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Ō(n) the vector of the observation symbol mean of the nth ob-

servation

xi



D2(Ō(n), µi) the weighted distance of Ō(n) from the µi
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CHAPTER I

Introduction

1.1 Motivation

Manufacturing systems have become highly automated and mechanized so that

the impact of unplanned downtime caused by system failures becomes worse than

ever. Unplanned downtime of equipment not only reduces line productivity but also

negatively affects the quality control of the products. Another consequence of system

failures is the escalation of maintenance expenses due to unpredictable maintenance.

On the other hand, well planed maintenance cycles eventually decrease maintenance

costs, increase productivity, reduce product variability, and ensure high quality goods

and services.

Therefore, establishing a cost effective maintenance program is emerging as one

of the key objectives in the production line. It has been recognized that the mainte-

nance is not an isolated technical discipline but an integral part of the competitive

plant operations [1]. To examine the trade-offs between maintenance costs and ben-

efits, one needs an appropriate maintenance policy and relevant system performance

measurements. These are typically brought together in a maintenance optimization

model. This is a mathematical model in which both costs and benefits of mainte-

nance are quantified and delivers an optimum balance between the two. However,
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this mathematical model has not been well developed in a practical manner in spite

of its importance. Insufficient representation of the degradation system under pre-

ventive maintenance has posed difficulties in the mathematical models, thus resulting

in an inadequate maintenance policy. In addition, many of them have only taken into

account a steady-state behavior of the system.

To overcome the aforementioned limitations this research will investigate the

stochastic modeling techniques. Online degradation assessment and adaptive anomaly

detection will be addressed for condition-based maintenance. Online machine health

information can further be investigated for the relationship on the product quality

and equipment deterioration. We investigate analytical and numerical examination of

production lines within the Markov process framework, focusing on the more accurate

dynamic behavior modeling and multiple maintenance tasks.

1.2 Maintenance Strategies in Manufacturing

Any systems used in manufacturing deteriorate with usage and age. System degra-

dation causes more operating costs and decreases product quality. To keep production

costs low while maintaining good quality, Reactive Maintenance (RM), Preventive

Maintenance (PM), and Condition-Based Maintenance (CBM) are often performed

on such deteriorating systems [2]. Here, maintenance can be defined as actions 1) to

control the degradation process leading to failure of a system, and 2) to restore the

system to its operational state.

1.2.1 Reactive Maintenance (RM)

Traditional maintenance responses is repair work to restore the system from its

malfunctioning status. Such reactive actions would take place only when breakdowns

are noticed from a system failure. Even today, reactive maintenance is still neces-
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sary in all maintenance applications, because the complexity of a modern production

system makes accurate prediction and monitoring difficult.

1.2.2 Preventive Maintenance (PM)

PM is defined as all actions performed in an attempt to retain an item in specified

condition by providing systematic inspection, detection, and prevention of incipient

failures [3]. Generally, PM involves lower downtime than RM due to availability

of resources (spare parts, trained personnel, special tools, maintenance facilities),

causing less logistic delay. Thus, the cost of PM is in general much less than that of

the RM. Moreover, PM can prolong the useful life of the production equipment [4].

The concept of PM has been extensively studied. Since 1960s [5, 6, 7], researchers have

recognized the importance of evaluating the effect of PM and scheduling it properly

and efficiently. Summaries of these contributions can be found in the literature surveys

of [2, 8, 9, 10, 11].

1.2.3 Condition-Based Maintenance (CBM)

With the rapid development of modern technology, products have become more

complex while better quality and higher reliability are required. As the complexity

of technology grows in a production system, the mechanisms of failure become more

complicated, and a single pattern cannot manage to track all of them. Therefore,

more efficient maintenance approaches such as CBM are implemented to handle the

situation.

CBM recommends maintenance plans based on the information collected through

numerous condition monitoring techniques [12, 13]. The basic principle of CBM is

that defects which gradually develop in machines can be detected through suitable

monitoring techniques at the early stages so that appropriate maintenance plans can
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be scheduled accordingly. In other words, a CBM strategy can be used to dynamically

determine system maintenance on the basis of the observed condition of the system.

A CBM program consists of three key steps [12]:

1) Data acquisition to obtain data relevant to system health [14, 15]

2) Data processing to handle and analyze data or signals [16, 17, 18, 19, 20]

3) Maintenance decision-making model to recommend efficient maintenance poli-

cies [21, 22, 23, 24, 25, 26, 27, 28]

1.3 Research Objectives

The purpose of this research is to develop methods of pursuing enhanced cost-

effective maintenance policy for complex manufacturing systems by considering the

effects of the degraded equipment condition. The fundamental challenges and objec-

tives in this research can be summarized as follows:

• Most condition-based diagnosis methods mainly focus on online degradation

assessment of a system, assuming that all possible system conditions are known

a priori and that training data sets from associated conditions are available.

These assumptions significantly impede machine diagnosis applications where

it is difficult to identify and train all of the possible states of the system in

advance. Note that training models from data is a necessary step to estimate

system parameters for maintenance decision-making models. This problem may

cause serious estimation errors in the occurrence of unknown or untrained faults

that might generate catastrophic damages to systems. Therefore, this research

introduces an anomaly detection algorithm to trigger a model to update its

structure, and provides a more accurate model for the system.
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• The second fundamental difficulty lies on how to create an appropriate model

of both degradation processes and maintenance for multiple machine systems.

Although such a model can be used to find the optimal maintenance policy,

mathematical models for this purpose has not been well studied in a practical

manner. Insufficient representation of the degradation process with mainte-

nance actions leads to an inadequate maintenance decision-making policy. This

research, therefore, presents an approach where stochastic models are used to

represent equipment degradation and incorporated in various maintenance deci-

sion processes. To approximate non-negligible maintenance times and periodic

inspections for more realistic maintenance activities, a fundamental understand-

ing of the phase-type distribution will be investigated.

• Extending the models and generalizing the results from a single machine system

to multiple product systems still remain as challenging tasks to the proposed

research because the relationship between machine condition and product qual-

ity has not been successfully collaborated with maintenance decision-making.

Therefore, a complex manufacturing system with multiple products has to be

studied, focusing on the relationship between deteriorated equipment and asso-

ciated product qualities. A new decision-making architecture will be developed

to determine joint maintenance and product sequencing rules based on condition

monitoring information.

1.4 Outline of the Disseration

This research is organized as follows:

Chapter II presents how hidden Markov models can be applied to assess online degra-

dation process and identify anomaly detection. A turning process will be demon-

5



strated to validate our proposed algorithm in this chapter. Chapter III studies the

optimal preventive maintenance policy. Starting with a single component system, the

problem of a two-unit system will be solved in this chapter. Chapter IV is devoted

to a multiple product system with its application to a semiconductor manufacturing

process. In this chapter, a policy for maintenance planning and product dispatching

will be proposed in the presence of multiple products.
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CHAPTER II

Online Degradation Assessment and Adaptive

Fault Detection Using Modified Hidden Markov

Models

2.1 Introduction

Condition-based maintenance (CBM) recommends maintenance plans based on

the information collected through numerous condition monitoring techniques [12, 13].

The basic principle behind CBM is that defects that gradually develop in machines

can be detected through suitable monitoring techniques at the early stages so that

appropriate maintenance plans can be scheduled accordingly. Because of the com-

plexity of modern plants, CBM has become widely accepted as one of the key drivers

to reduce maintenance costs and machine downtime of manufacturing systems [29].

Condition monitoring techniques for machine diagnosis have been studied exten-

sively [12]. Many signal processing techniques have been developed that involve the

analysis of the acquired data in time domains [30], frequency domains [31], and time-

frequency domains [32]. Paya et al. [33] developed a condition monitoring method,

which relied on wavelet transformation and artificial neural networks. A similar work

that uses principal component analysis was reported in Jin et al. [34]. These meth-

ods are feature-based methods using statistical features of the signal. However, these
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methods require too much data and time to establish condition monitoring and di-

agnosis. In addition, they are data-based methods, which do not take the physical

model of the system into consideration. On the other hand, model-based methods,

under the assumption that measured information is stochastically correlated with the

actual machine condition, take advantage of understanding the system structure [12].

This assumption leads to the application of a Hidden Markov Model (HMM)

through a statistical approach in identifying the actual machine conditions from ob-

servable monitoring signals. Although HMMs were motivated by their successes in

speech recognition [35], many applications of the HMM in machine process diagnosis

have also been studied, demonstrating its effectiveness in online diagnosis. For ex-

ample, Ertunc et al. [36] presented an HMM approach for tool wear detection and

prediction in a drilling process. A similar approach was also described for a turning

process by Wang et al. [37]. Li et al. used an HMM as a fault diagnosis tool in

speed-up and speed-down processes for rotating machinery [38].

According to the literature review, most previous condition-based diagnosis mod-

els based on an HMM mainly focus on online degradation assessment of known

faults [35, 36, 37, 38]. An HMM with known faults assumes that all possible sys-

tem condition states are known a priori and that training data sets from associated

states are available. In addition, training an HMM should be conducted offline. These

assumptions significantly impede machine diagnosis applications when it is difficult

to identify and train all of the possible states of the system in advance [39, 40]. For

instance, if an HMM that has been trained to model gradual tool wear in a drilling

process does not have a state to represent a tool breakage or shortage of coolant, it

is impossible for the HMM to estimate the correct state when these untrained states

occur. The state structure of a conventional HMM will not be updated after the train-
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ing stage. This inflexibility may cause serious estimation errors in the emergence of

unknown or untrained faults that might provoke catastrophic damages to machining

processes.

Therefore, it is necessary to introduce an online anomaly detection algorithm

into an HMM to trigger the HMM to adjust the number of hidden states or the

hidden structure, and thus result in a more accurate model for the system. In this

chapter, a modified Hidden Markov Model (mHMM) with variable state space is

developed to estimate the current state of system degradation as well as to detect the

emergence of unknown faults at an early stage. The Statistical Process Control (SPC)

technique [41] is used in unknown fault detection and diagnostics in conjunction with

the HMM. By measuring the deviation of the current signal from a reference signal

representing prior known states, the mHMM is able to see whether the current signal

is within the control limits.

The rest of this chapter is organized as follows: Section 2.2 introduces the principle

of an HMM and the proposed mHMM for online degradation assessment and state

update. In Section 2.3, case studies are performed to validate the effectiveness of

the mHMM algorithm and to compare its performance with other methods using the

example of a turning process. The conclusions and future research directions are

given in Section 2.4.

2.2 The Proposed mHMM with Variable State Space

2.2.1 Hidden Markov Model and State Estimation

Before introducing the mHMM, we present the basic form of a traditional HMM

with fixed state space as shown in Figure 2.1. The HMM, λ = (P, b, π) under consid-

eration consists of:

9



• a finite set of M states, S = {S1, · · · , SM}

• a state transition probability matrix, P = {pij}M×M ,

where pij = P{q(n+ 1) = Sj| q(n) = Si}, 1 ≤ i, j ≤ M, 1 ≤ n < N

• an observation symbol probability distribution,

bi(O(n)) = P{O(n)|q(n) = Si}, 1 ≤ i ≤ M, 1 ≤ n ≤ N

• an initial state probability distribution, π = {πi}M

where πi = P{q(1) = Si}, 1 ≤ i ≤ M

An HMM technique is applicable to a process that is assumed to possess homo-

geneous Markovian property [42] as follows:

pij = P{q(n) = Sj| q(n− 1) = Si, · · · , q(1)} = P{q(n) = Sj| q(n− 1) = Si} (2.1)

Equation (2.1) implies that the conditional probability of the current state, given

knowledge of all previous states, is the same as the conditional probability of the

current state given knowledge of the system state of one previous time unit. In other

words, the probability that a system will undergo a transition from one state to

another state depends only on the current state of system.

O1 O2 O1 O2 O1 O2

b
1
(1

) b
1 (2

) b
2
(1

) b
2 (2 ) b

3
(1

) b
3 (2

)

Observable 

signal

O1 O2

b
4 (2

)b
4
(1

)

Underlying Process

but unobservable

p12

p11 p22

p23

p33

p34

p44

S1 S2 S3 S4

Figure 2.1: Basic form of an HMM
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The state transition probability matrix P encodes the uncertainty in the true

underlying state evolution of the stochastic process while each state emits observation

symbols with the probability distribution bi(O(n)), as shown in Figure 2.1. Let On =

{O(1), · · · , O(n)} denote a sequence of all observation symbols up to time n, where

observed data points O(n) are taken at time n. The actual state sequence up to time

n can be represented as qn = {q(1), · · · , q(n)}, where a state q(k) ∈ S, 1 ≤ k ≤ n.

Then, we can find the maximum likelihood state sequence, q̂t = {q̂(1), · · · , q̂(t)}

associated with a given sequence of observations, On = {O(1), · · · , O(n)} as well as

an HMM model, λ = (P, b, π) through the Viterbi algorithm [43, 44]. Furthermore,

it is possible to adjust the HMM model parameters, λ = (P, b, π) to maximize the

probability of the observation sequence using an iterative procedure such as the Baum-

Welch method [45] or the Expectation-Maximization (EM) algorithm [46].

Since the primary purpose of an HMM in this chapter is to estimate the sys-

tem state as early as possible, the forward procedure [35] based on past and present

measurements is employed. Consider the forward variable, αn(i) defined as αn(i) =

P{O(1) · · ·O(n)∧q(n) = Si|λ}, indicating the joint probability of a series of observed

symbols On = {O(1), · · · , O(n)} and state Si at time n, given the model λ. We can

then calculate αn(i) recursively, as follows:

1) Initialization

α1(i) = πibi(O(1)), 1 ≤ i ≤ M (2.2)

2) Induction

αn+1(j) =

[∑
i

pij αn(i)

]
bj(O(n+ 1)), 1 ≤ n < N, 1 ≤ j ≤ M (2.3)

11



Once αn(i)’s are obtained, the posterior probabilities, P{q(n) = Si|O(1) · · ·O(n)∧

λ} that the current state q(n) is in state Si, given the observed symbols, On =

{O(1), · · · , O(n)} can be calculated by the Bayes’ rule.

P{q(n) = Si|O(1) · · ·O(n) ∧ λ} =

P{q(n) = Si ∧O(1) · · ·O(n)|λ}
P{O(1) · · ·O(n)|λ}

=
αn(i)∑
j αn(j)

, 1 ≤ i ≤ M (2.4)

Hence, we can estimate the state q̂(n), which maximizes the posterior probability as:

q̂(n) = argmax
i

{
P{q(n) = Si|O(1) · · ·O(n) ∧ λ}

}
(2.5)

Furthermore, the EM algorithm is used to find the maximum likelihood HMM pa-

rameters, λ = (P, b, π) that could have produced the sequence of observations ON =

{O(1), · · · , O(N)}. Define ξn(i, j) and γn(j) as follows:

ξn(i, j) = P{q(n) = Si ∧ q(n+ 1) = Sj|ON ∧ λ} (2.6)

γn(i) = P{q(n) = Si|ON ∧ λ} (2.7)

ξn(i, j) in Equation (2.6) is the probability of being in state Si at time n and in

state Sj at time n + 1, given the model λ and the observation sequence ON up to

time N . Note that γn(i) in Equation (2.7) is the probability of being in Si at time n,

given the model and the observation sequence ON . Thus, a set of re-estimation for

λ̂ = (P̂ , b̂, π̂) would be expressed as:

π̂i = γ1(i), 1 ≤ i ≤ M (2.8)

α̂ij =

N−1∑
n=1

ξn(i, j)

N−1∑
n=1

γn(i)

, 1 ≤ i, j ≤ M (2.9)

b̂i(O(n)) ∼ N(µi,Σi), 1 ≤ i ≤ M, 1 ≤ n ≤ N (2.10)

12



We will use Equations (2.8), (2.9), and (2.10) to update an HMM [35]. It should

be noted that the number of discrete states and the selection of training data sets

have a great influence on HMM’s performance for state estimation. Therefore, states

have to be selected in such a way that maximizes the discrepancies among the states.

In addition, the size of training data set has to be large enough to ensure observation

symbol probability distributions to be statistically significant.

2.2.2 The Modified Hidden Markov Model

We propose to use the mHMM with variable state space to detect the emergence

of anomalies at the early stages as well as to estimate the current state of system

degradation. The technique of SPC is combined with an HMM to detect different

failure modes and diagnostics. The mHMM can check whether the current signals are

emitted from unknown failure modes that have not been observed by calculating the

deviation of the current signal from reference signals representing prior known states.

Therefore, the mHMM is equivalent to an HMM equipped with the reinforcement

learning technique.

Suppose that there are m observations available from the process, each of size b,

and the observation symbol probability distributions, bi(O(n)) = P{O(n)| q(n) = Si}

follow a p -jointly Gaussian density distribution. This assumption is reasonable in

many applications because of the central limit theorem, which states that the sum

of independently distributed random variables is approximately Gaussian-distributed

regardless of the distributions of the individual variables as the number of samples

becomes large [42]. Then bi(O(n)) can be expressed as:

bi(O(n)) = P{O(n)| q(n) = Si} =
1

(2π)p/2|Σi|1/2
exp

(
−1

2
(O(n)−µi)

TΣi
−1(O(n)−µi)

)
(2.11)
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where µ is the mean vector and Σ is covariance matrix of the distribution.

Then, the weighted distance of Ō(n) from the µi, known as Mahalanobis dis-

tance [47], can be calculated as:

D2(Ō(n), µi) = b(Ō(n)− µi)
TΣi

−1(Ō(n)− µi) (2.12)

where Ō(n) is the vector of the observation symbol mean of the nth observation,

Ō(n) = 1
b

∑b
k=1 Ok(n).

We use this statistic to detect an unknown state in the mHMM becauseD2(Ō(n), µi)

can represent a dissimilarity distance when the number of monitoring signals is more

than one [48]. The most familiar multivariate process monitoring technique is the

Hotelling multivariate control chart [49]. We use the Hotelling multivariate con-

trol chart technique for an anomaly detection algorithm in the mHMM because this

method can deal with multiple monitoring signals, make an online decision based on

current monitoring signals, and has shown effectiveness especially in a manufactur-

ing process [48]. The Hotelling multivariate control chart signals that a statistically

significant shift in the mean has occurred when

D2(Ō(n), µi) > UCL (2.13)

where UCL > 0 is a specified Upper Control Limit (UCL).

The calculation of UCL depends on whether the values of µ and Σ are known or

not in advance. If µ and Σ are known, the D2 statistic follows χ2-distribution with p

degrees of freedom [50]. Thus, UCL can be obtained as

UCL = χ2
α,p (2.14)

where α is the risk level.
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If µ and Σ are not known, the m observation subgroups of each size b must be

used to estimate µ with ¯̄O, the overall mean vector, and Σ with S̄, the covariance

matrix. ¯̄O and S̄ can be calculated:

¯̄O =
1

m

m∑
n=1

Ō(n) (2.15)

S̄ =
1

m

m∑
n=1

(Ō(n)− ¯̄O)T(Ō(n)− ¯̄O) (2.16)

It has been shown that ¯̄O and S̄ are the maximum likelihood estimates of µ and

Σ, respectively [51]. In this case, the D2 statistics and the UCL for the Hotelling

multivariate control chart are defined as follows:

D2(Ō(n), ¯̄O) = b(Ō(n)− ¯̄O)TS̄−1(Ō(n)− ¯̄O) (2.17)

UCL =
p(m− 1)(b− 1)

mb−m− p+ 1
Fα,p,mb−m−p+1 (2.18)

Equation (2.18) is based on the fact that the D2(Ō(n), ¯̄O) statistic follows an

F -distribution with p and (mb −m − p + 1) degrees of freedom when its mean and

covariance are not known [52].

Therefore, we can claim that the process of interest is experiencing a statistically

significant shift in the mean if Mahalanobis distance D2 becomes larger than UCL.

The mHMM makes use of this characteristic of SPC for the purpose of detecting

unknown states. The mHMM with variable state space will adjust the number of

hidden states or the hidden structure based on the result of the Hotelling multivariate

control chart. A summary of the mHMM algorithm is shown in Figure 2.2.
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Figure 2.2: Block diagram of the proposed modified HMM algorithm
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Suppose the initial mHMM is trained only with prior known states, Sknown =

{S1, · · · , SM} and associated training data sets. This mHMM receives a set of data

{O1(n), · · · , Ob(n)} with a batch size b at time n. The sample mean of each set,

Ō(n) is calculated (i.e., Ō(n) = 1
b

∑b
k=1 Ok(n)) and fed to the HMM state estimation

algorithm, shown in Equations (2.3) and (2.5), to estimate the current state q̂(n) from

the sequence of observation symbols Ōn = {Ō(1), · · · , Ō(n)}.

If q̂(n) belongs to the prior known state set Sknown, then the distanceD2(Ō(n), µq̂(n))

and UCL are obtained by means of Equations (2.12) and (2.14), respectively. This

is possible because the corresponding µ and Σ of q̂(n) are known. If q̂(n) does not

belong to the prior known state space Sknown, Equations (2.17) and (2.18) can be

used instead. If any anomalous behavior has not been detected via the control chart

(i.e., D2 < UCL), the sequence of observation symbols Ōn = {Ō(1), · · · , Ō(n)} will

be used to update the mHMM through the EM algorithm (i.e., re-learning or rein-

forcement learning). On the other hand, if D2 > UCL occurs R consecutive times, a

new state SM+1 needs to be introduced to the mHMM to model an unknown state

of the system with µM+1 and ΣM+1, as shown in Equations (2.15) and (2.16). The

number R can be used to control the sensitivity of the unknown detection algorithm.

However, there is a tradeoff between robustness and a detection speed. For instance,

if R is increased, the unknown detection algorithm may become more robust against

false detections caused by process randomness itself while a detection speed might be

slow (i.e., the mHMM may respond more slowly to the unknown state). Thus, the

number R needs to be tuned with considerable caution according to its purpose [53].
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2.3 Case Studies

2.3.1 Inability of a Conventional HMM with Unknown States

In this section, we illustrate the effectiveness and outperformance of the mHMM

with comparison to a conventional HMM using numerically generated case studies.

To study the numerical cases where some of the hidden states of an HMM are not

known, we consider the HMM which is trained initially with the four states, Sknown =

{S1, S2, S3, S4}, while the true system actually contains another unknown state S5,

as shown in Figure 2.3.

S1 S2 S3 S4 S5

p11 p22 p33 p44 p55

p12 p23 p34 p45

Figure 2.3: Markov chain with an unknown state S5

Table 2.1: µ and Σ of Gaussian density distributions and P

µ1 =

[
20
20

]
µ2 =

[
20
35

]
µ3 =

[
35
35

]
µ4 =

[
35
20

]
Σ1 =

[
20 0
0 20

]
Σ2 =

[
15 0
0 15

]
Σ3 =

[
15 −2
−2 15

]
Σ4 =

[
5 0
0 5

]

P =


0.99 0.11 0 0
0 0.99 0.01 0
0 0 0.99 0.01

0.01 0 0 0.99



Suppose that two signals (X1, X2) are monitored. The observation symbol proba-

bilities from each state have two-jointly Gaussian density distributions and the HMM

has the transition probability matrix P , as summarized in Table 2.1.
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Figure 2.4: Original observable signals and the HMM with the four known states

One possible result of the observable signals is illustrated in Figure 2.4 if samples

of size b = 10 (i.e., one subgroup consists of 10 samples) are taken. Note that these

signals are abstract and not linked to any specific physical meaning.
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Figure 2.5: HMM algorithm serving to estimate states

However, the estimated states obtained from the sequence of observable signals by

means of the conventional HMM algorithm are different from the true states of the

system as shown in Figure 2.5. This is because the conventional HMM has to assign

each observation to one of the known states, Sknown = {S1, S2, S3, S4} according to the

posterior probability calculation via Equation (2.4) even when an observation signal

is emitted from the unknown state S5, (where µ5 = [ 2828 ],Σ5 = [ 10 3
3 10 ] ).

The posterior probabilities of being in each state given the sequence of observation

symbols up to the current time are obtained and illustrated in Figure 2.6.
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Figure 2.6: Posterior probability of P{q(n) = Si|O(1) · · ·O(n)}

The jagged appearance in the posterior probabilities happens after approximately

the 400th sample, since the conventional HMM does not account for the emergence

of the unknown state. In this case, the conventional HMM is unable to estimate the

correct states. On the other hand, the jagged appearance in the posterior probabilities

represents the presence of an unknown state from the observation symbols. From the

result shown in Figure 2.6, we might conclude that the posterior probability is the

key criterion in determining the detection of unknown states, as explained in [39].

However, the following case study shows that this conclusion may not always hold.

The trained HMM, λ = (P, b, π) is the same as the previous example. However, in

this case it turns out that an unknown state S5 has the following Gaussian observation

symbol density distribution:

µ5 =

[
50

10

]
, Σ5 =

[
10 3

3 10

]

Instead of being in the middle of the other states, the unknown state is far away from

other four known states, as shown in Figure 2.7.
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Figure 2.7: Result of an incorrect state estimation

As shown in Figure 2.8, we cannot see the jagged appearance in the posterior prob-

abilities even with the presence of the unknown state in Figure 2.7. In this case, the

conventional HMM algorithm disguises the unknown state by calculating P{q(n) =

S1|O(1) · · ·O(n)} = 0.9972 after around the 650th sample. The conventional HMM

misinterprets an unknown state S5 as the first state S1 with a high probability even

though the unknown state is located far from the first state S1. The fourth row of

the transition probability matrix, P (4, :) = [0.01 0.00 0.00 0.99] is defined in such a

way that a state will move to either state S1 or state S4 after being in state S4. The

conventional HMM, however, excludes the chance of being in state S4 after observing

that an observation symbol is far away from state S4. Thus, the conventional HMM

misjudges that P{q(n) = S1|O(1) · · ·O(n)} = 0.9972.
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Figure 2.8: Posterior probability, but no jagged appearance is shown

These two examples lead us to conclude that considering only the posterior prob-

ability in the identification of the unknown state is not sufficient based on the con-

ventional HMM. This is why we propose the modified HMM (mHMM) algorithm to

deal with challenges related to unknown states using the Hotelling multivariate con-

trol chart. The simulation results using the mHMM are illustrated in Figures 2.9(a)

and 2.9(b). Both cases show that unknown states are successfully detected and new

states are added into a conventional Markov chain.
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(a) Posterior probability with the first example
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(b) Posterior probability with the second example

Figure 2.9: Posterior probabilities using the mHMM
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2.3.2 Case Study on Tool Wear of Turning Process

We illustrate how the mHMM operates with the example of a tool degradation

process. The proposed mHMM has been tested with a turning process and is shown

to be able to perform an adaptive diagnosis of different failure modes as well as on-

line degradation assessment. A ceramic tool is used to turn an Inconel718 workpiece

with coolant supplied, as shown in Figure 2.10. During the turning process, two or-

thogonal forces (the cutting force and thrust force) are measured by the dynamometer.

 

Ft

Fc

Figure 2.10: Test-bed of turning process with coolant supply (Ft: thrust force, Fc:
cutting force)

The first step is to train the mHMM using training data sets associated with each

state. The states are defined as degree of tool flank wear. Three different degrees

of tool flank wears, S = {S1, S2, S3}, are used to train the mHMM. The cutting and

thrust forces are measured under the same turning process conditions such as the

depth of cut, the feed rate, and the cutting speed (see Table 2.2). Note that enough

coolant was supplied during this training stage.
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Table 2.2: The cutting conditions
Depth of Cut Feed Rate Cutting Speed

Condition 228.6 (µm) 228.6 (µm per rev) 152.4 (m per min)

Observation symbol probability distributions for each state are then calculated

from two force signals in the form of the joint Gaussian density functions. The

resultant mean and covariance matrix with corresponding tool wears are displayed in

Table 2.3.

Table 2.3: Three states of HMM based on different tool flank wears
State S1 S2 S3

Pictures

Tool flank wear(µm) 79.05±0.005 103.70±0.005 151.80±0.005

Mean of two forces(N) [108.5 124.6] [166.7 251.1] [230.4 404.8]

Covariance matrix

[
226.0 199.1
199.1 242.0

] [
151.1 547.7
547.7 2198.7

] [
159.8 234.2
234.2 538.4

]

We then restart the turning process with a new tool while measuring the cutting

and thrust forces. As shown in Figure 2.11, both cutting force and thrust force

increase with process duration as a cutting tool loses its sharpness. After a tool wear

status reaches state S3, the coolant supply is removed to introduce a different tool

wear mode. The cutting force seems to increase when the coolant is not supplied.

This dry machining condition generates non-experienced forces from an unknown

state, Sunknown, that has not been seen during the training stage.
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(a) Measured cutting and thrust forces

(b) Tool breakage due to dry machining

Figure 2.11: Turning process with a new tool
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Figures 2.12 and 2.13 demonstrate the problem or drawback of the conventional

HMM, showing that a conventional HMM fails to estimate Sunknown with high Maha-

lanobis distances. The distance statistic D2 becomes larger than UCL after around

the 2800th sample, which corresponds to the moment when the coolant is shut off. The

estimation failure in Figure 2.12 causes higher Mahalanobis distance in Figure 2.13.

On the other hand, the mHMM is able to update its structure to add new states suc-

cessfully by calculating a statistical distance between the current forces and known

states. Since the mHMM has a new state to represent an unknown condition, the

Mahalanobis distance between the incoming data and the new state is less than UCL,

as shown in Figure 2.14.

Although the estimation delay from state S1 to state S2 causes some non-consecutive

data points to be out of control, these points are not statistically significant to add

another state in the mHMM. However, the appearance of unknown states after the

2800th sample does trigger the mHMM to add another state, resulting in Figure 2.14.

It is critical to diagnose coolant shortage as early as possible to avoid excessive tool

wear, as shown in Figure 2.11(b). The appearance of unknown states can be identified

through the emergence of a new state in the mHMM. Figures 2.13 and 2.14 illustrate

that the mHMM is not only a stochastic modeling technique but also an adaptive

fault detector.
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Figure 2.14: Control chart with a mHMM

We have also compared the proposed mHMM with other clustering algorithms

such as neural networks, Gaussian Mixture Model (GMM), and K-means clustering

[21, 25]. Artificial neural networks are motivated by biological neural networks and

have been used extensively over the past three decades for both classification and

clustering [54]. GMM is based on the idea that the data can be clustered using

a mixture of multivariate Gaussian distributions. On the other hand, K-means is

the simplest and most commonly used algorithm. K-means starts with a random

initial partition and keeps re-assigning the patterns to clusters based on the similarity

between the patterns and the cluster centers until a convergence criterion is met [55].

The mHMM algorithm is based on online data streaming, which is more applicable in

online equipment condition diagnosis, while GMM and K-means clustering approaches

are based on offline but unsupervised machine learning. Note that we do not compare
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a mHMM with reinforcement learning versions of neural networks, GMM, and K-

means.

The classification results of the five different algorithms are illustrated in Fig-

ure 2.15 and summarized in Table 2.4. The accuracies are calculated by counting

errors between the true state and the state estimated via the clustering algorithms.

The mHMM clearly outperforms the others in terms of estimation accuracy because

the mHMM makes use of information regarding the transition probability as well as

observation symbol distributions.

Table 2.4: Correct estimation rate comparison
Estimation methods Accuracy (%)

mHMM 99.06
HMM 77.69

Neural Networks 97.71
GMM 96.49

K-means 92.81
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Figure 2.15: The estimated states via various algorithms
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The mHMM enables the identification of anomalous behavior of a system by mea-

suring Mahalanobis distance. We have shown that the proposed mHMM algorithm

is successfully able to modify its structure by increasing the number of states and

estimate the state of a system even in the existence of an unknown state.

2.4 Conclusion and Future work

In this chapter, the modified Hidden Markov Model (mHMM) algorithm is devel-

oped to deal with variable state space. A method in SPC has been combined into

the mHMM for unknown state detection and diagnosis. The results illustrate that

the proposed mHMM can 1) estimate current tool conditions more effectively than

other classification algorithms such as GMM, K-means, and neural network; 2) detect

anomalous behavior or an unknown state at an early stage by using the Hotelling mul-

tivariate control chart; and 3) change its structure to represent degradation processes

more accurately in the presence of unknown faults.

Future work will involve further experimental validations of the mHMM algorithm.

Furthermore, the mHMM needs to be modified to handle general distributions. The

assumption that the monitoring signals follow the Gaussian density distribution has

to be released to solve the systems which have different observation symbol probability

distributions.
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CHAPTER III

Markov-based Preventive Maintenance Planning

With Repair Time and Periodic Inspection

3.1 Introduction

Maintenance affects many aspects of manufacturing: productivity, product qual-

ity, maintenance cost, etc. Unplanned downtime of equipment might not only reduce

line productivity but also affect the quality of products. In addition, system failures

will increase maintenance expenses due to unpredictable maintenance. Therefore, de-

termining when to maintain a system before its failure is one of the critical problems

in manufacturing plant floors [10, 56, 57, 58]. For preventive maintenance (PM), we

should find an appropriate frequency of PM to reduce unnecessary maintenance costs

and increase system reliabilities by developing the mathematical models which can

represent both degradation processes and maintenance actions.

Among a number of mathematical modeling techniques, Markov process models

are widely used to describe the dynamic and stochastic behaviors of equipment degra-

dation processes [59, 60, 61, 62, 63, 64]. Chan et al. [59] found the optimal main-

tenance policy that maximized the availability of a component subject to random

failure and degradation through Markov processes. Chen et al. [60] further developed

the Markov model from [59] to perform minimal and major maintenance with re-
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spect to equipment degradation conditions. Maillart [61] examined the maintenance-

related imperfect observation information problem using Partially Observed Markov

Decision Processes (POMDP). However, these Markov models found in the previous

literature [59, 63, 64] are not accurate enough to represent a variety of maintenance

activities with appropriate random distributions. The non-exponential sojourn time

distributions between discrete states cannot be modeled due to the memory-less prop-

erty of a Markov chain. Instead, the exponential distributions with the same mean

values have been used to approximate the effect of non-exponential holding time

distributions. The inspection duration, maintenance duration, and time interval be-

tween inspections are, for instance, assumed to follow the exponential distributions in

most of the previous Markov models [59, 62, 63, 64]. Even though semi-Markov pro-

cesses have been employed to model degraded systems by allowing the holding time

distributions to be non-exponential, it is generally assumed that the mathematical

formulations of semi-Markov models [60, 65, 66] are so complicated that they are not

analytically tractable.

In general, a system consists of more than a single unit. If all units in the system

are stochastically independent of one another, a maintenance policy for the single

unit model [63, 64] may be applied to multi-unit maintenance problems. On the

other hand, if any units in the system are stochastically dependent on each other,

then an optimal decision for maintenance of one unit is not necessarily the optimum

for the entire system [67, 68]. A decision must be made to improve the entire system

rather than only a single subsystem. Therefore, we must also investigate optimal

maintenance policies for a multi-unit system, where units may or may not depend

on each other. Although the complexity of a multi-unit system poses challenges in

finding optimal maintenance policies, the development of such a model may introduce
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an opportunity for group replacement of several components provided that a joint

replacement cost is less than that of the separate replacements of the components [69,

70, 71].

Therefore, in this chapter, we examine the problem of maintenance decision-

making for single and two-unit systems subject to random degradation processes.

We establish a novel modeling technique to approximate non-negligible repair times

and periodic inspection within a Markov chain framework for more realistic main-

tenance activities. Then, the Markov model is used to find the optimal preventive

maintenance intervals which maximize the system performances such as availability,

productivity or profit. In addition, dependencies among different units in the two-unit

system have been considered in the decision model in the presence of the multiple

preventive maintenance tasks.

3.2 Modeling of Maintenance Policies for a Single Machine

3.2.1 Modeling of Machine Degradation Processes with Markov Process

We will first use a single unit system to analyze the degradation process, and then

broaden our scope to a two-unit system in Section 3.3. A Markov process with three

discrete states (see Figure 3.1) is used to model the degradation process under the

following assumptions:

• Three discrete states (S1: fully operational, S2: degraded but still operational,

and S3: failed) are used to represent the equipment degradation status. How-

ever, the number of states can be easily changed, depending on the degree of

model specificity.

• A system degrades gradually so that the state transition diagram is “linear,” as
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shown in Figure 3.1.

• The failure rates λ1 and λ2 are constant between states.

S1 S2 S3
λ1 λ2 Q =

−λ1 λ1 0
0 −λ2 λ2

0 0 0


Figure 3.1: A state transition diagram and its transition rate matrix

As displayed in Figure 3.2 in the case of λ1 = 0.010 and λ2 = 0.005 the correspond-

ing sample path (a), state probabilities (b) and reliability function (c) of the above

Markov degradation model are then generated. The reliability function is calculated

by summing up all the state probabilities except the failed state, S3. Reversely, the

Markov process can also be derived to approximate a given reliability function. Note

that although we use only three states to model degradation processes via a Markov

chain, the number of states can be changed to better approximate degradation pro-

cesses if necessary.
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Figure 3.2: Simulation results for single unit degradation process
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3.2.2 Approximation of Constant Time Delay in Markov Process

A degraded system will eventually fail, requiring repair or replacement. Hence,

it is important to have a model that can represent maintenance effects on machine

condition as well as the degradation process. However, many actual degraded systems

with maintenance may involve state transitions, which depend explicitly on time, or

occur discretely. For these reasons, maintenance actions cannot generally be modeled

by a simple exponential distribution within the Markov process. For example, a non-

negligible repair time or periodic inspection, which is necessary for modeling of more

realistic maintenance activities, does not generally follow the exponential distribution.

Therefore, we have to develop the approximation methodology to allow the Markov

processes to model non-negligible holding times. Since a Markov model provides

analytical ways to calculate any state probabilities of interest in a closed form, we

can use this Markov model to find the optimal PM intervals with respect to various

objectives such as availability, productivity, and profit. The concept of a phase-type

distribution [72, 73, 74] can be used to approximate a time delay until absorption to

one of the states in the Markov chain. It is also known that the Erlang process (i.e.,

summation of identical exponential distributions as displayed in Figure 3.3) minimizes

the variance among any phase type distributions [73]. In other words, non-exponential

holding time distributions can be approximated by inserting multiple intermediate

states between the two degradation states. This Erlang process approximation of

the constant time delay in the Markov process enables the incorporation of various

maintenance activities into the equipment degradation.

Figure 3.3 illustrates that the Markov process with m = 200 realizes a constant

time delay (τ = 30 days), and its probability density function is similar to a step

function of τ = 30, respectively. The application of a constant time delay has been
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implemented for modeling of repair and periodic inspections in the following mainte-

nance models while preserving the Markov property.
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Figure 3.3: Simulation result from Erlang process with 200 intermediate states

3.2.3 Maintenance Model for Single Unit System with Multiple Mainte-
nance Tasks

We consider a discrete multi-stage degradation, where the first state is an “as good

as new” state and the last state is the failed state. The system is subject to periodic

inspection that identifies the degree of degradation. After an inspection, based on

the degree of degradation, an appropriate PM task is determined and performed

with the corresponding repair time, TPM. Failure of the system can be identified

immediately. If the system fails before the next planned inspection, the system is

restored to the initial condition through RM for the time, TRM. Then, the inspection

will be rescheduled. It is assumed that the system is as good as new after any type

of maintenance is conducted. This maintenance policy is illustrated in Figure 3.4.
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The system and maintenance policy model assumes that the unit will be inspected

after T time units of operation, the ith PM task is performed for the time TPMi
, and

the ith PM task is requested with the probability of qi after the inspection. Then,

the Markov process for the above maintenance policy can be modeled as illustrated

in Figure 3.5. The states here are representing:

S1i : Fully operational (1 ≤ i ≤ m)

S2i : Degraded but still operational (1 ≤ i ≤ m)

S3i : PM1 (1 ≤ i ≤ m)

S4i : PM2 (1 ≤ i ≤ m)

S5i : PM3 (1 ≤ i ≤ m)

S6i : RM (1 ≤ i ≤ m)

The Markov process is created by stacking the Erlang processes (shown in Fig-

ure 3.3(a)) on top of the degradation model shown in Figure 3.1. Since the machine

failure is self-announcing, all the failure states with different times are combined into

a single state, Sf . The associated transition rates of µ, µPM1 , µPM2 , µPM3 , and µRM

are also displayed in Figure 3.5.
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Figure 3.6: State probability for the abovementioned maintenance policy

Figure 3.7: Sample path for the abovementioned maintenance policy
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Table 3.1: Event log table for the sample path in Figure 3.7
Time Event Event Duration Ideal Event Duration

t0 0
t1 76.68 Inspection 76.68 80
t2 80.33 PM1 3.65 4
t3 159.74 Inspection 79.42 80
t4 164.61 PM2 4.86 5
t5 192.33 Failure 27.73 Less than 80
t6 242.07 RM 49.73 50

The simulation results of state probabilities and a sample path are illustrated in

Figures 3.6, 3.7, and Table 3.1, respectively. We set T = 80, TPM1 = 4, TPM2 = 5,

TPM3 = 6, TRM, q1 = 0.2, q2 = 0.7, q3 = 0.1, λ1 = 0.010, and λ2 = 0.005 in this

numerical case.

For this example of sample paths, PM1 has performed for 3.65 time units after

the first inspection at 76.68 time units because the machine is in good condition.

At the second inspection, PM2 is conducted for 4.86 time units because the machine

is in degraded condition. The machine is then found to have failed before the next

scheduled inspection so that RM is immediately executed for 49.73 time units. These

simulation results show us that the proposed Markov chain well models the designed

maintenance policy.

Since this maintenance model assumes that the current state of equipment sub-

ject to stochastic failure is unknown unless an inspection is carried out, the mainte-

nance optimization problem of finding an optimal inspection interval based on system

performance measurements needs to be examined. One advantage of using Markov

processes is that we are able to calculate any state probabilities of interest in a closed

form [42]. Let us assume that the only performance criterion of interest is the avail-

ability of the system A(t), defined as the probability that the system is functioning at
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time t. Steady-state system availability is then equal to A(∞) = lim
m→∞

m∑
i=1

(P1i + P2i)

in the Markov process in Figure 3.5. The availability of the system will depend on the

value of inspection interval T , given other system parameters such as λ1, λ2, µ, µPM1 ,

µPM2 , µPM3 , and µRM. In other words, the controllable variable T can change the sys-

tem availability. Then, the following Equation (3.1) gives us the optimal inspection

interval, T ∗ that maximizes the steady-state availability of a given system:

[(λ1 + λ2)(TPM − TRM) + λ1TRM]e
λ1T−

[(λ1 + λ2)(TPM − TRM) + λ2TRM]e
λ2T + (λ1 − λ2)(TPM − TRM) = 0, (3.1)

where TPM = q1TPM1 + q2TPM2 + q3TPM3

Proof. Equation (3.1) is derived by solving the balance equations of the Markov

process and setting the derivative of A(∞) equal to zero. The steady-state system

balance equations are:

(µ+ λ1)P1i = µP1i−1, 2 ≤ i ≤ m (3.2)

(µ+ λ1)P11 = µP1m + µPM1P3m + µPM2P4m + µPM3P5m + µRMP6m (3.3)

(µ+ λ2)P21 = λ1P11 (3.4)

(µ+ λ2)P2i = λ1P1i + µP2i−1, 2 ≤ i ≤ m (3.5)
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µPM1P31 = µP1m + µq1P2m (3.6)

µPM1P3i = µPM1P3i−1, 2 ≤ i ≤ m (3.7)

µPM2P41 = µq2P2m (3.8)

µPM2P4i = µPM2P4i−1, 2 ≤ i ≤ m (3.9)

µPM3P51 = µq3P2m (3.10)

µPM3P5i = µPM4P5i−1, 2 ≤ i ≤ m (3.11)

µRMP61 = λ2(P21 + · · ·+ P2m) (3.12)

µRMP6i = µRMP6i−1, 2 ≤ i ≤ m (3.13)

Then, the steady-state availability in this Markov process is equivalent to

A(∞) = lim
m→∞

m∑
i=1

(P1i + P2i) =

λ2
2−λ1

2−λ2
2e−λ1T+λ1

2e−λ2T

λ2
2−λ1

2−λ2
2e−λ1T+λ1

2e−λ2T+λ1λ2(λ2−λ1)TRM+λ1λ2(TPM−TRM)(λ2e−λ1T−λ1e−λ2T )

(3.14)

By definition, an optimal PM Policy is one that maximizes the steady-state avail-

ability of a given system. Hence, we wish to maximize Equation (3.14) by appropriate

selection of T , which is the time interval between PMs. Taking the derivative with

respect to T , and setting it equal to zero, we obtain

0 =
dA(∞)

dT
=

d
dT

{
λ2

2−λ1
2−λ2

2e−λ1T+λ1
2e−λ2T

λ2
2−λ1

2−λ2
2e−λ1T+λ1

2e−λ2T+λ1λ2(λ2−λ1)TRM+λ1λ2(TPM−TRM)(λ2e−λ1T−λ1e−λ2T )

}
∴ [(λ1 + λ2)(TPM − TRM) + λ1TRM]e

λ1T−

[(λ1 + λ2)(TPM − TRM) + λ2TRM]e
λ2T + (λ1 − λ2)(TPM − TRM) = 0 (3.15)

46



Figure 3.8, for instance, shows that the optimal inspection interval is equal to

1815 time units if system and maintenance parameters are as shown in the figure.
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Figure 3.8: Availability as a function of inspection intervals

We are interested in not only finding the optimal PM interval but also investigating

how much a PM interval T is sensitive to the system parameters (for instance, λ1, λ2

for degradation processes and TPM, TRM for repair times). The sensitivity can be

analyzed from Equation (3.1) by taking a partial derivative of T with respect to

system parameters of interest. The analytical sensitivities in a closed form are given

in Equations (3.16), (3.17), (3.18), and (3.19):
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∂T
∂λ1

= −[TPM+(λ1+λ2)(TPM−TRM)T+λ1TRMT ]e
λ1T+(TPM−TRM)(e

λ2T−1)
[λ1TPM+λ2(TPM−TRM)]λ1eλ1T−[λ1(TPM−TRM)+λ2TPM]λ2eλ2T

(3.16)

∂T
∂λ2

= (TPM−TRM)(1−eλ1T )+[TPM+(λ1+λ2)(TPM−TRM)T+λ2TRMT ]e
λ2T

[λ1TPM+λ2(TPM−TRM)]λ1eλ1T−[λ1(TPM−TRM)+λ2TPM]λ2eλ2T
(3.17)

∂T
∂TPM

= (λ1+λ2)(−eλ1T+eλ2T )−(λ1−λ2)
[λ1TPM+λ2(TPM−TRM)]λ1eλ1T−[λ1(TPM−TRM)+λ2TPM]λ2eλ2T

(3.18)

∂T
∂TRM

= λ2e
λ1T−λ1e

λ2T+(λ1−λ2)
[λ1TPM+λ2(TPM−TRM)]λ1eλ1T−[λ1(TPM−TRM)+λ2TPM]λ2eλ2T

(3.19)

3.2.4 Comparison with Conventional Markov Models

All of the previous models discussed in the literature [59, 60, 61] have assumed

either negligible or exponentially distributed inspection periods, replacement and re-

pair times, as shown in Figures 3.9 and 3.10. In addition, those systems are not

periodically inspected in the strict sense. Instead, they are inspected according to an

interval that follows an exponential distribution with a mean value T .
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Figure 3.9: Maintenance policy comparison: not periodic and neglect repair time
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Figure 3.10: Maintenance policy comparison: more realistic model with periodic in-
spection and non-negligible repair time

In order to see the improvement of the proposed Markov model, two Markov

models have been compared in Figures 3.11 and 3.12. To simplify our discussion, we

assume that there is only one type of the preventive maintenance task in the model

shown in Figures 3.11 and 3.12. The states here are representing:

S1, S1i : Fully operational (1 ≤ i ≤ m)

S2, S2i : Degraded but still operational (1 ≤ i ≤ m)

S3, S3i : PM(1 ≤ i ≤ m)

S4, S4i : RM(1 ≤ i ≤ m)
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Figure 3.11: A traditional Markov model (left) and its simulation result (right)

The clear discrepancy between the traditional Markov model (Figure 3.11) and

the proposed Markov model (Figure 3.12) can be seen, evidenced in the dynamic

fluctuations. Although the steady state probabilities between two models are similar,

we cannot observe any effects of maintenance activities in Figure 3.11. On the other

hand, the proposed Markov model in Figure 3.12 is able to provide detailed infor-

mation about the system availability decrease during maintenance and availability

improvement after maintenance. Since the proposed Markov model can be detailed

enough to represent more realistic maintenance characteristics, it can lead to more

accurate optimal maintenance decisions. These characteristics may have significant

manufacturing implications. For example, if the steady state is reached only after a

relatively long settling time, the production system may lose some of its throughput,

thus leading to a lower efficiency [75].
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Figure 3.12: The proposed Markov model (a) and its simulation result (b)
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3.3 Modeling of Maintenance for a Two Unit System

In this section, we investigate optimal maintenance policies for a two-unit system,

where units may or may not depend on each other. Without maintenance, the Markov

process of the degradation process for two identical unit systems can be modeled as

shown in Figure 3.13 with the nine states. For example, S11 represents both M1 and

M2 as fully operational while S33 denotes both M1 and M2 as failing. However, the

Markov model of a two-unit system will be much more complicated if we consider a

maintenance policy.

S11 S12 S13
λ1 λ2

S21 S22 S23
λ1 λ2

S31 S32 S33
λ1 λ2

λ1 λ1 λ1

λ2 λ2 λ2

Figure 3.13: Markov degradation model for a two-unit system without maintenance
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It is assumed that the time spent on maintenance depends on the machines’ con-

dition at the moment of inspection. For instance, the time TPM is required for repair

if one of the units is degraded. On the other hand, it will take the time 2 × TPM if

both are degraded. Since two different configurations (parallel and serial) are possible

with two components as shown in Figure 3.14, both configurations are examined.

M1

M2

M1 M2

Figure 3.14: Parallel (left) and serial (right) configurations

3.3.1 Parallel Configuration

The parallel system in Figure 3.14 can run a production line unless both units fail.

Therefore, RM will be performed only when both of the components are down (S33).

The units will be inspected after T time units of operation and group repair of two

units will then be performed if necessary. The maintenance policy and corresponding

model are illustrated in Figures 3.15 and 3.16. The system with two units in parallel

configuration requires a different Markov model.

UP

DOWN

PM PM PMRM

T T T
time

t < TTPM 2TRM TPMTPM+TRM

Figure 3.15: Maintenance policy in parallel configuration
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Figure 3.16: Maintenance Markov model for a two unit parallel system
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3.3.2 Serial Configuration

In serial configuration, failure of one component will stop the entire production

line. Therefore, RM will be conducted whenever one of the components is down

(S31, S32, S13, S23, S33). The corresponding Markov model of maintenance policy in

Figure 3.17 is illustrated in Figure 3.18.

UP

DOWN

PM PM PMRM

T T T
time

t < TTPM TRM TPM2TPM

Figure 3.17: Maintenance policy in serial configuration
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Figure 3.18: Maintenance Markov model for a two-unit serial system
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3.3.3 Optimal Inspection Interval

Maximizing the availability of the system can also be the objective of finding the

optimal inspection interval in a two-unit system. The availabilities of the system are

given by the following equations:

Parallel : Ap(∞) = lim
m→∞

∑
(i,j) ̸=(3,3)

m∑
k=1

Pijk (3.20)

Serial : As(∞) = lim
m→∞

2∑
i=1

2∑
j=1

m∑
k=1

Pijk (3.21)

Instead of finding a closed expression for steady-state probabilities Pijk, a numer-

ical method can be used to solve linear equations. By maximizing A(∞) with respect

to T , the optimal time interval between consecutive inspections is determined. Let r

be the ratio TRM/TPM. Figure 3.19 shows that optimal maintenance policies depend

on the system configuration.
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(a) Parallel configuration
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Figure 3.19: Optimal intervals for PM with different connections

These simulation results also show the effect of r on the availability and corre-

sponding optimal inspection intervals. For example, the optimal interval value for

the parallel configuration is 62 time units for r = 10. The availability declines only
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slowly as T exceeds its optimal value; the decrease is much faster if T is less than

its optimal value. If the duration for RM is not penalized enough (i.e., r ≈ 1), the

optimal interval value between consecutive inspections will go to infinity. In other

words, for this case, running up to failure is the best policy.

In the parallel case, maximization of productivity, Np(t), rather than the avail-

ability of the system is of interest because the system is twice as productive when

both components are functional. The productivity of the system can be calculated

by Equation (3.22).

Np(∞) = lim
m→∞

{
2∑

i=1

2∑
j=1

m∑
k=1

2Pijk +
2∑

i=1

m∑
k=1

Pi3k +
2∑

j=1

m∑
k=1

P3jk

}
(3.22)
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Figure 3.20: Optimal PM interval to maximize system productivity in parallel

Figure 3.19(a) and Figure 3.20 suggest that the optimal interval values for inspec-

tion are strongly dependent on criteria of interest. For r = 10, the optimal inspection

interval for maximizing productivity is 47 time units, which is less than the 62 time

units that corresponds to the case of maximizing availability. In other words, main-
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tenance will be conducted more frequently. This suggests that we want to keep both

of the units out of the failed state in order to achieve maximum productivity.

In this section, we demonstrate that if machines in the system are stochastically

dependent on each other, then an optimal decision (i.e., 88.22 time units) on mainte-

nance of single unit system is not necessarily the optimum (i.e., 62 or 83 time units)

for the two-unit system. These results show that maintenance policy has to rely on

the machine configuration and system performance measure for maintenance deci-

sion. This proposed approach can be generalized to analyze the multiple machine

system although there are some challenges such as computational complexity due to

the inflated system dimensions.

3.4 Case Study with Semiconductor Manufacturing Process
Data

In this section, we illustrate and validate our proposed modeling and optimiza-

tion techniques with a set of industrial data from the semiconductor manufacturing

process. Data have been collected from a chamber tool during the chemical vapor

deposition process. Nine process parameters and the succeeding metrology measure-

ment are periodically monitored in conjunction with associated process events.

The degradation process has been modeled using a 5-state discrete time Markov

chain shown in Figure 3.21. The corresponding probability transition matrix P is

obtained from a set of manufacturing process data using a Hidden Markov Model

(HMM) [35, 76]. An HMM is selected because it enables us to estimate machine

condition from a sequence of measurements (on-wafer particle counts, temperature,

pressure, etc.).
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p55

P =


0.9719 0.0195 0.0086 0 0

0 0.9256 0.0544 0.0200 0
0 0 0.9872 0.0119 0.0009
0 0 0 0.9744 0.0256
0 0 0 0 1


Figure 3.21: 5-state Markov chain with the corresponding transition probability ma-

trix P
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R(t) = P1(t) + P2(t) + P3(t) + P4(t)

P1(t) for S1

P2(t) for S2

P3(t) for S3

P4(t) for S4

P5(t) for S5

Reliability

Figure 3.22: State probabilities and reliability distribution

Then, we calculate the reliability of this chamber tool from the Markov chain

using the method in Section 3.2.1. The resulting reliability distribution is given in

Figure 3.22.

We construct a Markov model for maintenance using the proposed method illus-

trated in Section 3.2.3 to obtain the inspection interval that maximizes the chamber

tool availability. We recommend the inspection interval (T = 70 time units), summa-
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rized in Table 3.2.

Table 3.2: Benchmark results (rp: Production per time unit, Cm: Maintenance cost
per time unit

Inspection Interval, T Improvement
60 (current practice) 70 (proposed practice)

Availability 0.8967 0.9247 3% increase
Productivity Rate 0.8967×rp 0.9247×rp 3% increase

Maint. Cost Rate 0.1033×Cm 0.0753 ×Cm 27% decrease
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Figure 3.23: Historical inspection intervals from the real Fab data

Manufacturers are generally conservative for production and maintenance plan-

ning. We learned that 60 time units has been set as a current PM interval suggested

by chamber tool manufacturers, and an actual PM in a production line has been

performed at every 62.63± 4.97 time units, as displayed in Figure 3.23. However, we

recommend T = 70, which is longer than what the manufacturer originally recom-

mended (T = 60). The proposed inspection interval T = 70 results in reduction of the

maintenance cost by 27% through avoiding excessive maintenance, while increasing
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system availability by 3%. In addition, equipment can be devoted to producing more

wafers with good quality.

Furthermore, we have to examine how sensitive the PM interval T is with respect

to the maintenance cost, M(T ), at the optimal value of T = 70.

∂M

∂T
≈ ∆M

∆T

∣∣∣∣
T=70

≈ 1

2

{
|M(70)−M(75)|

5
+

|M(70)−M(65)|
5

}
= 0.0105 (3.23)

Since we learned from historical inspection intervals shown in Figure 3.23 that there

is the variation of 4.97 time units in executing PMs with the current interval T = 60,

we vary 5 time units for the sensitivity analysis. The result from Equation (3.23)

shows that the uncertainties near the recommended PM interval T = 70 change the

maintenance cost by about 1%.

3.5 Conclusion

We have presented a method of obtaining an optimal maintenance inspection

policy in a single unit system as well as in a two-unit system. The difference from

the previous works lies in the fact that we consider non-negligible repair time and

periodic inspections for preventive maintenance. The dynamic system behavior can

be monitored and recognized. A constant time repair model will be useful if the mean

time to repair information is available or time for repair is almost constant. This is

modeled via the Erlang process. With more realistic maintenance characteristics, we

have demonstrated the optimal interval for inspection in terms of availability and

productivity of the system.

For future work, multiple maintenance tasks will be considered within the multi-

unit system. Additionally, the required number of states needed to indicate multiple
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degraded systems increases so rapidly that there is a computational limit. Hav-

ing more than two units in a system might be difficult to solve analytically as the

complexity of the proposed method grows exponentially according to the number of

components.
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CHAPTER IV

Decision Making for Simultaneous Maintenance

Scheduling and Production Sequencing

4.1 Introduction

Yield, the percentage of working devices that emerge from a manufacturing pro-

cess, is an important performance metric for most processes [77]. It is also well known

that maintenance is correlated to yield for many processes in a crucial manner [78].

Previous studies [79, 80] discussed the extensive usage of condition monitoring to

increase yield in a variety of manufacturing processes. In the semiconductor indus-

try, for example, particulate contamination in equipment is one of major sources of

yield loss [81]. Therefore, a significant effort has been delivered to develop condition

monitoring techniques that control particulate contamination for enhanced product

quality.

Although machine condition information enables us to track and predict levels

of equipment degradation, little attention has been paid to modeling an appropri-

ate decision-making to proactively maintain a level of machine condition, unlike the

extensive literature on condition monitoring techniques and their applications [29].

For instance, an either time-based or usage-based maintenance scheduling strategy

is still dominant for many manufacturing industries [82]. In semiconductor fabrica-
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tion processes, a recent survey conducted on current maintenance practices reveals

that simple heuristic rules for preventive maintenance are widely employed [83]. As

a result, equipment has experienced unnecessary cleanings, which usually generate

substantial costs to ensure the product quality.

In order to solve both equipment maintenance and product sequencing problems,

researchers have begun to explore the interaction between machine condition and

product quality. Yano et al. [84] presented a comprehensive review of production

models with variable yield. However, most of their work focused on single product

system and did not treat product quality as a function of process condition. In

other words, the product sequencing problem has not been considered in the models

although the level of degradation may have a larger impact on some products than

on others. Various extensions of similar work have been performed: allowing process

inspections during a production cycle [85], studying different cost structures [86],

considering the effects of machine failures [87], and allowing process improvements to

be made [88]. All of these models did examine how much to produce. However, they

did not address the question of which product to process next.

Sloan et al. [89] and Zhou [90] set a milestone for a multi-stage, multi-product sys-

tem by developing models that employ combined decision-making on maintenance and

product sequencing. Although both models used an explicit link between equipment

condition and product quality for maintenance and product sequencing decisions,

only the steady state (long run) condition is studied for the decision-making. The

short-term effects such as work-in-process (WIP) levels and the maintenance resource

limitation were not considered. Therefore, these models are not able to precisely

respond to dynamic changes and process variations in production lines.

To incorporate short-term decisions into long-term decisions, we propose an in-
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tegrated job sequencing and maintenance scheduling policy for a multi-stage, multi-

product system often found in manufacturing processes. Tool degradation, equipment

condition monitoring and product sequencing are simultaneously considered for the

long-term decision. Transient process variations can be mitigated by dynamically

rerouting material to the stations with less variation or to non-bottleneck stations

for the short-term decision. A Markov decision process for the long-term and integer

programming for the short-term are used.

The remainder of this chapter is organized in the following manner. Section 4.2

explicates assumptions and system characteristics, followed by the methodologies for

joint decision making developed in Section 4.3. Then, numerical examples are pro-

vided in Section 4.4 to benchmark our integrated policy with reference policies. Sec-

tion 4.5 also demonstrates the effectiveness of the proposed methodology applied to

semiconductor manufacturing processes. Finally, Section 4.6 concludes this chapter

with some remarks and suggestions on future work.

4.2 Model of A Manufacturing System

We consider a multi-product, multi-station system. The system that manufactures

K products consists of H stations connected in series with intermediate buffers, as

displayed in Figure 4.1.

M1

C1(1)

C2(1)

CK(1)

..
.

...M2

C1(2)

C2(2)

CK(2)

..
.

MH

C1(H)

C2(H)

CK(H)

..
.

C1(H+1)

C2(H+1)

CK(H+1)

..
.

Product 1 inventory

Product 2 inventory

Product K inventory

Figure 4.1: A multi-product, multi-station system in series
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4.2.1 The Problem Statement

In order to make machine condition back to acceptable status and produce high

yield, maintenance should be considered cautiously. Based on the observed machine

conditions, we must decide whether to clean or repair the machine before the next

inspection. Then, given repair tasks generated from all machines, a detailed mainte-

nance schedule needs to be determined according to repair resource availability and

WIP dynamics. At the same time, we must determine a product type for the sub-

sequent production cycle, based on how sensitive certain products are as equipment

deteriorates.

4.2.2 Model Assumptions

Suppose that we need to manufacture K types of products (p1, · · · , pK). The

processing times for these products on each station are assumed equal although prod-

ucts have different prices. We have to meet some pre-specified production ratios in

the long-term production demand. Let ωk be the long run proportion of product pk

required, where k = 1, · · · , K, and
∑

k ωk = 1. Setup times are assumed negligible or

included in the processing times. Otherwise, we assume that we are able to reduce

changeover times using many techniques [91, 92]. We assume that inspections are

instantaneous and occur only at discrete times and these inspections can perfectly

reveal the condition of machine. Assumptions related to the system are summarized

as follows:

• The system consists of H stations connected in series with intermediate buffers.

• There are K types of products (p1, · · · , pK).

• A long-term production demand must be met (ωk for k = 1, · · · , K).
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• The processing times for these products on each station are assumed equal.

• Setup times between different product types are included in the processing

times.

• The degradation process can be modeled by a discrete-time Markov chain.

• Inspections are instantaneous and occur only at discrete times.

• The inspection can perfectly reveal the condition of a machine.

• Buffer capacities C(i) are finite.

• Available maintenance resources are limited.

4.2.3 Degradation Model

The degradation process of each machine can be modeled by a discrete-time

Markov chain (DTMC) {X(n), n ≥ 0} with a discrete state space S = {S1, · · · , SM}.

A Markov chain is a stochastic process with a Markovian property, namely, that the

future and past states are independent given the present state [42]. Figure 4.2 pro-

vides an illustration of the Markov unidirectional equipment degradation process. For

instance, p12 means the probability that state S1 will transition to state S2. In our

case, the transition probabilities pij of a DTMC are zero whenever i > j, since the

machine condition is assumed to become only worse with time unless maintenance

is performed. Furthermore, appropriate Markov models for deterioration processes

can be estimated from a set of measurement data through a Hidden Markov Model

(HMM), which is a method that enables us to stochastically relate available measure-

ments to the machine conditions [93, 76].
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Figure 4.2: Illustration of a state transition diagram for a Makrov chain

4.3 Joint Job Sequencing and Maintenance Scheduling For a
Multiple Product, Multiple Station System

To deal with highly dynamic and complex problems in a manufacturing area,

we propose a new decision making structure, given that tool conditions are available

through an HMM. First, we aim to make a long-term plan on product sequencing and

equipment cleaning on the system level. In this phase of decision-making, we focus

on the stochastic nature of the problem, while intentionally ignoring the interdepen-

dencies between stations, which are left to the short-term decision-making. Given

repair requests generated from all machines, we will modify our decisions if necessary.

We prioritize these repair tasks and determine detailed maintenance schedules, con-

sidering the complex interdependencies among repairs on all stations with respect to

maintenance availability and WIP inventory costs.

4.3.1 Long-Term Planning

In this section, we derive the optimal policy for job sequencing, preventive clean-

ing, and repair planning. This planning model is formulated as a Markov Decision

Process (MDP), which seeks to keep a balance between preventive cleaning cost and

yield loss in the long-term. We consider the problem of scheduling production and

maintenance for a single machine, multiple product system, as shown in Figure 4.3.

The analytical approach for simple cases provides some insight for more complicated
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systems.

Machine..
.

Product 1 inventory

product 2 inventory

product K inventory

1) produce type k

2) clean 

3) repair ?

Figure 4.3: Single machine, multiple product system

Most operations in manufacturing heavily depend not only on the condition of a

machine but also on its cleanliness, especially in semiconductor manufacturing pro-

cess. For example, particles accumulated in the chambers increase the risk of yield

loss. Therefore, it is important to determine when to perform cleaning between con-

secutive production cycles. Note that cleaning does not require any maintenance

crew to get involved. Less frequent cleaning will result in higher yield loss, but too

many cleanings will induce unnecessary maintenance costs and productivity losses.

Thus, we intend to find the tradeoff between over- and under- cleaning. Moreover,

we also need to find economic rules for job sequencing since it is beneficial to produce

more sensitive products right after cleaning operation and to produce less sensitive

products as a tool deteriorates.

Let a(n) denote the action taken in time n. Possible actions include:

a(n) =


k if producing the product pk (k = 1, · · · , K)

K + 1 if cleaning the machine

K + 2 if repairing the machine

(4.1)

We assume that changes in the machine state depend only on the current state

and the action taken. Then this process can be expressed as the following transition
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probability:

Pa(i, j) = P{X(n+ 1) = Sj|X(n) = Si, X(n− 1), · · · , a(n) = a, a(n− 1), · · · }

= P{X(n+ 1) = Sj|X(n) = Si, a(n) = a} (4.2)

The condition, or state, of machine deteriorates over time, and ultimately affects the

probability of successfully producing the various products in a negative manner. We,

therefore, refer to Y (i, k) as the yield of product pk when the machine is in state Si.

We assume that the yield is non-increasing as machine condition deteriorates, and the

yield for all products is zero when the machine is in the worst state SM . Cleaning can

be initiated from any state and will return the equipment to a better condition. On

the other hand, repairing can be initiated only from state SM and return equipment

condition to state S1 with probability of 1. Once in state SM , the machine cannot

escape this state unless it is repaired. The machine degradation process is affected by

the choice of which product to manufacture. An immediate reward R(i, a), a function

of product prices and maintenance costs, is received when action a is taken in state

Si. These assumptions about the long-term planning are summarized as follows:

Y (i, a) ≥ Y (j, a) if i < j for all a (4.3)

Y (M,a) = 0 for a = 1, · · · , K (4.4)

Pa(i, j) =


Pk(i, j) for a = 1, · · · , K

PK+1(i, j) for a = K + 1

PK+2(i, j) for a = K + 2

(4.5)

A policy Π(i) is a decision rule that prescribes an action for each state Si, and our

objective is to determine a policy that maximizes long-run expected average profit
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V (i). The optimal value of V (i) will satisfy the following Bellman equations [94]:

Π(i) = argmax
a

{
R(i, a) +

∑
j

Pa(i, j)V (j)
}

(4.6)

V (i) = R(i,Π(i)) +
∑
j

PΠ(i)(i, j)V (j) (4.7)

To solve the Bellman Equations (4.6) and (4.7), we consider randomized policies,

in which actions are chosen according to some probability distributions. Let x(i, a)

denote the probability that the machine is in state Si, and action a is taken. Then,

the optimal policy can be found by solving the following linear programming [95].

objective max
∑
i

∑
a

R(i, a)Y (i, a)x(i, a) (4.8)

subject to
∑
a

x(j, a)−
∑
i

∑
a

Pa(i, j)x(i, a) = 0 for all j (4.9)

∑
i

∑
a

x(i, a) = 1 (4.10)

x(i, a) ≥ 0 for all i, a (4.11)∑
i

Y (i, k)x(i, k)− ωk

∑
k

∑
i

Y (i, k)x(i, k) = 0 for k = 1, · · · , K

(4.12)

Equation (4.9) shows that the state balance equations for the Markov chain that

governs the machine state transitions. Equations (4.10) and (4.11) guarantee that

all probabilities sum to 1, and are non-negative, respectively. Since we can interpret

x(i, a) as the long run proportion of time that the process is in state Si and action

a is taken, Equation (4.12) can serve another constraint to ensure that the long

run average production requirement are met. Then, x(i, a) gives the steady state

probabilities for the policy Π(i) that chooses action a in state Si with probability,
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x(i, a)∑
a

x(i, a)
(if

∑
a x(i, a) > 0).

4.3.2 Short-Term Scheduling

Since multiple stations may demand the same resource for their operations, we

need to direct repair task to work on the more critical stations in case of a conflict [96,

97]. Although we derive the long-term policy in the previous decision phase, dynamic

process variations have to be managed based on the real time information. This

phase deals with determining which maintenance requests have higher priorities than

other requests with constraints of maintenance resource availability and the dynamic

changes in WIP cost induced by production and maintenance.

There are two factors to consider for the repair prioritization: 1) the urgency and

2) the WIP inventory cost. T (i, n), the urgency of the broken machine Mi, is first

given by Equation (4.13).

T (i, n) = min(TF (i, n), TE(i+ 1, n)) (4.13)

where TF (i, n) = n + {C(i) −W (i, n)} tp is the time when buffer i is full due to the

failure of Mi at time n and TE(i+ 1, n) = n+W (i+ 1, n) tp is the time when buffer

i+ 1 is empty due to the failure of Mi at time n.

Physically, (T (i, n)− n) represents the minimum amount of time that the system

can run without experiencing either blockage or starvation due to the broken machine

Mi. For instance, if machine Mi is down, blockage will occur at buffer i after TF (i, n).

Conversely, starvation will occur at buffer i+1 after TE(i+1, n). Hence, (T (i, n)−n) is

the minimum time that allows the production line to run without overall utilization

loss. Therefore, we need to select the machine with a smaller value of T (i, n) to
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prevent the unnecessary propagation of machine idle (i.e., starvation or blockage).

Second, different repair sequences may introduce less WIP inventory cost to the

production system. We define two relevant WIP inventory costs (total WIP inventory

costs and total slack WIP inventory cost at time n):

CostW(i, n) ,
H∑
k=1

Wi(k, n)µ(k) (4.14)

CostS(i, n) ,
H∑
k=1

Si(k, n)µ(k) =
H∑
k=1

[C(k)−Wi(k, n)]µ(k) (4.15)

where Wi(k, n) is WIPs in buffer k at time n after machine Mi fails, S(k, n) is empty

space (= slack) in buffer k, C(k) is capacity of buffer k, and µ(k) is an unit WIP

inventory cost of buffer k.

W (k, n)µ(k) is the WIP inventory cost of buffer k at time n while S(k, n)µ(k)

is the slack WIP inventory cost of buffer k at time n. We introduce the slack WIP

S(k, n) in order to define the repair rank index later. Furthermore,

CostW(i, n) ≥ CostW(j, n) ⇐⇒ CostS(i, n) ≤ CostS(j, n) for i ̸= j (4.16)

Proof. Since C(i) does not change with time,

CostW(i, n) ≥ CostW(j, n)

⇐⇒
H∑
k=1

Wi(k, n)µ(k) ≥
H∑
k=1

Wj(k, n)µ(k)

⇐⇒
H∑
k=1

C(k)µ(k)−
H∑
k=1

Wi(k, n)µ(k) ≤
H∑
k=1

C(k)µ(k)−
H∑
k=1

Wj(k, n)µ(k)

⇐⇒
H∑
k=1

[C(k)−Wi(k, n)]µ(k) ≤
H∑
k=1

[C(k)−Wj(k, n)]µ(k)

⇐⇒
H∑
k=1

Si(k, n)µ(k) ≤
H∑
k=1

Sj(k, n)µ(k)

⇐⇒CostS(i, n) ≤ CostS(j, n)
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Equation (4.16) shows that if and only if machineMi induces higher WIP inventory

cost than machine Mj, then the slack WIP inventory cost induced by machine Mi

is smaller than that of machine Mj. Therefore, assigning higher repairing priorities

on the machine that has higher WIP inventory cost is equivalent to selecting the

machine that has smaller slack WIP inventory cost with respect to reduction of the

WIP inventory cost.

Then, we define the repair rank index of machine Mi at time n as:

U(i, n) ,
T (i,n)∑
m=n

H∑
k=1

Si(k,m)µ(k) (4.17)

Note that U(i, n) provides a measure of both the urgency and WIP inventory cost

for machines since it adds the total slack WIP costs until T (i, n). Our objective is,

then, to select the repair request with the lowest rank index. We can formulate this

problem as binary integer programming:

objective max
∑
i

1

U(i, n)
r(i, n)d(i, n) (4.18)

subject to
∑
i

d(i, n) ≤ Nr, ∀n (4.19)

∑
i

d(i, n) ≤
∑
i

r(i, n), ∀n (4.20)

∑
i

W (i, n)µ(i) ≤ C∗
WIP , ∀n (4.21)

d(i, n) ∈ {0, 1}, ∀ i, n (4.22)

where
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• d(i, n): the binary decision variables in the integer programming

d(i, n) =

 1 if conducting repair job on machine Mi at time n

0 otherwise

(4.23)

• r(i, n): the repair tasks/requests on station Mi

r(i, n) =

 1 if repair at time n is requested from station Mi

0 otherwise

(4.24)

• Nr : the total number of maintenance personnel

Hence, Equation (4.18) assigns higher repair priorities to those machines that

have lower rank index U(i, n). Instead of minimizing U(i, n), we maximize 1
U(i,n)

in

Equation (4.18) because of the characteristics of binary variables, r(i, n) and d(i, n).

The constraint in Equation (4.19) ensures that no more than the available amount of

resource for maintenance is committed. Equation (4.20) represents that the number

of repairs cannot exceed its requests. The value of W (i, n) is determined according to

the job sequencing rule and maintenance decision obtained in the long-term decision.

Equation (4.21) ensures that the WIP inventory cost
∑

iW (i, n)µ(i) does not exceed

its limit, C∗
WIP .

When the machines require repairs, rank indexes U(i, n) are computed for the

broken machines considering both the urgency and WIP inventory cost. Then, the

repair scheduling is determined in descending order of the rank index through the

above integer programming. The short-term decision works toward avoiding either:

1) the unnecessary propagation of machine idle (i.e., starvation or blockage) caused by

fixing less urgent machine, or 2) the accumulation of excess inventory by incorrectly

selected repairs.
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4.4 Numerical Case Studies

In this section, numerical experiments are carried out to demonstrate how much

improvement the proposed method can achieve, compared with other policies.

4.4.1 Design

To compare the proposed policy with other policies, we present a number of nu-

merical examples with the system that consists of 10 stations in series and buffers

between stations (see Figure 4.1).

4.4.1.1 Product demand ratio

Product demand ratio ω represents how much of each product has to be manu-

factured as a fraction of total production. We assume that there are four different

product types (p1, p2, p3, p4). Different levels of their product demand ratios are dis-

played in Table 4.1. For example, the scenario Ω1 only requires to produce a type

p1 while the scenario Ω12 requires to make equal amount of products among different

types.

Table 4.1: Product demand ratios
Scenario p1 p2 p3 p4

Ω1 1.00 0.00 0.00 0.00
Ω2 0.00 1.00 0.00 0.00
Ω3 0.00 0.00 1.00 0.00
Ω4 0.00 0.00 0.00 1.00
Ω5 0.70 0.10 0.10 0.10
Ω6 0.10 0.70 0.10 0.10
Ω7 0.10 0.10 0.70 0.10
Ω8 0.00 0.10 0.10 0.70
Ω9 0.40 0.40 0.10 0.10
Ω10 0.10 0.40 0.40 0.10
Ω11 0.10 0.10 0.40 0.40
Ω12 0.25 0.25 0.25 0.25
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4.4.1.2 Deterioration processes

Machine degradation is represented by transition probability matrices (P1, P2, P3,

P4) of Markov chains. As mentioned earlier, different products require different oper-

ating conditions, resulting in different equipment deterioration processes. We assume

that product pi requires a less severe operating environment than that of product

pj when i < j. Cleaning action (P5) can make equipment less degraded but cannot

repair a broken machine. Only repairing action (P6) can fix broken equipment and

return its condition to state S1 with a probability of 1. All transition probability

matrices of the corresponding Markov chains are listed in Table 4.2.

Table 4.2: Transition probability matrices for equipment deterioration processes

P1 =


0.9 0.09 0.005 0.003 0.002
0 0.90 0.090 0.005 0.005
0 0 0.900 0.090 0.010
0 0 0 0.900 0.100
0 0 0 0 1

 P2 =


0.8 0.1 0.05 0.03 0.02
0 0.8 0.10 0.05 0.05
0 0 0.80 0.10 0.10
0 0 0 0.80 0.20
0 0 0 0 1



P3 =


0.7 0.2 0.05 0.03 0.02
0 0.7 0.20 0.05 0.05
0 0 0.70 0.20 0.10
0 0 0 0.70 0.30
0 0 0 0 1

 P4 =


0.6 0.3 0.05 0.03 0.02
0 0.6 0.30 0.05 0.05
0 0 0.60 0.30 0.10
0 0 0 0.60 0.40
0 0 0 0 1



P5 =


1.0 0 0 0 0
0.9 0.1 0 0 0
0.8 0.1 0.1 0 0
0.7 0.1 0.1 0.1 0
0 0 0 0 1

 P6 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0



4.4.1.3 Product prices and maintenance costs

An immediate reward is received when action a is taken in state Si. The reward

values, which are assumed product prices, and cleaning/repairing cost are shown in

Tables 4.3 and 4.4. We test five different levels of product prices (R1, · · · , R5), while

holding the cleaning and repairing cost constant to investigate effects of different
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product prices, as displayed in Table 4.3. On the other hand, we have another 8

combinations of cleaning and repair costs (R6, · · · , R13) in Table 4.4 to explore the

effects of cleaning and repairing costs, while keeping product prices constant.

Table 4.3: Reward for products
Reward ($) p1 p2 p3 p4 cleaning repairing

R1 340 270 130 60 -200 -400
R2 300 250 150 100 -200 -400
R3 200 200 200 200 -200 -400
R4 100 150 250 300 -200 -400
R5 60 130 270 340 -200 -400

Table 4.4: Cleaning/repairing cost
Reward ($) p1 p2 p3 p4 cleaning repairing

R6 250 200 150 100 -25 -50
R7 250 200 150 100 -50 -100
R8 250 200 150 100 -75 -150
R9 250 200 150 100 -100 -200
R10 250 200 150 100 -125 -250
R11 250 200 150 100 -150 -300
R12 250 200 150 100 -175 -350
R13 250 200 150 100 -200 -400

4.4.1.4 Yield

The yield is represented by the yield matrices. The element Y (i, k) of the yield

matrices defines the expected yield values when product pk is produced in state Si.

Four different yield matrices, shown in Table 4.5, are obtained from [13]. Note that

Yi has a lower variance than Yj when i < j.

4.4.2 Sequencing and Maintenance Policies

Our objective is to find job sequencing and maintenance rules that maximize

the expected average profit per time unit while maintaining a certain level of product
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Table 4.5: Yield matrices

Y1 =


0.9689 0.9598 0.9996 0.9536
0.9446 0.7211 0.9976 0.6809
0.7926 0.4685 0.9875 0.3935
0.4392 0.2927 0.0762 0.2620

0 0 0 0

 Y2 =


0.9974 0.9790 0.5313 0.8859
0.8124 0.7077 0.4818 0.8744
0.7750 0.3460 0.2375 0.3668
0.3819 0.0003 0.0219 0.2581

0 0 0 0



Y3 =


1.0000 0.9997 0.8655 0.9998
0.9030 0.9973 0.6498 0.9548
0.8854 0.7204 0.4969 0.1772
0.5990 0.1316 0.2564 0.0793

0 0 0 0

 Y4 =


0.9359 1.0000 0.9845 1.0000
0.4848 1.0000 0.5718 0.7049
0.2394 0.9883 0.3911 0.2700
0.0402 0.6110 0.1274 0.0628

0 0 0 0


proportions. Traditionally, job sequencing and maintenance scheduling are treated se-

quentially and locally [78]. Based on the approaches often used in industrial practice,

we define three other policies for the purpose of a benchmark as shown in Table 4.6.

Note that we denote Policy 4 as the proposed policy in Section 4.3.

Table 4.6: Benchmark policies
Polices Job sequencing Cleaning Repairing

Policy 1 FCFS Preventive FCFS
Policy 2 FCFS Condition-based FCFS
Policy 3 Long-term planning FCFS
Policy 4 Long-term planning Short-term scheduling

• FCFS product sequencing: the product is simply dispatched in a first come first

serve (FCFS) basis.

• FCFS repairing: if repair tasks are requested more than maintenance resource

available, this policy will select the repair tasks that requested first.

• Preventive cleaning: we clean machine after N products have been produced,

regardless of product type.

• Condition-based cleaning: cleaning is performed whenever machine condition

reaches a pre-defined state, regardless of product type.
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4.4.3 Results

To quantify the improvement of the proposed policy on the system performance

we have compared the simulation results by varying one of four parameters (product

demand ratio, deterioration processes, product prices, and cleaning/repairing costs).

Each simulation result is explained in the following sections. Policy 4 performs better

than Policies 1, 2, and 3 with respect to the expected average reward throughout

the simulation results. Systems are over-maintained (i.e., too frequent preventive

cleaning) with Policy 1 (the fixed preventive cleaning). Policy 2 does not consider

that different products might require different conditions to trigger cleaning although

it has considered the condition of machine. Policy 3 undergoes the FCFS basis while

Policy 4 considers the real time information on dynamic manufacturing variations for

the short-term decision.

In addition to the policy benchmarks, the simulation results about buffer capaci-

ties are demonstrated to find the tradeoff between production smoothness and WIP

holding costs. The impacts of maintenance staffing (Nr) are also simulated to find an

appropriate level of maintenance resources [98].

4.4.3.1 The effect of product demand ratio

To examine the effect of different product demand ratios, we assume that degra-

dation processes are independent of product types and Y1 is arbitrarily selected from

Table 4.5 as the yield model. The average reward values for each policy have been

achieved through 50 replications of simulation runs and reported in Figure 4.4 and

Table 4.7.

Policy 4 provides more improvement over Policy 1 and Policy 2 when its product

demand ratios among products are high. This phenomenon can be observed in Fig-
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ure 4.4, having increased improvement with the scenarios of Ω9, Ω10, Ω11, and Ω12.

The reason of increased improvement lies on the higher product mix rates that can

provide more opportunities for job sequencing to maximize the profits. However, both

Policy 1 and 2 do not take different product prices and yield loss into account when

it comes to job sequencing. Policy 2 performs better than Policy 1 because Policy 2

makes use of condition monitoring information for decision-making. Condition-based

maintenance (CBM) can be a more cost-efficient maintenance policy over preventive

maintenance (PM) if the system is able to provide information of machine condition.

On the other hand, Policy 3 is as good as Policy 4 regardless of product demand

ratio, because the short-term decision in Policy 4 is not dependent of product mix

rates but of the degradation.
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Figure 4.4: Improvement as a function of product demand ratio
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Table 4.7: Simulation results with different product demand ratios
Scen- Policy 1 Policy 2 Policy 3 Policy 4 P4/P1 P4/P2 P4/P3
ario (%) (%) (%)

Ω1 59.5±1.2 67.7±1.1 67.9±0.9 67.5±1.2 13.3 -0.4 -0.7
Ω2 80.4±1.8 88.5±2.0 96.9±1.8 97.0±1.8 20.6 9.6 0.1
Ω3 135.9±3.0 164.4±1.8 164.4±1.8 164.4±1.7 21.0 0.0 0.0
Ω4 140.3±2.5 149.5±3.8 170.6±2.1 172.2±3.0 22.8 15.2 0.9
Ω5 75.5±1.9 87.7±1.2 94.2±1.9 94.1±1.9 24.6 7.3 -0.1
Ω6 87.9±2.5 98.7±1.9 111.4±1.7 111.5±1.9 26.9 13 0.1
Ω7 118.5±3.2 140.7±1.9 153.0±2.3 153.0±1.9 29.1 8.8 0.0
Ω8 124.1±3.2 136.4±3.0 158.0±2.8 158.7±3.0 27.8 16.3 0.4
Ω9 81.0±2.5 93.6±1.8 105.9±2.2 106.5±1.8 31.5 13.7 0.5
Ω10 101.2±3.0 117.5±2.3 135.3±1.9 135.8±2.3 34.1 15.5 0.3
Ω11 119.9±2.5 137.1±2.5 161.2±2.7 161.7±1.8 34.9 18 0.3
Ω12 100.8±2.6 115.0±2.0 135.2±2.9 135.4±2.8 34.4 17.8 0.2

4.4.3.2 The effect of degradation

We investigate how much Policy 4 can improve the system performance when

the degradation rates of a system are different. We assume that the yield model,

reward, and production requirement follow Y1, R13, and Ω12, respectively, while we

change degradation processes from P1 (slower) to P4 (faster) as reported in Table 4.8.

Figure 4.5 illustrates that Policy 4 turns out to be more effective than Policies 1, 2, and

3 as systems produce under cruder manufacturing environment. Since cleaning and

repairing occur more frequently with the increased deterioration rate, job sequencing

and maintenance decisions under Policy 4 significantly contribute the enhancement

of system performance.

Table 4.8: Transition probability matrix for degradation
Scenario Transition Probability Matrix Degradation Processes

D1 P1 degrades slower
D2 P2 degrades slow
D3 P3 degrades fast
D4 P4 degrades faster
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Figure 4.5: Improvement as a function of degradation

Table 4.9: Simulation results with different degradation processes
Scen- Policy 1 Policy 2 Policy 3 Policy 4 P4/P1 P4/P2 P4/P3
ario (%) (%) (%)

D1 89.5±2.0 98.8±1.1 108.3±6.2 110.1±6.9 23.1 11.5 1.7
D2 62.8±2.6 71.1±3.3 76.4±5.2 83.4±4.3 32.7 17.3 9.2
D3 49.7±2.2 61.9±2.7 70.8±3.7 79.2±3.3 59.5 28.0 11.8
D4 40.5±1.3 46.4±2.6 54.4±4.5 65.6±3.1 62.0 41.4 20.6
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4.4.3.3 The effect of product prices

To explore the effect of different product prices, we have five different product

prices from R1 to R5. Note that these five different price combinations seen from

Table 4.3 are chosen in such a way that the mean values of product prices are the

same so that we can avoid impacts of maintenance cost. However, no clear trend can

be found throughout the different scenarios, as shown in Figure 4.6 and Table 4.10.

Instead, improvement seems constant about 42 % (Policy 4 over Policy 1), 19 %

(Policy 4 over Policy 2), and 0 % (Policy 4 over Policy 3) with the system parameters

of Y1, P3, and Ω12. The results highlight that variations of rewards have no influence

on system performances.
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Figure 4.6: Improvement as a function of rewards
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Table 4.10: Simulation results with different rewards
Scen- Policy 1 Policy 2 Policy 3 Policy 4 P4/P1 P4/P2 P4/P3
ario (%) (%) (%)

R1 98.4±1.2 118.6±1.7 141.5±1.5 140.2±2.7 42.5 18.2 -0.9
R2 99.0±1.3 118.6±1.2 141.3±1.8 141.5±2.0 42.9 19.3 0.2
R3 99.6±1.6 118.8±1.4 142.0±1.2 141.7±1.0 42.2 19.2 -0.3
R4 100.0±1.6 119.3±1.3 141.7±1.3 142.0±1.5 41.9 19.0 0.2
R5 99.5±2.1 119.5±1.9 142.2±2.5 141.9±2.8 42.6 18.8 -0.2

4.4.3.4 The effect of maintenance cost

To see the effect of Policy 4 on maintenance cost, we set the same production

reward while changing maintenance costs (including cleaning and repair costs), as

shown in Table 4.4. Y1 and Ω12 are arbitrarily chosen for a yield model and produc-

tion demand requirement, respectively. As maintenance costs become higher, Policy

4 provides increased improvement over Policies 1, 2, and 3. For example, the im-

provement of Policy 4 over Policy 1 ranges from 23.0 % to 68.4 % as the maintenance

costs increase. The trend from Figure 4.7 demonstrates that the proposed Policy 4 is

more effective when the maintenance costs are critical for decision-making process.

Table 4.11: Simulation results with different maintenance costs
Scen- Policy 1 Policy 2 Policy 3 Policy 4 P4/P1 P4/P2 P4/P3
ario (%) (%) (%)

R6 110.5±1.9 120.0±1.4 131.7±3.5 135.9±3.7 23.0 13.3 3.2
R7 102.7±2.1 112.3±2.7 127.0±3.2 134.0±2.7 30.5 19.4 5.6
R8 95.0±3.9 105.8±2.0 123.1±3.1 127.6±4.1 34.4 20.7 3.7
R9 89.7±2.5 105.0±3.4 119.0±3.8 127.7±2.1 42.3 21.6 7.3
R10 82.8±3.9 97.0±2.7 111.0±3.5 119.9±4.6 44.8 23.6 8.1
R11 79.1±2.6 91.2±0.8 106.9±3.5 115.2±5.6 45.6 26.3 7.8
R12 72.5±4.3 85.0±4.5 99.5±3.2 110.9±1.4 53.0 30.4 11.4
R13 65.2±4.1 84.0±2.4 94.3±3.8 109.8±4.9 68.4 30.8 16.4
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Figure 4.7: Improvement as a function of maintenance costs

4.4.3.5 The effect of buffer capacity

We examine the appropriate buffer level with a number of different buffer ca-

pacities, ranging from 2 to 30. As we expected, Figure 4.8 highlights that stations

are often idle if the capacity of intermediate buffers is small. Empty buffers cannot

provide material for downstream stations, while full buffers in downstream block a

material flow. On the contrary, average WIP holding costs increase as the size of

buffers becomes larger. Therefore, in order to keep the balance between the utiliza-

tion of machines and inventory costs, it is important to consider the tradeoff as shown

in Figure 4.8.
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4.4.3.6 The effect of maintenance staffing

We change the number of maintenance personnel Nr in Equation (4.19) to find an

appropriate maintenance staffing level. We measure percentage of idle times, caused

by machine breakages, to evaluate the maintenance performance. Two degradation

processes, such as P1 and P4 from Table 4.2, are tested with the system of 30 sta-

tions. Figure 4.9 reveals that an appropriate maintenance staffing level depends on

degradation processes of the given system. For a slowly degrading system (P1), we

do not need more than 1 maintenance person to provide significant improvement be-

cause the chance that more than 1 machine fail simultaneously at the given system

is unlikely. However, at least 2 maintenance personnel are necessary for a quickly

degrading system (P4). As we expected, the manufacturing system requires more

maintenance resources for the production smoothness if machine in its system are not

reliable.
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Figure 4.9: Impact of limited maintenance resource

4.5 Case Study with Semiconductor Manufacturing Process
Data

In this section, we illustrate and validate our proposed Policy 4 with a set of

industrial data from the semiconductor manufacturing processing. Data have been

collected from chamber tools with two different recipes (i.e., two different types of

products). Nine process parameters and the succeeding metrology measurement are

periodically monitored in conjunction with associated process events.

The degradation processes have been modeled using a 5-state discrete time Markov

chain. The corresponding probability transition matrix P , displayed in Table 4.12 is

obtained from a set of manufacturing process data using an HMM. Since the underly-

ing chamber degradation condition is not directly monitored or measured, we have to

estimate them by applying the HMM, addressed in [76]. An HMM enables us to esti-

mate machine condition from a sequence of measurements (on-wafer particle counts,

temperature, pressure, etc.). The procedure of finding probability transition matrix
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from a set of industrial data via an HMM is provided in Liu [76] in detail. Then, we

derive the reliabilities of this chamber tool from the Markov chain by calculating the

steady state probabilities. The resulting reliability distributions show that recipe 1

requires less harsh condition than that of recipe 2 although the current maintenance

policy does not consider this difference for the cleaning decision.

Table 4.12: 5-state Markov chain with the corresponding transition probability ma-
trix P

P1 P2
0.972 0.020 0.008 0 0
0 0.926 0.054 0.020 0
0 0 0.987 0.012 0.001
0 0 0 0.974 0.026
0 0 0 0 1



0.315 0.685 0 0 0
0 0.968 0.025 0.005 0.002
0 0 0.703 0.280 0.017
0 0 0 0.228 0.772
0 0 0 0 1



Table 4.13: Benchmark results
Policy 1 Policy 4 Policy4/Policy1 (%)

Reward values 111.13±1.08 146.39±0.96 31.73

As we can see in Table 4.13, the proposed Policy 4 improves the expected average

reward by 31.73 %. As we have seen from the previous sections, this significant

improvement in system performance can be attributed to the two advantages of the

Policy 4:

1) simultaneously considering job sequencing and cleaning,

2) carrying out system level repairing decision based on real time information

Manufactures are generally conservative for production and maintenance plan-

ning. We learned that Policy 1 has been currently employed as a maintenance and

sequencing rule suggested by chamber tool manufacturers. In other words, they clean

the chamber after producing two wafers regardless of the wafer type and dispatch
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wafers on a FCFS basis without considering the relationship between yield loss and

a degraded chamber. In contrast, Policy 4 that we are proposing recommends to dis-

patch a wafer p2 to the less degraded state while dispatching a wafer p1 to the more

degraded state. When it comes to cleaning, condition-based cleaning is suggested

instead of a wafer-based cleaning.

4.6 Conclusion

The purpose of this chapter was to develop an advanced job sequencing/maintenance

policy based on both online condition monitoring information and the dynamic re-

lationship between machine degradation and product quality. The problem was mo-

tivated by an application in semiconductor fabrications where machine deterioration

has different influences on the yield of different types of products. We proposed an in-

tegrated decision-making on maintenance scheduling and production planning. In this

proposed model, the long-term decision focuses on the stochastic degradation process

of each station to make long-term planning on repair scheduling and job sequencing.

On the other hand, the short-term decision focuses on the dynamic interdependencies

between stations to make short-term system level maintenance schedules. A sim-

ulation model is built to demonstrate the advantages of the integrated policy over

conventional policies. It is shown that using this proposed model, we are able to

derive a policy with simple structure, which can be easily implemented in practice.

In addition, this model is shown to significantly improve the system performance

in terms of expected average profit and total repair costs through several numerical

experiments and a case study with a real manufacturing process data.

In terms of the future work, the proposed integrated model could be expanded to

a more complex application involving re-entrant loops, multi-layers, and larger sys-
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tems having more machines with different configurations and producing more product

types. Furthermore, inventory planning was out of the scope of our study because

yield is more emphasized than cycle time for the make-to-stock system. Including

this issue into joint decision making on maintenance and job sequencing would be

also an interesting topic to be explored in the future.
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CHAPTER V

Conclusions and Contributions

5.1 Conclusions

This research has investigated a variety of stochastic modeling techniques, focusing

on a diagnosis and a maintenance decision-making in manufacturing systems. Since

maintenance costs become a large portion of a company expense, more attention on

maintenance has to be paid in order to reduce overall maintenance cost.

To detect and isolate unknown faults as early as possible, we develop the modified

hidden Markov model algorithm. A conventional hidden Markov model has been

combined with the Hotelling multivariate control chart technique in statistical process

control for unknown state detection. This reinforcement learning algorithm enables

us to detect anomalous behaviors at the early stages so that appropriate condition-

based maintenance can be planed accordingly. The mHMM which is applied to a

turning process illustrates that it is able to not only estimate a tool wear, but also

detect shortage of coolant. It has also been shown that a mHMM provides higher

estimation accuracy than other classification algorithms such as neural networks,

Gaussian mixture model, and K-means.

Stochastic models of joint equipment degradation processes and maintenance ac-

tions have been proposed for a preventive maintenance decision-making. These mod-
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els are used to find the optimal PM intervals in terms of the system availability,

productivity, and profit. We account for non-negligible repair times and periodic

inspections in Markov models so that we are able to represent more realistic mainte-

nance characteristics. Furthermore, these modeling techniques are extended to main-

tenance decision-making problems with two machine systems. With the case study

from a semiconductor manufacturing, we show that the current production system has

been over-maintained and recommend the new optimal PM interval with a sensitiv-

ity analysis. We have shown from this case study that maintenance decision-making

depends on degradation process, maintenance (PM and RM) costs, and machine con-

figurations.

For the system which can manufacture multiple products, the relationship between

machine condition and product quality has been considered to develop advanced

joint maintenance and product sequencing policy. This joint policy can provide more

opportunities to select an appropriate product among multiple products. The short-

term decisions have been added in the joint policy in order to intelligently respond

the system dynamics. This integrated policy is proven to significantly improve the

system performance in terms of average profit and total repair costs through numerical

experiments and case study with a real semiconductor manufacturing process data.

5.2 Contributions

Comprehensive research of maintenance strategies for complex manufacturing sys-

tems aims to provide more cost-effective maintenance programs using stochastic mod-

eling techniques.

The scientific contributions of this research are summarized as follows:

• A modified hidden Markov model combined with reinforcement learning algo-
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rithms has been proposed for online condition monitoring and unknown fault

isolation.

• We propose to use an approximation of a non-exponential distribution in a

Markov chain using phase-type distributions. The effects of different machine

configurations on preventive maintenance policies have been analytically found.

• The links between machine condition and corresponding product quality have

been used for integrated production and maintenance rules to increase the over-

all system profit.

5.3 Future Work

Future work will involve further experimental validations of the hidden Markov

Model algorithm with many other applications. A current modified hidden Markov

model is limited to the Gaussian density distribution for the monitoring signals. We

have to release this assumption to handle general random distributions.

Additionally, it might be difficult to analytically find the optimal PM intervals

for a system which has more than two machines as the complexity of the proposed

method grows exponentially according to the number of machines. Therefore, an

efficient algorithm to handle the computational problem has to be explored.

For the multiple product system, the proposed policy model can be expanded to

a more complex application involving different system configurations. Furthermore,

considering setup or changeover times between different types of products can make

our model more realistic in most manufacturing processes.
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