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CHAPTER I

Introduction

For an oriented topological surface S, a mapping class is the isotopy class of an

orientation-preserving homeomorphism from S to itself. These constitute a discrete,

infinite group known as Mod(S), the mapping class group of S. The group Mod(S)

acts on the set of isotopy classes of homotopically nontrivial simple closed curves on

S. If all elements of a subgroup fix no common family of curves, then the group

contains a pseudo-Anosov, that is, a single element which itself fixes no finite family

of curves [19]. This dissertation answers in the affirmative Fujiwara’s question of

whether one can always find a “short-word” pseudo-Anosov (Question 3.4 in [9]).

Where Σ generates the group G, let Σ-length denote the length of an element of G

in the word metric induced by Σ. The affirmative statement is:

Theorem I.1. There exists a constant K = K(S) with the following property. Sup-

pose G < Mod(S) is finitely generated by Σ and contains a pseudo-Anosov. Then G

contains a pseudo-Anosov with Σ-length less than K.

The proof provides an explicit construction of pseudo-Anosovs from arbitrary non-

pseudo-Anosov elements. In fact, it addresses a broader question. Roughly speaking,

a pseudo-Anosov requires the whole surface for its support. The other elements

are called reducible, because they allow one to “reduce” the surface in question.
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That is, reducible mapping classes have powers which fix proper subsurfaces and act

trivially or as a pseudo-Anosov on those subsurfaces. Mosher has described a unifying

approach to both types [31], associating to a mapping class f what he calls its active

subsurface A(f). For the sake of introduction one may think of A(f) as the support

of f (really, it is the smallest subsurface supporting some power of f), remember that

these subsurfaces and thus their inclusion are defined up to isotopy, and observe that

f is pseudo-Anosov exactly whenA(f) = S. Then several foundational mapping class

group theorems—including the Tits alternative for Mod(S) [19, 29], and subgroup

structure results from [4] and [18]—elegantly derive from what Mosher coined the

Omnibus Subgroup Theorem1: given a group G < Mod(S) there exists f ∈ G such

that for all g ∈ G, A(g) ⊂ A(f). Call such an f full-support for G. In this paper we

actually prove the following theorem, which quantifies the Omnibus Theorem and

includes Theorem I.1 as a special case.

Theorem III.1. (Main Theorem.) There exists a constant K = K(S) such that,

for any finite subset Σ ⊂ Mod(S), one may find f full-support for 〈Σ〉 with Σ-length

less than K.

The proof of Theorem III.1 spells out short pseudo-Anosovs explicitly, with the fol-

lowing core construction, concerning special pairs of pure reducible mapping classes

we will call sufficiently different. These are pure mapping classes a and b with

pseudo-Anosov restrictions to proper subsurfaces A and B respectively, such that A

and B together fill S, meaning that each curve on S has essential intersection with

either A or B. The proposition also identifies subgroups that are convex cocompact,

a property defined for mapping class subgroups by Farb and Mosher, in analogy to

1We should clarify that Mosher formulated the Omnibus Theorem to yield as corollaries results that we need to
prove Theorem III.1. Mosher wanted streamlined proofs for transposing to the key of Out(Fn) (see [14] for progress).
Content to use the old results as-is, we define active subsurfaces slightly differently, take the Omnibus Theorem as
the corollary, and reap the benefits of its perspective and terminology.
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convex cocompact Kleinian groups [8]. Convex cocompactness is proven for interest,

and is not necessary for the main theorem.

Proposition I.2. There exists a constant Q = Q(S) with the following property.

Suppose a and b are sufficiently different pure reducible mapping classes. Then for

any n,m ≥ Q, every nontrivial element of G = 〈an, bm〉 is pseudo-Anosov except

those conjugate to powers of an or bm. Furthermore, G is a rank two free group, and

all of its finitely generated all-pseudo-Anosov subgroups are convex cocompact.

In [26], the author considers a more general condition for pairs of pure reducible

mapping classes, and finds Q such that G as above is a rank two free group, but need

not contain pseudo-Anosovs (and therefore need not be convex cocompact). A more

relevant comparison is Thurston’s theorem providing the first concrete examples of

pseudo-Anosovs [36] (see also [33]). He proved that if a and b are Dehn twists about

filling curves, then one can find an affine structure on S inducing an embedding of

〈a, b〉 into PSL(2,R) under which hyperbolic elements of PSL(2,R) correspond to

pseudo-Anosovs in 〈a, b〉. In particular, every nontrivial element of the free semi-

group generated by a and b−1 is pseudo-Anosov. More recently, Hamidi-Tehrani [13]

classified all subgroups generated by a pair of positive Dehn multi-twists. In partic-

ular, if α and β are multicurves whose union fills S, and a and b are compositions

of positive powers of Dehn twists about components of α and β respectively, then

except for finitely many pairs n,m, 〈an, bm〉 is a rank-two free group whose only

reducible elements are those conjugate to powers of a or b (see also [17]). In a dif-

ferent light, one can consider Proposition I.2 a companion to a theorem of Fujiwara

that generates convex cocompact free groups using bounded powers of independent

pseudo-Anosovs; this theorem appears in Section 3.3.2 as Theorem III.2.

A separate motivation for Theorem I.1 is its utility for quantifying the mapping
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class group version of the Tits alternative: a mapping class subgroup that is not

virtually abelian contains a rank-two free group. This was proved independently by

Ivanov and McCarthy [19], [29]. Theorem I.1 plus the aforementioned theorem of

Fujiwara lead to the following “strong” Tits alternative for Mod(S):

Theorem IV.1. Suppose G < Mod(S) is finitely generated and not virtually abelian.

There exists a constant w = w(S) such that, for any finite set Σ generating G, some

pair of elements with Σ-length less than w generates a rank two free group.

The constant w necessarily depends on S; we include this result as Theorem IV.4,

proven jointly by E. Breuillard and the author.

The original motivation for our main theorems is a corollary of Theorem IV.1. It

says that, for subgroups of Mod(S), exponential growth implies uniform exponential

growth, and furthermore their minimal growth rates are uniformly bounded:

Corollary IV.2. There exists a positive lower bound, depending only on S, for the

minimal exponential growth rate of any subgroup of Mod(S) with exponential growth.

Also corollary to Theorem IV.1 is the fact that, for a simple random walk on a non-

virtually-abelian mapping class subgroup, return probability decays exponentially

with a rate depending only on S and the initial support of the walk. We include this

as Corollary IV.3.

Chapter II presents the background for Theorems I.1 & III.1 and Proposition I.2;

Chapter III provides the proofs. Chapter IV elaborates on Theorems IV.1 & IV.4

and Corollaries IV.2 & IV.3; except for the derivation of Theorem IV.1, the material

of Chapter IV appeared previously in [26].



CHAPTER II

Background

This section consists of five parts. The first presents basic definitions around the

mapping class group and curve complex; the second relates the curve complexes of

a surface and its subsurfaces. Section 2.3 presents a different view of subsurfaces,

which facilitates Section 2.4 on the case for understanding reducible mapping classes

as subsurface pseudo-Anosovs. Finally, Section 2.5 recalls powerful curve complex

tools with which we rephrase the classification of elements of Mod(S).

2.1 Mapping class group and curve complex

Throughout, we consider only oriented surfaces whose genus g and number of

boundary components p are finite. Define the complexity ξ(S) of a surface S by

ξ = 3g + p− 3. We neglect the case where ξ is −2 or zero, which means S is a disk,

a closed torus, or a pair of pants, because these are never subsurfaces of interest,

as explained in Section 2.2. Annuli, for which ξ = −1, feature throughout, but

primarily as subsurfaces of higher-complexity surfaces. Let us first assume ξ ≥ 1,

and address the annulus case after. Note that our definitions will not distinguish

between boundary components and punctures, except on an annulus. One may find

in [8] a discussion on variant definitions of the mapping class group.

Given a surface S, its mapping class group Mod(S) is the discrete group of

5
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orientation-preserving homeomorphisms from S to itself that setwise fix components

of ∂S. Much (arguably, everything) about Mod(S) appears in its action on the

isotopy classes of those simple closed curves on S that are essential : neither ho-

motopically trivial nor boundary-parallel. Let us call these classes curves for short.

Pseudo-Anosov mapping classes are those that fix no finite family of curves; neces-

sarily these have infinite order. Among the rest, we distinguish those that have finite

order, and call the remaining reducible.

The intersection of two curves α and β, written i(α, β), is the minimal number of

points in α′∩β′, where α′ ranges over all representatives of the isotopy class denoted

by α and likewise β′ ranges over representatives of β. Often, we will use the same

notation for a curve as an isotopy class and for a representative path on the surface.

For specificity and guaranteed minimal intersections, one may represent all curves

by closed geodesics with respect to any pre-ordained hyperbolic metric on S. Two

curves fill a surface if every curve of that surface intersects at least one of them.

Disjoint curves have zero intersection. All of these definitions extend to multicurves,

our term for sets of pairwise disjoint curves.

Now let us upgrade the set action of Mod(S) on curves to a simplicial action on

the curve complex of S, denoted C(S). Because C(S) is a flag complex, its data reside

entirely in the one-skeleton C1(S): higher-dimensional simplices appear whenever the

low-dimensional simplices allow it. Thus it suffices to consider only the graph C1(S),

although we usually refer to the full complex out of habit.

Curves on S comprise the vertex set C0(S), and an intersection rule determines the

edges of C1(S). For a surface with complexity ξ > 1, edges join vertices representing

disjoint curves. Therefore n-simplices correspond to multicurves with n distinct com-

ponents, and ξ gives the dimension of C(S). When ξ = 1, S is a punctured torus or
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four-punctured sphere. Because on these any two distinct curves intersect, we modify

the previous definition so that edges join vertices representing curves which intersect

minimally for distinct curves on that surface—that is, once for the punctured torus

and twice for the four-punctured sphere. In both cases C(S) corresponds to the Farey

tesellation of the upper half plane (vertices sit on rationals corresponding to slopes

of curves on the torus).

Give C1(S) the path metric where edges have unit length; this extends simplicially

to the full complex. For any two curves α and β, let d(α, β) denote their distance

in C1(S). Immediately one may observe that C(S) is locally infinite. It is not ob-

vious that C(S) is connected, but the proof is elementary [15]. Furthermore, it has

infinite diameter [27]. A deep theorem of Masur and Minsky states that C(S) is

δ-hyperbolic, meaning that for some δ, every edge of any geodesic triangle lives in

the δ-neighborhood of the other two edges [27].

Now suppose S is the annulus S1× [0, 1]. We modify the definition of the mapping

class group to require that homeomorphisms and isotopy fix ∂S pointwise. Parame-

terizing S1 by angle θ and S by (θ, t), the Dehn twist on S maps (θ, t) to (θ+ 2πt, t).

The cyclic group generated by this twist is the entire mapping class group of the

annulus. In this group, let us consider all non-trivial elements pseudo-Anosov, for

reasons clarified in Section 2.5. To define C(S), we contend with the fact that an

annulus contains no essential curves. Instead, each vertex of C0(S) corresponds to

the isotopy class of an arc connecting the two boundary components, again requir-

ing isotopy fix boundary pointwise. Edges connect vertices that represent arcs with

disjoint interiors. Although this complex is locally uncountable, it is not difficult to

understand: the distance between two distinct vertices equals one plus the minimal

number of interior points at which their representative arcs intersect. Again, C(S) is
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connected, infinite diameter, and δ-hyperbolic—in fact, it is quasi-isometric to the

real line, and Mod(S) acts on it by translation. Note that our “curve complex” for

the annulus is more accurately called an arc complex. Generally, we aim to minimize

the distinction between annular subsurfaces and subsurfaces with ξ ≥ 1; for extended

treatment of curve complexes and arc complexes, see [28].

2.2 Subsurface projection

Let us relate the curve complex of S to that of S ′, where ξ(S) ≥ 1 and S ′ is

an “interesting” subsurface of S. Here, a subsurface is defined only up to isotopy,

and assumed essential, meaning its boundary curves are either essential in S or

shared with ∂S. This rules out the disk. We also disregard pants, which have trivial

mapping class group. For the remainder of Section 2.2, we assume S ′ is connected;

furthermore, either ξ(S ′) ≥ 1 or S ′ is an annular neighborhood of a curve in S.

For ease of exposition and the convenience of considering ∂S ′ a multicurve in S,

let us make a convention that ∂S ′ refers only to those boundary curves essential in

S. In later sections we consider multiple, possibly nested subsurfaces, but these are

always implicitly or explicitly contained in some largest surface S.

Except when S ′ is an annulus, it is clear one can embed C(S ′), or at least its

vertex set, in C(S), but we seek a map in the opposite direction. One can associate

curves on the surface to curves on a subsurface via subsurface projection, a notion

appearing in [18, 19], expanded in [28], and recapitulated here. In what follows,

we define the projection map πS′ from C0(S) to the powerset P(C0(S ′)). To start,

represent γ ∈ C0(S) by a curve minimally intersecting ∂S ′.

First suppose S ′ is not an annulus. If i(γ, ∂S ′) = 0, then either γ ⊂ S ′, and we

let πS′(γ) = {γ}, or γ misses S ′, and we let πS′(γ) be the empty set. Otherwise, γ
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intersects ∂S ′. For each arc α of γ∩S ′, take the boundary of a regular neighborhood

of α ∪ ∂S ′ and exclude the component curves which are not essential in S ′. Because

S ′ is neither pants nor annulus, some curves remain. Let these comprise πS′(γ).

In the case that S ′ is an annulus, when i(γ, ∂S ′) = 0 we let πS′(γ) be the empty

set. When γ intersects ∂S ′, one expects πS′(γ) to consist of the arcs of γ intersecting

S ′. However, ambiguity arises because curves such as γ and ∂S ′ are defined up to

∂S-fixing isotopy, but vertices of C(S ′) represent arcs up to ∂S ′-fixing isotopy. To

remedy this, give S a hyperbolic metric. Consider the cover of S corresponding to

the fundamental group of S ′ embedded in that of S. This cover is a hyperbolic

annulus endowed with a canonical “boundary at infinity” coming from the boundary

of two-dimensional hyperbolic space (the unit circle, if one uses the Poincaré disk

model). Name the closed annulus A, and let C(A) stand in for C(S ′). Each γ ∈ C0(S)

has a geodesic representative which lifts to A, and if γ intersects S ′, some of the lifts

connect the boundary components. Let these comprise π′S(γ).

We will frequently say something like γ projects to S ′ to mean πS′(γ) is not the

empty set. Where X is some collection of curves {γi}, let πS′(X) =
⋃
i πS′(γi). If

πS′(X) is not empty, let diamS′(X) denote its diameter in C(S ′); omit the subscript

S ′ to mean diameter of X in C(S) itself. We are content with a map from C(S)

to subsets of C(S ′), rather than C(S ′) directly, precisely because multicurves have

bounded-diameter projection:

Lemma II.1. Suppose γ is a multicurve of S, and S ′ a subsurface. If γ projects to

S ′, diamS′(πS′(γ)) ≤ 2.

This fact appears as Lemma 2.3 in [28]. Note that complexity ξ in [28] differs

from our definition by three. Also, there is a minor error in Lemma 2.3, corrected

in [30] (pg. 28), which we avoid by stating the lemma for multicurves rather than
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simplices of C(S)—these do not coincide if ξ(S) = 1.

When multicurves α and β both project to S ′, define their projection distance

dS′(α, β) as diamS′(πS′(α) ∪ πS′(β)). This is a “distance” in that it satisfies the

triangle inequality and symmetry, but it need not discern curves: Lemma II.1 implies

that disjoint multicurves have a projection distance of at most two, when defined.

In the other extreme, one easily finds examples of curves close in C(S) with large

projection distance in C(S ′)—a small illustration of the great wealth of structure that

opens up when one considers not only C(S) but curve complexes of all subsurfaces

(see, for example, [28]).

2.3 Cut-coded subsurfaces and domains

We now present an alternate definition of subsurface that ducks the nuisance of

disconnected subsurfaces containing annular components parallel to the boundary of

other components. These are the only subsurfaces capable of being mutually nested

(via isotopy) yet not topologically equivalent. Our technical antidote may seem

tedious, but as an upside, it translates our current notion of a subsurface into an

object encoded unambiguously by curves, a recurrent theme of this paper. Moreover,

the new viewpoint facilitates the next section’s definition of active subsurfaces, based

on Ivanov’s work on Mod(S) subgroups. The efficient reader is welcome to skim the

definition, taking note of Lemmas II.2 and II.3, and rely on Figure 2.1 for intuition.

A cut-coded subsurface of S consists of two pieces of information: (1) a multicurve

γ and (2) a partition of the non-pants components of S\γ into two sets: excluded

and included components.

Let us clarify what subsurface S ′ this data is meant to describe. Label the com-

ponent curves of γ by γ1, . . . γn, and the included components A1, . . . Am. The
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multicurve γ contains each component of ∂Ai, but some γj may not be a boundary

curve for any Ai. Let Nj be regular neighborhoods of those γj belonging to no ∂Ai.

Then S ′ consists of the union of the Ai, seen as subsurfaces, and the implied annuli

Nj. Ignoring multiplicity, ∂S ′ and γ are the same multicurve.

Figure 2.1: How to define a cut-coded subsurface

From left to right: (1) Set multicurve. (2) Choose included components (shaded). (3) Domains
(shaded) correspond to included components and implied annuli.

Call the Ai component domains and the Nj annular domains of S ′. We use domain

to refer to either kind, or any subsurface that may appear as a domain—in other

words, any connected (essential) non-pants subsurface.

Not all subsurfaces are cut-coded, as the latter never include pants, parallel annuli,

or annuli parallel to the boundary of a component domain. Cut-coded subsurfaces

are exactly those appearing as active subsurfaces of mapping classes, which the next

section details.

The cut-coded subsurfaces of S admit a partial order ⊂ detected by subsurface

projection. Say a subsurface A nests in B if A may be isotoped into B. Now suppose

A and B are cut-coded subsurfaces with domains Ai and Bj respectively. Say A ⊂ B

if every Ai nests in some Bj. Transitivity and reflexivity of ⊂ are obvious, but

antisymmetry is relatively special. If A ⊂ B and B ⊂ A, one can check A and B

are given by the same data as cut-coded subsurfaces, ultimately because they never

contain an annulus parallel to another domain. In contrast, general disconnected

subsurfaces can be mutually nested but not isotopic.
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Call two subsurfaces disjoint if they may be isotoped apart, and overlapping if

they are neither disjoint nor nested; note that overlapping subsurfaces are distinct

by definition. Projection determines relations between domains:

Lemma II.2. Suppose A and B are domains in S.

(i) πA(∂B) is empty if and only if A nests in B or its complement.

(ii) A and B overlap if and only if ∂A projects to B and ∂B to A.

(iii) If ∂A projects to B but πA(∂B) is empty, A nests in B.

(iv) If πA(∂B) and πB(∂A) are both empty, A and B are equal or disjoint.

Proof. Statements (ii) – (iv) derive from (i). The forward implication of (i) requires

connectedness of A: one may choose curves α1 and α2 that fill A, so that A is

represented by a regular neighborhood of α1 ∪α2 with disks and annuli added to fill

in homotopically trivial or ∂S-parallel boundary components. If πA(∂B) is empty,

then ∂B is disjoint from α1 ∪ α2. Therefore the two curves, and consequently A

itself, can be isotoped either entirely inside B or into its complement. The reverse

implication is self-evident.

Consider a strictly increasing sequence A1 ( A2 ( · · · ( Am of cut-coded subsur-

faces of S. Let α be a maximal multicurve (i.e., a pants decomposition) including

∂Ai for all i. Each step of the sequence corresponds to some curve of α appearing

for the first time as a component of ∂Ak or an essential curve in Ak, so the maxi-

mum length of the sequence is twice the number of components of α. We have just

observed:

Lemma II.3. If ξ(S) ≥ 1, a strictly increasing sequence of nonempty cut-coded

subsurfaces of S has length at most 2ξ.
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It is easy to construct sequences realizing the upper bound.

2.4 Active subsurfaces and the Omnibus Theorem

Thurston originally classified elements of Mod(S) by their action on the space

of projective measured foliations, a piecewise linear space obtained by completing

and projectivizing the space of weighted curves on S. He defined a pseudo-Anosov

diffeomorphism as one that fixes a pair of transverse projective measured foliations,

and proved that any pseudo-Anosov mapping class (i.e., any mapping class fixing no

multicurve) has a representative pseudo-Anosov diffeomorphism. In fact he proved

more:

Theorem II.4 (Thurston, [36],[34]). Every element f of Mod(S) has a represen-

tative diffeomorphism F such that, after cutting S along some 1-dimensional sub-

manifold C, F restricts to a pseudo-Anosov diffeomorphism on the union of some

components of S\C, and has finite-order on the union of the rest.

Birman-Lubotzky-McCarthy proved that C represents a unique isotopy class, and

they gave a simple way to find it [4]. We call this isotopy class the canonical reduction

multicurve of f . Ivanov generalized to subgroups both the classification and the

canonical cutting method [19]. We build the notion of an active subsurface according

to this last, largest perspective. Let us emphasize that, while we aim to paint a

picture that seems perfectly natural, the validity of the definitions in this section

depends on multiple lemmas and theorems from [19], which serves as reference for

assertions presented without proof.

Ivanov identified a congenial property of many mapping classes. Call a mapping

class pure if, in the theorem above, it restricts to either the identity or a pseudo-

Anosov on each component (in particular, no components are permuted). Because
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one may take the empty set for C in Theorem II.4, any pseudo-Anosov mapping

classes is pure. The property of being pure is most useful for reducible mapping

classes, because cutting along C “reduces” S to a collection of smaller subsurfaces.

The point in what follows is to formalize this procedure.

Call a subgroup pure if it consists entirely of pure mapping classes. Nontrivial

pure mapping classes have infinite order, so they let us ignore the complications

of torsion. Fortunately, the mapping class group has finite-index pure subgroups

(Theorem 3, [19]). In particular, one can take the kernel of the homomorphism

Mod(S) � Aut(H1(S,Z/3Z)), induced by the action of Mod(S) on homology. Name

this subgroup Γ(S).

Let us first define the canonical reduction multicurve σ(G) and active subsurface

A(G) of a pure subgroup G < Mod(S). The multicurve σ(G) consists of all curves γ

such that (i) G fixes γ, and (ii) if some curve β intersects γ, then G does not fix β.

The active subsurface A(G) is cut-coded with multicurve γ. Included components

correspond to those on which some element of G “acts pseudo-Anosov.” Specifically,

for each component Q of S\σ(G), we have a homomorphism ρQ : G→ Mod(Q) such

that ρQ(g) is the mapping class of F |Q, where F is a homeomorphism representing

g. Let GQ denote the image ρQ(G). Because G is pure, for each component Q, the

image GQ either contains a pseudo-Anosov, in which case Q is included, or is the

trivial group, in which case Q is excluded (Theorem 7.16, [19]).

It follows that the annular domains of A(G) correspond to neighborhoods of

those γ ∈ σ(G) that only bound components Q for which GQ is trivial. Because by

definition γ is not superfluous, some g ∈ G restricts, in a neighborhood of γ, to a

power of a Dehn twist about γ. Section 2.5 justifies why we consider Dehn twists

annulus pseudo-Anosovs.
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If G is an arbitrary subgroup, choose a finite-index pure subgroup G′ and define

σ(G) = σ(G′) and A(G) = A(G′). Any choice of G′ gives the same multicurve,

and one can always take G′ = G ∩ Γ(S). G acts on S\σ(G), although its elements

may permute the components. For each component Q, one can define ρQ on the

finite-index subgroup of G stabilizing Q. Each image GQ is finite or contains a

pseudo-Anosov, and σ(G) is the minimal multicurve with this property (Theorem

7.16, [19]). It follows that an infinite subgroup G contains a pseudo-Anosov if and

only if σ(G) is empty; let us call such a subgroup irreducible.

For any mapping class g, let σ(g) = σ(〈g〉) and A(g) = A(〈g〉). In this terminol-

ogy, we recast Ivanov’s Theorem 6.3 [19] as follows:

Theorem II.5. For any G < Mod(S) there exists f ∈ G such that A(f) = A(G).

After Lemma II.7 below, we can recognize Theorem II.5 as Mosher’s Omnibus

Subgroup Theorem. We do not require this theorem for our proofs, only the validity

of the definitions on which it is based. In fact, one can prove Theorem I.1 with no

mention of active subsurfaces for non-pure subgroups. However, its definition allows

us to state the Main Theorem, Theorem III.1, which takes the more general, perhaps

more useful point of view of Theorem II.5, adding the benefit of an f with bounded

word length.

Facts about active subsurfaces occupy the remainder of this section. Directly from

definitions, we derive Lemma II.6 below. With this we obtain Lemmas II.7 – II.9,

which enable our proof of the main theorem. Let us refer to domains of A(G) or

A(g) as domains of G or g respectively. Say G moves the curve γ ∈ C0(S) if some

element of G does not fix γ.

Lemma II.6. Suppose H and G are pure subgroups of Mod(S) and γ ∈ C0(S).
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(a) H moves γ if and only if γ projects to some domain of H.

(b) H and G fix and move the same curves if and only if A(H) = A(G).

Lemma II.7. If H < G then A(H) ⊂ A(G).

Proof. We may replace H and G by the pure subgroups obtained by intersecting

with Γ(S). Suppose A is a domain of G and B a domain of H. Because G, and

thus H, fixes ∂A, πB(∂A) is empty. Lemma II.2 guarantees that B nests in A or its

complement. Now suppose B is in the complement of every domain of G. Then any

curve essential in B is fixed by G, thus by H. This contradicts that B is a domain

of H, unless B has no essential curves. Thus B is an annulus and ∂B consists of

(two copies of) a single curve β. Any γ intersecting β is moved by H, hence by

G. But because G fixes γ, this means γ ∈ σ(G). Because B is the annulus around

γ, B isotopes into A(G). Thus every domain of H nests in A(G), which means

A(H) ⊂ A(G).

Figure 2.2: How to define the active subsurface of a group G

(1) Cut along canonical reduction multicurve. (2) Include components (shaded) on which G induces
an irreducible subgroup. (3) Every element of G has a power supported on included components
and implied annuli, by Lemma II.7. By Theorem II.5, some element has exactly this support.

In general, let A(X1, X2, . . .) denote the active subsurface of the group generated

by X1, X2, . . . , where Xi may be either elements or subgroups of a mapping class

group.

Lemma II.8. Suppose H and G are pure elements or subgroups of Mod(S). Then

A(H) ⊂ A(G) if and only if A(G) = A(G,H).
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Proof. Observe that A(H) ⊂ A(G) implies that any curve fixed by G is fixed by H,

and hence G and 〈G,H〉 fix the same curves. Apply Lemma II.6 to G < 〈G,H〉 for

the forward direction, and Lemma II.7 to H < 〈G,H〉 for the reverse.

Lemma II.9. Let G be a pure subgroup of Mod(S) generated by {H,H1, . . . Hk, . . . },

where Hk are groups or elements. Either A(H) = A(G) or A(H) 6= A(H,Hk) for

some k.

Proof. Suppose A(H) = A(H,Hk) for all k. Let Ki = 〈H,H1, . . . Hi〉. Using induc-

tion and Lemma II.8 one can show A(H) = A(Ki) for all i. Because the Ki exhaust

G, Lemma II.7 implies A(g) ⊂ A(H) for all g ∈ G. By Lemma II.6 one knows any

curve fixed by H has empty projection to all A(g), so H and G fix and move the

same curves, and consequently A(H) = A(G).

2.5 Machinations in the curve complex

This section collects several important curve complex results that provide the

foundation for our proofs. Together, these results link mapping class behavior with

curve complex geometry. Following our theme of interpreting Mod(S) via C(S), we

note that these results also lead to a C(S)-centric Mod(S) classification.

By definition, reducible mapping classes and finite-order mapping classes have

bounded orbits in C(S). That pseudo-Anosovs have infinite-diameter orbits is corol-

lary to a theorem of Masur and Minsky:

Theorem II.10 (Minimal translation of pseudo-Anosovs [27]). There exists c =

c(S) > 0 such that, for any pseudo-Anosov g ∈ Mod(S), vertex γ ∈ C0(S), and

nonzero integer n,

dS(gn(γ), γ) ≥ c|n|.
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This gives us a way to recognize pseudo-Anosovs. It also suggests an alternate

classification of elements on Mod(S), by whether they have finite, finite-diameter, or

infinite-diameter orbits in C(S). If one takes that classification as a starting point,

Dehn twists clearly qualify as pseudo-Anosovs for the annulus mapping class group.

For pure mapping classes, one may even refine this classification. Suppose g ∈

Mod(S) is pure and has a domain Y . The observation that, for all γ ∈ C0(S),

πY (g(γ)) = g(πY (γ)), yields:

Corollary II.11 (Minimal translation on subsurfaces). There exists c = c(S) > 0

such that, for any pure element g ∈ Mod(S) with domain Y , vertex γ ∈ C0(S) such

that πY (γ) 6= ∅, and nonzero integer n,

dY (gn(γ), γ) ≥ c|n|.

Thus every nontrivial pure element g has infinite-diameter orbits in the curve

complexes of its domains. Moreover, an orbit of g in the curve complex of one

of its domains projects to a bounded diameter subset of the curve complex of any

subsurface properly nested in that domain. This one can prove using another the-

orem of Masur and Minsky, which along with Corollary II.11 is crucial to our core

construction in Section 3.3:

Theorem II.12 (Bounded geodesic image [28]). Let Y be a proper domain of S. Let

G be a geodesic in C(S) whose vertices each project to Y . Then there is a constant

M = M(S) such that

diamY (G) ≤M.

This theorem enabled Behrstock to obtain Lemma II.13 below, which Chapter III

frequently employs. Here we give the elementary proof, with constructive constants,
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communicated by Chris Leininger. Most of it appeared previously in [26]; this version

adds the possibility of annular domains.

Lemma II.13 (Behrstock [2]). For any pair of overlapping domains Y and Z and

any multicurve x projecting to both,

dY (x, ∂Z) ≥ 10 =⇒ dZ(x, ∂Y ) ≤ 4

Proof. First we gather the facts that prove the lemma when neither Y nor Z is an

annulus. Suppose S ′ is a subsurface of S and ξ(S), ξ(S ′) ≥ 1. Let u0 and v0 be

curves on S which minimally intersect S ′ in sets of arcs. Suppose au is one these arcs

for u0, and u a component of the boundary of a neighborhood of au ∪ ∂S ′; suppose

av and v play the same role for v0. Then u ∈ πS′(u0) and v ∈ πS′(v0). Define

intersection number of arcs to be minimal over isotopy fixing the boundary setwise

but not necessarily pointwise. One has:

(1) If i(au, av) = 0, then dS′(u0, v0) ≤ 4

(2) If i(u, v) > 0, then i(u, v) ≥ 2(dS′ (u,v)−2)/2

(3) i(u, v) ≤ 2 + 4 · i(au, av)

Statement (1) follows from the proof of Lemma II.1 (Lemma 2.3 in [28]). Straight-

forward induction proves (2), which Hempel records as Lemma 2.1 in [16]. Fact (3)

is the observation that essential curves from the regular neighborhoods of au ∪ ∂S ′

and av ∪ ∂S ′ intersect at most four times near every intersection of au and av, plus

at most two more times near ∂S ′.

Now assume ξ(Y ), ξ(Z) ≥ 1. Because dY (x, ∂Z) ≥ 10 > 2, the diameter is

realized by curves u ∈ πY (x), v ∈ πY (∂Z) such that, by (2), i(u, v) ≥ 24 = 16. By

the definition of πY , these u and v come from arcs au ⊂ x ∩ Y and av ⊂ ∂Z ∩ Y
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respectively. By (3), i(au, av) ≥ (16 − 2)/4 > 3. Thus au is an arc of x intersected

thrice by an arc av of ∂Z, within the subsurface Y . Observe that one of the segments

of au between points of intersection must lie within Z. This segment is an arc ax of

x disjoint from arcs of ∂Y in Z. Fact (1) implies dZ(x, ∂Y ) ≤ 4.

The main idea of this proof works for annular domains after a few more relevant

facts. Endow S with a hyperbolic metric and let A be an embedded annulus with

geodesic core curve α; let Ã be the corresponding annular cover of S. Let u and v

be geodesic curves in S with lifts ũ and ṽ traversing the core curve of Ã. We have

already mentioned

(4) dA(u, v) = i(ũ, ṽ) + 1.

Let α̃ be the unique lift of α corresponding to the core curve of Ã, and let α̃1 and α̃2

be the first lifts of α intersecting ũ on each side. On the sides of α̃i opposite α̃, Ã is

isometric to its pre-image in the universal cover S̃ = H2. Because geodesics intersect

only once in H2,

(5) at most two of the intersections of ũ and ṽ occur outside the open segment of ũ

between the α̃i.

Now we can retrace the proof above, augmenting it to address the possibility that

Y or Z is an annulus. Under some hyperbolic metric, x, ∂Y, and ∂Z have geodesic

representatives. Suppose Y is an annulus with geodesic core curve y and Ỹ is the

corresponding annular cover of S. If dY (x, ∂Z) ≥ 10, (4) implies that some lifts x̃

and ∂̃Z in Ỹ intersect at least nine times. By (5), at least three of these intersections

occur on an open segment of x̃ between consecutive lifts of y, and a neighborhood of

this segment embeds in S. As before, one finds an arc of x intersecting ∂Z at least

three times in a neighborhood disjoint from ∂Y . If Z is not an annulus, one repeats
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the conclusion of the first argument.

On the other hand, suppose that Z is an annulus with geodesic core curve z,

and Y is any domain. The arguments thus far tell us one has an arc of x thrice

intersecting z in a neighborhood of that arc disjoint from ∂Y . In the annular cover

corresponding to Z, the three intersections correspond to a lift x̃ of x intersecting

the closed lift z̃ of z and adjacent lifts z̃1, z̃2 on each side. Any lift of ∂Y cannot

intersect x̃ between these intersections, so (5) implies i(x̃, ∂̃Y ) ≤ 2. Fact (4) implies

dZ(x, ∂y) ≤ 3.

∂Z

1

x

1

Figure 2.3: Key point of Behrstock’s lemma

Because x and ∂Z have large projection distance in Y , one can find an arc of x intersecting an arc
of ∂Z three times. Extra-fine dashed lines represent where curves run behind the surface.

∂̃Y

1

z̃2

1

z̃1

1

z̃

1

x̃

1

Figure 2.4: Behrstock’s lemma for the annulus

If x and z intersect three times with no intersections of ∂Y in between, then in the annular cover
corresponding to z, x̃ can intersect ∂̃Y no more than twice. Extra-fine dashed lines represent parts
of curves on the far side of the annulus.
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Remark. Behrstock’s lemma implies that C(S)-orbits of a mapping class g have

bounded projection to subsurfaces that overlap with domains of g. Using stronger

results, Theorem II.12 in particular, one can prove that the g-orbit of any γ ∈ C(S)

projects to an unbounded set in the curve complex of S ′ if and only if the orbit

projects to S ′ and S ′ is a domain of g. Thus one obtains a refined, curve-complex-

based classification of elements of Mod(S), by letting the phrase “g is pseudo-Anosov

on S ′” mean that the g-orbit of some γ ∈ C(S) has infinite-diameter projection to

C(S ′).



CHAPTER III

The Recipe

We begin at the end, proving the Main Theorem, modulo two propositions, in

Section 3.1. There, we reduce the proof to the problem of generating a short-word

full-support mapping class when the generating set has only two pure elements;

even then, we must simultaneously accommodate multiple scenarios happening on

different, non-interacting subsurfaces. The actual construction of pseudo-Anosovs

is left to Section 3.3, where in fact we identify all pseudo-Anosov elements in any

group generated by two “sufficiently different” pure reducible mapping classes. That

is, we prove Proposition I.2 of the introduction, which gives more than is needed for

the main theorems. In general one is not so lucky as to start out with the condition

on generators required for Proposition I.2 to apply. Thus we also need a recipe for

writing a sufficiently different pair of mapping classes, given an arbitrary pair of pure

reducible mapping classes generating an irreducible subgroup. Proposition III.4 fills

that need; its proof occupies Section 3.2.

3.1 Writing the short word

Restated in the terminology introduced in Section 2.4, our goal is to prove the

following:

23
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Theorem III.1 (Main Theorem). There exists a constant K = K(S) with the prop-

erty that, for any subset Σ ⊂ Mod(S), there exists f ∈ 〈Σ〉 with Σ-length less than

K, such that A(f) = A(Σ).

First, let us narrow our starting point. By definition, the finite-index pure sub-

group H = 〈Σ〉 ∩ Γ(S) has the same active subsurface as 〈Σ〉. Suppose the index

of H in 〈Σ〉 is d. Lemma 3.4 of Shalen and Wagreich [35] provides a generating set

for H of words less than 2d − 1 in length according to the original generating set.

Although they state the lemma for finite generating sets, nothing prevents the proof

from applying to a general group. Therefore, if we find a full-support mapping class

in H whose word length is less than l1 in the new generating set, its word length is

less than l1(2d−1) in the original generating set. Recall that Γ(S) is the kernel of the

Mod(S) action on homology with coefficients in Z/3Z; its index, |Aut(H1(S,Z/3Z))|,

gives an upper bound for d.

Let Σ′ = {hi} be the new generating set for H. Renumbering as necessary,

Lemmas II.3 and II.9 provide a sequence A(h1) ( A(h1, h2) ( A(h1, h2, h3) . . .

terminating in at most 2ξ(S) steps at A(h1, h2, . . . , hk) = A(G). Let p1 = h1

and suppose for each subgroup 〈pi−1, hi〉 we can spell a full-support element pi (i.e.

A(pi) = A(pi−1, hi)) with word length less than l2 in the generating set {pi−1, hi}. By

Lemma II.7, A(hi) ⊂ A(pi); inductively assuming that A(pi−1) = A(h1, . . . , hi−1),

we also know A(hj) ⊂ A(pi−1) ⊂ A(pi) for all j < i. Then Lemmas II.7 – II.9 tell

us A(pi) = A(h1, . . . , hi), for all i. In particular, pk is full-support for H and has

Σ′-length less than lk2 , where k ≤ 2ξ.

We have reduced Theorem III.1 to the case where A consists of a pair of pure

mapping classes a and b. Let G = 〈a, b〉. Finding an element of full-support for G is

equivalent to finding a pseudo-Anosov on A(G), although we contend with the fact
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that A(G) may well be disconnected. On every domain of A(G), one of the following

possibilities occurs:

(i) a and b are pseudo-Anosov.

(ii) a and b are both reducible.

(iii) One of a and b is pseudo-Anosov and the other is reducible.

To handle the first possibility, we quote a theorem of Fujiwara. An earlier incar-

nation of this theorem inspired the short-word question in the first place. Call a pair

of pseudo-Anosovs independent if all pairs of nontrivial powers fail to commute. In

torsion-free groups such as those we consider, either two pseudo-Anosovs generate a

cyclic subgroup, or they are independent (see the proof of Theorem 5.12 in [19]). In

the latter case, Fujiwara’s theorem applies:

Theorem III.2 (Fujiwara [10], partial version). There exists a constant L = L(S)

with the following property. Suppose a, b ∈ Mod(S) are independent pseudo-Anosovs.

Then for any n,m ≥ L, 〈an, bm〉 is an all-pseudo-Anosov rank-two free group.

Case (ii) relies on two results. The first, Proposition III.3 below, is a subset of

Proposition I.2 from the introduction; both are proved in Section 3.3. Define Q =

Q(S) = max{3, (2M + 4)/c} where M = M(S) is the constant from Theorem II.12

and c = c(S) is the minimal translation length from Corollary II.11. Recall that

a pair of pure reducible mapping classes a and b are sufficiently different if some

A ∈ A(a) and B ∈ A(b) together fill S.

Proposition III.3. For any m,n > Q and sufficiently different pure mapping classes

a and b, the group 〈am, bn〉 is a rank-two free group and its elements are each either

pseudo-Anosov or conjugate to a power of a or b.
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Proposition III.3 would be irrelevant if not for Proposition III.4, whose proof we

leave to Section 3.2. Let ξ = ξ(S) and c = c(S) as above. The following proposition

works for any domain S ′ ⊂ S.

Proposition III.4. Suppose a and b are pure reducible mapping classes in Mod(S ′)

and 〈a, b〉 is irreducible. For any n ≥ ξ − 1 and k ≥ 20/c, the words

a1 = (bkak)nbk · a · ((bkak)nbk)−1 and b1 = (akbk)nak · b · ((akbk)nak)−1

are sufficiently different pure reducible mapping classes.

We handle case (iii) by converting it to either case (i) or (ii), so with the three

results above we may finish the proof. Recall we face the situation where a and b

are pure reducible mapping classes generating a group G with possibly disconnected

active subsurface. Our task is to write a word in a and b that induces a pseudo-

Anosov on every domain of G.

Let a1 and b1 be as in Proposition III.4. Because these are simply conjugates

of a and b, they fulfill the same possibilities (i)-(iii) on each domain of A(G). Let

L̄ = max{L(S ′) : S ′ ∈ T}, where T is the finite set of topological types of domains

of S (i.e., connected non-pants subsurfaces), and L is the constant in Theorem III.2.

Similarly let Q̄ = max{Q(S ′) : S ′ ∈ T}. Choose P ≥ max{L̄, Q̄}. Consider the

following word:

w = bP1 a
P
1 b
−P
1 aP1

On domains where possibility (i) holds, either a1 and b1 commute and w = a2P
1 ,

a pseudo-Anosov, or a1 and b1 are independent and w is pseudo-Anosov by Theo-

rem III.2. On domains where possibility (ii) holds, w is pseudo-Anosov by Proposi-

tions III.3 and III.4. On domains where possibility (iii) holds, and a1 is the pseudo-

Anosov, we see by re-writing w as bP1 a
P
1 b
−P
1 · aP1 that it is the product of powers of
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pseudo-Anosovs, so we may proceed as we did for case (i). Otherwise a1 is reducible,

and for any γ ∈ σ(a1), dX(bP1 (γ), γ) ≥ Pc ≥ Qc ≥ 3, where the leftmost inequality

employs Corollary II.11 and the rest are by construction. In particular, γ ∈ σ(a1)

and bP1 (γ) ∈ σ(bP1 a1b
−P
1 ) together fill the domain, so a1 and bP1 a1b

−P
1 are sufficiently

different pure reducible mapping classes. Then Proposition III.3 guarantees w is

pseudo-Anosov. Thus on all domains of A(G), w is pseudo-Anosov, meaning w is

full-support for G.

In terms of {a, b} the word length of w is 4P · (2k(2n+ 1) + 1). Therefore one can

let l2 = 4P · (80ξ/c+ 1). For Theorem III.1 one may take

K(S) = 2 · |Aut(H1(S,Z/3Z))| · (320Pξ/c+ 4P )2ξ.

�

3.2 Finding sufficiently different reducibles

The purpose of this section is to prove Proposition III.4. In the hypothesis of the

proposition, a and b are pure reducible elements of Mod(S ′), where S ′ is a domain

in S, and 〈a, b〉 is irreducible. Given any k ≥ 20/c(S) and n ≥ ξ(S) − 1, let

u = (bkak)nbk and v = (akbk)nak. To prove the proposition, we show that any choice

of α ∈ σ(uau−1) and β ∈ σ(vbv−1) together fill S ′. Necessarily α and β will bound

some domains A ∈ A(a) and B ∈ A(b), and A and B together fill S ′.

Without loss of generality we may assume S ′ = S.

We prove Proposition III.4 in two steps. First, we use Behrstock’s Lemma (II.13)

to follow the image of any α1 ∈ σ(a) and β1 ∈ σ(b) under the composition of

alternations of high powers of a and b. We find that u(α1) and v(β1) have a certain

subsurface projection property. The second step is to prove that this property implies

the two curves fill S.
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For the purpose of step one, we introduce the overlap graph for a pair of pure

mapping classes. Suppose a and b are pure nontrivial mapping classes generating

the group G. Let {Ai}1≤i≤m and {Bj}1≤j≤n be the domains of a and b respectively.

The overlap graph O(a, b) consists of a vertex for every domain of a that overlaps

with some domain of b, and for every domain of b that overlaps with some domain

of a—recall that two domains overlap if the boundary of each domain projects to

the other. Edges connect domains that overlap, so that one may color the vertices

depending on whether they represent domains of a or b, obtaining a bipartite graph.

Assign each edge length one so that O(a, b) has the usual path metric.

A1

1

A2

1

A3

1

A4

1

B1

1

B2

1

A2

1

A3

1

A4

1

B1

1

B2

1

Figure 3.1: Example of an overlap graph.

Note that the foregoing definition works whether or not G contains a pseudo-

Anosov. Now let us assume that, as in the hypotheses for Proposition III.4, G

does contain a pseudo-Anosov, or equivalently, A(G) is the connected surface S ′.

In particular a and b fix no common curve. If a is not pseudo-Anosov, then any

domain Ai has essential boundary consisting of curves not fixed by b. This boundary

must project to some domain Bj of b. If Bj has no essential boundary, then it is
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all of S ′ and b is pseudo-Anosov. Otherwise, the boundary projects to some domain

of a. If ∂Bj projects to Ai, then Bj and Ai overlap. If not, then Ai nests in Bj

by Lemma II.2, and ∂Bj projects to some other domain Ak. In this case, ∂Ak in

turn projects to Bj, because otherwise Bj nests in Ak, implying Ai nests in Ak, a

contradiction. So Bj and Ak overlap. In either case O(a, b) has at least two vertices

and an edge connecting them. These observations imply

Lemma III.5. If A(G) is connected and O(a, b) is empty, then at least one of a and

b is pseudo-Anosov.

In the case where O(a, b) is not empty, we distinguish between the domains rep-

resented by vertices—call these domains overlappers—and those not represented.

Revisiting the discussion above, we can extract a fact so handy we should name it:

Lemma III.6. When neither a nor b are pseudo-Anosov, any non-overlapper of one

nests in an overlapper of the other.

That observation helps us to the result below.

Lemma III.7. If A(G) is connected, then O(a, b) is connected.

Proof. Assuming O(a, b) is not empty, we show how to find a path between any

two vertices. Realize the domains as closed submanifolds with minimal pairwise

intersection (i.e., ensure that boundary curves intersect essentially and use pairwise

disjoint submanifolds to represent domains for the same mapping class). For any two

vertices X and Y of O(a, b), choose points x and y in the corresponding domains,

and connect these by a path p. Letting A =
⋃
iAi and B =

⋃
j Bj, one sees that each

component of S ′\(A ∪ B) is a disk or boundary-parallel annulus with a boundary

component consisting of pieces of ∂A ∪ ∂B. Thus one can isotope p to lie entirely

within A∪B, and furthermore transversal to the boundary curves. The path also lies
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entirely within overlappers, by Lemma III.6. Tracing the path gives a finite sequence

of domains, each overlapping with the neighbor before and after, alternating between

Ai’s and Bj’s by design. The same sequence appears as a path in O(a, b) connecting

X and Y .

Now we can state precisely the first step to proving Proposition III.4. Assume a

and b are as in Proposition III.4, with the same definitions as above for A =
⋃
iAi and

B =
⋃
j Bj. Recall c = c(S) is the minimal translation constant from Theorem II.11,

and ξ(S) is surface complexity.

Lemma III.8. Suppose α1 and β1 are curves in σ(a) and σ(b) respectively, and k

and n are integers such that k ≥ 20/c(S), and n ≥ ξ(S)− 1. For α = (bkak)nbk(α1)

and β = (akbk)nak(β1), the following hold for any choice of Ai or Bj.

(i) If ∂A projects to Bj, then so does α, and dBj
(α, ∂A) ≥ 14.

(ii) If ∂B projects to Ai, then so does β, and dAi
(β, ∂B) ≥ 14.

Proof. By symmetry we need only prove (i), the case for α. We can use the overlap

graph to track the image of α1 under alternating applications of bk and ak. For ease

of exposition, we will not always distinguish between overlapper domains and their

representative vertices in O(a, b).

Let Y0 be the vertices ofO(a, b) corresponding to the overlappers of b that intersect

α1; note that Y0 cannot be empty. Let X0 be the vertices adjacent to Y0. For i ∈ N,

let Yi be the vertices adjacent to Xi−1, and let Xi be the vertices adjacent to Yi. In

other words, Yi corresponds to b-domains that overlap with a-domains of Xi−1, and

Xi are the a-domains that overlap with b-domains of Yi.

Observe that the vertices of Yi+1 lie within a radius-two neighborhood of Yi.

Because ξ(S), the maximum number of disjoint curves on S, gives an upper bound on
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the number of domains for a mapping class in Mod(S), twice ξ(S) bounds the number

of vertices in O(a, b). Because O(a, b) is connected, one sees that for n ≥ ξ(S) − 1,

Yn consists of all the b-vertices, corresponding to all the overlapper domains of b. If

a domain Bj of b is not an overlapper, then by Lemma III.6 it nests in some domain

of a, which precludes projection of ∂A to Bj. To prove Lemma III.8 it suffices to

establish the following claim:

(∗) For any domain Y of Yn, dY ((bkak)nbk(α1), ∂A) ≥ 14

We induct on n. By definition, α1 projects to any domain Y of Y0. Applying

Theorem II.11,

dY (bk(α1), α1) ≥ c|k| ≥ 20 ≥ 14

Because α1 is a component of the multicurve ∂A, and because projection distances

are diameters, we obtain the n = 0 case of (∗):

dY (bk(α1), ∂A) ≥ 14

Supposing (∗) true for n = m, we prove it for n = m + 1. Consider any domain

Y of Ym, and recall that diamY (∂A) ≤ 2, by Lemma II.1. For any Ai overlapping Y ,

the triangle inequality gives

dY ((bkak)mbk(α1), ∂Ai) ≥ 12

In particular, (bkak)mbk(α1) projects to every Ai that overlaps some Y of Ym; those

Ai are exactly the vertices of Xm. In other words, for any X ∈ Xm, there exists

Y ∈ Ym such that

dY ((bkak)mbk(α1), ∂X) ≥ 12

We may apply Behrstock’s lemma, giving

dX((bkak)mbk(α1), ∂Y ) ≤ 4
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On the other hand, Theorem II.11 guarantees

dX(ak(bkak)mbk(α1), (bkak)mbk(α1)) ≥ c|k| ≥ 20

Employing the triangle inequality,

dX(ak(bkak)mbk(α1), ∂Y ) ≥ 16

The above holds for any Y ∈ Ym, and X ∈ Xm. Given any Y ′ ∈ Ym+1, recall

that Y ′ corresponds to a domain overlapping some X ∈ Xm, which in turn overlaps

with some Y ∈ Ym. We also know diamX(∂Y ∪ ∂Y ′) ≤ 2, because ∂Y ′ and ∂Y are

disjoint. Another triangle inequality gives

dX(ak(bkak)mbk(α1), ∂Y ′) ≥ 14

Again we can apply Behrstock’s lemma. In fact we can mirror the last four in-

equalites:

dY ′(a
k(bkak)mbk(α1), ∂X) ≤ 4

dY ′(b
kak(bkak)mbk(α1), ak(bkak)mbk(α1)) ≥ 20

dY ′(b
kak(bkak)mbk(α1), ∂X) ≥ 16

dY ′(b
kak(bkak)mbk(α1), ∂X ′) ≥ 14

where X ′ is any domain of Xm+1. Note that ∂X ′ is a subset of ∂A, and recall Y ′

was an arbitrary vertex of Ym+1. Thus we may re-write the last inequality to give

the m+ 1 step of the induction claim: for any Y ∈ Ym+1,

dY ((bkak)m+1bk(α1), ∂A) ≥ 14
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Remark. The lower bound for k in Lemma III.8 is slightly higher than necessary

in order to simplify statements and proofs for both Lemmas III.8 and III.9.

We are ready for the second step to proving Proposition III.4. Its own proof will

probably feel like déjà vu. Again, a and b are as in the proposition, with the same

definitions as above for A =
⋃
iAi and B =

⋃
j Bj. Note that in the following lemma,

α and β are arbitrary.

Lemma III.9. Suppose α, β ∈ C0(S ′) satisfy the following:

(i) If ∂A projects to Bj, then so does α, and dBj
(α, ∂A) ≥ 14.

(ii) If ∂B projects to Ai, then so does β, and dAi
(β, ∂B) ≥ 14.

Then α and β fill S ′.

Proof. Given an arbitrary curve γ ∈ C(S ′), we show it intersects either α or β.

Because γ cannot be fixed by both a and b, it projects to some domain, and we can

choose this domain to be an overlapper (Lemma III.6). Without loss of generality

we may assume γ projects to a domain Y of b, which overlaps with a domain X of

a. Because multicurves have diameter-two projections (Lemma II.1), properties (i)

and (ii) imply:

dY (α, ∂X) ≥ 12

dX(β, ∂Y ) ≥ 12

Assuming γ does not intersect α, we show it must intersect β. Again Lemma II.1

implies dY (α, γ) ≤ 2. The following inequalities employ the triangle inequality,

Behrstock’s lemma, and another triangle inequality.

dY (γ, ∂X) ≥ 10

dX(γ, ∂Y ) ≤ 4
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dX(γ, β) ≥ 8

In yet another instance of Lemma II.1, the last inequality shows γ and β must

intersect.

Proof of Proposition III.4. Let u = (bkak)nak and v = (akbk)nbk. Taken together,

Lemmas III.8 and III.9 show that, for any α ∈ σ(uau−1) and β ∈ σ(vbv−1), α and β

fill S ′. Therefore a1 = uau−1 and b1 = vbv−1 are sufficiently different pure reducible

mapping classes. �

3.3 Constructions

Here we give the pseudo-Anosov construction at the heart of the proof of our Main

Theorem. That is, we prove Proposition III.3 of Section 3.1, which states that, in a

group generated by two sufficiently different pure reducible mapping classes, every

element is pseudo-Anosov except those conjugate to powers of the generators. The

second part of this section upgrades Proposition III.3 to Proposition I.2 given in the

introduction, by proving the all-pseudo-Anosov subgroups are convex cocompact.

3.3.1 Of pseudo-Anosovs

Recall that a pseudo-Anosov is characterized by having infinite-diameter orbits in

the curve complex. Thus we will know w is a pseudo-Anosov if distances d(γ, wn(γ))

grow as n increases, where γ is some vertex in C(S). Proposition III.3 is an appli-

cation of Lemma III.10 below, which uses the Bounded Geodesic Image Theorem

(Theorem II.12) to glean geometric information about sequences of geodesics. The

author learned this “bootstrapping” strategy from Chris Leininger, who takes a sim-

ilar tack in [25]. In the same vein one also has Proposition 5.2 in [22], but here the

domains are not restricted.
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Let M = M(S) be the constant from Theorem II.12. Below, properties (ii) and

(iii) ensure that the projection in (iv) is well-defined.

Lemma III.10. Suppose {Yj} is a sequence of domains in S, and {Xj} a sequence

of subsets of C0(S), for which the following properties hold for all j:

(i) diam(Xj) ≤ 2

(ii) Xj and Xj+1 are pairwise disjoint

(iii) The set of curves that project trivially to Yj is a subset of Xj

(iv) dYj
(wj−1, wj+1) > 2M for any choice of wj−1 ∈ Xj−1, wj+1 ∈ Xj+1

Then for any wi ∈ Xi and wi+k ∈ Xi+k, the geodesic [wi, wi+k] contains a vertex from

Xj for i ≤ j ≤ i+ k. Also, the Xj are pairwise disjoint. In particular, [wi, wi+k] has

length at least k.

Proof. First let us induct on k the claim that, for any wi ∈ Xi and wi+k ∈ Xi+k, the

geodesic [wi, wi+k] contains a vertex from Xj for i ≤ j ≤ i + k. This is vacuously

true for k = 1.

The general induction step works even for k = 2, but let us separate this case to

highlight its use of the Bounded Geodesic Image Theorem, Theorem II.12. By prop-

erty (iv), dYi+1
(wi, wi+2) > 2M > M , so Theorem II.12 requires [wi, wi+2] contain a

vertex v disjoint from Yi+1. By property (iii), v is contained in Xi+1. Of course, the

endpoints of [wi, wi+2] lie in Xi and Xi+2, so the induction claim holds.

Now assume k > 2 and for any wi ∈ Xi, wi+k−1 ∈ Xi+k−1, the geodesic [wi, wi+k−1]

intersects Xj for i ≤ j ≤ i + k − 1. The main task is to show [wi, wi+k] intersects

Xi+k−1.

Choosing any wi+k−2 ∈ Xi+k−2, our first step is to show one can pick a geodesic

[wi, wi+k−2] avoiding Xi+k−1. Suppose we are given a geodesic that doesn’t, that is,
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for some w′i+k−1 ∈ Xi+k−1,

[wi, wi+k−2] = [wi, w
′
i+k−1] ∪ [w′i+k−1, wi+k−2].

Let us require w′i+k−1 to be the first vertex along [wi, wi+k−2] belonging to Xi+k−1,

so that only the last vertex of [wi, w
′
i+k−1] lies in Xi+k−1. The induction hypothesis

applied to the segment [wi, w
′
i+k−1] implies that, for some w′i+k−2 ∈ Xi+k−2,

[wi, wi+k−2] = [wi, w
′
i+k−2] ∪ [w′i+k−2, w

′
i+k−1] ∪ [w′i+k−1, wi+k−2].

Property (ii) ensures the second and third segments above each have length at least

one. Thus their union [w′i+k−2, wi+k−2] has length at least two. Property (i) tells us

we can replace it with a length-2 geodesic contained entirely in Xi+k−2, giving a new

[wi, wi+k−2] avoiding Xi+k−1.

Property (iii) ensures that every vertex of [wi, wi+k−2] projects nontrivially to

Yi+k−1, as does wi+k. Projection distances make sense and Theorem II.12, the

Bounded Geodesic Image Theorem, applies:

dYi+k−1
(wi, wi+k−2) ≤ diamYi+k−1

([wi, wi+k−2]) ≤M.

Finally, a triangle inequality:

diamYi+k−1
([wi, wi+k]) ≥ dYi+k−1

(wi, wi+k)

≥ dYi+k−1
(wi+k−2, wi+k)− dYi+k−1

(wi, wi+k−2)

> 2M −M = M

Again by Theorem II.12, we know [wi, wi+k] intersects Xi+k−1. The end of the

induction is easy: for some wi+k−1 in Xi+k−1,

[wi, wi+k] = [wi, wi+k−1] ∪ [wi+k−1, wi+k].
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The induction hypothesis says the first segment on the right intersects each Xj,

i ≤ j ≤ i+k−1. So the geodesic on the left intersects Xj, i ≤ j ≤ i+k, as required.

Finally we check that the sets Xj are pairwise disjoint. Suppose z ∈ Xi ∩ Xi+k

for some nonzero k. By the part of the lemma already proved, the geodesic [z, z]

contains vertices in Xj for i ≤ j ≤ i+ k: simply put, all those Xj intersect at z. But

consecutive Xj do not intersect.

Proof of Proposition III.3. Recall that Q = Q(S) = max{3, (2M + 4)/c} where

M = M(S), the constant from Theorem II.12, and c = c(S), the constant from

Corollary II.11. The hypothesis states that a and b are pure reducible mapping

classes, with A ∈ A(a) and B ∈ A(b), and A and B together fill S. We will show

that for any m,n > Q, 〈am, bn〉 is free and nontrivial elements of 〈am, bn〉 are either

pseudo-Anosov or conjugate to powers of am or bn.

If S is a torus or four-punctured sphere, the only pure reducible mapping classes

are Dehn twists about curves, and any pair of curves fill the surface. In this case the

result for Q = 3 is due to [13]; see also [36, 33, 17]. For the rest of the proof let us

assume ξ(S) > 1.

Let n,m ≥ Q be arbitrary integers. Let α be a component of ∂A and β of ∂B. Let

CA ⊂ C0(S) be the vertices with empty projection to A, and define CB analogously.

Observe that CA and CB sit in 1-neighborhoods of α and β, respectively, so they

each have diameter 2 in C(S). Because any curve intersects either A or B, CA and

CB contain no common vertices—this is the only place we use the fact that A and

B fill S.

Here’s the whole point of our choice of Q: for any nonzero integer k,

dA(CB, a
mk(CB)) ≥ dA(β, amk(β)) ≥ |mk|c > Qc ≥ 2M + 4
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dB(CA, b
nk(CA)) ≥ dB(α, bnk(α)) ≥ |nk|c > Qc ≥ 2M + 4

Notice that the domains A,B and sets CA, CB play the same roles for am and bn as

they do for a and b. To ease the burden of excessive exponents, we replace am with

a and bn with b for the remainder of the proof. In this new notation, our goal is

to show that 〈a, b〉 is free, and every nontrivial element of 〈a, b〉 is pseudo-Anosov

except those conjugate to powers of a or b. We have already established that, for

any nonzero k,

dA(CB, a
k(CB)) > 2M + 4 and dB(CA, b

k(CA)) > 2M + 4

In particular, for any γ, γ′ ∈ CB or δ, δ′ ∈ CA,

(3.1) dA(γ, ak(γ′)) > 2M and dB(δ, bk(δ′)) > 2M

We use this shortly to apply Lemma III.10.

In the abstract free group on a and b, a word w has reduced form w = s1s2 . . . sR,

where the syllables si are nontrivial powers of either a or b, and si is a power of a if

and only if si±1 is a power of b (i.e. powers of a and b alternate). Define powerblind

word length | · |∗ by |w|∗ = R, the number of syllables of w.

Claim. For any word w, either d(w(α), α) ≥ |w|∗ or d(w(β), β) ≥ |w|∗.

It immediately follows that 〈a, b〉 is a rank-two free group. If |w|∗ is even, it is

easy to check |wn|∗ = n|w|∗. The claim implies d(wn(γ), γ) ≥ n|w|∗, where γ is α or

β, depending on w. In particular the orbit of w has infinite diameter in the curve

complex, so w is a pseudo-Anosov. If |w|∗ is odd and neither conjugate to a power

of a nor of b, then it is conjugate to v such that |v|∗ is even. As v is pseudo-Anosov,

so is its conjugate w.

It remains to prove the claim. Towards this, we describe a sequence of domains

and C0(S)-subsets fulfilling the hypotheses of Lemma III.10. Let w0 be the identity,
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w1 = s1, w2 = s1s2, and so forth, so that wi is the word formed by the first i

syllables of w. If s1 is a power of a, let I(a) correspond to the even integers, and I(b)

to the odds; if s1 is a power of b, switch the roles of even and odd. Define R-length

sequences of vertices γr, domains Yr, and sets Xr as follows.

γr = wr(α) Yr = wr(A) Xr = wr(CA) ∀r ∈ I(a) ∩ [0, R]

γr = wr(β) Yr = wr(B) Xr = wr(CB) ∀r ∈ I(b) ∩ [0, R]

In addition, set {γ−1, Y−1, X−1} equal to {β,B,CB}, if s1 is a power of a, or {α,A,CA},

if s1 is a power of b.

Each Xj is isometric to CA or CB, and furthermore pairs Xj, Xj+1 are isometric

to the pair CA, CB, disregarding order. Therefore the sequence {Yj, Xj} meets con-

ditions (i) – (iii) of Lemma III.10. Condition (iv) requires dYj
(vj−1, vj+1) > 2M for

any choice of vj−1 ∈ Xj−1, vj+1 ∈ Xj+1. For j = 0, this condition simply restates one

of the inequalities in (3.1) above, so let us suppose j ≥ 1. Without loss of generality,

assume Yj = wj(A) and vj−1 = wj−1(γ−), vj+1 = wj+1(γ+) for some γ−, γ+ ∈ CB.

Because subsurface projection commutes naturally with the action of the mapping

class group,

dwj(A)(vj−1, vj+1) = dA(w−1
j (vj−1), w−1

j (vj+1)) = dA(s−1
j (γ−), sj+1(γ+))

Exactly one of sj and sj+1 is a power of a, while the other is a power of b. In any

case one knows that, for some γ, γ′ ∈ CB and nonzero k,

dA(s−1
j (γ−), sj+1(γ+)) = dA(ak(γ), γ′)

We used the fact that b fixes CB setwise. Applying inequality (3.1) above, we can

conclude dwj(A)(vj−1, vj+1) > 2M .
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By Lemma III.10, the geodesics [γ−1, γR] and [γ0, γR] have lengths at least R + 1

and R respectively. Depending on w, one of these geodesics is either [α,w(α)] or

[β, w(β)]. This proves the claim, thus the lemma. �

αa(CB)

1

ab2a3b4a5(CB)

1

w(β)a(CB)

1

βa(CB)

1

CA

1

CBa(CB)

1

ab2(CA)

1

ab2a3(CB)

1

ab2a3b4(CA)

1

a(CB)

1

Figure 3.2: The sequence defined in the proof of Proposition III.3

Here w = ab2a3b4a5. Vertices correspond to γi and shaded circles represent Xi, which each sit in
the 1-neighborhood of γi. The heavy, smooth line is a geodesic connecting β and w(β); it intersects
each of the Xi.

Remark. One can ask whether Proposition III.3 above can be proven for n-tuples

of pure mapping classes subject to appropriate conditions. For example, if pairwise

they fulfill the requirements for a and b in the lemma, do sufficiently high powers

generate rank n free groups? One would need to avoid the trivial counterexamples

arising from redundant generating sets such as {a, b, akba−k}. Excluding this latter

possibility, the immediate adaptation of the proof of Lemma III.3 for n-tuples only

gives a Q that depends on the particular n-tuple; proving that some Q works for any

n-tuple seems to require more maneuvering.

3.3.2 Of convex cocompact all-pseudo-Anosov subgroups

Now we upgrade Proposition III.3 to Proposition I.2, stated in the introduction.

Proposition I.2 gives new examples of mapping class subgroups which are convex

cocompact. The notion of convex cocompactness for mapping class groups was in-

troduced by Farb and Mosher in [8]. Later Kent and Leininger, and separately

Hamenstädt, proved that G < Mod(S) is convex cocompact if and only if its orbit
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embedding in the curve complex is a quasi-isometry ([21], [12]), that is, for some

γ ∈ C0(S), K > 1, and C ≥ 0, and for all w ∈ G,

(3.2) K|w|+ C ≥ d(γ, w(γ)) ≥ |w|/K − C

where |w| gives word length with respect to some metric on G. It is proved in [8],

and immediate after [21] and [12], that non-trivial elements of a convex cocompact

group are pseudo-Anosov. Convex cocompact subgroups which are free of finite rank

are called Schottky. Farb and Mosher proved these are common in mapping class

groups of closed surfaces, and Kent and Leininger include a new proof which also

works for non-closed surfaces:

Theorem III.11 (Abundance of Schottky groups [8], [21]). Given a finite set of

pseudo-Anosovs {g1, g2, ...gk} which are independent (i.e., no pairs of powers com-

mute), there exists l such that for all m > l, {gm1 , gm2 , ...gmk } is Schottky.

Fujiwara found a uniform bound for the above theorem in the case of two-generator

subgroups:

Theorem III.12 (Fujiwara [10], full version). There exists a constant L = L(S)

with the following property. Suppose a, b ∈ Mod(S) are independent pseudo-Anosov

elements. Then for any n,m ≥ L, 〈an, bm〉 is Schottky.

Proposition I.2 provides a source of Schottky subgroups with arbitrary rank. It

simply adds to Proposition III.3 the claim that finitely generated all-pseudo-Anosov

subgroups of 〈a, b〉 are Schottky. Recall that a and b are pure mapping classes with es-

sential reduction curves α and β respectively, such that α∪β fills S. Proposition III.3

tells us that G = 〈a, b〉 is a free group, and its all-pseudo-Anosov subgroups are ex-

actly those containing no conjugates of powers of a or b. For example, any subgroup

of the commutator group [G,G] qualifies.
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Proof of Proposition I.2. Let G = 〈a, b〉 as in the proposition, and let H be a finitely

generated, all-pseudo-Anosov subgroup of G. To show that H is Schottky, we need

quasi-isometry constants for the inequalities in (3.2). For an orbit embedding of

a finitely generated group, the upper bound of (3.2) always comes for free, using

any K greater than the largest distance some generator translates γ. So our work

is the lower bound. In the proof of Lemma III.3 we saw that d(γ, w(γ)) ≥ |w|∗

where γ is one of α or β, depending on w. It is not hard to check that, in general,

d(α,w(α)) ≥ |w|∗ − 1 (the same is true replacing α with β). However, powerblind

word length is not a word metric with respect to any finite generating set for H.

In what follows, we define a convenient generating set for H such that, letting | · |H

denote the corresponding word metric, we have K|w|∗ ≥ |w|H , where K is the size of

this generating set. Then we can conclude that d(α,w(α)) ≥ |w|H/K−1, completing

the proof.

The existence of this convenient generating set has no relation to our setting of

subgroups of mapping class groups, so we isolate this fact as a separate technical

lemma. We only need that G is a rank two free group generated by a and b. Suppose

H is a finitely generated subgroup. For w ∈ H, let |w| denote its length in G with

respect to the generating set {a, b}. Let Hl = {h ∈ H : |h| ≤ l} and choose L so that

HL generates H. Define | · |H as word length in H with respect to HL. Let K be the

number of elements in HL.

Lemma III.13. If H contains no element conjugate to a power of a or b, then

K|w|∗ ≥ |w|H .

Proof. Suppose w ∈ H has length |w|H = n, and w = h1h2 · · ·hn, where hi ∈

HL. One knows that |hihi+1| > |hi|, |hi+1| because otherwise hihi+1 ∈ HL, which

contradicts that |w|H = n (one could take a shorter path to w in the Cayley graph
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of H with respect to HL, by replacing hi and hi+1 with their product, another

generator). In particular this means that strictly less than half of the word hi,

written as a product of a’s and b’s, gets canceled by a piece of the word hi+1 in a’s

and b’s. Likewise, strictly less than half gets canceled by a piece of the word hi−1.

Therefore, at least the middle letter of hi, if |hi| is odd (the middle pair of letters if

|hi| is even) gets contributed to the {a, b}-spelling of the word w. Incidentally, this is

showing that |w| ≥ |w|H , implying that finitely generated subgroups of the rank-two

free group are quasi-isometrically embedded.

Call the middle letter or pair of letters of each hi its core. Powerblind word length

|w|∗ can be shorter than |w|H only if a string of consecutive hi’s, say, hihi+1 · · ·hk,

all have a or a2 at their core, or if they all have b or b2 at their core, and these cores

contribute to the same syllable (power of a or b) in the {a, b}-spelling of w. In that

case one can write, for i ≤ j ≤ k,

hj = uj · xe(j) · vj

where x is a or b and xe(j) includes the core of each hj. Furthermore, vj = u−1
j+1, so

that

hihi+1 · · ·hk = uix
Nvk

where N =
∑

i≤j≤k e(j). It is possible ui or vk are empty words, but N cannot be

zero, because otherwise |hihi+1 · · ·hk| ≤ |hi|/2+|hk|/2 ≤ L, meaning the entire string

can be replaced with a single element of HL, contradicting the fact that |w|H = n. In

this context, suppose hi = hk. Then uk = uix
p for some p. But because vk−1 = u−1

k ,

one has

hi · · ·hk−1 = uix
N ′u−1

i

for N ′ = N − e(k) − p. However, the stipulation that H contains no elements of G
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conjugate to powers of a or b, precludes this scenario.

To summarize, if any consecutive string hi · · ·hk in the HL-spelling of w con-

tributes to the same syllable in the {a, b}-spelling of w, that string includes at most

one instance of each element of HL. We have demonstrated a correspondence be-

tween letters hi and syllables of w written with respect to HL and {a, b} respectively:

each letter corresponds to at least one syllable (the one in which its core appears),

and at most K letters correspond to the same syllable. Therefore K|w|∗ ≥ |w|H .

As described above, Lemma III.13 completes the proof of Proposition I.2. �



CHAPTER IV

And More

4.1 A mapping class group “strong” Tits alternative

It is not known whether mapping class groups are linear, except in special cases:

most notably, Krammer and Bigelow proved linearity of braid groups (mapping class

groups of punctured spheres) [24], [3]. However, many linear group results inspire

mapping class group analogues. For example, McCarthy and Ivanov independently

proved that mapping class groups satisfy a version of the Tits alternative: either a

subgroup is virtually abelian or it contains a rank-two free group [29], [19]. We gave

a quantified version in the introduction, which we restate and prove below.

Theorem IV.1. Suppose S is a compact orientable surface with mapping class group

Mod(S) and G < Mod(S) is finitely generated and not virtually abelian. There exists

a constant w depending only on S such that, for any finite set Σ generating G, some

pair of elements with Σ-length less than w generates a rank two free group.

Proof. By replacing S with A(G) ⊂ S, we may assume G contains a pseudo-Anosov.

Theorem I.1 guarantees a pseudo-Anosov f with Σ-length less than K. We may also

replace G with its finite-index pure subgroup H = G ∩ Γ(S)—by construction, f

is already in H. Using Lemma 3.4 of [35], the proof of Theorem I.1 also provides

a generating set Σ′ for H consisting of words with Σ-length less than K. Suppose

45
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h ∈ Σ′. Either hfh−1 and f are independent or, appealing to Corollary 3.6 in [19], we

know h fixes the stable foliation of f in the space of projective measured foliations.

If the latter option holds for all h ∈ Σ′, then Lemma 5.10 in [19] concludes that

H is cyclic. But that implies G is virtually abelian, contradicting our hypotheses.

Therefore for some h ∈ Σ′, hfh−1 and f are independent. Then Theorem III.2 by

Fujiwara provides the constant L such that fL and hfLh−1 generate a free group,

and each have length less than w = K(L+ 2).

Theorem IV.1 was first proved by the author in [26], with a simpler proof that

does not require one to construct pseudo-Anosovs.

4.2 Uniform uniform exponential growth

Let G be a group generated by a finite set Σ. Denote by b(G,Σ, n) the number

of elements of G which may be written as words in Σ with length less than n. The

exponential growth rate of G with respect to Σ is

h(G,Σ) = lim sup
n→∞

log(b(G,Σ, n))

n

and the minimal exponential growth rate of G is

h(G) = inf{h(G,Σ) : Σ generates G}.

G is said to have exponential growth if h(G,Σ) > 0 for some and hence all Σ, and

uniform exponential growth if h(G) > 0.

Exponential growth does not generally imply uniform exponential growth [37],

but Eskin, Mozes, and Oh proved this implication holds for linear groups over a field

with characteristic zero [7]. Breuillard and Gelander strengthened the uniformity:

for example, they proved that for a finitely generated, discrete subgroup G < GLn(R)

which is not virtually nilpotent, h(G) has a lower bound depending only on n [6].
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Corollary IV.2 mirrors this property for mapping class groups of surfaces. In fact,

the mapping class group has uniform exponential growth, because its action on ho-

mology yields a surjection onto a linear group with uniform exponential growth [1].

Corollary IV.2 states that all Mod(S) subgroups with exponential growth have uni-

form exponential growth, and furthermore their minimal growth rates have a lower

bound determined by the surface:

Corollary IV.2. The minimal growth rate h(G) of any non-elementary subgroup of

G > Mod(S) has a positive lower bound r = r(S) depending only on the surface.

Proof. By counting only the elements of the free group found in Theorem IV.1, one

can calculate a lower bound on the growth rate. Specifically, r = (log 3)/w, where w

is the constant from Theorem IV.1

4.3 Bounded return probability

Another application of Theorem IV.1 is motivated by a comment in [5]. The ex-

istence of short independent words yields a fact about simple random walks: return

probability decays exponentially with a rate depending only on w and the initial

support of the walk. In other words, start at the identity and iterate a uniform

probability distribution on a symmetric set (i.e., one including elements and their

inverses) Σ to obtain a simple random walk on the group 〈Σ〉. Let p(k) be the proba-

bility that one returns to the identity in k steps. The quantity ρ = limk→∞(p(k))
1
k is

the Kesten spectral radius, introduced in [23], and regarding this one can show the

corollary below.

Corollary IV.3. There exists a function F : N→ (0, 1) depending only on S which

fulfills the following: for the simple random walk described above where Σ ⊂ Mod(S),

|Σ| = n, and 〈Σ〉 is not virtually abelian, one has ρ ≤ F (n).
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Proof. For a reference on random walks, see [38]; also, the author enjoys the expo-

sition in [20]. For a symmetric set Σ, let ρ(Σ) be the Kesten spectral radius for the

corresponding simple random walk on 〈Σ〉. Part of Theorem 10.3 in [38], specialized

to simple random walks, gives the following equivalence: ρ(Σ) is strictly less than

1 if and only if there exists κ(Σ) > 0 such that, for all finitely supported functions

f : 〈Σ〉 → C,
∑

x∈〈Σ〉

f(x)2 ≤ κ(Σ)
∑

x∈〈Σ〉,g∈Σ

(f(x)− f(xg))2/2.

One may think of the sum on the right as the sum of squares of differences over edges

in the Cayley graph determined by Σ. For the forward implication, one may choose

κ ≥ (1 − ρ)−1; backwards, one knows ρ ≤ 1 − κ−1 (note this corrects a typo in the

proof in [38]).

Suppose Σ is as in the hypothesis: Σ ⊂ Mod(S), |Σ| = n, and 〈Σ〉 is not virtually

abelian. Theorem IV.2 gives two elements u, v ∈ 〈Σ〉 with Σ-length less than w such

that u and v freely generate F2. Let T be the symmetric set {u, v, u−1, v−1}. Then

ρ(T ) =
√

3/2, because this is the simple random walk on standard generators of F2,

already calculated in [23]. From ρ(T ) one obtains κ(T ), and, because cosets of 〈T 〉

are for this purpose indistinguishable from 〈T 〉,

∑

x∈〈Σ〉

f(x)2 ≤ κ(T )
∑

x∈〈Σ〉,t∈T

(f(x)− f(xt))2/2

for any finitely supported function f : 〈Σ〉 → C. Furthermore, because the generators

in T are of the form g1 · · · gd, gi ∈ Σ, d ≤ w, the triangle inequality implies that for

any x ∈ 〈Σ〉, t ∈ T , there exists y ∈ 〈Σ〉, g ∈ Σ such that

(f(x)− f(xt))2 ≤ w2(f(y)− f(yg))2.

In the Cayley graph, the pair (y, yg) corresponds to an edge of the path connecting

x to xt. It is straightforward to count that for a given y ∈ 〈Σ〉 and g ∈ Σ, the
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difference f(y) − f(yg) appears at most w(n − 1)w−1 times in the upper bound for

some f(x)− f(xt), x ∈ 〈Σ〉, t ∈ T . Therefore one has

∑

x∈〈Σ〉

f(x)2 ≤ κ(T )w3(n− 1)w−1
∑

x∈〈Σ〉,g∈Σ

(f(x)− f(xg))2/2.

Thus

ρ(Σ) ≤ 1− 1−
√

3/2

w3(n− 1)w−1
.

The right hand side defines F (n).

4.4 Slow-growing groups

Breuillard proved the precise analogue to Theorem IV.1 in the linear group setting—

in fact, he coined the phrase “strong Tits alternative” [5]. That is, for G a finitely

generated, non-virtually-solvable subgroup of GLn(K), one has the same conclusion

as Theorem IV.1, with w depending only on n. One cannot hope for a bound on w

independent of dimension, in the linear group setting, or surface complexity, in the

mapping class group setting. This is because there exist linear groups with arbitrar-

ily small minimal growth rates ([11]; see Remark 1.4 in [5]), and these same examples

embed into mapping class groups, by a construction suggested by Breuillard. This

gives the following theorem:

Theorem IV.4 (Breuillard-Mangahas, in [26]). Let w = w(S) and r = r(S) be the

constants from Theorem IV.1 and Corollary IV.2. There exists a sequence of surfaces

Sn such that w(Sn)→∞ and r(Sn)→ 0 as n→∞.

For the proof, it suffices to find subgroups of mapping class groups with arbitrar-

ily small minimal growth rates. In [11], Grigorchuk and de la Harpe construct a

sequence of groups Gn with the property that h(Gn) → 0 as n → ∞. Following a

construction suggested by Emmanuel Breuillard, one may represent these groups in
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mapping class groups. In fact, the method shows that finite extensions of mapping

class subgroups are themselves mapping class subgroups. Let B be the non-empty

boundary of a surface S, Homeo+(S,B) denote the group of orientation-preserving

homeomorphisms of S fixing B pointwise, and Mod(S,B) be Homeo+(S,B) modulo

equivalence by isotopy keeping B fixed throughout.

Proposition IV.5. If a finitely generated group G has a finite index subgroup H

isomorphic to a subgroup of Mod(S,B), then G embeds in the mapping class group

of a connected surface.

Proof. Throughout, we consider H as a subgroup of both Mod(S,B) and G. By

passing to a finite index subgroup, we may assume H is normal in G. Ultimately we

embed G in the mapping class group of a surface S∗ modeled on a Cayley graph of

G/H with a copy of S for each vertex, and annuli for edges.

Before constructing S∗, let us address two technical issues. First: we need a group

of homeomorphisms associated to H, which will let us define S∗ as a quotient. Let

FΣ be the free group on Σ, where Σ = {g1, g2, ...gm} is a finite generating set for G.

Let H̄ be the pre-image of H under the canonical map r : FΣ → G; observe FΣ/H̄

and G/H are isomorphic finite groups. As a subgroup of a free group, H̄ is also a

free group, and so the map r : H̄ → H lifts to r̃ : H̄ → Homeo+(S,B). Second:

without loss of generality we assume that (1) B has at least 2m components, and

(2) only the identity in H fixes all curves on S (i.e., no element of H is a Dehn twist

about components of B). We can ensure this by replacing S with a larger surface

whose mapping class group also contains H [32].

Now we build S∗. To each generator gi associate a pair of boundary components

B+
i and B−i , and fix orientation-reversing homeomorphisms bi : B+

i → B−i . Let S ′ be

the quotient of the disjoint union FΣ×S by the equivalence (k, x) ∼ (kh−1, r̃(h)(x))
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for all h in H̄. One obtains a copy of S for each coset gH̄, corresponding to each

vertex of the Cayley graph of FΣ/H̄. Let B′ be the image of FΣ × B in S ′. For

a connected surface, obtain S∗ by identifying components of B′ as specified by the

edges of the Cayley graph: [(k, x)] ∼ [(kgi, bi(x))] for all gi and x ∈ B+
i .

The action of FΣ on FΣ × S by g · (k, x) = (gk, x) descends to an action on

S∗ that gives a homomorphism p : FΣ → Homeo+(S∗). Let q be the quotient

q : Homeo+(S∗)→ Mod(S∗). Define a homomorphism φ : G→ Mod(S∗) by φ(g) =

qpr−1(g). Although r is not injective, φ is well-defined if, for any two words w

and v representing the same element in G, qp(wv−1) is the identity e. Notice wv−1

represents the identity in G, so it is in H̄, thus

p(wv−1) · [(k, x)] = [(wv−1k, x)] = [(k, r̃(k−1wv−1k)(x))]

Because r maps k−1wv−1k to the identity, the lift r̃ maps it to a homeomorphism

isotopic to the identity on S, thus on components of S ′, and thus on S∗ (because all

homeomorphisms and isotopies fix B′, the boundary identifications are no obstruc-

tion). Hence p(wv−1) is isotopic to the identity, so qp(wv−1) = e.

Finally, we show that φ is injective. Suppose φ(g) = e and choose w ∈ r−1(g).

Because qp(w) = e, p(w) is isotopic to the identity. In particular, p(w) fixes the

subsurface of S∗ corresponding to the component [{e} × S] of S ′. Therefore w

represents an element of H. Furthermore, p(w) fixes the isotopy classes of all curves

on that subsurface. Then by condition (2) on H described above, w represents the

identity, so g = r(w) = e.

Proof of Theorem IV.4. As remarked above, we only need to show that the slow-

growing groups Gn are subgroups of mapping class groups. Proposition IV.5 applies

because each Gn has a finite-index subgroup Hn isomorphic to the direct product
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of 2n finitely generated free groups [11]. The Hn may be realized as mapping class

subgroups using pairs of Dehn twists on disjoint subsurfaces of S2n minus 2n+1 disks:

mapping classes supported on disjoint subsurfaces commute, and a pair of properly

chosen Dehn twists generates the rank two free group, which contains all other finitely

generated free groups. �
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