the stratifying variable was available and used

as a covariate, this association may disappear or become less pronounced. In this

inquiry, we only consider father alcohol use as a possible stratifying variable.

We began by considering all 561 item pairs, and identified the best fit for each pair
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using the procedures described above. Specifically, fits were made for a sequence of

values of the penalty parameter λ, and the value of λ that optimized (2.20) was chosen

for each model. In this initial analysis, covariate data was not used. Consistent with

expectations, the item pairs showed almost exclusively positive associations. While

some item pairs were approximately independently endorsed for younger children, all

showed positive associations for older children. Figure 2.4 summarizes the associations

betweeen items. The lower left triangle of the plot indicates that most item pairs had

estimated values LOR(t) exceeding 1 for many time points. The upper triangle shows

that a substantial number of item pairs had log odds ratio estimates exceeding 2.

Next, we compared models in which the LOR(t) trajectory was time-invariant to

models in which it was allowed to vary with time. Gaps in (2.20) exceeding one unit

between the time-varying and time-invariant models were taken to indicate a signif-

icant time-dependence in the comorbidity trajectory. This threshold is supported

by the simulation analysis described above. Following this approach, we found that

111/561 item pairs showed a significant time varying pattern in the LOR(t) trajectory.

Nearly all of these trajectories followed increasing trends, indicating greater comor-

bidity between the items for older children. This analysis is based on the CBCL item

ratings, without using the covariates. The results are given in the lower triangle of

Figure 2.5.

Next we considered the effect of fathers alcohol use (assessed at entry to the

study) as a covariate with possible links to the marginal probability trajectories and

log odds ratio trajectories. We used an alcohol symptom measure coded as 0 (no

alcohol dependence) to 3 (physical and psychological dependence). For parsimony,

we parameterized the model using a single quantitative covariate taking on values 0,

1, 2, 3, so the fitted log odds ratio trajectories are θt, θt + ψt, θt + 2ψt, and θt + 3ψt

for the four levels of alcohol use.

As an illustrative example, Figure 2.6 shows fitted marginal probability and log
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odds ratio trajectories for groups 0 and 3 on two item pairs. It is important to

note that there need not be a relationship between the marginal probabilities (rows

1 and 2 in the figure) and the degree of association (row 3 in the figure). While

there is a weak tendency for children of alcoholics (COAs) to have higher symptom

levels, the tendency of COAs to have higher comorbidity than non-COAs is much

more pronounced. However the trend of this comorbidity is not consistent across

the item pairs. For the nervous/stubborn pair, paternal alcohol use is most strongly

linked to comorbidity in young children, while for worrying/fears someone might do

something bad, paternal alcohol use is most strongly linked to comorbidity in older

children. Note that while the pointwise confidence bands (the shaded region in the

figure) largely overlap, the omnibus test for covariate effects indicates a significant

difference in the trajectory patterns.

Using a gap of one unit in the AIC, as described above, we compared models

with covariate effects on both the marginal probability trajectories and the log odds

ratio trajectory to models with covariate effects only on the marginal probabilities.

Formally, this is a test of the null hypothesis ψtk = 0. We found that 64/561 item

pairs showed significant relationships between paternal alcohol use and the degree of

comorbidity between the two items in the pair. For nearly all of these pairs, the greater

comorbidity occurred in the families with alcoholic fathers. However, the timing of

peak comorbidity varied across the items pairs. These results are summarized in the

upper triangle of Figure 2.5.

2.3 Conditional likelihood estimation for multivariate binary

trajectories

We now shift focus to an alternative model for the same data structure, but p

is no longer constrained to be 2. Below we will describe a method which exploits
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both conditional likelihood and composite likelihood to eliminate the need to model

the marginal probabilities or the higher order associations, beyond the pairwise odds

ratios.

2.3.1 The model and estimation framework

It is well known that in a 2 × 2 table each cell count, conditioned on the total,

follows a hypergeometric distribution when the two binary variables are independent.

This is the basis of Fisher’s exact test. When there is association present, the cell

counts conditioned on the total follow Fisher’s non-central hypergeometric distribu-

tion.

If the log odds ratio for the 2 × 2 table is LOR, then the mass function for the

count of the 1,1 cell, denoted C, conditioned on the row and column totals, r and c

respectively, is

P (C = k|r, c) =
exp(LOR · k)

(
r
k

)(
n−r
c−k

)∑
k exp(Rk)

(
r
k

)(
n−r
c−k

) . (2.28)

From this expression, we can derive the expected value E(C|r, c). This expectation is

not analytically tractable, but can be easily evaluated numerically. Since the subjects

are iid, the marginal probability that any one subject contributes to the 1,1 cell is

equal to E(C|r, c)/n, where n is the number of subjects.

To place this in the context of the data described above, let Zi12 = I(Yij1(t) ·

Yij2(t) = 1), where Yij(t) is the j’th variable measured on the i’th subject at time t.

Let n(t) be the total sample size at time t and mj(t) =
∑n(t)

i=1 I(Yij(t) = 1) be the

marginal total of variable j at time t. Then

P (Zi12 = 1|mj1(t),mj2(t)) =

∑
k k exp(LOR12(t) · k)

(
mj1

(t)

k

)(n(t)−mj1
(t)

mj2
(t)−k

)
n(t)

∑
k exp(LOR12(t) · k)

(
mj1

(t)

k

)(n(t)−mj1
(t)

mj2
(t)−k

) , (2.29)
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where LOR12(t) is the pairwise log odds ratio between variables j1 and j2 at time t.

We propose a method which treats Zi12(t) as the data, and uses composite likeliood

methods to estimate the unknown parameter LOR12(t), using the product over all

pairs of variales to define the composite likelihood contribution of a single subject.

This leads to the following overall composite likelihood

CL(θ) =
∏

i

∏
j1<j2

P (Zi12(t)|mj1(t),mj2(t)), (2.30)

where θ denote a concatenation of all parameters underlying the set of log odds ratio

trajectories. CL(θ) is maximized over θ to produce point estimates.

CL(θ) may be thought of as a product of bivariate mass functions of the original

data. The use of product of univariate or bivariate distributions that are compatible

with an overall joint distribution is one of the standard ways to construct composite

likelihoods [Cox and Reid (2004)] . There is precedent for using conditional distribu-

tions in forming the composite likelihood. For example, in spatial data it is common

to form composite likelihoods by conditioning points on the values of those nearby

[Besag (1974)] . In most applications all points are of interest, so each points enters

as both a random quantity and a point being conditioned on. In our application, the

marginal probabilities are not of particular interest and are thought to be uninfor-

mative for the estimation of log odds ratio, thus they only appear as conditioning

variables in this analysis.

The general model allows each odds ratio trajectory, LOR12(t), to vary freely

across the variable pairs over time. To reduce the number of parameters and impose

smoothness, the trajectories can be parameterized in terms of splines or other basis

functions. For example,

LOR12(t) =

Q∑
m=1

β12mφm(t) (2.31)
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for some set of basis functions φm. The number of parameters grows linearly in the

number of variables, thus the number of parameters may become impractically large

for higher dimensional datasets. In that case we propose a dimensionally constrained

model where the variation of each LOR12(t) is constrained to a fixed number q di-

mensions. Specifically,

LOR12(t) = η(t) +

q∑
m=1

γ12mξm(t), (2.32)

where an analogous basis expansion is used to model η(t). The interpretation of

this constrained parameterization is analogous to PCA. In the case where q = 2,

which is the extent to which we demonstrate this model here, the constraint that∑q
m=1 γ12m = 0 suffices to ensure identifiability of the resulting coefficients. For

q > 2, a potential identifiability issue exists. However, any solution will result in a

smooth estimate of LOR12(t) for each item pair, which is the goal of this model.

Since (2.29) only depends on LOR12(t), there is no need to parameterize or esti-

mate the other properties of the joint distribution of Y . In addition, full likelihood

methods may be difficult or impractical for multiple timepoints or variables. The

optimization of (2.30) is straightforward and inference procedures for composite like-

lihoods can be applied for model selection.

To fit the model, it is not necessary for the data to be balanced. Since the log odds

ratio are parameterized as smooth functions of time, the model implies a likelihood

for any observed point within the range of the data. Treating the timepoints as

random, and thus the “missing” timepoints as “missing at random” is necessary for

this procedure to give meaningful results [Little and Rubin (1987)]. An additional

concern arises if the data are very irregularly observed and one is forced to condition

of small marginal counts, which may lead to lower efficiency.

First derivatives of the log composite likelihood with respect to the model param-

eters are straightforward to calculate and implement on a computer. Therefore, we
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can use gradient-based methods to optimize (2.30). When considering the saturated

model in which in which the log odds ratio trajectories LOR12(t) are treated as free

variables over all j1, j2, t values, the gradients of (2.30) can be used directly for opti-

mization. This corresponds to separate estimation for each of the 2×2 tables defined

by each item pair. When the basis representation or dimensionally-constrained repre-

sentation described in (2.31) and (2.32) is used, gradients are easily calculated using

the chain rule.

2.3.2 Inference

The key inferential questions considered regard determining whether a given tra-

jectory constant at 0, and whether it is constant over time. As mentioned previously,

it is expected that many of these items will be associated due to their overlapping

content. Documenting these dependencies may be of interest, but how they change

over time is much less appreciated. Thus, the primary interest is in assessing whether

a given trajectory is constant.

Familiar inference procedures including likelihood ratio tests, Wald tests, and

score tests have been extended to the composite likelihood setting [e.g. Varin and Vi-

doni (2005), Cox and Reid (2004)]. Here we will focus on nested model comparisons

using the log likelihood ratio test statistic (LR) constructed from the optimized log

composite likelihood functions. The use of composite likelihoods and the use of con-

ditional likelihoods both affect the sampling behavior of the LR statistic. To account

for these effects, we will use simulation to calibrate the LR statistic values.

Simulation based calibration will be most effective when the sampling distribution

does not depend strongly on the structures of the generating model and the two

working models being compared, except through the numbers of free parameters in

the working models. To explore this, we considered generating models with marginal

probabilities following
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logit
(
P (Yij(t) = 1|αij)

)
= θ + αij, (2.33)

and with log odds ratio trajectories LOR12(t) ≡ E, where E is a given effect size.

The θ parameter in (2.33) controls the marginal mean of Yij(t), and the αij are

iid N(0, σ2
α) random effects introducing within-subject correlations. We then used

simulation (with 500 replications per population) to estimate the increase in the

optimized log composite likelihood when comparing a constant model for LOR12(t)

to a linear model, and from a linear model to a quadratic model. Since the constant

model is true, these results reflect the null sampling distribution of the LR statistic

when adding either one or two irrelevant parameters. The results of this simulation

are shown in Table 2.2.

Simulation results suggest that the calibration of the LR statistic is more sensitive

to the marginal probabilities, and not to serial dependencies, the sample size, or to

the size of the log odds ratio being estimated. This suggests that as long as the data

set is large enough so that the estimates of marginal probabilities that determine the

sampling distribution are accurate, simulation can be relied upon to calibrate the LR

statistic.

2.3.3 Simulation studies

We first considered the following generating model for p = 2 variables that uses

random effects to induce associations between variables and between time points:

logit
(
P (Yij(t) = 1|αij, γit)

)
= µj + αij + γit. (2.34)

where αi ∼ N(0, σ2
αI), γit ∼ N(0, σγ

2
t ), and all random effects are independent. The

between-variable associations are controlled by the γit, with the possibility of having
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250 500
E θ σ2

α CL LQ CL LQ
0 -1 0 0.32 0.33 0.35 0.32
0 -1 1 0.33 0.33 0.35 0.30
0 -1 2 0.35 0.33 0.28 0.33
0 0 0 0.65 0.65 0.75 0.60
0 0 1 0.60 0.63 0.66 0.66
0 0 2 0.63 0.61 0.58 0.54
1 -1 0 0.36 0.32 0.31 0.33
1 -1 1 0.28 0.34 0.37 0.37
1 -1 2 0.32 0.39 0.36 0.41
1 0 0 0.55 0.60 0.48 0.52
1 0 1 0.58 0.55 0.68 0.50
1 0 2 0.59 0.48 0.53 0.54

Table 2.2: Monte Carlo estimates of 95th percentiles of the log composite likelihood
ratio statistic when comparing a constant to a linear model (CL) and when
comparing a linear to a quadratic model (LQ) for LOR12(t), when the truth
is constant. The generating models have various effect sizes E, and various
intercepts θ and random effect variances σ2

α.

different strengths of association at different time points. The αij induce within-

subject associations over time.

We considered σ2
α = 0, 0.5, and 1, sample sizes N = 250 and 500, and either 5

or 10 time points. The intercepts were always µ1 = −0.5 and µ2 = 0.5, and σ2
γ(t)

always varied linearly from 0 to 1 over the observed time interval. The log odds ratio

trajectory LOR12(t) was modeled using (2.31) as a linear function. The simulation

results are based on 500 simulation replications. A separate simulation based on

a sample size of 106 values was used to numerically approximate the true value of

LOR12(t) for these populations.

Based on the simulation results, we estimated the bias and standard error of the

log odds ratio estimate at each Tj for which data was observed. The results suggest

very low bias, with the median estimated bias over all time points and all generating

models being less than 0.01, and the maximum bias being 0.04. The standard errors

of the estimates are shown in Table 2.3. The standard errors for sample size n = 250
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n σ2
α SD

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11
250 0 0.19 0.14 0.11 0.11 0.14 0.19
500 0 0.14 0.10 0.08 0.08 0.11 0.14
250 0.5 0.19 0.15 0.12 0.12 0.15 0.20
500 0.5 0.14 0.10 0.08 0.08 0.11 0.15
250 1 0.20 0.15 0.12 0.11 0.14 0.19
500 1 0.14 0.10 0.08 0.08 0.10 0.13
250 0 0.15 0.13 0.11 0.10 0.09 0.08 0.08 0.09 0.11 0.13 0.15
500 0 0.11 0.09 0.08 0.07 0.06 0.06 0.06 0.07 0.08 0.09 0.10
250 0.5 0.15 0.13 0.11 0.10 0.09 0.08 0.09 0.10 0.12 0.14 0.16
500 0.5 0.10 0.09 0.08 0.07 0.06 0.06 0.06 0.07 0.08 0.09 0.11
250 1 0.15 0.13 0.11 0.10 0.09 0.08 0.09 0.10 0.12 0.13 0.15
500 1 0.10 0.09 0.08 0.07 0.06 0.06 0.06 0.06 0.07 0.09 0.10

Table 2.3: Standard deviations of LOR12(t) parameters for model (2.34). The sets
of either five or ten SD values are the standard errors of the LOR12(t)
estimates for the observed values of t.

are very nearly 40% higher than those in the same generating model using sample size

n = 500, as expected. Also, note that the standard errors are considerably smaller

than what would be obtained from an analysis using sample log odds ratios at each

time point. These standard errors would be at least 4/
√

250 ≈ 0.25 for sample size

250 and 4/
√

500 ≈ 0.18 for sample size 500.

The random effects αij introduce associations that are not modeled in the com-

posite likelihood (2.30). As intended, the within variable/between time point log

odds ratio tracked closely with the value of σ2
α, with values approximately equal to

0, 0.25, and 0.5, for σ2
α equal to 0, 0.5, and 1. The results in Table 2.3 show that

introduction of this type of unmodeled dependence does not introduce substantial

additional variance (or bias) into the estimation of the log odds ratios of interest.

Next we considered a generating model with p = 5 variables and sample size

n = 500, using the constrained model (2.32) with q = 1 directions of deviation from

the mean.
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logit
(
P (Yij(t) = 1|βij)

)
= 1 + θijt, (2.35)

where the vector βi = (βi1, . . . , βip) ∼ N(0,R), and t ranges over a grid of five points

in (0, 1). The matrix R had unit diagonal values, and pairwise correlation 0.8 among

the first three variables with all other off-diagonal entries equal to 0. Given this

structure, we expect all pairs among the first three variables to have increasing log

odds ratio trajectories, with all other pairs independent. All other correlations were

zero. Thus we expect all pairs among the first three variables to show increasing

associations over time, and all other variable pairs should be independent.

In the estimated model, the trajectories η(t) and ξ1(t) are parameterized as linear

functions of time. Since there are
(
5
2

)
= 10 pairs of variables, there are 10 γ12m values

in (2.32), for a total of 14 parameters. The results are shown in Table 2.4. The bias

is seen to be quite low, and the standard errors tend to be considerably less than

the best value of 0.18 that could be obtained from a simple model-free analysis, as

discussed above.

Next we examine the utility of the LR test to distinguish constant from time-

varying odds ratio trajectories. We simulated data with p = 2 variables, 5 time points,

and sample sizes of 250 or 500, for which the population value of LOR12(t) had the

form E · t. Various values for the effect size E were considered, and marginal fre-

quencies were always fixed at 1/2. Using the LR statistic derived from the optimized

log composite likelihoods, we compared models for which LOR12(t) was modeled as

either a constant, linear, or quadratic function of time.

The results of the simulation study described above are shown in Figure 2.7. The

“LC”, “QC”, and “QL” columns show results for comparison of linear to constant

models, quadratic to constant models, and quadratic to linear models, respectively.
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t1 t2 t3 t4 t5 t1 t2 t3 t4 t5
-0.07 0.08 0.23 0.38 0.53 -0.01 -0.01 -0.00 0.01 0.01

1/2 -0.01 0.05 0.19 0.36 0.57 3/4 0.00 -0.00 -0.00 -0.00 0.00
0.12 0.08 0.08 0.12 0.17 0.09 0.06 0.07 0.11 0.15

-0.07 0.08 0.22 0.37 0.51 -0.01 -0.00 -0.00 0.00 0.01
1/3 0.00 0.05 0.18 0.36 0.58 1/5 0.00 -0.00 -0.00 0.00 -0.01

0.11 0.08 0.09 0.12 0.16 0.09 0.06 0.08 0.12 0.17
-0.07 0.08 0.23 0.37 0.52 -0.01 -0.01 0.00 0.01 0.02

2/3 0.00 0.04 0.18 0.36 0.57 2/5 -0.00 0.01 0.01 -0.00 0.00
0.11 0.08 0.09 0.12 0.17 0.08 0.07 0.09 0.13 0.17

-0.00 0.00 0.01 0.01 0.02 -0.01 -0.01 -0.01 -0.01 -0.01
1/4 0.00 0.00 -0.00 0.00 -0.01 3/5 0.00 -0.01 0.00 -0.01 0.00

0.10 0.07 0.08 0.12 0.17 0.09 0.07 0.09 0.13 0.18
-0.00 0.00 0.01 0.01 0.02 -0.00 -0.01 -0.01 -0.01 -0.01

2/4 -0.01 0.01 -0.00 -0.00 -0.00 4/5 -0.00 0.00 -0.01 0.00 0.00
0.08 0.07 0.09 0.13 0.18 0.10 0.07 0.08 0.12 0.17

Table 2.4: Results for each odds ratio trajectory LOR12(t) are shown in the three
lines preceded by j1/j2. The first, second, and third rows in each group
correspond to the expected values of the estimated log odds ratios, the
true log odds ratios, and the standard errors of the estimated log odds
ratios, respectively. The five columns in each group of lines correspond to
the five time points.
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Figure 2.7: The LR statistic values for comparison of linear and constant models
(LC), quadratic and constant models (QC), and quadratic and linear
models (QL) are shown for 300 simulation replications. The horizontal
lines show the deciles of the sampling distribution from 0.1 to 0.9, along
with the 95th and 99th percentiles.

When E = 0, the constant model is true, and the 95th percentile of the LR statistic

falls at around 0.6, consistent with Table (2.2). For larger effect sizes, the linear

model becomes favored over the constant and quadratic models.

2.4 Discussion

When presented with multivariate measurement vectors on each member of a

sample, a natural starting point is to consider how the univariate mean responses

vary with respect to covariates of interest. However it can happen that the strongest

covariate effects occur at the level of associations between responses rather than

in their mean levels. In a longitudinal setting, the degree of association and its

relation to covariates may change over time. The aim of this work is to capture all of

these relationships in a function-based estimation framework. While we did restrict

our attention to the analysis of binary data in this setting, there is no reason why
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analogous models could not be formulated for continuous data, using the correlation

(on some transformed scale) as the measure of association.

There is a long tradition of studying complex associations between categorical re-

sponses using log-linear modeling techniques, but relatively little work has been done

to adapt these methods to the context where the model parameters are appropriately

viewed as functions. On the other hand, in functional data analysis the main empha-

sis has been placed on efficient estimation of functions, but most of this work is in the

context of regression models describing the mean response and covariate effects for a

univariate dependent variable. Each of the methods used here represent an attempt

at integrating these two approaches.

The first approach was based on penalized ML estimation for bivariate trajecto-

ries. The marginal probability functions, as well as the log odds ratio function, were

modeled as non-parametric functions of age, with regularity imposed by ensuring

the integrated squared second derivative of each function was not too large. Using

log-linear modeling notation, it would be possible to extend this to more than two

binary responses, or more generally to ordered or unordered categorical responses.

For more than two binary responses, the number of parameters being optimized over

in the above model may be prohibitively large. For cases such as this, an alternative

approach may be more suitable.

The second method presented was based on a composite conditional likelihood

estimator. One concern in the use of such methods is the potential loss of efficiency

when compared to full likelihood based approaches. For complex data, this loss may

be offset by the potential biased introduced by incorrect specification of nuisance

parameters (such as higher order associations, in our case). Due to the parameter

explosion alluded to above, practical methods are required to constrain certain as-

pects of the joint distribution. An advantage of our approach is that we can model

associations of interest without making arbitrary constraints on nuisance parameters.
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In the second approach discussed here, there is an interplay between the use of

conditional and composite likelihoods. Loss of efficiency in composite likelihood esti-

mation is largely driven by the dependency between the blocks of data being explicitly

modeled. Conditioning on the table margins presumably leads to substantially lower

dependency among these blocks than would occur with an unconditional likelihood.

The results shown here suggest that the loss of efficiency when compared to full

ML estimation is not substantial. Using the traditional unconditional log odds ra-

tio estimate, the standard errors at a particular time point are 4/
√

250 ≈ 0.25 and

4/
√

500 ≈ 0.18 for the two sample sizes considered here. Even if the data for six time

points were observed independently at a single point, the standard errors would be

4/
√

250 · 6 ≈ 0.1 and 4/
√

500 · 6 ≈ 0.07. For the upper rows of Table 2.3, the stan-

dard errors from the composite/conditional likelihood are seen to be quite similar

to these values at the center of the time range, and are no worse than the standard

errors for single time point analysis at the edges of the time range.
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CHAPTER III

Multiple timing variable models for longitudinal

family data

3.1 Introduction

Certain traits ranging from behaviors, to physical characteristics, to disease pro-

cesses cannot be summarized by a single number. In particular, some traits change

as a function of some independent and continuous variable. Such traits were first

called infinite dimensional in Kirkpatrick and Heckman (1989) and have also been

referred to as function valued in other literature [e.g. Kingsolver et al. (2001)]. Func-

tion valued traits can only be properly characterized by observation along a range of

the independent variable. One common example of a function valued trait in ecol-

ogy and genetics involves so-called norms of reaction [e.g. Scheiner (1993)], where a

phenotypic expression is a function of particular environmental variables is of inter-

est. Another readily understandable example, which will be the focus of this inquiry,

is when a trait varies as a function of a longitudinal quantity, such a age and/or

observation time.

When studying function valued traits, analysis of longitudinal family data is cru-

cial to a more precise understanding of the mechanisms driving human traits and how

they cohere within a family. It is well documented that factors affecting familial cor-

relation on a trait can accumulate or diminish as a subject ages [e.g Gauderman and
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Morrison (2000), Lindenberger et al. (2008)]. In addition, the fact that researchers

study reaction norms reflects the fact that many trait expressions are modulated by

events occurring in the subject’s environment. In either case, as noted by Gauderman

and Conti (2005), non-longitudinal observation would be insufficient to capture the

etiology of the measured trait. Existing literature on the modeling of family data,

which we will now review, is primarily comprised of quantitative genetics models.

However, it should be noted that we are building a general framework for model-

ing familial association where the separation of genetic from environmental sources

of correlation is: a) not of particular interest, and b) not identifiable with the data

structure we have.

3.1.1 Background on models for longitudinal family data

The issue of modeling longitudinal family data was the subject the Genetic Anal-

ysis Workshop 13 [Almasy et al. (2003)], where several approaches to analysis were

presented. Typical approaches fall into one of two classes. The first class is com-

prised of two step procedures which reduce the longitudinal data to one response per

subject, and then analyze the reduced data in the second stage. This type of data

reduction occurs in many fields; for example, in the area of addiction research “age of

first drunk” is used as a predictor of future addictive behavior [e.g. Corte and Zucker

(2008)]. A drawback of these approaches is that they require all longitudinal features

of interest to be pre-specified rather than determined by the data. For this reason we

give no further attention to such approaches. The second class of models explicitly

takes into account the longitudinal structure in the data. Before hashing out these

approaches in greater detail we digress with a discussion of classical genetics models.

Consider observation of a quantitative trait for a single family with n children Y =

(Y1, Y2, ..., Yn)′. According to classical genetics [e.g. Kempthorne (1969), Falconer

(1981)], we model Y as
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Y = µ+ g + e (3.1)

where µ are fixed effects and g, e are genetic and environmental random effects,

respectively. To illustrate the use of this model in the simplified case of no gene-by-

environment interaction, we can decompose the variance in the responses as

var(Y) = σ2
GR + σ2

E1n + σ2
εIn (3.2)

where 1n in an n-by-n matrix of 1’s, In is the n-by-n identity matrix, and R is the

matrix of relatedness (e.g. Rij = 1/8 for two cousins). The intuition here is that all

covariance between family members is due to shared environment effects (E), genetic

(G) similarity effects. Additional variance is absorbed by unshared effects (ε). The

shared environment contributes to the everyone’s variance/covariance equally, and

the genetic effects contribute to the covariance based on how closely related the indi-

viduals are. In principle e can be broken into a number of identifiable parts [Visscher

et al. (2008)]. Here we have only split e into shared and unshared environment but,

for example, if we had repeated measurements there should be an additional term for

individual environment, shared across time points.

A primary quantity of interest in classical genetics is the broad sense heritability:

H2 =
σ2

G

σ2
E + σ2

G + σ2
ε

. (3.3)

That is, the proportion of phenotypic variance due to genetic variation. When only

data on subjects of a fixed level of relatedness, r, is available, there is an identifiability

issue with H2, since
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φ

 1 r

r 1

 = φ(1− r)

 1 0

0 1

+ φr

 1 1

1 1

 (3.4)

for any number φ. Since the partitioning of variance is not unique, one has a somewhat

arbitrary choice to make regarding the values of σ2
E, and σ2

G. In this case, H2 is not

uniquely identified; only

H̃2 =
σ2

G + σ2
E

σ2
E + σ2

G + σ2
ε

. (3.5)

is identified, which is the intra-class correlation coefficient with family as the grouping

variable. When σ2
E can be assumed to be 0, H̃2 reflects genetics; otherwise it is nothing

more than a measure of familial resemblance.

The above setup is the basis for the second stage in the two-step models alluded

to above, and provide the necessary perspective to extend family data models to a

longitudinal setting. Commonly, observations on function valued traits at various

values of the independent variable are treated as distinct, correlated characters [e.g.

Tatar et al. (1996)]. Traditional multivariate techniques are used to extend model

(3.1) to the case of correlated traits [e.g. Lande and Arnold (1983), Riska et al.

(1985)]. To illustrate this suppose you had n siblings observed at T timepoints with

data Y = (Y11, Y12, ..., Y1T , Y21, ..., Y2T , ..., YnT ). Then the natural extension of (3.2) is

var(Y) = R⊗G + 1n ⊗ E + In ⊗ σ2 (3.6)

G,E are the T × T covariance matrices of the genetic and environment random ef-

fects, σ2 is the T -length vector of residual variances for the trait at each time, and

⊗ denotes the Kronecker product. This model is very general but the parameter ex-

plosion as the number of time points increases coupled with potential interpretation

problems make the multivariate approach impractical. In addition, as noted by Kirk-
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patrick and Heckman (1989), multivariate techniques do not necessarily exploit the

ordering inherent in function valued traits and typically have less statistical power

than methods which do account for the ordering.

Many methods exist that go beyond the multivariate approach and exploit the

time ordering to borrow information across observations. For notational simplicity

we consider the trait value for a single subject i in family j at time t, Yij(t). We

use t here to denote time, typically measured in age, but it can be, in principle, any

variable. For example, in the case where the function valued trait in some type of

reaction norm, the input may be some environmental measure, such as temperature.

Much of the information below is reviewed in greater detail by Jaffrezic and Pletcher

(2000). The basic model can we written as

Yijt = fixed effects + gij(t) + eij(t) (3.7)

where gj(t), ej(t) are the genetic and environmental random processes for subject j

at time t. In the discrete setting, the statistical goal was to estimate the covariance

matrices of the genetic and environmental random effects; in the continuous setting,

our goal is to estimate the genetic and environmental covariance functions:

G(s, t) = cov(gij(s), gij(t)) (3.8)

E(s, t) = cov(eij(s), eij(t)), (3.9)

which can be thought of as continuous analogs to a covariance matrix. Assuming

that the genetic and environmental random processes are uncorrelated, the covariance

between related individuals i, k at times t, s is then modeled as

cov(Yijt, Ykjs) = cov(gij(t), gkj(s)) + cov(eij(t), ekj(s)) (3.10)
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The first term in (3.10) will have the form

cov(gij(t), gkj(s)) = RikG(s, t). (3.11)

Regarding the second term in (3.10), we can generally write

cov(eij(t), ekj(s)) = CikE(s, t), (3.12)

where Cik is defined according to how environment is shared between individuals.

For example, Cik = I(i = k) is equivalent to supposing environment is completely

unshared between individuals. As in the univariate case, eij(t) can potentially be

broken in any number of identifiable parts. For example, if there are repeated mea-

surements on individuals as well as multiple family members, environment may be

partitioned into familial common environment, individual common environment, and

transient environment or measurement error:

eij(t) = ej(t) + ei(t) + εij(t) (3.13)

In this case, the covariance between the environmental processes for two observations

would be the sum of the covariances between each of the constituent processes. The

statistical goal in this inquiry is to estimate the functional forms of the covariance

functions.

The first principle approach to modeling G,E was originally presented by Kirk-

patrick and Heckman (1989). The genetic and environmental covariance matrix in

the traditional multivariate techniques can be thought of as discrete observations

of the covariance functions. This seminal paper was presented as a non-parametric

method of smoothing a previously estimated covariance matrix. The authors choose

a non-parametric estimate for each of the covariance functions of the form:
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G(s, t) =
m∑

q=0

m∑
r=0

φq(t)φr(s)Kqr (3.14)

where φq(t) are an orthogonal basis, m is the order of the polynomial, and and the

Kqr terms are parameters to be estimated. In a later publication Kirkpatrick et al.

(1990) suggests taking φq(t) to be Legendre polynomials, and describes a generalized

least squares approach to estimating the coefficients with fit assessed relative to a pre-

viously estimated covariance matrix. Addressing the fact that Kirkpatrick’s approach

requires the factoring of a multivariate mixed model whose complexity grows with the

number of unique ages in the dataset, a publication by Meyer and Hill (1997) gives

a method of estimating the parameters in the above model directly by REML. One

problem with these models is that, as noted by Pletcher and Geyer (1999), they do

not definitionally yield positive definite covariance functions. Another major concern

is that the individual parameters in the model lack any meaningful scientific inter-

pretation. Finally, the use of Legendre polynomials is largely arbitrary and may not

be appropriate.

The second approach, advocated by Meyer (1998) uses random regression to model

g and e, and then works with the implied covariance functions. The method relies on

an equivalence between the class of covariance functions and that of random regres-

sion models. That is, any covariance function can be written as the implied covariance

of a properly structure random regression model. Conversely, all random regression

models imply a valid covariance function. The author’s justification for this formu-

lation is primarily as a means to lower the complexity of the Meyer and Hill (1997)

method, which grows proportional to the number of unique ages (or times) observed

in the dataset. The simplest example of Meyer’s random regression formulation is

gij(t) = θj1 + θj2t. (3.15)
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The covariance function implied by (3.15) is

G(s, t) = var(θj1) + stvar(θj2) + (s+ t)cov(θj1, θj2) (3.16)

with an analogous model for e(t). In models of this form estimation of the relevant

variance parameters can be estimated by REML. With this approach the problem of

estimating G,E is reduced to that of determining an optimal form for the random

regression model. This is typically done by the use of likelihood ratio tests, since

various forms of interest in the random regression models are often nested. This

approach does provide positive definite covariance functions but, like its predecessors,

suffers from a lack of interpretability of individual parameters.

The third approach, given by Pletcher and Geyer (1999) is similar to the first

method in that it attempts to explicitly parameterize the covariance functions, rather

than the latent processes themselves. They largely abandon the lead taken by their

predecessors, citing the critiques mentioned above, among others. They find a non-

parametric approach to be overly optimistic, as there is not likely to be enough

information about the latent processes for this to be feasible with realistic sample

sizes.

The basic approach uses the fact that given any covariance function of a second

order stationary process, f(s, t) = f(|s− t|), it necessarily follows that

r(s, t) = v(s)v(t)f(|s− t|) (3.17)

is a valid covariance function for any choice of the function v. For example, if G

were modeled in this way, then v would describe the way genetic variation changes

with age and the parameters underlying f would display how correlation changes

with age. The authors indicate that low order polynomials often suffice to capture

interest patterns of change. There are many potential choices of f , and the authors
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recommend the use of various well known characteristic functions viewed only as a

function of |s − t|. The rationale for this is that an arbitrary function is a valid

covariance function if and only if the function is positive definite, and characteristic

functions are guaranteed to be positive definite. Pletcher and Geyer (1999) note

that the assumption of stationarity is very likely to be erroneous, but found from

experience that it can serve as a effective approximation in most situations.

Jaffrezic and Pletcher (2000) offer a slight extension of this approach to relax the

assumption of stationarity. They instead advocate an approach based on a result from

Nunez-Anton (1998), and Nunez-Anton and Zimmerman (2000). They showed, by us-

ing a properly chosen nonlinear transformation of time, the assumption of correlation

stationarity can be relaxed. In particular,

f(s, t) = f(|h(s)− h(t)|), (3.18)

for a properly chosen h, will still yield a positive definite function as above, but will

not impose stationarity. One particular h that will suffice is the well known Box-Cox

transformation [Box and Cox (1964)]:

h(t) = (tλ − 1) · I(λ 6= 0) + log(t) · I(λ = 0). (3.19)

An appealing property of this choice is that if λ = 1, then |h(t) − h(s)| = |t − s|,

resulting in a stationary covariance function. Thus, in some sense, the data can

indicate the level of correlation stationarity present.

We have reviewed the seminal work for each of the main approaches to estimation

of genetic and environmental contributions to function valued traits, which fall into

three main categories: non-parametric estimation using a basis expansion; random

regression; explicit parametric models. Many variations of non-parametric covariance

function estimation exist: Yang et al. (2003) and Macgregor et al. (2003) which mod-
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eled covariance matrices between family members as functions of age using splines;

Kirkpatrick and Meyer (2004) propose a method of directly estimating the eigenfunc-

tions of G,E which effectively reduces the dimension of the problem. Other methods

involving parametric approaches have been published. Work by Soler and Blangero

(2003) used stationary processes with exponential covariance functions to model G

and E. A review of some other methods for longitudinal family data is given in

Gauderman et al. (2003).

3.1.2 Rationale for this work

Models which explicitly model the longitudinal structure are a step in the right

direction, but have one major shortcoming in all of their current incarnations. This

alludes to the primary theme of this work: familial correlations are potentially mod-

ulated by more than a single timing variable. Each existing method requires an

arbitrary specification of how time is indexed in their model; in most cases time is

specified to be indexed by age rather than chronological time. This may be sensible

with regard to genetic latent processes, since one could argue that age is the only

timing variable relevant to genetically induced effects on the response. However, with

respect to the environmental latent process parameterized by a stationary correla-

tion function, this specification would indicate that the environmental covariance is

maximized when two siblings are at similar ages, regardless of how far apart the ob-

servations are made in chronological time. If, for example, two siblings are born 10

years apart, then the environment they are experiencing at a common age is likely to

be quite different, thus it does not make sense for their environmental covariance to

be definitionally maximized there.

In addition to interpretability problems, it has been noted in many cases that

the indexing specification can have a considerable impact on the conclusions of the

analysis. For example, it has been shown in various contexts that the apparent
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level of correlation between outcomes on family members over time differs when the

data is aligned by age as opposed to time (Diego et al, 2003). This makes sense

because, as mentioned earlier, it is well documented that many diseases are impacted

by age-specific genetic predispositions. In addition, mechanisms which depend only

on calendar time, such as catastrophic event occurring in the shared environment,

can induce correlations between individuals which share that environment. Another,

considerably more subtle, observation is that the amount by which an individual is

affected by their environment is likely to depend on the person’s age. Thus, multiple

timing variables may be simultaneously modulating a single underlying latent process,

and may be the driving force for distinct devices that are inducing familial correlation.

As mentioned before, no existing methods for longitudinal family data take more

than a single timing variable into account. In particular, the concept that correla-

tions induced by the family environment at a particular chronological time point are

dependent on the individuals’ ages reflects a previously unexplored pattern of resem-

blance between family members. The goal of this work is to investigate the extent to

which age-specific and temporal mechanisms modulate the association between family

members, and to what extend we can disaggregate the two effects. The motivating

application for this work is the Michigan Longitudinal Study (MLS), Zucker et al.

(1996), a prospective long term prospective study of initially intact families at high

risk for substance abuse. For this work we focus on a subset of the data comprised

of DOTS-R exam measurements. The DOTS-R exam is a quantitative tool used for

the identification of age-continuous features of temperment across an age span from

early childhood to young adulthood.

3.1.3 Chapter Outline

To begin, we present a parametric framework for modeling processes modulated

by multiple timing variables based on a data generating model, rather than implicit
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specification through covariance functions. In this section details on the intuition

underlying the model specification and the practical interpretation of key parameters

in the model are mentioned. This is followed by a discussion on how to parameterize

the model and some considerations which must be made. The correlation structure

implied by our parameterization is shown for some nominal parameter values. A

description of how the parameters in our model are identified is given, as well as

a rough diagnostic for pinpointing when non-identifiability may be an issue in a

particular data set.

In the next section, details on computation of the estimates and inference for

parameters is given. A maximum likelihood based estimation procedure is described

and some simulations to display the ability to recover the data generating population

structure are shown. The performance of the estimation under a few types of model

misspecification is also given. When non-identifiability may be an issue, an approach

to estimation of one of the two confounded parameters is described; this method

is based on maximum likelihood analysis of a reduced data set. This alternative

approach is shown with simulations to improve estimation when the structural form

in one of the confounded parameters is misspecified.

In section 4, we move on the the issue of hypothesis testing. Most of the scien-

tifically meaningful hypotheses we are interested in testing are nested, making the

likelihood ratio test (LRT) a convenient choice. This discussion begins by noting

the difficulty in constructing a measure of effect size, and giving the restricted set-

ting where a particular measure is apt. Since we are doing LRT in a potentially

non-standard setting, various simulations are conducted to investigate the level and

power of the test. How the level and power are affected by potential non-identifiability

issues is also shown.

In section 5, we apply the methods described to DOTS-R exam measurements,

which is a subset of the MLS data. The DOTS-R exam is a quantitative tool used
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for the identification for age-continuous features of temperament across an age span

from early childhood to young adulthood. The exam assumes that temperament is

composed of “characteristic behavior styles”, such as rhythmicity, response patterns

to new situations, and patterns of adjustment to environment [Windle and Lerner

(1986)]. A complete analysis including assessment of fit on a number of candidate

models, as well as interpretation of the final model for some interesting cases. The

chapter than concludes with a discussion of the method as well as some avenues for

future work.

3.2 Model Formulation

3.2.1 A general conceptual framework

Recalling the discussion in the introduction, we seek to build a framework which

induces time-dependent correlation between family members, and incorporates the

possibility of this correlation being modulated by the subjects’ ages. In many realistic

data scenarios mostly nuclear families are available, making genetics weakly identified

or not indentified at all from environment, thus we do not attempt to make this

discomposition, although it is hypothetically possible.

On a general level we can write such a model for subject i in family j at time t

and age aijt as

Yijt = µ(aijt) + ηj(t, aijt) + γi(aijt) + εi(t). (3.20)

In this model µ is the age specific mean, ηj should be viewed broadly as a combination

of all possible shared sources of variation in the family at time t, and age aijt. The

γi term is individual specific and models sources of correlation not shared with the

rest of the family; εi(t) is an individual and occasion specific perturbation analogous

to the residual in a regression model.
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The model formulation given above asserts that an individual response is a com-

bination of

• certain baseline fixed effects, which are a function of age

• a family specific latent process, ηj(t, a), which captures longitudinal aspects of

the data due to chronological family time and/or age.

• an individual specific latent variable γi, which models self-correlations not shared

with the rest of the family

• individual and occasion specific perturbations, εi(t), which may be thought of

as measurement error

In all inquiries of this type only a single timing variable is allowed to modulate

the familial correlation, which is captured by ηj. Typical approaches correspond to

specifying either

ηj(t, aijt) = ηj(ajit) (3.21)

or

ηj(t, aijt) = ηj(t). (3.22)

The choice in all models of this type is typically (3.21). For reasons discussed in the

introduction we advocate the accommodation of multiple timing variables. For sim-

plicity we choose to decompose ηj into two parts which have distinct interpretations:

ηj(t, aijt) = ηj1(t) + ηj2(ajit). (3.23)

The term ηj1 can be interpreted as events occurring in the family environment at a

specific time. For example, a stressful event in the family that effects trait measure-
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ments would correspond to a spike or dip in ηj1. The second term, ηj2 would be more

thought of as environmental or genetics effects that tend to occur at similar ages

within a family. For example, in many families the freedom a child has is dependent

on their age, and tends to be similar between siblings.

For each of the random effects we allow an age specific variance, but do not allow

the variance function to depend on chronological time; to do so would be to model

global secular trends in the data and that is not the purpose of this analysis. Bearing

this in mind, we now modify our formulation so that each random effect has mean 0

and unit variance, and has a functional parameter to capture the variance:

Yijt = µ(aijt) + ψ1(aijt)ηj1(t) + ψ2(aijt)ηj2(aijt)

+ ϕ(aijt)γi + ξ(aijt)εi(t) (3.24)

Here µ, ψ1, ψ2, ϕ, ξ are all parameters that are functions of age. The functional coef-

ficients, ψ1, ψ2, are the primary components of interest in this model and represent

age specific sensitivity to chronological time and age indexed family environment,

respectively. The individual specific random effect, γi, is specified as a scalar random

effect rather than a random process; this term should be interpreted as stable within-

individual characteristics. In Figure 3.1 a schematic plot is given to further clarify

the role of the familial sensitivity functions, using ψ1 as an example.

3.2.2 Parameterization and implied correlation structure

Let Y j denote the Nj-length vector of family j responses observed at times tj and

ages aj. The mean of Y j will be characterized by a single functional parameter µ.

That is,
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Figure 3.1: Simulated family trajectories when ψ1(a) is a linearly increasing function
and all other random effect coefficients are 0 for three siblings separated
in age by four years. The top trajectory is the time indexed familial
environment.

µj =
(
µ([aj]1), ..., µ([aj]Nj

)
)
. (3.25)

Covariate effects can easily be incorporated by including additional arguments to µ.

Without making any parametric specifications, we can write the family j covari-

ance matrix:

Σj = ψ′
1Ση1ψ1 +ψ′

2Ση2ψ2 +ϕ′Σγϕ+ ξ′ξ (3.26)

where

ψ1 =



ψ1([aj]1)

ψ1([aj]2)

. . .

ψ1([aj]Nj
)


(3.27)
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The matrices ψ2, ϕ, and ξ are defined analogously. Ση1,Ση2,Σγ denote discretized

version of the covariance functions for the latent processes; for example [Ση1]k,` =

cov(ηj1([tj]k), ηj1([tj]`).

For this model to be identifiable we must place certain constraints on the covari-

ance structure of the latent processes. If the latent processes are allowed to have

non-constant variance, the variance functions would not be identified. This tacitly

implies that we must choose a stationary process for each latent variable, or else cer-

tain mean and variance parameters in the model will not be identified. Thus ηj1, for

example, can be viewed as some standardized quantification of how different a given

family is from the average at a given time, and analogously for ηj2(a).

We now examine choices for the covariance functions for the latent processes,

ηj1, ηj2. We will refer to η(t) but we intend to use the same parameterization for

ηj1 and ηj2, so we will suppress the subscripts throughout and similarly with ψ.

Characteristic functions are reasonable candidates for covariance functions since they

are guaranteed to be positive definite; a table of characteristic functions modified in

form for use as covariance function is given in Pletcher and Geyer (1999). Consider

the family of covariance functions indexed by two parameters, (τ, κ) of the form

r(s, t) = τ |t−s|κ (3.28)

Notice this can be rewritten as

r(s, t) = exp (log(τ)|t− s|κ) , (3.29)

which is a valid class of covariance functions for κ ∈ (1, 2], τ ∈ (0, 1) [Schoenberg

(1938)] and is known as the κ-exponential covariance function. For κ < 2 the sample

paths of the corresponding process are nowhere differentiable, but have infinitely

many derivatives for κ = 2 [Rasmussen and Williams (2006)]; this special case is
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Figure 3.2: Left: κ-exponential covariance functions for κ = 1, 1.5, 2 with τ = e−1.
Right: Sample paths of processes with a κ-exponential covariance func-
tion for κ = 1, 1.5, 2

the well known squared exponential covariance. Larger values of τ indicate that

stronger correlation exists over longer time lags, and larger values of κ indicate a

more smoothly varying process; this is illustrated by Figure 3.2.

When the data supports such estimation, we propose taking this one step further

by modeling the parameter τ as a family specific random effect. The simplest choice

for this parameterization is the Beta distribution since the support is the same of

that for τ . Specifying τ as a random effect is equivalent to a belief that the level of

stability within a family process depends on the family. Assuming the Beta(α1, α2)

distribution for τ , this family of covariance functions has the following properties

(proofs in Appendix A):

1. The covariance function, unconditional on τ , is

cov(η(t), η(s)) =
Γ(α1 + α2)Γ(α1 + |t− s|κ)
Γ(α1 + α2 + |t− s|κ)Γ(α1)

2. The exchangeable correlation structure is a limiting case. That is, if ρ =

α1/(α1 + α2) remains fixed, then as α1, α2 ↓ 0,
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cov(η(t), η(s)) → ρ

independently of t, s.

3. The κ-exponential covariance is a limiting case. In particular, if ρ = α1/(α1+α2)

remains fixed, then as α1, α2 →∞

cov(η(t), η(s)) → exp (log(ρ)|t− s|κ)

This parameterization can be difficult to fit when both ψ1 and ψ2 are in the model.

When it is evident that this is an issue, the regular κ-exponential covariance is used

instead.

A simple parameterization will be chosen for each of the functional parameters.

In the work of Pletcher and Geyer (1999), they chose to model the variance functions

as linear in some number of parameters. That is,

v(a)2 =

Q∑
q=1

βqhq(a), (3.30)

where hq(a) is typically some monotone function of a. Alternatively, one could model

v(a) linearly, which eliminates the need to constrain β to form a function that is

positive for any a; this is the choice we use. As noted by the Pletcher and Geyer

(1999), we have no a priori expectations about the shapes of these functions, but this

parameterization can capture many plausible structures and noting the latent nature

of the processes of interest, more complicated parameterizations are not likely to pay

off. In addition, more highly parameterized functions are likely to display more peaks

and valleys that are not interpretable and are most likely overfitting the data. The

mean is specified as a low order polynomial in each age (with a similar specification

if covariates were to be included).
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To make this parametric specification more clear we now examine the implied

correlation structure. It is convenient to define two quantities now. First,

σ2(a) = ψ1(a)
2 + ψ2(a)

2 + ϕ(a)2 + ξ(a)2 (3.31)

which is the total variance in an age a subject’s response. One quantity that is

intuitively linked to the role of ψ1, ψ2 is

λk(a) =
ψk(a)

2

σ2(a)
(3.32)

which is the proportion of total variance at a given age that is due to ψk. We will

revisit this quantity later when we look to define a measure of effect size for particular

hypothesis tests. The correlation between two subjects i, j in a family at times t, s

can be written as

cor(Yijt, Ykjs|τj) = S1 + S2 + S3 + S4 (3.33)

where

S1 = τ
|t−s|κ1

j1 sign(ψ1(aijt))sign(ψ1(akjs)) ·
√
λ1(aijt)λ1(akjs) (3.34)

S2 = τ
|aijt−akjs|κ2

j2 sign(ψ2(aijt))sign(ψ2(akjs)) ·
√
λ2(aijt)λ2(akjs) (3.35)

S3 = ϕ(aijt)ϕ(akjs)I(i = k)/
√
σ2(aijt)σ2(akjs) (3.36)

S4 = ξ(aijt)ξ(akjs)I(i = k)I(t = s)/
√
σ2(aijt)σ2(akjs) (3.37)

We now graphically display the implied correlation structure for two populations.

In each case we look at the implied covariance matrix as a function of observation

time (1999-2009) for two siblings born in 1989 and 1993. In each population all

variance functions other than ψ1, ψ2 are fixed at nominal constants. The upper 3× 3
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block of Figure 3.3 is a population where ψ1 is linearly increasing, while ψ2 is linearly

decreasing, each with equal magnitude (averaged across observed ages). The lower

3 × 3 block corresponds to a structure where ψ1 is linearly decreasing while ψ2 is

increasing. The differences in the implied correlation structures highlight where the

information to identify these parameters comes from. In addition, when both of

the latent processes have high levels of autocorrelation, decoupling these sources of

variation becomes a more difficult task, as can be seen in the bottom right corner of

each 3-by-3 block. In each case the κ-exponential covariance is used with κ = 2 and

E(τ) incremented across .1, .5, .9 for both random processes to display the effect of

different autocorrelation magnitudes.

3.2.3 Identifiability issues

The variance components corresponding to ϕ, ξ are identified from each other and

from ψ1, ψ2 by the blocking structure in the data. These two components are shared

within individual and within timepoint, respectively, which identifies them from the

components that are shared between family members. However, there is no blocking

structure that explicitly identifies ψ1 from ψ2; the only thing distinguishing them is

the differential staggering of age and time gaps between observations made on family

members. The reason that the gaps are the point of interest is that we assume a

correlation stationary distribution for the corresponding latent processes.

Let D denote the joint distribution of age and time gaps between observations

made on family members. There are two ways in which identifiability issues can be

linked to D. The first is when D is a distribution such that the time and age gaps, ∆t,

∆a, respectively, are frequently very similar to each other. That is, ED (|∆t−∆a|)

is very small. For example, in a twin study, ∆a = ∆t for every pair of assessments.

In that case, the covariance between a pair of sibling measurements is
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Figure 3.3: Implied covariance matrix between two siblings born 1989 and 1993. Left:
ψ1 linearly increasing, ψ2 linearly decreasing. Right: ψ1 linearly decreas-
ing, ψ2 linearly increasing. In both panels E(τj1), E(τj2) are incremented
across .1, .5, .9, indicated by the heading of each plot.
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ψ1(a1)ψ1(a2)r1(∆a) + ψ2(a1)ψ2(a2)r2(∆a) (3.38)

Here it is clear that it is impossible to tell which r is the covariance function for the

age and time indexed latent processes, respectively. Thus, ψ1, ψ2 are not identified.

Usually when such a structure for D is present in a data set, it is clear. When this is

not the case, a scatter plot of the observed age vs. time gaps can used as a diagnostic.

When the joint distribution of ages is not structured in such a pathological way,

the identifiability of ψ1, ψ2 from each other depends primarily on how different the

covariance functions for ηj1, ηj2 across D. In the extreme case where r1(∆t) ≈ r2(∆a)

for all ∆t, ∆a, the covariance between pairs is approximately

ψ1(a1)ψ1(a2)r1(∆t) + ψ2(a1)ψ2(a2)r1(∆t). (3.39)

Then ψ1, ψ2 enter the covariance matrix as multiples of ψ1(a1)ψ1(a2) + ψ2(a1)ψ2(a2)

in every case, leaving the two clearly unidentified. A quantity closely linked to the

degree to which this phenomena is occurring is

MD = ED

(
|r1(∆t)− r2(∆a)|

)
. (3.40)

If MD is not too small, then there is information in the data to distinguish ψ1, ψ2.

The primary situation where this is a concern is when both latent processes are highly

autocorrelated so that r1(∆t) ≈ r2(∆a) ≈ 1 for any ∆t,∆a 6= 0. Then, MD ≈ 0 and

there is nothing to distinguish the two processes from each other.

While we do not know the forms of r1, r2 a priori, and therefore cannot know the

exact value for MD, we do have a sample from D. Therefore we can calculate MD

across a grid of values for the parameters (θ1,θ2) underlying r1, r2, and calculate the

matrix with structure
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[MD]k,` = ED

(
|r1,θ1k

(∆t)− r2,θ2`
(∆a)|

)
(3.41)

where the entries are estimated by the sample moments in the data. If M̂D has

many very small values, this is an indicator to the practitioner that for many of the

admissible parameter values, ψ1, ψ2 are poorly identified from each other. Analogous

measures can be constructed for each of the other functional parameters in the model

to assess their identifiability. For example, if we only have repeated measures on a

small subset of the sample, ϕ, ξ will be poorly identified from each other. In Figure

3.4 we have heatmaps of M̂D for several different joint distributions of age and

time gaps when r1, r2 are each squared exponential covariance functions. We can

see that, universally, ψ1, ψ2 are most identified from each other when one is highly

autocorrelated and the other is nearly white noise. In addition, it appears that having

large age spacing diversity is more beneficial to identifiability than observation time

diversity. In Figure 3.5, a scatter plot of ∆a vs. ∆t is shown (with jittering to prevent

overlapping) as well as the measure of identifiability for the DOTS-R data. There

appears to be a healthy mixture of age and time gap combinations, and across a wide

range of the parameters underlying r1, r2, there are large values of MD in the DOTS-R

data.

3.3 Computation of the estimates

3.3.1 Maximum Likelihood Estimation

To estimate the mean and covariance structure parameters, denoted by θ, we use

maximum likelihood. The log likelihood for family j has the form

Lj(θ) = −1

2

(
log(|Σj(θ)|) + (yj − µj(θ))

′Σj(θ)
−1(yj − µj(θ))

)
(3.42)
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Figure 3.4: Measure of identifiability of ψ1 from ψ2 for families with three children,
three timepoints, and initial ages a and and observation times t such that
Left: a ∼ U(5, 10), t ∼ U(0, 10). Middle: a ∼ U(5, 10), t ∼ U(0, 20).
Right: a ∼ U(5, 20), t ∼ U(0, 10).
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Figure 3.5: Left: Scatterplot of age vs. time gaps for each pair of sibling measure-
ments in the DOTS-R data. Right: Measure of identifiability for the
DOTS-R data.

where µj(θ) and Σj(θ) are given by (3.25) and (3.26). Assuming independence

between families, the log likelihood based on a sample of F families is

L(θ) =
F∑

j=1

Lj(θ) (3.43)

In principle we can differentiate this likelihood and carry out some derivative based

optimization algorithm such as conjugate gradient optimization. In practice, a deriva-

tive calculation takes orders of magnitude longer than a function evaluation, making

such an algorithm less useful. We have found the Nelder-Mead simplex algorithm

[Nelder and Mead (1965)] effective in optimizing L without derivatives.

We now show some results on our ability to recover the correct population struc-

ture when the model is correctly specified, as well as the variance associated with the

estimates, presented in Table 3.1. Under each sample size 250 datasets were gener-

ated with parameter value equal to the first column of the table, three time points

per family uniformly generated from the discrete interval {0, 1, ..., 15} and initial ages

generated uniformly from {5, 6, ..., 15}, scaled by 100 for greater numerical stability.
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Parameter True Estimate(se): F = 200 Estimate(se): F = 400
µ0 0 -.008(.085) -.007(.061)
µ1 0 .034(.537) .012(.358)
ψ10 .1 -.001(.219) .073(.179)
ψ11 2 2.014(1.337) 2.081(1.08)
ψ20 -.125 -.152(.323) -.116(.214)
ψ21 2.5 2.56(1.839) 2.48(1.664)
ϕ0 .5 .474(.132) .495(.089)
ϕ1 0 .125(.787) .094(.502)
ξ0 .1 .994(.074) 1.001(.068)
ξ1 0 -.018(.441) .015(.344)
τj1 .5 .424(.254) .458(.165)
τj2 .8 .833(.222) .787(.173)
κ1 1 1.121(.409) 1.152(.378)
κ2 1 1.215(.397) 1.179(.341)

Table 3.1: Simulation based bias and variance estimates for the model parameters,
with 1000 simulations under each setting.

The model was fit to each dataset and the average and standard standard deviation

of the estimates are reported. In this table ψ10, ψ11, for example, refer to the intercept

and slope of ψ1, respectively. Since the variance parameters are only identified up to

multiplication by −1, we perform this correction before constructing the table. We

can see that our estimates to not appear to have much bias, with the possible excep-

tion of the κ parameters. In addition, it is clear that the standard errors decrease

approximately with the expected scaling factor,
√

2 in this case, since the sample size

is doubled.

Next we display the fitted trajectories under two data scenarios: the first cor-

responding exactly to the results in the table above with F = 200 families. The

second case has the same parameter values as the first, except we know ψ1, ψ2 to be

highly confounded: r1(∆a) = .95∆a, and r2(∆t) = .95∆t. In the “confounded” model,

ϕ̂(a) = .489 + .056a and ξ̂(a) = .994− .018a, indicating very little sensitivity of these

estimates to the confounding of ψ1, ψ2. We can see in Figure 3.6 that the estimates of

ψ2
1(a), ψ

2
2(a) are far more variable under the confounding data setting, while the bias
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is left apparently unaffected. This makes sense since we expect non-orthogonality of

parameter estimates to result in greater variance, not bias.

3.3.2 Computation when non-identifiability is a concern

As displayed by the simulation above, approximate non-identifiability can affect

estimation. In this situation, one can simply fit the model while leaving out one of

these two parameters, but this would not result in unbiased estimate of the corre-

sponding parameter. This would result in an estimate that would be some sort of

combination of ψ1 and ψ2. In addition, if the structure of ψ2 is misspecified, then

strong confounding with ψ1 may cause contamination of the estimation of ψ1, and

actually result in bias in ψ̂1. By performing maximum likelihood estimation on an

altered data set, we can estimate ψ1 independently of ψ2, regardless of the level of

confounding.

Consider two measurements taken on family members Yi1jt1 , Yi2jt2 at a common

age. Define a new variable

Z12 = Yi1jt1 − Yi2jt2 . (3.44)

Letting a denote the common age, it follows that

Z12 = (µ(a) + ψ1(a)ηj1(t1) + ψ2(a)ηj2(a) + ϕ(a)γi1 + ξ(a)εi1(t1))

− (µ(a) + ψ1(a)ηj1(t2) + ψ2(a)ηj2(a) + ϕ(a)γk + ξ(a)εk(t2))

= ψ1(a) (ηj1(t1)− ηj1(t2)) + ϕ(a) (γi1 − γi2) + ξ(a) (εi1(t1)− εi2(t2)) (3.45)

We can see that ψ2 drops out of Z12, thus the joint distribution of the altered data

does not depend on ψ2. Carrying out maximum likelihood analysis on this new data

set gives a means of estimating ψ1 that is independent of its confounding with ψ2.
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Figure 3.6: Estimation precision of ψ̂1 and ψ̂2 under a population where the estimates
are expected to be confounded (right) and not confounded (left). The
solid black line is the true function in each case, the red line is the average
estimate (at each age) and the dotted lines are 2.5 and 97.5 quantiles on
the estimated functions
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Each of the new data points are marginally normal with expectation 0 and variance

var(Z12) = ψ1(a)
2 (2− 2r1(t1, t2)) + 2ϕ(a)2 + 2ξ(a)2. (3.46)

To fully specify the joint distribution of the Z’s we need the covariance terms. Defining

Z34 analogously to above, with common age b,

cov(Z12, Z34) = A+B + C. (3.47)

The first term is

A = cov
(
ψ1(a) (ηj1(t1)− ηj1(t2)) , ψ1(b) (ηj1(t3)− ηj1(t4))

)
= ψ1(a)ψ1(b)

(
r(t1, t3)− r(t1, t4)− r(t2, t3) + r(t2, t4)

)
. (3.48)

The second term is

B = ϕ(a)ϕ(b)cov (γi1 − γi2 , γi3 − γi4)

= ϕ(a)ϕ(b)
(
I(i1 = i3)− I(i1 = i4)− I(i2 = i3) + I(i2 = i4)

)
. (3.49)

The final term is

C = ξ(a)ξ(b)
(
I13 − I14 − I23 + I24

)
(3.50)

where Ik,` = I(ik = i`) · I(tk = t`). Defining Zj to be the vector of non-overlapping

pairwise differences at common ages, Zj ∼ N(0,ΣZj
), where the elements of the

covariance matrix can be built up from (3.46) and (3.47). From there maximum

likelihood estimation can be carried out directly on the altered data.
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A particular case where this tool is useful is when ψ1, ψ2 are highly confounded

and the structural form of ψ2 is misspecified. In this case the misspecification in

ψ2 can contaminate the estimate of ψ1 due to the high correlation between their

estimates. To demonstrate this we generate data from a population where r1(t, s) =

.95|t−s|, r2(a1, a2) = .95|a1−a2|. To ensure there are plenty of measurement pairs at

concurrent ages, we generated child ages at t = 0 as 3,6,9 and the observation times

were 1,4,7,10,13,16 in each of the F = 100 families. The data configuration yields

a small value for MD, indicating a poorly identified data condition. In this case we

have incorrectly specified ψ2 to be a linear function, when it is in fact a quadratic

peaking at a = 12. Plots of the maximum likelihood estimate of ψ1 from the altered

data vs. the full data is given in Figure 3.7, indicating a reduction in bias. Estimates

and error bars are based on the mean and standard deviations from 500 simulation

replications, where non-converged runs are eliminated before constructing the plots.

In this case performing ML on the reduced data set proved to reduce the bias,

but one should use caution when using this technique. First, as can be seen in (3.46),

ψ1 enters the variance as a coefficient on 2(1 − r(t1, t2)), which is small at many

data points in the settings we advocate this approach, since η1 and η2 are highly

autocorrelated. A similar observation can be made from inspection of (3.48). This is

very likely part of the explanation for the substantial variance in this estimate, and

leads to less numerical stability in the optimization.

Another issue with this approach is that the sample size is significantly reduced

with this method, which also contributes to the substantial increase in variance. In

particular, since we are constrained to looking at measurements taken at concurrent

ages, the range of the data is significantly reduced. In data sets of this type, it is

unlikely that pairs of sibling observations at very young or old ages will be available.

Therefore, the estimate of ψ1 acquired from this technique will often be restricted to

a possibly very small subset of the age range. The rigid age and timing structure we
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Figure 3.7: ψ1 estimation precision using the MLE from the full data (Left) and from
the reduced data (Right)

imposed for this simulation is, in some sense, optimal for this approach, which may

not perform this well in other settings.

3.3.3 Computing techniques

If reduced down to a certain level, the model we have proposed here is a compli-

cated random effects model that almost certainly fits into the Pinheiro/Bates frame-

work of (1.4). However, it is the limit of the computing interface for specifying random

effects that keeps model (1.4) from living out its full generality. Using the R pack-

age lme4, the user is constrained to, basically, specifying models that can be written

as linear functions of fixed and univariate random intercepts and slopes, shared by

some pre-specified blocks in the data set. Certain pre-packaged link functions can be

used but only those utilized for traditional purposes, such as logistic regression with

random effects, are available.

Two aspects of our model do not appear to be possible within a package such

as lme4. First, specifying a latent process with any desired covariance structure is

not possible. The most sophisticated incarnation of this available in lme4 would be
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something like the random regression model described by Meyer (1998). A model like

(3.15), for example, may be specified in lme4 by

lmer(y ~ (1+t | Family) )

however, nothing like specifying an arbitrary parametric covariance function appears

possible. Secondly, there does not appear to be a way to specify an arbitrary interplay

between fixed and random effects. Even relatively simple interactions, such as the

ψ1(a) · η1(t) terms in our model are not readily implementable. This are both likely

due in large part to syntactic issues, since writing a method to translate to user input

to a model specification for arbitrary model specifications may be impossible.

Our approach circumvents the problems with computer syntax and manipulates

a code generation scheme which allows an arbitrary covariance structure. Through

a somewhat cumbersome interface, the user can specify any entry of the covariance

matrix to be an arbitrary mathematical function of parameters and/or data points.

For example, to write out the contribution of a linear ψ1 to an entry of the covariance

matrix in our model with corresponding ages a1,a2 and times t1,t2 with a squared

exponential covariance for ηj1, one would type

"(P[0] + P[1]*%f)*(P[0] + P[1]*%f)*exp(-P[3]*%f)" % (a1,a2, abs(t1-t2))

Strings of this form, which depend on the parameterization chosen, are then com-

bined to build up the mean and covariance structure of every cluster in the data set.

This process can usually be automated if the parameterization chosen is fairly regular

between clusters, like our model is. Next the lists of means, covariances, and data

points are run through an intermediary program which writes them to a template C

script that contains nothing more than a generic function to call the multivariate nor-

mal log-likelihood, a function to carry out Nelder-Mead optimization of an arbitrary

objective function, and necessary variable storage. This newly produced C program
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is then compiled and run to optimize the likelihood as a function of the vector P and

produce point estimates.

The algorithm described above bypasses the need to include superfluous function-

ality in the model fitting program. In addition, after shifting from a pre-compiled

general function built to fit our model to this approach, we saw runtimes drop from

several minutes to seconds. The longest part of this process is generally the compila-

tion step, because if the data set is moderately large, then the number of lines in the

final C script to fill in the mean vectors and covariance matrices can be substantial.

This highlights the primary shortcoming with this approach, because no more than

approximately 1000-2000 clusters can be accommodated with taking a prohibitively

long time to compile. It may be possible to handle this problem using some sort of

looping to reduce the size of the compiled file.

3.4 Model inference using the Likelihood Ratio Test

3.4.1 Some hypotheses of interest

A key feature of our modeling framework is that the parameters of interest have

meaningful scientific interpretations. One of the primary hypotheses that we seek to

make inference about is whether or not ψ1, ψ2 are constant functions. For example,

a time-varying ψ1 would indicate that the level to which a person’s responses are

modulated by the shared family environment at a particular time depends on their

age. In this case, the variance function ψ1, is interpreted as age-specific sensitivity to

family environment. As an example, suppose a stressful event, such as the provider

losing his/her job, occurs in the family environment, leading to a spike in η1. A

very young child is not likely to be affected much by this. On the other hand,

a young adolescent may be more sensitive to such an event, since it would have

implications to his/her material possessions and/or relationship with their parent. A

80



similar hypothesis may be formulated for ψ2. The most natural example of this would

be an age-specific onset of a genetic predisposition which is related to the response

variable.

A second hypotheses that may be of interest to researchers are whether or not there

is any familial correlation at all. Specifically, is it the case that ψ1(a) = ψ2(a) = 0

for every age? This can be accomplished by testing whether each parameter is a

constant function at 0. While this hypothesis can be tested using simpler random

effects models, it is not clear how this would be affected if, for example, the true

correlation was non-constant but crossed 0 near the median age in the data set. A

hypothesis of secondary interest that we give little attention to is to assess whether

time-indexed factors are inducing more familial resemblance that age-indexed factors.

This question may be answered by use of AIC or some other model selection criteria.

The first two hypotheses mentioned above can be formulated as sub-models of the

full model, (3.24). Therefore, the likelihood ratio test (LRT) statistic,

Λ = 2

(
max
θ∈Ω

L(θ)−max
θ∈Ω0

L(θ)

)
, (3.51)

can be applied for inference. Here Ω denotes the full parameter space, and Ω0 is

the subspace defined by the null hypothesis. It is well known that, under the null

hypothesis, Λ ∼ χ2
d where d is the difference in dimensionality between Ω and Ω0.

When testing whether either of the functions are identically 0, this presents a non-

standard LRT problem. Much work has been done to study the behavior of the LRT

statistic under non-standard conditions; the most well known work is that of Self and

Liang (1987). They show that in many traditional cases, such as testing whether a

single variance parameter is 0, the LRT is found to be conservative.
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3.4.2 Problems defining a measure of effect size

We now attempt to investigate properties of the study population that lead to

improved power for hypothesis testing. Clearly study design characteristics such as

sample size, family size, and number of time points are relevant, but these are of less

interest here since these may be constrained by things out of a researcher’s control.

When considering ordinary likelihood ratio testing of the parameters relevant to

ψ, certain measures of effect size are necessary. Recall from above the quantity λ(a)

defined in (3.32), the proportion of variation at a given age due to ψ1. A natural

measure of effect size for detecting non-zero ψk is

Ea(λk(a)) k ∈ {1, 2}. (3.52)

Ea(λk(a)) is the average contribution of ψk(a) to the total variation across ages.

Clearly, the larger this quantity, the greater the relative magnitude of ψk(a). It

is somewhat less clear to define an effect size for testing constancy of ψk(a). One

possibility is

Qk = vara(λk(a)) k ∈ {1, 2}. (3.53)

If Qk is large, this indicates that the relative contribution of ψk(a) changes a lot

over the age range. One way in which this can happen is if ψk(a) is a non-constant

function. However, there are other possibilities:

• Qk = 0 and vara(σ
2(a)) = 0

– Both ψk(a) and ξ(a) are constant

• Qk > 0 and vara(σ
2(a)) = 0 or Qk = 0 and vara(σ

2(a)) > 0

– Both ψk(a) and ξ(a) are not constant
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• Qk > 0 and vara(σ
2(a)) > 0

– At least one of ψk(a) and ξ(a) are not constant

• If all variance functions are constant, then ψk(a) is non-constant ⇐⇒ Qk > 0.

An important thing to notice here is that age-varying correlation does not necessarily

imply that ψk(a) is time varying, which makes this measure problematic. However,

in some cases one may be able to rationalize that the impact of stable individual

characteristics, ϕ(a), and measurement error, ξ(a), are constant over time. If this is

the case, vara(λk(a)) is a sensible measure of effect size.

In Figure 3.8 the value of Qk is given as a function of the slope when all other

functional parameters are constant, as well as the power (using the nominal LRT

critical value of 3.84) as a function Q1 for testing constancy of ψ1 for various values

of E(τ1) when ψ2 is fixed (in the data generation and model fitting) to be 0. In these

simulations the there were 200 families with two kids in every family with t = 0 ages

uniform on (5,10), observed three times, uniformly distributed on (0,20). We can see

that Qk is a strong determinant of power in the ideal case where all other functions are

constant. However, in general, age-varying correlation does not necessarily indicate

age-specific sensitivity to family environment. Thus Qk does not provide a perfect

measure of power to detect non-constant ψk.

As an example, suppose, under the same data conditions as above, ψ1(a) = .042+

.21a and ξ(a) = .1 + .5a, with all other functional parameters identically 0. In this

case Q1 = 0 but ψ1(a) is clearly non-constant. In this particular case, we have

approximately .65 power to detect non-constant ψ. With the exact same ψ1 and

ξ(a) = 1.6 (the best constant approximation of 1 + .5a), we have approximately .82

power. This indicates, in addition to the value of Q1, other age-varying qualities

of the data have an impact on power. This presumably because these two factors

are mildly confounded when it comes to modeling the marginal variances, and the
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marginal variances of the estimates of ψ and ξ increase in this case, leading to a loss

in power.

Related to this discussion, there are other conceivable quantities related to the

power to correctly decide in hypothesis tests involving ψ1. As in ordinary the Pin-

heiro and Bates style mixed effects model, the number and size of clusters in highly

relevant. When the sample size is fixed and one varies the cluster sizes (and implicitly

the number of clusters) certain settings provide estimation precision of the variance

parameters. For example having 5 families of size 20 will result in a less optimal sit-

uation for variance component estimation than having 20 families of size 5. Another

relevant possibly related to power for ψk is the magnitude of the expected autocorre-

lation parameter E(τk). When E(τk) is very large, pairs of data points spread apart

farther in time still yield non-zero correlations and therefore those data points will

give more information about ψ1 than if E(τk) were smaller; larger E(τk) effectively

increases the sample size for estimating ψk. On the other hand, larger values of E(τk)

also effectively reduces the total sample size. Perhaps these two factors are both at

work, because E(τk) seems to have a negligible effect on power in Figure 3.8.

3.4.3 Power analysis in the full model

We now present a series of simulations to display the approximate level and power

of tests our primary hypotheses of interest. The main hypotheses addressed here

concern determining constancy of ψ1, ψ2 and determining whether either are identi-

cally 0. In addition, we intend to investigate the degree to which the confounding

of ψ1, ψ2 discussed in section 3.2.3 contaminates the properties of the tests. Each of

the simulation results presented are the result of 500 simulations, each with F = 200

families, 3 assessments per family, 2 children per family with initial ages uniformly

distributed on (5,10) and assessment times uniformly distributed on (0,20). These

values were chosen as possible demographics of a realistic, relatively sparse, long term
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Figure 3.8: Left: Size of Qk as a function of the slope with each line corresponding to
β0 = 0, .05, .1, ..., .25. Right: Power to correctly conclude the ψ1 is non-
constant as a function of Q1 for E(τ1) = 0 (black), .25(red), .5(green),
.75(dark blue), .9(light blue).

family study. This is reflected by the moderate number of children per family and

average birth spacing being 5/3. All simulations below have ϕ(a) = .5 and ξ(a) = 1.

In the first set of simulations we test the null hypothesis that ψk(a) ≡ c. First

focusing on testing ψ1, we generate data from three population structures:

1. ψ1(a) = .1 + 1.25a

2. ψ1(a) = .1 + 2a

3. ψ1(a) = .1 + 3a

with ψ2(a) = −.3 + 2.5a in each population. These three structures correspond to

ψ1 accounting for approximately 5%, 10%, and 15% of the total variation (averaged

across ages), respectively. Note that age is scaled by 100 for greater numerical sta-

bility.

Each simulation compares two models: the first with ψ1(a) parameterized as a

linear function, and the second with ψ1(a) constrained to be constant. To approximate
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Not Confounded Confounded
Population Level Power Level Power

1 .057 .223 0.067 0.262
2 .070 .526 0.128 0.621
3 .078 .775 0.160 0.821

Table 3.2: Monte Carlo estimates of the level and power of the test of the null hy-
pothesis that ψ1 is a constant function for three population structures and
two degrees of confounding.

the finite sample level of the test, we also did analogous simulations where ψ1(a) truly

was a constant function. In the second set of simulations, ψ1(a) was generated as

constant at
√
.05,

√
.1,
√
.15, respectively to maintain the same proportion of variation

due to ψ1. Each of the two simulations were run when E(τ1) = .5, E(τ2) = .9 and

E(τ1) = .95, (τ2) = .95 to determine the effect of confounding on the power. The

results of this first simulation are given in Table 3.2.

We can see that the power is very poor for population 1 in both cases, and increases

as the slope becomes more steep. In the confounded population the nominal critical

value of 3.84 does not seem to be appropriate, as the null distribution seems to exceed

it far more than 5% of the time. This is very likely due to the fact that, since ψ1 and

ψ2 are confounded, ψ2 can compensate for the lack of slope in ψ1, thus making the

null hypothesis less likely to be rejected when ψ1 truly is constant.

An exactly analogous simulation study was carried out with the role of ψ1 and ψ2

reversed and is summarized in Table 3.3. In this case the power is lower in every case

than the corresponding tests of ψ1, although the significance levels are not inflated

as they were before. While this is disconcerting, we may still be confident that a

significant result encountered in real data is indeed significant. This may be due that

the asymptotics of the LRT statistic have not kicked in yet. Non-orthogonal predictors

can have the effect on slowing down convergence and this may be happening here to

a greater degree with ψ2 than ψ1.

Our second set of simulations focuses on determining whether ψ1, ψ2 are identically
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Not Confounded Confounded
Population Level Power Level Power

1 .037 .168 0.057 0.184
2 .037 .208 0.025 0.226
3 .045 .422 0.035 0.233

Table 3.3: Monte Carlo estimates of the level and power of the test of the null hy-
pothesis that ψ2 is a constant function for three population structures and
two degrees of confounding.

zero. To do this we simulate data with ϕ, ξ the same as above with ψ2(a) = .1 + 2a

and generate ψ1 from three populations that are each qualitatively quite different:

1. ψ1(a) = −.125 + 2.5a

2. ψ1(a) = −.7 + 4a

3. ψ1(a) = .447

The first population structure is meant as a simple linear structure that accounts for,

on average, about 8% of the total variation. The second population is one where ψ1

crosses zero around the median point of the age range. We would like to investigate

whether this adversely affects the power. Finally, the third is a scenario we expect to

do quite well, since ψ1 is constantly very far from 0, accounting for about 20% of the

total variation. The results of this simulation are shown in Table 3.4. Notice that the

simulations under the null hypothesis do not depend on the three populations, thus

only one number is reported. Once again we carry out the same simulations with the

roles of ψ1 and ψ2 reversed, the results of which can be found in Table 3.5.

We can see in these simulations that the nominal critical value for the LRT is very

conservative. This agrees with the standard theory of Self and Liang (1987), since we

are testing on the boundary of the parameter space. In this case we see an astounding

loss of power when comparing the confounded data setting with the non-confounded.
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Not Confounded Confounded
Population Level Power Level Power

1 .006 .343 .007 .077
2 - .317 - .329
3 - .807 - .172

Table 3.4: Monte Carlo estimates of the level and power of the test of the null hy-
pothesis that ψ1 is identically 0 for three population structures and two
degrees of confounding.

Not Confounded Confounded
Population Level Power Level Power

1 .012 .301 .006 .181
2 .008 .511 .003 .428
3 .011 .583 .002 .153

Table 3.5: Monte Carlo estimates of the level and power of the test of the null hy-
pothesis that ψ2 is identically 0 for three population structures and two
degrees of confounding.

This gives a legitimate cause for concern, but will only result in conservatism. We

can still be confident that a significant result is legitimate in practice.

We have shown with these simulations that the LRT statistic is, at worst, conser-

vative when we are not in a highly confounded data setting. The loss of power once

entering the confounded data setting is not surprising, but the magnitude of the effect

is troublesome. This is particularly a concern, since there is no more than a vague

diagnostic for determining whether a given data set could be a problem. Secondly, the

LRT test is largely conservative for testing the null hypothesis of one of the functional

coefficients being identically 0. This is consistent with the conventional wisdom and

should be noted when something appears near the border of significance in such tests.

Finally, the power of the inference for ψ2 is considerably smaller than analogous tests

for ψ1. While we do not have a particular explanation for this, this does seem to

agree with the results reported in Table 3.1, which showed that the estimates of the

ψ2 parameters had higher sampling variance.
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Testing ψ1 Testing ψ2

Population Level Power Level Power
1 .089 .120 .102 .156
2 .067 .535 .114 .418
3 .032 .930 .061 .830

Table 3.6: Monte Carlo estimates of the level and power for LRT tests of constancy
in ψ1(left), ψ2(right) for three population structures.

3.4.4 Power analysis in the reduced model

The purpose here is first to determine whether this loss in power for testing ψ2 is a

property of the joint model, or whether ψ2 is simply more difficult to estimate than ψ1,

generally, which would agree with the results in Table 3.1, where the estimated slope of

ψ2 appears to have considerably greater variance. The second reason for this inquiry

is regarding the conventional approach in these types of models to choose age as the

time index, rather than chronological time. In some applications, such as genetic

analysis where the environmental covariance is assumed to be 0, age indexing may

be the only sensible thing, since chronological time clearly does not affect genetics.

However, in applications where there is a judgment to be made, these results may be

of interest.

To investigate the properties of these tests we carry out simulations exactly anal-

ogous to those above with only one of ψ1, ψ2 in the model. To compensate for the

decrease in marginal variance, the value of ξ, while still be left constant, is increased

by the appropriate amount. The tests of the null hypothesis of ψk ≡ c is summarized

by Table 3.6. The results of testing ψk ≡ 0 are given in Table 3.7.

We can see that the tests are much more reasonably behaved since each of the

models are much more well identified than the full model. The drastic advantage

that ψ1 appeared to have in power has largely disappeared, although there does

seem to be a moderate difference in the power for testing constancy of the functional

parameters. In addition, the significance levels for testing ψ2 ≡ c appear slightly
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Testing ψ1 Testing ψ2

Population Level Power Level Power
1 .031 .781 .001 .745
2 - .534 - .512
3 - .973 - .943

Table 3.7: Monte Carlo estimates of the level and power for LRT tests of ψ1(left),
ψ2(right) being identically 0 for three population structures.

inflated. For testing whether either function is identically 0, both seem to struggle a

bit when the true, non-constant, function crosses 0 near the median age.

Coming back to the purpose for this inquiry, it does not appear that ψ2 is in-

herently difficult to estimate or underpowered for hypothesis testing, but it does not

outperform ψ1 in any case. In addition, in the joint model, the inference on ψ1 and

estimation precision appears to perform generally better and is less affected by the

confounding than ψ2. This calls into question the default choice of age indexing in

models of the type with a single timing variable. Given the more favorable properties

of ψ1 when the true model contains ψ1 (and not ψ2), a practioner may be well served

to do some model selection first to determine which indexing fits better.

3.5 Sensitivity to misspecification of η covariance structure

Since the choice for the covariance functions of the η processes is largely arbitrary

we carry out some simulations to investigate the sensitivity of this specification to

estimation of the parameters of primary interest– ψ1, ψ2. In other settings where a

covariance matrix or function is considered a nuisance parameter, the AR1 is the

default parameterization. In our model, we go slightly beyond that, but our choice is

still susceptible to misspecification. In this section we test our model’s sensitivity to

three types of misspecification in the covariance structure of η: sample paths of the

process are not identically distributed, non-stationary, or non Gaussian.

In the first two simulations we generated a population structure such that each
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of F = 100 families had four kids, observed six equally spaced times from 0 up to

15 and initial ages with initial ages 4, 7, 10, 13. In the third simulation there are

F = 200 families observed only 3 times at initial ages 4, 7, 10. Purely arbitrarily,

these simulations are displayed for ψ2 rather than ψ1. The estimation of ψ1, whose

covariance was correctly specified, is not shown. For all three studies 500 simulations

were done.

The first misspecification in cov(η) we analyze critically is the “iid” assumption.

Technically our choice, (3.29) with the autocorrelation parameter specified as a ran-

dom effect, may be thought of as not identically distributed, since the autocorrelation

parameter varies family to family, but we consider a different type here. The true

structure is that cov(η has an exchangeable correlation structure where the off diag-

onal entries are Uniform(0, 1) drawn by family. In the left panel of Figure 3.9, we

can see that somewhat substantial downward bias occurs from this misspecification,

while the variance of the estimate doesn’t seem particularly large.

One explanation for the observed bias that an exchangeable correlation can induce

relatively large correlations in η2(a) for ages quite far apart. In the generated data, for

example, there is a 4 year old and a 28 year old in each family (among other sizeable

gaps), so in order to accomodate such large age lags, the autocorrelation parameter

must be overestimated. This means that the random coefficient on ψ2(a) is too large

at many entries in the covariance matrix, thus ψ2(a) must be underestimated to

compensate.

The second covariance assumption we challenge is that of stationarity. Previous

authors [e.g. Pletcher and Geyer (1999)] have noted that the assumption of station-

arity is almost certainly false, but is likely to provide a reasonable approximation. To

test this we generated η2(a) so that

η2(a2) = τ(a2) · η2(a1) +
√

1− τ(a2)2 · ε (3.54)
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where ε ∼ N(0, 1), and τ(a) = e−(a−17.5)2/50. This covariance function makes η2

highly autocorrelated near 17.5, but essentially white noise elsewhere. Such a struc-

ture would not make much sense when indexed by time, which is a rationale for

demonstrating this on ψ2. The results of this simulation are shown in the top right

of Figure 3.9 and indicate that this type of non-stationary has little if any effect on

the estimation. When there are enough timepoints, as there are here, it appears that

the model is fairly robust to non-stationarity.

The final covariance misspecification we investigate is non-Gaussianity. The Gaus-

sian assumption is almost automatic in many statistical problems with continuous

data as a convenience. In our model this stipulation is convenient because we can

neglect higher order dependencies beyond covariances. To test this assumption we

generated η2(t) as the sign of an AR1 process with τ = .99. The type of misspec-

ification is very far from the parametric assumption and should yield a problem if

the estimation is at all sensitive to non-normality. This results in what appears to

be small bias, but significantly increases the variance, as can in the bottom panel of

Figure 3.9.

Each of the three types of misspecification investigated here can be difficult to

assess a priori, so a researcher may have difficulty knowing whether the results shown

here should be of concern. The stationary assumption is probably the most difficult

to assess, but is also less likely to be a major problem. While pathological examples

of non-stationary processes may seriously damage estimation in our model, we do not

expect the data we have in mind to have such properties.

The non identically distributed assumption, which presented the largest problem

in our simulations, is probably also the easiest to spot. In some data settings, such as

stratified populations, a researcher may have good reason to believe there is between

cluster heterogeneity in the temporally indexed cluster dynamics. When this is a

concern stratifying the sample and performing this analysis on each strata separately
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Figure 3.9: Estimate of ψ2 (red) with empirical 95% pointwise confidence bands
(dashed blue lines) along with the true ψ2(light blue). The covariance
structure of η is non identically distributed (top left), non-stationary (top
right), and non-Gaussian (bottom).
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may be appropriate.

The Gaussian assumption is the most straightforward to check in our model. In

the case where η2 is a binary process, as above, a histogram of the data would most

likely raise a red flag, since the sum of normal variables should be normal. In addition,

non-normality, particularly of the extreme type simulated here may be more obvious

to spot. For example, a genetic predisposition which turns on a different ages in

different families (if at all) may be give rise to a latent process similar in structure

to the one generated above. However, even the extreme non-normality simulated

here did not cause the machinery to break down, and most realistic violations of this

assumption are likely to be less serious.

3.6 Analysis of the DOTS-R data

Our motivating application for this work are longitudinal behavioral measure-

ments made on individuals in families gathered as part of the Michigan Longitudinal

Study (MLS) [Zucker et al. (1996)]. The particular section of the MLS data we an-

alyze here are eight DOTS-R measurements. The DOTS-R exam is a widely used

quantitative tool used for characterizing temperament as individuals progress from

childhood through early adulthood. The eight DOTS-R items we have here are sums

of responses to various scales constructed to capture distinct characteristics described

in Table 3.8.

We begin by describing the demographic characteristics of the dataset. There are

a total of 579 children from 286 families, for an average of about 2 kids per family;

the full breakdown is given in Table 3.9. The DOTS-R is very sparse longitudinal

data, with only 51.1% of children observed twice and the rest only observed once.

Our first goal with this data is to investigate the extent to which familial resemblance

is present. If there is, we would then like to determine whether this is arising from

temporal or age indexed factors, and if there is age-specific sensitivity to these factors.
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Item Description
1 Self Activity-General
2 Self Activity-Sleep
3 Approach/Withdrawal
4 Self Flexibility/Rigidity
5 Self Mood
6 Rhythmicity-Sleep
7 Rhythmicity-Eating
8 Rhythmicity-Daily Habits

Table 3.8: Descriptions of the DOTS-R items

Number of children Percentage of families
1 26.5%
2 50.6%
3 16.8%
4 5.6%
5 .3%

Table 3.9: Number of children per family in the DOTS-R data

A practical issue which arises with real data analysis is starting values. For the

simulation studies we have the luxury of knowing the true population parameters, and

can start there to presumably arrive at the global mode. In real data we must make

some considerations for this problem. A simulation study was carried out (not shown)

and it was found that by starting from 10 random starting values, our program finds

a converged point that is within .2 log likelihood points of the global mode over 90%

of the time. More random starts does not generally payoff, as increasing from 10 to

50 only raises this rate to about 96%. We use 10 random starts and retain the point

with the highest likelihood as the estimate for each DOTS-R item.

The handling of the nuisance parameters is addressed first. Due to the very sparse

nature of the data, we do not expect the fitting of the three parameters underlying

each of the covariance functions for η1, η2 to be estimated well, so we simply use the

squared exponential covariance. The nuisance functions, ϕ, ξ were parameterized as

linear functions to prevent ψ1, ψ2 from being identified through variances.
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To address our first objective, we formalize the problem by testing H0 : ψ1 = ψ2 =

0 against

1. ψ1, ψ2 both non-zero

2. ψ1 zero, ψ2 non-zero

3. ψ1 non-zero, ψ2 zero.

If there is suggestive evidence against H0 by comparison with the the first alter-

native, each individual function can be tested marginally in an attempt to determine

where the familial correlation is coming from. Table 3.10 contains LRT statistics of

each hypothesis. there is strong evidence for familial correlation in items 4, 6, which

correspond to Flexibility and Sleep Rhythmicity. In addition, due to the known con-

servative nature of the test, as displayed in section 3.4.3, there is suggestive evidence

of familial correlation in items 3, 7, and 8 as well.

Item 4 is the only item where there is unequivocal evidence that time indexed

causes of familial correlation are having a greater impact than age indexed causes.

For this item the AIC difference is about 1.5, which is beyond the rule of thumb stated

by Burnham and Anderson (1998). The point estimates in this case are ψ̂1 = 1.424

and ψ̂2 = 1.064 in the marginal models and ψ̂1 = 1.229, ψ̂2 = .860 in the joint model.

ψ1 also appears to be having a greater impact on suggestive items 3 and 8.

Now that we have established that there is some familial resemblance in the data,

we look to test whether there is evidence for time varying sensitivity to family envi-

ronment in any of the items. We accomplish this by comparing the model with ψ1, ψ2

constrained to be constant with three other models:

1. ψ1, ψ2 both linear

2. ψ1 constant, ψ2 linear

3. ψ1 linear, ψ2 constant.
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Item 1 2 3
1 2.984 2.980 2.972
2 0.026 0.026 0.026
3 3.698 2.172 3.353
4 11.802 10.856 8.223
5 3.170 2.138 2.527
6 13.318 12.370 12.092
7 3.948 3.636 3.636
8 5.684 4.286 5.118

Table 3.10: LRT statistics testing ψ1 ≡ ψ2 ≡ 0, and ψ1 ≡ 0, ψ2 ≡ 0 separately with
the other constrained to be 0. DOTS-R items

Item 1 2 3
1 1.154 1.126 0.271
2 0.235 0.079 0.231
3 1.836 0.374 1.581
4 0.052 0.008 0.034
5 0.552 0.497 0.110
6 0.498 0.441 0.274
7 3.435 2.835 0.227
8 1.967 0.122 1.759

Table 3.11: LRT statistics testing for significant slope in ψ1, ψ2 simultaneously (col-
umn 1), and ψ1 and ψ2 separately (columns 2,3) for each of the 8 DOTS-R
items

The LRT statistics corresponding to these comparisons are given in Table 3.11. While

none of these results are nominally significant, there is suggestive evidence in item

7 of some age-varying sensitivity to time indexed environment. To a lesser extent,

items 3, 8 show evidence of non-constant ψ2. In each of these three cases, it seems

that the age-specific sensitivity to family environment is occurring with respect to

only a single one of ψ1, ψ2 and not both. In each item, the level of familial correlation

is decreasing as a function of age.
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3.7 Discussion

Random process models for the analysis of temporally dependent traits were orig-

inated in Kirkpatrick and Heckman (1989), Kirkpatrick et al. (1990) and were later

extended by the Meyer and Hill (1997), Meyer (1998), Pletcher and Geyer (1999),

Jaffrezic and Pletcher (2000), among others. Such models make intuitive sense and

reduce the problem to estimation of the covariance functions underlying the genetic

and environmental random processes. Our contribution to the field is a method of

encorporating effects on the correlations which are modulated by both age and chrono-

logical time by borrowing and extending methods most closely resembling those of

Pletcher and Geyer (1999). In addition, our method is the first to introduce clustered

data models that are not definitionally identified by a particular blocking structure

in the data, but rather by the differential staggering of age and time gaps in the

data. This disaggregation is an ambitious estimation task, and we have partially

characterized the situations where the decomposition of the two latent processes is

possible.

The framework described in this chapter has many attractive features. The pa-

rameters in the model are interpretable and are potentially of scientific interest. While

ψ1, ψ2 are related and are targeting similar characteristics, they are distinct entities

that can be separated, as demonstrated herein. ψ1 may be thought of as a broad

measure characterization of a subject’s sensitivity to the environment shared within

a family (or, more generally, a cluster) at a particular chronological time. ψ2 is a

measure of sensitivity to age-dependent sources of correlation within a family, which

would include genetics. Having the availability to simultaneously model these two

components, as opposed to making an arbitrary specification of how time is indexed,

is desirable property of our framework.

One primary shortcoming of our approach is that the assumptions of the model

may be exceedingly difficult to test. For example, there is no straightforward way
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of determining whether our parametric specification of the covariance structure for η

is reasonable. We have shown in simulations that this specification can be crucially

important, and can result in sizeable bias and/or additional variance in some cases.

In addition, testing other types of misspecification is problematic, such as the addi-

tivity of familial correlation inducing processes. A non-parametric approach would

be necessary to circumvent these issues, but, as noted by Pletcher and Geyer (1999),

this is simply not feasible with the types of sample sizes likely to occur with such

data. In such an estimation setting, the higher variance non-parametric estimates

may not balance favorably with the bias induced by a misspecified parametric model.

More work needs to be done on how to characterize the level of confounding present

in a given data set and potential strategies to mitigate this. The massive negative

impact of the confounding on the significance levels and, more severely, the power of

the LRT is very troublesome. An alternative method which is not this sensitive must

be sought. In addition, noting the infeasibility of the most intuitive measure of effect

size, some other quantification is necessary to characterize the power of hypothesis

tests under particular conditions.

Some promising directions for future work may be to explore an alternative es-

timation procedure the does not necessitate the estimation of so many nuisance pa-

rameters. One possibility here is to use composite likelihood. For example, there

may be some way of using composite likelihood to make the nuisance parameters ϕ, ξ

drop out of the model. Possible gains in computational simplicity would be a primary

reason for this inquiry.

Other avenues of future work are related to modeling phenomena likely to present

themselves in real data. For one, researchers may be interested in analyzing multiple

traits simultaneously. This could potentially be accounted for in this framework by

including cross covariance functions as in the multivariate character process model

of Jaffrezic et al. (2004). In this way, age and chronological time effects on the
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multivariate process evolution can be explored. Another natural extension of our

model would be to include modifications to analyze genetically informative data.

Finally, many longitudinal family studies include data from multiple generations,

which would be straightforward to include in this framework.

A second avenue for future work regards including some constructs likely to affect

the response which are not currently accounted for by our framework. Our current

model assumes that all subjects are governed by a single environmental sentivity

function, ignoring the fact that birth order is relevant. It seems unlikely that the first

born sibling would respond in the same way as the middle or youngest sibling in the

family to the familial environment. In some more traditional work [e.g. Pawitan et al.

(2005)], an indicator of “first born” is used as a fixed effect in the model, but this

does not modulate the correlations in any way. Potentially using such an indicator as

an additional argument to the functions ψ1, ψ2 is a simple modification that could be

interesting. More generally, variables other than just age may modulate sensitivity

to the shared latent process. Investigation of general covariate effects on sensitivity

is a possibility.

Along similar lines, we have assumed that effects which occur at a particular time

in the family affect the response immediately. In reality, it is likely that some sort

of age specific warping would occur. In particular, subjects of a particular age may

take a different amount of time to respond to an environmental stimuli than subjects

of another age. Roughly, this would correspond to something like

η(t) −→ η(t+ ∆(a)) (3.55)

Research on what type of data is required to properly identify ∆(a) and the precision

with which it could be estimated represents an interesting possiblity. ∆(a) would

give some quantification to how individuals react to events and may be of interest to

social science researchers.
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CHAPTER IV

Point estimation in multiple timing variable

models for binary longitudinal family data

4.1 Introduction

Many traits in which familial association structure is of interest are binary in

nature. For example, the presence or absence of a disease or smoker/non-smoker

status are binary traits whose coherence within a family may be of substantive interest

to a researcher. In this chapter we seek to extend the methods of chapter 3 for use

on binary data.

In the analysis of quantitative traits that are discrete, natural extensions of the

continuous time models are used. In many approaches [e.g. Pawitan et al. (2005)], the

discrete trait is viewed as arising from some underlying liability that is a continuous

variable. Keeping with the analogy to the classical continuous trait genetics model,

the discrete response, Y is modeled as

φ(Y) = µ+ g + e (4.1)

where φ is some link function. The model implied correlations of the liabilities are

known as polychortic correlations and are a standard way of quantifying familiality

in binary family data. Model (4.1) amounts to fitting a generalized linear mixed

model, which is discussed chapter 1. Other approaches exist that do not assume an
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underlying liability [e.g. Hopper et al. (1984)], and work directly with the discrete

distribution. These approaches largely make us of some form of log-linear model,

which is also discussed in chapter 1.

The literature of models for discrete longitudinal family data are very sparse.

Little work on extending the “character process” model of Pletcher and Geyer (1999)

to the discrete setting has been done. The primary reference in this area is is Pletcher

and Jaffrezic (2002), where the authors model the discrete variables as arising from

an underlying unobserved continuous variable that follows the model of Pletcher and

Geyer (1999), Jaffrezic and Pletcher (2000). The link between the observations and

the underlying continuous variable is governed by a second set of parameters and the

model is fit using a hybrid MC/EM algorithm.

We begin by viewing the binary responses as thresholded normal variables and

discuss why certain modifications to the model formulation must be made to en-

sure identifiability. Estimation in this model presents a more formidable task, since

MLE calculation is more cumbersome. We discuss why ML presents a numerically

intractable problem and discuss an alternative approach to estimation based on com-

posite likelihood (CL). Simulation results are given to show point estimation accuracy

in this model. We apply this method to simulated data and to each of the CBCL

items used in Chapter 2 and interpret the results for some particular items of interest.

The chapter concludes with a brief discussion and some suggestions for extensions of

the model to more general categorical data.

4.2 Model Formulation

Let Yijt ∈ {0, 1} denote the response of subject i in family j at time t and age

aijt. We choose a parameterization analogous to the continuous case; for a rationale

of this model formulation see Chapter 3. We assume unobserved Gaussian random

variables Xijt following model (3.24) underlie the observed binary random variables.
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That is,

Xijt = µ(aijt) + ψ1(aijt)ηj1(t) + ψ2(aijt)ηj2(aijt)

+ ϕ(aijt)γi + ξ(aijt)εij(t). (4.2)

Then the observed binary outcome is

Yijt = I(Xijt > 0). (4.3)

The correlation structure of the underlying continuous variables Xj induces asso-

ciation between the observed binary variables. As observed by other authors [e.g.

Rabe-Hesketh and Skrondal (2001)], the observed variables are thresholded versions

of the continuous responses, and thus the scale of the latent processes can not be

deduced from the observations. More specifically,

P (Yijt = 1) = P (Xijt > 0) = P

(
Xijt − µ(aijt)√

σ2(aijt)
>

−µ(aijt)√
σ2(aijt)

)
= Φ

(
µ(aijt)√
σ2(aijt)

)
(4.4)

where σ2(a) is defined in (3.31) and Φ is the standard normal CDF. The threshold

value,
µ(aijt)√
σ2(aijt)

, is identified uniquely, but not each term in the ratio. Furthermore,

equation (3.33) shows that the correlation between Xijt and Xkjs (known as the

polychortic correlation between Yijt and Ykjs) only depends on
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ψ?
1(a) =

ψ1(a)√
σ2(a)

(4.5)

ψ?
2(a) =

ψ2(a)√
σ2(a)

(4.6)

ϕ?(a) =
ϕ(a)√
σ2(a)

(4.7)

ξ?(a) =
ξ(a)√
σ2(a)

(4.8)

When σ2(a) is fixed to a constant, it is known that the polychortic correlations are

identified in thresholded gaussian models [e.g. Pearson (1900)]. In this model we

fixed σ2(a) = 1 and estimate µ(a) and functions (4.5)-(4.8). In practice this is done

by letting the functions ψ1, ψ2, ϕ, ξ be unconstrained, but scaling them by the sum of

their squares when they enter the covariance matrix.

These parameters defined by (4.5)-(4.8) will carry a similar interpretation to the

analogous terms in the continuous case, but are somewhat different. For example,

it is possible for ψ?
1(a) to be a constant function when the underlying ψ1(a) which

determined it is a non-constant function. This is related to the discussion of effect

size in chapter 3. ψ?
1(a), ψ

?
2(a) should now be interpreted as the contribution of the

time and age indexed sources of familial association to the correlation rather than

covariance.

4.3 Estimation

4.3.1 Maximum Likelihood Estimation

To begin we describe the theoretical possiblity of maximum likelihood estimation

and describe why it is not feasible for this problem. Let θ denote the concatenation

of all parameters in the model, respectively. Also let tj, aj be the list of observation
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times and ages for the Nj length family j data, consisting of Kj siblings. Let

ηj1(tj) ∼ N(0,Ση1) (4.9)

ηj2(aj) ∼ N(0,Ση2) (4.10)

εj = (ε1, ..., εNj
) ∼ N(0, I) (4.11)

γj =
(
γ1, ..., γKj

)
∼ N(0,Σγ). (4.12)

As in the continous case, Ση1 ,Ση2 are covariance matrices known up to a finite number

of parameters contained in θ; γ has a block diagonal covariance matrix and ε has a

diagnonal covarance matrices; all random effects have unit variance.

The mean vector for the underlying normal variables is, of course, µj(θ) = µ(aj).

The covariance matrix is

Σj(θ) = ψ?′
1Ση1ψ

?
1 +ψ?′

2Ση2ψ
?
2 +ϕ?′Σγϕ

? + ξ?′ξ?. (4.13)

Now letting

R = {R1 ×R2 × . . .×RNj
} (4.14)

where Rk = (0,∞) if the k-th element of Y j is 1, and Rk = (−∞, 0) otherwise. Then

the family j log-likelihood can be written as

Lj(θ) = log

∫
R

φ(x ; µj(θ),Σj(θ))dx (4.15)

where φ(x ; µ,Σ) denotes the multivariate normal density with mean µ and co-

variance matrix Σ evaluated at x. Thus a likelihood calculation for a single fam-

ily amounts to an Nj-dimensional numerical integration. Even in relatively sparse
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datasets, Nj could easily be 10 or more, in which case time consuming numerical

integration or monte carlo techniques must be used to approximate the likelihood. In

either case there are many tuning parameters related to speed and accuracy of the

resulting likelihood approximation that make ML an unappealing option here.

4.3.2 Composite Likelihood Estimation

As noted by Lindsay (1988), composite likelihood is a viable substitute when the

maximum likelihood estimate is difficult to calculate. With this being the exact situa-

tion we find ourselves in, we now describe a composite likelihood estimation approach

to estimation in the model defined by (4.2), (4.3). Lindsay (1988) also mentions that

modeling the distribution of pairs of variables is a common way to construct compos-

ite likelihoods. Taking this approach, we can construct an estimation criterion which

only requires the calculation of one and two-dimensional integrals.

Consider a pair of observations between family members i, k in family j at times

t, s and ages aijt, akjs. The pair of liability variables, Xijt, Xkjs are distributed as

bivariate normal with mean µ = (µ(aijt), µ(akjs)) and covariance matrix Σ with

diagonal elements equal to 1 (from the constraint imposed by (4.5)-(4.8)), and off

diagonal entry

Σ12 = ψ?
1(aijt)ψ

?
1(akjs)[Ση1 ]t,s + ψ?

2(aijt)ψ
?
2(akjs)[Ση2 ]aijt,akjs

+ I(i1 = i2)
(
ϕ?(aijt)

2 + ξ?(aijt)
2I(s = t)

)
(4.16)

Letting φikts(z1, z2|θ) denote the bivariate normal density with the corresponding

parameters defined as functions of i, k, t, s and θ as above. Then the log-likelihood

for the given pair of observations, Yijt, Ykjs is
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Likts(θ) = log

∫
Rik

φikts(z1, z2|θ)dz1dz2 (4.17)

where Rik is defined analogously to R in (4.14). Define

Ji =

0∫
−∞

1√
2π
e−(z−µ(aijt))

2/2dz (4.18)

and define Jk analogously. Also let

Jik =

0∫
−∞

0∫
−∞

φikts(z1, z2|θ)dz1dz2. (4.19)

Then the joint probabilities pm,` = P (Yijt = m,Ykjs = `) can be written as

p00 = Jik (4.20)

p01 = Ji − Jik (4.21)

p10 = Jk − Jik (4.22)

p11 = 1− (Ji + Jk − Jik) (4.23)

The joint likelihood for a pair, (4.17), can be easily evaluated using (4.20)-(4.23). The

composite likelihood for the entire family j is:

CLj(θ) =

Nj∑
i=1

∑
k 6=i

Likts(θ) (4.24)

The composite likelihood estimator maximizes

CL(θ) =
F∑

j=1

CLj(θ). (4.25)

Since gradient calculation of this criteria may be very cumbersome, we again use the
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simplex algiorithm of Nelder and Mead.

While this estimator is most naturally written as in (4.25), a different representa-

tion should be used to avoid calculating the same integrals multiple times. Pairs of

responses are related to the parameters by the response values, the time lag between

the pair of measurements, the ages of the two subjects, and whether or not the pair

of observations are taken on the same subject. The are a fixed number, say k, unique

combinations of these factors in a given data set. Letting Nq, Lq denote the number

of pairs of configuration q, and the corresponding likelihood for pair q, respectively.

It follows that

CL(θ) =
k∑

q=1

Lq ·Nq (4.26)

Using this approach can potentially save a significant amount of computing time if

there are any pairs that occur many times.

In practice we have found that, with realistic sample sizes, binary data does not

support joint estimation of ψ?
1 and ψ?

2 using (4.25). Even under data conditions found

to be quite advantageous in the continuous case, the complete lack of estimation pre-

cision when both functions are in the model necessitates a simplification by omitting

one of the two. In principal, one may do some sort of model selection to determine

which function leads to a model which fits better. However, to maintain the spirit of

a longitudinal family model with which allows for correlation modulated by multiple

timing variables, we complete all analysis with only ψ1 in the model going forward.

To show that this estimator is reasonable we demonstrate its performance on some

simulated data. A complex covariance structure of η1 has proven to be difficult to

characterize, thus we simply use the squared exponential covariance. To demonstrate

estimation precision, a sample size of F = 200 families, with 3 people per family and

5 observations per subject was used. Initial ages were generated as Uniform(5, 10)

and observation times were sampled uniformly on (0, 10). The estimate of the auto-
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correlation parameter, truly .9, was .899 on average with a standard error of .055. We

can see in Figure 4.1 that the functional parameters are recovered very accurately.

4.4 Model Inference

Much like the continuous case, most of the relevant testing problems will involve

nested hypotheses. As mentioned in Chapter 2, the LRT has been extended to the

case of CL estimators [Varin and Vidoni (2005), Cox and Reid (2004)]. We will do a

small simulation study to investigate the level of the test using the nominal critical

value. The two primary hypotheses we will test involve concluding that a particular

function is either constant or identically zero.

To investigate the power for testing H0 : ψk ≡ c we generate data from two

populations. In both cases ξ(a) =
√
.8, ϕ(a) =

√
.33; population 1 for this experiment

will be ψ1(a) = −.04+2a and ψ1(a) = −.08+4a is population 2. For determining the

significance level, we conduct simulations with ψ1(a) = .2, .35 in the two populations,

respectively, as this is the best constant approximation to the functions used in the

power simulations. The corresponding functions ψ?
1, ϕ

?
1, ξ

?
1 are ultimately used by

applying (4.5), (4.7), (4.8). Recall that a is scaled by 100 for greater numerical

stability. The results of this simulation are shown in the left half of Table 4.1. In

each case the nominal critical value of 3.84 proved to be too small. The “corrected”

rows are those where the .95 quantiles of the simulations run under the null hypothesis

were used as critical values. These quantiles were 5.94 and 7.49 in Populations 1 and

2, respectively.

To examine the power and significance level using the nominal likelihood ratio

critical value for testing H0 : ψk ≡ 0 we use the same population parameter values

as above. When assessing significance level, ψ1(a) was fixed at 0. In this case the

significance levels using the nominal critical value of 7.81 were not inflated as much.

The .95 quantiles of the null simulation test statistics were 9.14 and 8.26, respectively.
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Figure 4.1: Estimates of ψ?
1, ϕ

?, and ξ?. True population structure is the solid blue
line, estimated is the solid red line, with empirical error bars in light green
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Testing ψ1 ≡ c Testing ψ1 ≡ 0
Population Level Power Level Power
1 - Nominal .116 .426 0.070 0.607
2 - Nominal .176 .983 0.056 1.000
1 - Corrected .05 .353 .05 0.641
2 - Corrected .05 .921 .05 1.000

Table 4.1: Monte Carlo estimates of the level and power of the likelihood ratio test
for CL estimators for testing ψ1 ≡ c (left) and ψ1 ≡ 0 (right) under two
population structures.

The results of this study can be found on the right side of Table 4.1. For both

simulations 500 replications were used.

Unfortunately, the implications of this inquiry is that tests of the constancy of ψ1

are subject to potentially high Type I error rates. Therefore, when using the LRT

has a decision rule caution should be exercised. The empirically corrected power

estimates are still impressive, but this is not useful in practice. Instead something

more sophisticated, like a parametric bootstrap could be useful, but will be very costly

since a single model is relatively complex to fit.

4.5 Analysis of the CBCL item data

For our real data application we revisit the Child Behavioral Checklist (CBCL)

data analyzed in Chapter 2. Recall that the CBCL is one of the most widely used

child behavioral assessment tools. The CBCL data is far less sparse than the DOTS-

R data examined in Chapter 3. The average number of assessments in the CBCL

is 3.19, with nearly all children being seen at least twice. The names for the CBCL

items are given in Table 4.2. Notice that most of these items are negative behaviors

and all fall into one of a few broad categories: aggression/rule breaking(1-20) and

anxiety/depression(21-34).

Our goal is to glean information on patterns of association between children on
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1 Argues Bragging Cruelty, Bullying
4 Demands attention Destroys own things Destroys others’ things
7 Disobedient at home Disobedient at school Easily jealous
10 Gets in fights Physically attacks people Screams
13 Showing off Stubborn Sudden changes in mood
16 Talks too much Teases a lot Temper tantrums
19 Threatens Unusually loud Complains of loneliness
22 Cries a lot Fears someone might do something bad Has to be perfect
25 Feels unloved Others out to get him/her Feels worthless
28 Nervous Too fearful Feels too guilty
31 Self conscious Suspicious Unhappy
34 Worrying

Table 4.2: CBCL Item list

these items and thus provide evidence for the coherence of such behaviors in chil-

dren at risk for substance abuse. In addition, we hope to see whether this pattern

of resemblance accumulates or diminishes as a child ages. As discussed briefly in

chapter 2, we expect to see siblings correlations in these data partially because the

same person (the mother in these data) is rating all of the children on each item.

Therefore, idiosyncracies of the mother may artificially inflate the apparent level of

sibling correlation and should be considered when interpreting these results. On the

other hand, we still do expect children to be correlated on several of these measures.

For example, if one child demands attention frequently, this may cause his/her sibling

to react by doing the same.

To assess age-varying sensitivity to family environment we fit a model to each of

the CBCL items with a slope in ψ1, a constant model in ψ1 and a model without ψ1

altogether. In each model ϕ, ξ were both parameterized as linear functions. Converged

negative log composite likelihood values for each of these three items on all 34 items

are given in Table 4.3. Although inference is ambiguous, since we do not know the

exact level of the test, extremely large LRT statistics (e.g. > 12) is probably a

conservative cut-off for concluding ψ1 is time-varying.

Regarding testing of ψ1 ≡ 0, 32 of 34 items have a sizeable likelihood ratio test

statistic far beyond any doubtful range when testing the hypothesis of no familiality,
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Item ψ1(a) = β0 + β1a ψ1(a) ≡ c ψ1(a) ≡ 0
1 4397.639 4397.986 4414.131 ?
2 5630.328 5631.410 5650.201 ?
3 4354.742 4355.412 4365.127 ?
4 5574.057 5580.182 5617.201 ? ?
5 3104.876 3110.491 3138.735 ? ?
6 3622.950 3625.650 3661.318 ?
7 5486.420 5487.625 5534.424 ?
8 3565.174 3565.512 3572.171 ?
9 5174.638 5174.727 5204.292 ?
10 2690.275 2690.711 2702.153 ?
11 3031.331 3031.370 3064.412 ?
12 4174.818 4176.180 4192.301 ?
13 5496.243 5506.661 5538.583 ? ?
14 5481.630 5482.142 5518.576 ?
15 4898.249 4901.506 4912.151 ?
16 5335.094 5336.081 5345.226 ?
17 5355.907 5357.167 5373.608 ?
18 5498.980 5499.235 5537.019 ?
19 2427.701 2429.099 2446.808 ?
20 4293.323 4293.735 4312.593 ?
21 3640.154 3640.734 3651.661 ?
22 3860.002 3860.931 3886.308 ?
23 2886.643 2889.092 2894.181 ?
24 5349.938 5355.752 5371.755 ? ?
25 4283.602 4285.501 4291.306 ?
26 2583.137 2583.559 2593.117 ?
27 3584.259 3585.081 3596.576 ?
28 3718.568 3719.631 3733.591 ?
29 2690.313 2690.755 2693.563
30 1521.967 1522.237 1530.890 ?
31 5583.594 5584.019 5611.391 ?
32 1702.855 1703.119 1710.150 ?
33 3698.175 3968.502 3701.327
34 4975.894 4979.847 4999.008 ?

Table 4.3: Negative log composite likelihood values for models fit with ψ1 linear (left),
constant (middle) and 0 (right). ? in the margin indicates strong evi-
dence for non-zero familial correlation; ?? indicates strong evidence for
age-varying sensitivity to family environment.
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many of which are > 30. As mentioned before, this is not a surprise since all children

are being rated by the same person. Four items, coming both from the aggression

and anxiety domains, give suggestive evidence for non-constant sensitivity to familial

environment.

In Figure 4.2 we have “Demands attention” and “Has to be perfect”, two items

with significantly time-varying familial sensitivity. The estimation autocorrelation

parameter for each of these items was approximately .971 and .937, respectively, indi-

cating that families whose environments exacerbate these symptoms tend to remain

so over time. It appears that the tendency for siblings to resemble each other, with

regard to demanding attention, decreases with age. The makes sense since children

tend to become more independent and are less likely to be competing for a parent’s

attention as they age, making it less likely that they are both demanding attention.

On the other hand, it appears that siblings tend to become more similar as they age

in their penchants for feeling the need to be perfect. Perhaps this is because, if one

has a sibling with this tendency, then a need to compete with them induces the same

behavior in them, and this realization is not made until an older age.

4.6 Discussion and Future Work

While the literature on longitudinal family data is relatively sparse, that on bi-

nary longitudinal family data is practically non-existent. In this chapter, we have

partially extended the methods of Chapter 3 to the case of binary data. While the

disaggregation of superimposed processes of interest is not a theme in this chapter,

we still have presented a model with a nice interpretation that reflects a previously

unexplored pattern of coherence between family members in longitudinal data, bi-

nary or otherwise. It is of interest to determine how to estimate ψ1, ψ2 concurrently;

perhaps larger sample sizes than those used in simulations are required to do so. If

it is the case that an unrealistic sample size is required for the model of chapter 3 to
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Figure 4.2: Estimated ψ1 trajectories for two items, ”Has to be perfect” and ”De-
mands attention”, which display evidence for non-constant sensitivity to
familial environment.

work, that would also be an interesting finding and is a subject of future work.

Since maximum likelihood estimation is not feasible in this setting, we described

a method based on summing over all pairwise likelihoods, appealing to the popular

method of composite likelihood. The CL estimator provides a significant improve-

ment over ML in terms of computational efficiency, and displayed a reasonable ability

to recover the data generating population structure. Future work on determining a

reliable inference technique in this setting is crucial. Even information based con-

fidence intervals are difficult in this model, since the fitted parameters are actually

quotients of a number of other functions in the model.

The extension of this model to more general categorical data is straightforward,

if the observed response are ordinal and can reasonably be viewed as a thresholded

continuous variable. For example, consider a pair of three level categorical responses

with underlying continuous thresholds δ1, δ2. Then the region of integration in (4.17)

would now be Rik = Ri ×Rk where
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Ri = (−∞, δ1) if Yijt = 1

Ri = (δ1, δ2) if Yijt = 2

Ri = (δ2,∞) if Yijt = 3, (4.27)

and similarly for Rk. The corresponding table probabilities can be calculated from

this expression and the composite likelihood given as in (4.25). Estimation in such

models, as well as determining how much additional information you get about the

underlying continuous variable from, say, a 3-level ordinal variable vs. a binary

variable is an interesting subject of future work.
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CHAPTER V

Conclusion

The main contribution of this work is to the study of clustered longitudinal data

when the dynamic association structure is of primary interest. This dissertation

focused on clustering brought about either by measurement of multiple variables on

a single individual, or by single observations made on subjects grouped in some way

(e.g. families). These two scenarios are similar in that at any single point in time one

can characterize the associations within a cluster. However, the way the transition is

made to modeling the dynamically changing coherence structure is very different.

In the case of multiple measurements taken on a single individual at each time

point, which was the subject of chapter 2, there is only a single timing variable, t. Our

approaches to modeling the dynamic association structure in this case may be broadly

thought of as “regressing” a univariate measure of association on t, and examining

the estimated function. The first approach we outlined for this was with bivariate

binary trajectories, where the log odds ratio was modeled as a smooth function of

time using penalized maximum likelihood. This represents a novel semi-parameteric

method of directly characterizing the change in association between the two items

over time. When the observed variables represent measures of negative affectivity,

which they did on our application, this fitted function quantifies the level and pattern

of comorbidity more directly than other existing methods.

The second method designed for the purpose of analyzing the first type of clus-
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tering mentioned above offers a means of handling more than two variables simul-

taneously. This approach utilizes conditional and composite likelihood in a clever

way so as to eliminate the need to model means or dependencies of secondary inter-

est. Specifically, by analyzing an altered data set composed of within-subject cross

products and conditioning on the marginal totals of each variable we get a model

free of nuisance parameters, leaving only the pairwise log odds ratio functions to be

estimated. Each of these two methods provide a readily interpretable and meaningful

description of the dynamic association structure within an individual.

In the second class of problems we look to characterize the associations between

family members and their temporal patterns. In this case, we cannot simply take a

univariate measure and effectively regress it against time to characterize the longi-

tudinal association structure. This is because longitudinal family data inherently is

modulated by multiple timing variables; even cross sectional measurement of family

members is subjected to a timing variable– age. Members of a family encounter events

at particular chronological times and are affected by developmental processes which

depend on age. Therefore, to properly understand the dynamic association structure

it is necessary to consider causes modulated by both age and time. All existing work

on similar problems only accounts for a single timing index (typically age) in the

analysis. In chapter 3 we present an unprecedented methodology which accounts for

multiple timing variables in longitudinal family data. Our approach proves to be a

challenging endeavor since many data settings correspond to situations where there is

not enough difference between age and time gaps to disaggregate the two phenomena.

The supposition underlying the family data problem is that there are some latent

time and age indexed contributions to familial correlation, called “environment” for

lack of a better word. Members of the family are exposed to these environments

and the amount to which they are affected by them are functions of age. Age-

specific sensitivity to events occurring in chronological time represents a new approach

118



to conceptualizing the longitudinal association structure in a family. The principal

was also applied to binary data in chapter 4, although binary data does not appear

informative enough to support the disaggregation that is possible with continuous

data, even under favorable data conditions. In this case, we describe an interesting

sub-model that can be readily fit to binary data using composite likelihood, and still

addresses the issue of multiple timing variables modulating associations.

In this dissertation we considered a kind of nested clustering– clustered longitudi-

nal data. Supposing there were multiple variables measured on each member of the

family, we would be presented with a further level of nesting. An interesting subject

of future work would be to extend and combine these models in some sense to study

the change between individual, within individual and over time in the association

structure.
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APPENDIX A

Gradient of bivariate binary likelihood with

respect to Θ̃

The mapping from Θ to Θ̃ has Jacobian matrix

J =


J11 J12 J13

0 1 0

0 0 1

 , (A.1)

where by differentiation of 2.12 we have

J11 = 1/P11(t;X) + 1/(1 + P11(t;X)−M1(t;X)−M2(t;X)) +

1/(M1(t;X)− P11(t;X)) + 1/(M2(t;X)− P11(t;X)) (A.2)

J12 = −1/(M1(t;X)− P11(t;X))− 1/(1 + P11(t;X)

−M1(t;X)−M2(t;X)) (A.3)

J13 = −1/(1 + P11(t;X)−M1(t;X)

−M2(t;X))− 1/(M2(t;X)− P11(t;X)). (A.4)

The Jacobian of the the reverse map from Θ̃ to Θ is given by
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J−1 =


−1/J11 −J12/J11 −J13/J11

0 1 0

0 0 1

 . (A.5)

The components of the score function ∂L/∂Θ̃ can all be easily obtained using the

chain rule:

∂L/∂Θ̃ =
∑

u

∂Θu/∂Θ̃ · ∂L/∂Θu. (A.6)

For example, for θt, the intercept in the log odds ratio trajectory (2.9), we first get

∂L/∂θt = ∂L/∂LOR(t;X) · ∂LOR(t;X)/∂θt + ∂L/∂M1(t;X) · ∂M1(t;X)/∂θt +

∂L/∂M2(t;X) · ∂M2(t;X)/∂θt

= ∂L/∂LOR(t;X) · ∂LOR(t;X)/∂θt (A.7)

by applying the chain rule ∂L/∂θt =
∑

u ∂Θu/∂θt · ∂L/∂Θu and using the structure

of (2.7)-(2.9). Next we would use the chain rule to get

∂L/∂LOR(t;X) = ∂L/∂P11(t;X) · ∂P11(t;X)/∂LOR(t;X) +

∂L/∂M1(t;X) · ∂M1(t;X)/∂LOR(t;X) +

∂L/∂M2(t;X) · ∂M2(t;X)/∂LOR(t;X)

= ∂L/∂P11(t;X) · ∂P11(t;X)/∂LOR(t;X) (A.8)

where ∂M1(t;X)/∂LOR(t;X) and ∂M2(t;X)/∂LOR(t;X) vanish as they are the 2, 1

and 3, 1 entries of the Jacobian. Finally, the factor ∂L/∂P11(t;X) in (2.8) is obtained
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by directly differentiating L with respect to P11(t;X) as a free variable:

dL/dP11(t;X) =
∑
ijk

Yit11/P11(t;Xit)− Yit10/(M1(t;Xit)− P11(t;Xit))−

Yit01/(M2(t;Xit)− P11(t;Xit)) +

Yit00/(1 + P11(t;Xit)−M1(t;Xit)−M2(t;Xit)). (A.9)

The factor ∂P11(t;X)/∂LOR(t;X) in (A.8) is the 1, 1 entry of the Jacobian.
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APPENDIX B

Asymptotic pointwise confidence intervals for

parameters in the continuous longitudinal family

data model

Let θ̂ be the estimated parameter value based on the converged optimization

algorithm, while θ? denotes the true parameter value. Since we are doing maxi-

mum likelihood estimation we know that the properly scaled and shifted parameter

estimates are asymptotically normal with covariance equal to the inverse fisher infor-

mation evaluated at the true parameter value, I(θ?). We know I(θ?) is defined as the

variance of the score function, therefore

I(θ̂) =
1

N

N∑
j=1

∇Lj(θ̂)
′∇Lj(θ̂) (B.1)

is a consistent estimator. That is, the mean of the gradient outer product at the

converged point. Although the gradient is too computationally cumbersome to be

used to optimization, the expression above only requires a single evaluation. To

begin, we need to differentiate Lj with respect to the mean vector µj(θ) and the

covariance matrix Σj(θ):
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∂Lj

∂µj(θ)
= −1

2

(
∂
(
yj − µj(θ)

)′
Σj(θ)

−1
(
yj − µj(θ)

)
∂µj(θ)

)

= −1

2

(
−2Σj(θ)

−1
(
yj − µj(θ)

))
= Σj(θ)

−1
(
yj − µj(θ)

)
(B.2)

and

∂Lj

∂Σj(θ)
= −1

2

(
∂ log(|Σj(θ)|)

∂Σj(θ)
+
∂
(
yj − µj(θ)

)′
Σj(θ)

−1
(
yj − µj(θ)

)
∂Σj(θ)

)

= −1

2

(
Σj(θ)

−1 −Σj(θ)
−1
(
yj − µj(θ)

) (
yj − µj(θ)

)′
Σj(θ)

−1
)
. (B.3)

Then by using the chain rule the gradient with respect to the covariance driving

parameters in θ can be acquired through

∂Lj

∂θk

= Tr

((
∂Lj

∂Σj(θ)

)′
Kθ

)
(B.4)

where Kθ =
∂Σj(θ)

∂θk
. The elements of Kθ depend on which functional parameter θk is

part of. If θk is underlying ψ1, then

[Kθ]n,m = 2r1(tn, tm) · ψ1(a) ·
∂ψ1(a)

∂θk

. (B.5)

Similarly if θk is underlying ψ2, ϕ, ξ, then

[Kθ]n,m = 2r2(an, am) · ψ2(a) ·
∂ψ2(a)

∂θk

(B.6)

[Kθ]n,m = 2I(in = im) · ϕ(a) · ∂ϕ(a)

∂θk

(B.7)
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[Kθ]n,m = 2I(n = m) · ξ(a) · ∂ξ(a)
∂θk

(B.8)

is the form of Kθ, respectively. If θk is one of the parameters underlying r1(·, ·) or

r2(·, ·) then the structure of Kθ is

[Kθ]n,m = ψ1(an)ψ1(am)
∂r1(tn, tm)

∂θk

(B.9)

or

[Kθ]n,m = ψ2(an)ψ2(am)
∂r2(an, am)

∂θk

(B.10)

respectively. The score function with respect to θk is then obtained by combining

(B.4) with the proper expression for Kθ, described by (B.5)-(B.10). Similarly, the

score with respect a mean driving parameter, θd, can be obtained through

∂Lj

∂θd

= Tr

((
∂Lj

∂µj(θ)

)′
Dθ

)
(B.11)

where

[Dθ]n,m =
∂µj

∂θd

. (B.12)

Using the above identities coupled with (B.2) to evaluate the score function at the

converged point yields a consistent estimator of the fisher information, and thus a

consistent estimator of the covariance matrix of the parameter estimates in I(θ̂).
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APPENDIX C

Properties of the unconditional covariance of ηj

To prove the unconditional covariance formula, suppose Z(t) has mean zero ∀t

and that

E (Z(t)Z(s)|δ) = exp(−δ|t− s|κ) (C.1)

First it is convenient to define τ = e−δ and rewrite the conditional covariance as

E (Z(t)Z(s)|τ) = exp(log(τ)|t− s|κ) = τ |t−s|κ (C.2)

By smoothing, the unconditional covariance, E (Z(t)Z(s)), is nothing but an expec-

tation against the distribution of τ , which is assumed to be beta distribution with

parameters α1, α2. Thus,
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E (Z(t)Z(s)) = Eτ (E (Z(t)Z(s)|τ)) = Eτ

(
τ |t−s|κ)

=
Γ(α1 + α2 + |t− s|κ)Γ(α1 + |t− s|κ)
Γ(α1 + α2 + |t− s|κ)Γ(α1 + |t− s|κ)

1∫
0

Γ(α1 + α2)

Γ(α1)Γ(α2)
τ |t−s|κ+α1−1(1− τ)α2−1dτ

=
Γ(α1 + α2)Γ(α1 + |t− s|κ)
Γ(α1 + α2 + |t− s|κ)Γ(α1)

1∫
0

Γ(α1 + α2 + |t− s|κ)
Γ(α1 + |t− s|κ)Γ(α2)

τ |t−s|κ+α1−1(1− τ)α2−1dτ

=
Γ(α1 + α2)Γ(α1 + |t− s|κ)
Γ(α1 + α2 + |t− s|κ)Γ(α1)

(C.3)

The last line follows because the integral in the previous line is that of a Beta(α1 +

|t− s|κ, α2) density, and the identity is proven.

To prove that the exchangeable correlation is a limiting case, we first prove that

For any positive constant k,

lim
z↓0

Γ(kz)

Γ(z)
=

1

k
(C.4)

It is convenient to use the following representation of Γ(z), which is valid for any

z > 0:

Γ(z) =
1

z

∞∏
n=1

(
1 + 1

n

)z
1 + z

n

(C.5)

We can use this to represent the ratio Γ(kz)/Γ(z). After some algebra, we have

Γ(kz)

Γ(z)
=

1

k

∞∏
n=1

(
1 +

1

n

)z(k−1) (1 + z
n
)

(1 + kz
n

)
. (C.6)

For any n

lim
z↓0

(1 + z
n
)

(1 + kz
n

)
= 1 (C.7)

Since both the numerator and denominator are continuous and bounded for z > 0
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and each converge to 1. Similarly, for any n,

lim
z↓0

(
1 +

1

n

)z(k−1)

= 1 (C.8)

So,

lim
z↓0

∞∏
n=1

(
1 +

1

n

)z(k−1)

·
(1 + z

n
)

(1 + kz
n

)
= 1 (C.9)

which proves the result. Now, by the constraint that ρ = α1/(α1 +α2), it follows that

α1 + α2 = α1/ρ. Substituting, the unconditional covariance can be written only as a

function of α1.

E (Z(t)Z(s)) =
Γ(α1/ρ)Γ(α1 + |t− s|κ)
Γ(α1/ρ+ |t− s|κ)Γ(α1)

=
Γ(α1/ρ)

Γ(α1)
· Γ(α1 + |t− s|κ)
Γ(α1/ρ+ |t− s|κ)

(C.10)

Clearly,

lim
α1↓0

Γ(α1 + |t− s|κ)
Γ(α1/ρ+ |t− s|κ)

= 1 (C.11)

So,

lim
α1↓0

E(Z(t)Z(s)) = lim
α1↓0

Γ(α1/ρ)

Γ(α1)
(C.12)

Using (C.4) with k = 1/ρ and z = α1, the result is proven.

To prove the final property we again use the constraint that α2 = (1 − ρ)α1/ρ,

and the variance of τ as a function of α1 can be written as

v(α1) =
ρ(1− ρ)

α1 + ρ
(C.13)

Clearly, limα1→∞ v(α1) = 0, at which point the distribution of τ has mean ρ and no

variance. Thus, τ = ρ with probability 1, and the result is proven.
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