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CHAPTER I

Introduction

In this research, we investigate several topics related to longitudinal and survival

analysis for cancer data. Many studies in cancer research involve following patients

or subjects over time and monitoring the occurance or progression of the disease.

While standard methods can sometimes be used for analyzing such data, in certain

cases the structure of the data is such that special models or methods need to be

developed to help understand or interpret the data. In this dissertation, we describe

and evaluate some novel approaches for survival and longitudinal analysis.

First, we present our development of a family of cure models which provides a

unifying framework for survival analysis with cured subjects. Then, we discuss the

joint modeling of longitudinal biomarker and survival data based on penalized B-

splines to accommodate the nonlinearity of the longitudinal trajectories with a great

degree of flexibility. We apply this model to a prostate cancer study. Last, we predict

and evaluate the conditional survival probability based on the joint model previously

developed, and compare with simpler alternatives.

1.1 The Family of Cure Models

Many medical studies generate time-to-event data, and survival models such as

the Cox proportional hazard model or the accelerated failure time model are widely

1
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used to analyze these data. It is typically assumed that all of the study subjects will

eventually experience the event of interest if they are followed long enough. However,

in reality, the event does not occur with some subjects, even with very long follow-

up periods. A reasonable assumption is that these patients have been cured, and

consequently cure rate models have been formulated to analyze these situations.

In the literature, there are two formulations of cure rate models: the mixture

model and the bounded cumulative hazard model. The mixture model assumes that

the study cohort is composed of susceptible subjects and cured subjects, and thus

the marginal survival probability is the weighted average of the conditional survival

probabilities of the susceptible and the cured subjects. The other cure rate model,

the bounded cumulative hazard model, assumes a latent Poisson distribution and

derives the marginal survival probability based on a bounded cumulative hazard

function.

In past studies, the relative merits of both models have been studied and com-

pared. In this research, we develop a general family of cure models, indexed by a

Box-Cox type transformation parameter, that includes both the mixture model and

the bounded cumulative hazard model as special cases. This will create a unified

framework in which the most appropriate cure rate model can be determined by the

data.

1.2 Joint Non-parametric Models of Longitudinal and Survival Data

Along with time-to-event data, many medical studies also collect longitudinal

biomarkers. Instead of analyzing them separately, joint modeling of longitudinal and

survival data has attracted great attention.

In the literature, two approaches have been proposed to carry out the joint mod-
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eling: a two-stage model and a likelihood based joint model. It has been shown that

by sharing information between the longitudinal model and the survival model, the

likelihood based approach has the advantage of smaller bias and more efficiency in

the parameter estimates. Therefore, we focus on the likelihood based joint model in

our research.

While applying the joint model to a real data set, we often observe nonlinear

trends in the longitudinal trajectories and also a large variation in their shapes.

Traditional data-driven parametric longitudinal models face difficulty when trying to

accurately model these trends. To accomodate the nonlinearity with a greater degree

of flexibility, we adopt the penalized B-splines approach proposed by Eiler and Marx

to model the longitudinal biomarker process, and link it with the risk of failure by the

Cox proportional hazard model. A Bayesian approach is developed to estimate the

posterior distributions of the parameters with MCMC chains. Metropolis-Hastings

algorithm is used to implement the MCMC chains. This model is applied to prostate

cancer data.

1.3 Evaluation of the Predicted Conditional Survival Estimates Using

Absolute Distance Measures

From the perspective of clinical practice, it is of interest to predict the cancer

survival outcome. With the joint model that we developed in the previous chapter, we

focus on predicting conditional survival probabilities in this chapter. It is important

to evaluate the survival predictions before the model is used on any future patient.

In the literature, various measures of predictive accuracy have been proposed and

compared. In this chapter, we present the absolute distance based measures to assess

the predictive accuracy. Simulation studies are carried out to compare our model

with three other approaches: a standard Cox proportional hazard model named the
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naive approach, a Cox proportional hazard model with the last observed longitudinal

biomarkers as a covariate, and a two-stage model in which a mixed model is used for

the longitudinal biomarkers and a time-dependent Cox proportional hazard model is

fit for the survival data. We derive the predicted conditional survival estimates based

on these four approaches, and we obtain the absolute distance measures using these

predicted conditional survival probabilities. We compare these absolute distance

measures among these four approaches, and show that our model has a relatively

higher predictive power than the other three alternatives.

This thesis is organized as follows. In Chapter 2, we present our propsed family

of cure rate models with simulation studies and data applications. Chapter 3 de-

velops the joint modeling of the longitudinal biomarkers and survival data based on

penalized B-splines with applications to a prostate cancer study. In Chapter 4, we

evaluate the predicted conditional survival probabilities derived from the joint model

in Chapter 3 using simulation studies. Chapter 5 gives concluding remarks.



CHAPTER II

The Family of Cure Models

2.1 Introduction

In medicine and public health research, survival models are widely used to analyze

time-to-event data from studies in which subjects are followed over a certain time

period and the time until the occurence of a pre-defined event is recorded. For

example, a study may analyze the time from treatment to infection in patients with

renal insufficiency, or the time from bone marrow transplant to recurrence of disease

in Leukemia patients, or the time from surgery to recurrence of tumor in breast

cancer patients. In these examples, the event of interest is defined to be the onset of

infection or the recurrence of disease. We typically assume that every study subject

will experience the event of interest before the end the study. In reality, the event

may not occur with some subjects for various reasons such as death (due to other

causes), geographic relocation, or subjects simply staying healthy for an extended

period of time. These patients are considered to be censored in traditional survival

analysis, and it is assumed that the event of interest will eventually occur to them if

they were followed for a long enough time. The Cox proportional hazard model and

the accelerated failure time model are frequently used to analyze these time-to-event

data.

5
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However, thanks to modern medical practices, some subjects will never experience

the event of interest even with long follow-ups, and therefore are reasonably believed

to be medically cured. For example, in breast or prostate cancer research, the event

of interest is often the recurrence of tumor or death from cancer after treatment.

However, many subjects will never experience these events. In this situation, the

subjects are not censored in the traditional sense. We can confidently assume they

are cured, and therefore the traditional Cox proportional hazard model and the

accelerated failure time model are no longer well suited to analyze this type of data.

Consequently, cure rate models have been formulated to address this issue.

In the literature, there are two formulations of cure rate models: the mixture

model and the bounded cumulative hazard model. The mixture model was first

proposed by Berkson and Gage (1952), and assumes that the study cohort is a

mixture of susceptible and cured subjects. The susceptible subjects are those who

have a chance to experience the event of interest after the start of the follow-up

period, and the cured subjects are those who will never experience the event of

interest, even with a complete follow-up. The population survival distribution for

this study cohort is the weighted average of the conditional survival probability given

being susceptible and the conditional survival probability given being cured (which

is always 1), with weights p, the probability of cure, and 1 − p. This mixture model

has been extensively studied by Farewell (1977, 1982), Taylor (1995), Sy and Taylor

(2000), Peng and Dear (2000), Li and Taylor (2002), and others.

The other cure rate model, the bounded cumulative hazard model, was first pro-

posed by Yakovlev and Tsodikov (1996). In this model, the cumulative hazard is

assumed to be bounded, and the population survival distribution is derived accord-

ingly. This model is biologically motivated and is developed by assuming a latent
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Poisson distribution on the number of metastasis-competent tumor cells that re-

main active after cancer treatment and modeling the promotion time to a detectable

metastatic condition. The bounded cumulative hazard model has been examined by

Tsodikov (1998), Chen, et al. (1999), Ibrahim, et al.(2001) and Tsodikov (2002).

Both cure models have been widely studied and applied in medical research. For

example, Brown and Ibrahim (2003) extended the bounded cumulative hazard model

to include longitudinal covariates. Yu, et al. (2006) built a joint longitudinal, survival

and cure model in which the mixture model was used for the cure rate. Still, it is not

always clear which model is more appropriate to use for a given dataset. Chen, et

al. (1999) and Ibrahim, et al. (2001) compared the two models to determine which

one was superior.

Instead of weighing the relative merits of each model against each other, it is more

beneficial to have one unified model that incorporates both of these two formulations

and is flexible enough to generate additional intermediate formulations. With this

goal in mind, we developed a family of cure models indexed by a Box-Cox type

transformation parameter that encompasses the above two cure rate models as special

cases. By estimating the index parameter, the optimum formulation from this family

of cure rate models is produced. This way, we no longer have to decide a priori which

model to use; instead, the data determines the most suitable formulation of the cure

model. To estimate this general family of cure rate models, we developed numerical

algorithms to obtain the maximum likelihood estimates of the parameters.

The rest of the chapter is organized as follows. In section 2, we present the

background information about cure rate models. In section 3, we introduce our new

family of cure models and derive the associated likelihood functions. In section 4,

simulation studies are presented. In section 5, we apply this model to a bone marrow
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transplant study and a tonsil cancer study. Section 6 gives some concluding remarks.

2.2 Background

In this section, we prepare our discussion of the family of cure rate models with

some mathematical background information about the two existing formulations and

their extensions.

2.2.1 The Mixture Model

The mixture model assumes that the study cohort is a mixture of susceptible

and cured subjects. The susceptible subjects are those who may experience the

event of interest after the start of the follow-up period, and the cured subjects are

those who will never experience the event of interest even with a complete follow-

up. Let binary variable D take value 1 if a study subject is susceptible, and value

0 if the subject is cured. We can define the probability of a study subject being

cured to be Pr(D = 0) = p, and the probability of being susceptible is hence

Pr(D = 1) = 1 − p. Conditional on being susceptible, the survival probability of

this subject is S0(t | D = 1), where t is the follow-up time. Conditional on being

cured, the survival probability of this subject is always 1. Based on the law of total

probability, the marginal survival probability S(t) for this subject can be written as

S(t) = Pr(D = 0) × S0(t | D = 0) + Pr(D = 1) × S0(t | D = 1)

= p × 1 + (1 − p) × S0(t | D = 1)

= p + (1 − p)S0(t|D = 1).(2.1)

As t → ∞, S0(t | D = 1) → 0, and thus S(t) → p + (1 − p) × 0 which is p, the cure

rate. That is, the overall marginal survival probability will level off to the probablity

of cure if a long enough follow-up period is allowed.
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This mixture model was first proposed by Berkson and Gage (1952), and later

was examined and extended by various authors. Farewell (1977, 1982) used logistic

regression for the probability of cure p and a Weibull distribution for the conditional

survival probability given being susceptible S0(t | D = 1). That is,

Pr(D = 0; Z1) = p(Z1) =
exp(Z1α)

1 + exp(Z1α)
,(2.2)

and

S0(t; Z2, D = 1) = exp(−tγexp(Z2β)),(2.3)

where Z1 is the covariate that is associated with the cure rate through parameter

α, Z2 is the covariate that is associated with the survival probability given being

susceptible through parameter β, and γ is the shape parameter for the Weibull dis-

tribution. Yamaguchi (1992) assumed the generalized gamma distribution as an al-

ternative parametric formulation for S0(t; Z2, D = 1). Kuk and Chen (1992), Sy and

Taylor (2000), and Peng and Dear (2000) chose the semiparametric Cox proportional

hazard model for S0(t; Z2, D = 1). That is,

h0(t; Z2, D = 1) = h0(t; D = 1)exp(Z2β),(2.4)

where h0(t; Z2, D = 1) is the hazard function conditional on being susceptible. The

expectation-maximization (EM) algorithm was used to estimate the parameters. Li

and Taylor (2002) generalized it by using the semiparametric accelerated failure time

model.

2.2.2 The Bounded Cumulative Hazard Model

The second formulation of cure rate models, the bounded cumulative hazard

model, assumes that the cumulative hazard H(t) is bounded. That is, H(t) = θF (t)
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with θ ≥ 0 and F (t) being the cumulative distribution function of a non-negative

random variable. Thus the overall population survival distribution S(t) is given by

S(t) = exp(−θF (t)).(2.5)

This model tries to model the promotion time to a detectable metastatic condition

by assuming a latent Poisson distribution on the number of metastasis-competent

tumor cells that remain active after cancer treatment. Specifically, let N denote

the number of metastatic-competent tumor cells that remain active after treatment.

N is assumed to have a Poisson distribution with a non-negative mean θ. Let Tl

be the promotion time of tumor cell l. Conditional on N , the set of promotion

times {Tl, l = 1 . . . N} are assumed to be independent and identically distributed

as F (t) = 1 − S(t). Then the time to the relapse of cancer can be defined as

T = min(Tl), 1 ≤ l ≤ N with survival probability given by

S(t) = P (N = 0) + P (T1 > t, . . . , TN > t,N ≥ 1)

= exp(−θ) +
∞

∑

k=1

S(t)k θk

k!
exp(−θ)

= exp(−θ + θS(t)) = exp(−θF (t)),(2.6)

As t → ∞, S(t) → P (N = 0) = exp(−θ), and thus exp(−θ) is the cure rate in

this model. Here, it is often assumed θ = exp(Zβ) where Z is the covariate that is

associated with the cure rate through parameter β. Chen and Ibrahim (2001) used

the EM algorithm to estimate the parameters, whereas Chen, et al. (2002) developed

the Bayesian algorithm with proper posterior distributions for parameter estimates.

2.2.3 Extensions to Cure Models

In the past, these two formulations of cure models have been actively compared

(Chen, et al. (1999), and Ibrahim, et al. (2001)). The mixture model has the
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advantage of being very intuitive. However, with covariates, the population sur-

vival probability S(t) no longer maintains the proportional hazard structure. As

for the bounded cumulative hazard model, the hazard function can be calcuated as

h(t) = θF (t), and thus the bounded cumulative hazard model keeps the propor-

tional hazard structure. Note that the bounded cumulative hazard model gives an

improper population survival function. This can be easily seen that as t → ∞,

S(t) → exp(−θ) > 0.

To extend the model to include proper population survival distributions, Yin

and Ibrahim (2005) developed a general class of survival models with a cure rate

through a transformation on the population hazard function, and implemented the

Bayesian Markov chain Monte Carlo (MCMC) scheme based on Gaussian quadrature

to estimate the parameters. Specifically, this class of survival models is given by

hpop(t; Z) = (f(t)γ + γZβ)1/γ ,(2.7)

where hpop(t; Z) is the population hazard function, Z is the covariate, f(t) is a

probability density function, and γ is an index parameter. It can be shown that as

γ → 0, this model reduces to the bounded cumulative hazard model. When γ = 1,

this model reduces to an additive hazard model in the form of hpop(t; Z) = f(t)+Zβ

which leads to a proper population survival function. The simulation study suggested

that the parameter estimates are reasonably close to true values.

In 2006, Yin and Ibrahim proposed another unified approach to model the cure

rate based on the transformation of the population survival function in the form of

Spop(t; Z,X) = (1 − γθ(γ, Z)F (t; X))1/γ ,(2.8)

where Z and X are the covariate vectors, F (t; X) is a cumulative distribution func-

tion, and γ is the index parameter. As γ → 0, this model becomes Spop(t; Z,X) =
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exp(−θ(0, Z)F (t; X)), which is the bounded cumulative hazard model. As γ → 1,

this model becomes Spop(t; Z,X) = 1 − θ(1, Z)F (t; X), which is the mixture model.

This unified approach links the two cure rate models using an index parameter. How-

ever, it can be shown that as t → ∞, Spop(t; Z,X) → (1− γθ(γ, Z))1/γ , which means

the cure rate is dependent on the index parameter. Yin (2008) extended the cure

rate model to multivariate failure time data, and again the Bayesian approach was

used for model estimation and selection.

Zeng, et. al. (2006) proposed a class of semiparametric transformation models

for survival data with a cure rate by transforming the population survival function

in the form of

Spop(t; Z,X) = (1 + γθ(Z)F (t; X))−1/γ ,(2.9)

where again, Z and X are the covariate vectors, F (t; X) is a cumulative distri-

bution function, and γ is the index parameter. As γ → 0, this transformation

yields Spop(t; Z,X) = exp(−θ(0, Z)F (t; X)), which is the bounded cumulative haz-

ard model. When γ = 1, this transformation yields a proportional odds type of

cure model. The authors proposed treating the index parameter γ as a known fixed

value and using the maximum likelihood estimation method to estimate the other

parameters.

Past research has demonstrated that both models are good representations of the

data, and the simulation studies showed that the parameter estimates are unbiased

and well-behaved. It sometimes can be difficult to determine which model is more

suitable for a specific research study. The aim of this chapter is to develop one

unified model that can incorporate both of these two cure model formulations and

be flexible enough to generate more intermediate formulations.
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2.3 A General Family of Cure Models

In this section, we develop a family of cure models, indexed by the Box-Cox trans-

formation parameter, such that the two formulations of cure rate models are both

special cases of this family. With the Box-Cox transformation parameter taking

different values, additional intermediate cure rate models can be derived and esti-

mated for a better understanding of the association between covariates and survival

probabilities.

2.3.1 The Family of Cure Models

In traditional linear regression models, the Box-Cox transformation (Box and

Cox, 1964) is often used to transform the outcome variables. The original Box-Cox

transformation takes the form of

y(λ) =











yλ
−1
λ

if λ 6= 0

log(y) if λ = 0,

where λ is the Box-Cox transformation parameter, and λ ∈ (−∞,∞).

Instead of imposing the Box-Cox transformation on the observed outcome vari-

ables, we instead impose it on the population survival probability S(t; Z) and cure

rate p. Thus we propose the general family of cure models indexed by λ

S(t; Z)λ − 1

λ
=

p(Z)λ − 1

λ
(1 − S0(t; Z)),(2.10)

where S(t; Z) is the population survival distribution, 0 ≤ p(Z) ≤ 1, 0 ≤ S0(t; Z) =

1 − F0(t; Z) ≤ 1 is a proper survival distribution function, and λ is the Box-Cox

transformation parameter ∈ (−∞,∞). By collecting terms in both sides of the

above equation, we can rewrite the population survival distribution as

S(t; Z) = [p(Z)λ + (1 − p(Z)λ)S0(t; Z)]1/λ,



14

and the population hazard function is given by

h(t; Z) = −(
1

λ
)

(1 − p(Z)λ)dS0(t)
dt

p(Z)λ + (1 − p(Z)λ)S0(t; Z)

=
(1 − p(Z)λ)(S0(t; Z)h0(t; Z))

λS(t; Z)λ
.

(2.11)

As t → ∞, S0(t; Z) → 0, and

S(∞; Z) = (p(Z)λ + (1 − p(Z)λ) × S0(∞; Z))1/λ

= (p(Z)λ + (1 − p(Z)λ) × 0)1/λ

= p(Z).

(2.12)

This suggests that p(Z) is the probability of cure which has the desirable property

that it does not depend on the index parameter λ. Also, the conditional survival

distribution for the susceptible subjects can be written as

S(t; Z, susceptible) =
(p(Z)λ + (1 − p(Z)λ) × S0(t; Z))1/λ − p

1 − p
.

When λ = 1, our model reduces to

S(t; Z) = p(Z) + (1 − p(Z))S0(t; Z),

which is the mixture model presented in (2.1). When λ = 0, equation (2.9) becomes

log(S(t; Z)) = log(p(Z))(1 − S0(t; Z)),

and hence, our model reduces to

S(t; Z) = exp(log(p(Z))(1 − S0(t; Z))),
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which is the bounded cumulative hazard model in the form of (2.5) with F0(t; Z) =

1 − S0(t; Z) and θ = log(p(Z)).

It can be easily seen that our model not only has these two formulations of cure

models as special cases, but is also general enough to include intermediate formu-

lations as λ varies along the real line. To illustrate this feature, we considered a

hypothetical example where S0(t) = exp(−0.6t0.9), p = 0.2, and λ = [0, 0.5, 1]. The

population survival distributions are calculated based on t ∈ [0, 10] and plotted in

Figure 2.1. Different λ values generate different survival probabilities, and a statis-

tical test will be needed to draw inference on them.
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Figure 2.1: Hypothetical example of population survival functions varying with λ

2.3.2 The Covariate Structure

Along with time-to-event data, baseline information is often collected as well. For

example, in cancer studies, besides the time to cancer recurrence, we may also have
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baseline information such as age, gender, and tumor stage. Therefore, it is necessary

to introduce covariates into our family of cure models.

Let Z1 and Z2 be two overlapping subsets of covariates or distinct subsets of

covariates from the entire set of covariates Z. To understand the association between

covariates Z and the cure rate p, we assume a log-log link for p as

pi(Z1) = exp(−exp(Z1α)).(2.13)

We chose this form of the link function because in the special case when λ = 0, the

population survival function takes the form of

S(t; Z) = exp(log(p(Z))(1 − S0(t; Z)))

= exp(log(exp(−exp(Zα)))(1 − S0(t; Z)))

= exp(−exp(Zα)F0(t; Z)).(2.14)

That is, θ in equation 2.5 takes a nice form of θ = exp(Zα).

To allow the association between covariates Z and the time-to-event distribution,

we assume a Weibull form for S0(t),

S0(t; Z2) = exp(−τtγexp(Z2β)).(2.15)

2.3.3 The Likelihood Function

Let Ti and Ci be the event time and censoring time, respectively, of subject i for

i = 1, . . . , n. The observed survival time of subject i is given by ti = min(Ti, Ci), and

the corresponding censoring indicator is δi = I(Ti ≤ Ci), where I(·) is the indicator

function. Let Zi be the covariates measured from subject i. Ti and Ci are assumed

to be independent conditional on Zi, and (Ti, Ci, Zi), i = 1 . . . n are assumed to be
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independent and identically distributed. Therefore, the likelihood function is

L(α, β, γ, τ, λ; t, δ, Z) =
n

∏

i=1

(h(ti; Z2i)S(ti; Z2i))
δiS(ti; Z2i)

1−δi

=
n

∏

i=1

(
(1 − p(Z1i))

λ)S0(ti; Z2i)h0(ti; Z2i)

λ
)δiS(ti; Z2i)

1−λδi ,(2.16)

where h0(t) is the hazard function corresponding to S0(t).

Due to the complexity of the model, we were not able to obtain an analytical solu-

tion to maximize this likelihood function. A numerical maximization approach such

as the Newton-Raphson algorithm can be used instead, and the maximum likelihood

estimates of (α, β, γ, τ, λ) and the variance-covariance matrix can be subsequently

obtained. We derived the first order partial derivatives of the log-likelihood func-

tion with respect to the parameters and the information matrix, and the details are

included in Appendix A.

In the situation where the likelihood function is rather flat, the Newton-Raphson

algorithm might encounter convergence issues. When there is not enough informa-

tion in the data to precisely estimate λ, we can alternatively use the profile likelihood

approach to estimate of the parameters. We can consider the profile likelihood ap-

proach as a two-stage scheme. In stage one, we fix λ to a finite number of values,

such as 0, .5, or 1, or a finer grid of values over a range. We can then apply the

Newton-Raphson algorithm to estimate the rest of the parameters to maximize the

likelihood function given these fixed λ values. In stage two, based on each set of

parameter estimates and these fixed λ values, we can calculate the corresponding

likelihood and obtain the maximum of these likelihood values. The corresponding

parameter estimates and the λ value are the global maximum likelihood estimators.

The likelihood ratio test and profile likelihood confidence intervals can be used for the

statistical inference on the parameters (including λ). In fact, past research (Chen,
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et al. (1999) and Ibrahim, et al. (2001)) has paid great attention to comparing the

mixture model (the special case when λ = 1) and the bounded cumulative hazard

model (the special case when λ = 0). The profile likelihood approach will serve this

purpose by estimating the model fixing λ to 1 or 0 and drawing inference based on

the parameter estimates.

2.4 Simulation Studies

We conducted two simulation experiments to investigate the properties of esti-

mates from this model. In the first simulation study, the data were simulated based

on the models

p = exp(−exp(α0 + α1x1))(2.17)

S0(t) = exp(−τtγexp(β1x2))(2.18)

with α0 = −0.5, α1 = 2, β1 = 1, γ = 3, and τ = 0.1. X1 was an iid sample

from Uniform(0,1), and X2 was an iid sample from Normal(0,1) independent of X1.

Two sample sizes (300 and 600) and two λ values (0 and 1) were considered in the

simulation with uniform censoring. The average censoring rate across all datasets

was about 50%. The means of the parameter estimates based on 500 simulations are

presented in Table 2.1 through 2.4.

Table 2.1 presents the simulation results based on 300 observations in each sample

and the true λ is 1. When fixing λ to be 0, the parameter estimates are obviously

biased. When fixing λ to 1, the parameter estimates are reasonably close to the true

values. When relaxing the constraint on λ to be any real number, the maximum

likelihood estimate of λ is relatively unbiased, and the parameter estimates are quite

close to those from fixing λ to 1. The standard deviations also behave reasonably

well. There seems to be a slight increase in the standard deviation estimates due to
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Table 2.1: 300 observations, true λ = 1, average number of events is 139
Parameters Estimate (SD) Estimate (SD) Estimate (SD) Mean of SD’s

(True Values) assuming assuming with λ based on observed
λ = 0 λ = 1 estimated information matrix

α0 -0.203 -0.528 -0.529
(-0.5) (0.198) (0.231) (0.237) 0.246
α1 1.312 2.090 2.094

(2.0) (0.286) (0.495) (0.511) 0.501
β1 1.121 1.010 1.016

(1.0) (0.128) (0.112) (0.121) 0.119
γ 3.350 3.041 3.055

(3.0) (0.241) (0.210) (0.220) 0.224
τ 0.044 0.099 0.104

(0.1) (0.010) (0.019) (0.037) 0.038
λ 0 1 1.057

(1) — — (0.444) 0.468

estimating λ. Based on the observed information matrix, the coverage rate of α1 is

96.8%, and the coverage rate of β1 is 95.2%. The power of the likelihood ratio test

of λ = 0 vs λ = 1 is 0.70, and the size of the likelihood ratio test of λ = 1 versus

λ = λ̂MLE is 0.04.

Table 2.2 shows the simulation results based on 600 observations in each sample

and the true λ is 1. Due to the bigger sample size, the parameter estimates when

fixing λ to 1 and when relaxing the constraint on λ are very close to each other and

to the true values. The maximum likelihood estimate of λ has a much smaller bias

compared to that in Table 2.1, and the increase in variance estimates due to the

estimation of λ is also smaller compared to that in Table 2.1. Again, we are able to

obtain good coverage rates for the parameters. Based on the observed information

matrix, the coverage rate of α1 is 95.4%, and the coverage rate of β1 is 96.2%. The

larger sample size also increases the power of the likelihood ratio test. Compared to

0.70 from the previous simulation results, the power of the likelihood ratio test of

λ = 0 versus λ = 1 when the sample size is 600 is 0.90, and the size of the likelihood

ratio test of λ = 1 versus λ = λ̂MLE is 0.04.
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Table 2.2: 600 observations, true λ = 1, average number of events is 278
Parameters Estimate (SD) Estimate (SD) Estimate (SD) Mean of SD’s

(True Values) assuming assuming with λ based on observed
λ = 0 λ = 1 estimated information matrix

α0 -0.188 -0.503 -0.503
(-0.5) (0.142) (0.167) (0.172) 0.172
α1 1.302 2.048 2.048

(2.0) (0.203) (0.352) (0.355) 0.345
β1 1.114 1.002 1.006

(1.0) (0.089) (0.078) (0.081) 0.082
γ 3.315 3.009 3.020

(3.0) (0.162) (0.142) (0.154) 0.155
τ 0.043 0.100 0.101

(0.1) (0.007) (0.012) (0.025) 0.025
λ 0 1 1.009

(1) — — (0.300) 0.304

Table 2.3: 300 observations, true λ = 0, average number of events is 157
Parameters Estimate (SD) Estimate (SD) Estimate (SD) Mean of SD’s

(True Values) assuming assuming with λ based on observed
λ = 0 λ = 1 estimated information matrix

α0 -0.507 -0.662 -0.529
(-0.5) (0.206) (0.242) (0.240) 0.225
α1 2.017 2.302 2.083

(2.0) (0.317) (0.491) (0.457) 0.413
β1 1.012 0.861 1.016

(1.0) (0.116) (0.101) (0.130) 0.129
γ 3.044 2.650 3.057

(3.0) (0.196) (0.165) (0.254) 0.247
τ 0.099 0.241 0.102

(0.1) (0.017) (0.028) (0.036) 0.033
λ 0 1 0.002

(0) — — (0.317) 0.296
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Table 2.4: 600 observations, true λ = 0, average number ofevents is 315
Parameters Estimate (SD) Estimate (SD) Estimate (SD) Mean of SD’s

(True Values) assuming assuming with λ based on observed
λ = 0 λ = 1 estimated information matrix

α0 -0.501 -0.639 -0.505
(-0.5) (0.137) (0.159) (0.157) 0.156
α1 2.010 2.245 2.026

(2.0) (0.201) (0.294) (0.277) 0.282
β1 1.012 0.58 1.016

(1.0) (0.082) (0.073) (0.088) 0.091
γ 3.026 2.631 3.038

(3.0) (0.128) (0.110) (0.171) 0.172
τ 0.098 0.241 0.100

(0.1) (0.012) (0.022) (0.023) 0.023
λ 0 1 -0.011

(0) — — (0.209) 0.205

Similarly, Table 2.3 and 2.4 summarize the simulation results based on 300 and

600 observations in each sample and the true λ is 0. These two tables give the same

conclusions as the previous two. When fixing λ to 0 the parameter estimates are

very close to those estimates from relaxing the constraint on λ, and they are all

reasonably unbiased. Larger sample size decreases the bias and standard deviations.

Good coverage rates are reached based on the observed information matrix. When

the sample size is 300, the coverage rate of α1 is 94.8%, and the coverage rate of β1

is 95.2%. When the sample size is 600, the coverage rate of α1 is 97.2%, and the

coverage rate of β1 is 96.4%. In terms of the power of the likelihood ratio test of

λ = 0 versus λ = 1, when sample size is 300, the power is 0.88. And when sample

size is 600, the power increased to 0.99. The size of the likelihood ratio test of λ = 0

versus λ = λ̂MLE is 0.07 when sample size is 300 and 0.05 when sample size is 600.

In the previous simulations, the cure rate p was assumed to be associated with X1

only, and the other component of the model S0 was assumed to be associated with

X2 only, so that there was no overlap between the two sets of covariates associated

with these two components of the model. To investigate the effect of overlapping



22

Table 2.5: 300 observations, true λ = 1, average number of events is 105
Parameters Estimate (SD) Estimate (SD) Estimate (SD) Mean of SD’s

(True Values) assuming assuming with λ based on observed
λ = 0 λ = 1 estimated information matrix

α0 0.011 0.037 0.032
(0) (0.244) (0.299) (0.251) 0.243
α1 1.474 1.515 1.523

(1.5) (0.231) (0.261) (0.246) 0.238
α2 -1.001 -1.045 -1.056

(-1.0) (0.416) (0.436) (0.437) 0.417
β1 0.656 1.044 0.998

(1.0) (0.319) (0.257) (0.421) 0.400
β2 2.104 1.550 1.645

(1.5) (0.557) (0.432) (0.613) 0.608
γ 3.352 3.082 3.131

(3.0) (0.283) (0.264) (0.332) 0.328
τ 0.051 0.098 0.107

(0.1) (0.020) (0.030) (0.073) 0.072
λ 0 1 1.110

(1) — — (1.161) 1.185

covariates, we conducted another simulation study where the data were simulated

based on the models

p = exp(−exp(α0 + α1x1 + α2x2))(2.19)

S0(t) = exp(−τtγexp(β1x1 + β2x2))(2.20)

with α0 = 0, α1 = 1.5, α2 = −1.0, β1 = 1, β2 = 1.5, γ = 3, and τ = 0.1. X1

was an iid sample from Uniform(-1,1), and X2 was an iid sample from Uniform(0,1)

independent of X1. Again, two sample sizes (300 and 600) and two λ values (0

and 1) were considered, and uniform censoring was included in the simulation. The

average censoring rate is about 66%. The means of the parameter estimates based

on 500 simulations are presented in Table 2.5 through 2.8. The coverage rate of

the parameter estimates based on the information matrix are included in Table 2.9,

along with the size and power of the likelihood ratio tests.

From Table 2.5 through 2.8, we can see that the parameter estimates when fixing

λ to the true value are very close to those when relaxing the constraint on λ, and they
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Table 2.6: 600 observations, true λ = 1, average number of events is 211
Parameters Estimate (SD) Estimate (SD) Estimate (SD) Mean of SD’s

(True Values) assuming assuming with λ based on observed
λ = 0 λ = 1 estimated information matrix

α0 -0.002 0.019 0.019
(0) (0.166) (0.172) (0.172) 0.170
α1 1.468 1.518 1.521

(1.5) (0.153) (0.163) (0.165) 0.166
α2 -0.979 -1.030 -1.032

(-1.0) (0.281) (0.295) (0.296) 0.290
β1 0.653 1.022 1.029

(1.0) (0.202) (0.167) (0.272) 0.292
β2 2.047 1.522 1.534

(1.5) (0.368) (0.294) (0.414) 0.422
γ 3.292 3.035 3.037

(3.0) (0.197) (0.178) (0.230) 0.231
τ 0.052 0.100 0.109

(0.1) (0.014) (0.021) (0.049) 0.053
λ 0 1 1.137

(1) — — (0.764) 0.867

Table 2.7: 300 observations, true λ = 0, average number of events is 110
Parameters Estimate (SD) Estimate (SD) Estimate (SD) Mean of SD’s

(True Values) assuming assuming with λ based on observed
λ = 0 λ = 1 estimated information matrix

α0 0.027 0.016 0.028
(0) (0.226) (0.227) (0.231) 0.232
α1 1.523 1.505 1.523

(1.5) (0.241) (0.240) (0.244) 0.231
α2 -1.037 -1.010 -1.039

(-1.0) (0.385) (0.391) (0.395) 0.397
β1 1.032 1.410 1.035

(1.0) (0.306) (0.256) (0.408) 0.394
β2 1.576 1.022 1.589

(1.5) (0.488) (0.406) (0.617) 0.632
γ 3.071 2.787 3.102

(3.0) (0.227) (0.208) (0.305) 0.322
τ 0.098 0.183 0.107

(0.1) (0.032) (0.050) (0.070) 0.062
λ 0 1 0.024

(0) — — (0.710) 0.723
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Table 2.8: 600 observations, true λ = 0, average number of events is 220
Parameters Estimate (SD) Estimate (SD) Estimate (SD) Mean of SD’s

(True Values) assuming assuming with λ based on observed
λ = 0 λ = 1 estimated information matrix

α0 0.026 0.017 0.027
(0) (0.155) (0.156) (0.156) 0.163
α1 1.517 1.500 1.519

(1.5) (0.167) (0.167) (0.172) 0.161
α2 -1.034 -1.008 -1.037

(-1.0) (0.269) (0.272) (0.273) 0.278
β1 1.009 1.376 1.008

(1.0) (0.211) (0.174) (0.276) 0.271
β2 1.567 1.024 1.579

(1.5) (0.335) (0.271) (0.418) 0.436
γ 3.043 2.762 3.055

(3.0) (0.167) (0.151) (0.212) 0.219
τ 0.097 0.181 0.100

(0.1) (0.022) (0.034) (0.038) 0.039
λ 0 1 0.013

(0) — — (0.425) 0.464

Table 2.9: Coverage rates of parameters
Parameters Size 300 Size 600 Size 300 Size 600

λ = 1 λ = 1 λ = 0 λ = 0
α1 96.40 95.60 94.20 93.60
α2 91.40 94.40 94.00 95.20
β1 94.40 95.00 95.60 94.80
β2 93.00 95.00 94.60 95.80
λ 91.60 95.00 99.40 99.00

Power 15.40 39.60 18.00 44.60
Size 3.40 2.40 4.20 2.60

are all relatively unbiased. There appears to be almost no increase in the variance of

α̂ due to the estimation of λ, but the inflation in the variance of β̂ due to estimation

of λ is more substantial. The parameter estimate of λ has a larger bias compared

to that from the previous simulation study. The variance estimate of λ̂ is also larger

than that in the previous study. Larger sample sizes help decrease the bias and

the variance estimate of λ̂. This suggests that when there are overlapping covariates

associated with the two components of the model, it will be difficult to obtain precise

estimates of λ unless the sample size is large.
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2.5 Application

For illustration we applied our family of cure models to two data sets. One is a

small data set from the bone marrow transplant study analyzed by Kersey, et al. in

1987. The other is a larger data set from a tonsil cancer study. The bone marrow

transplant data set consists of 91 patients, and the tonsil cancer data set has 672

patients.

2.5.1 Bone Marrow Transplant Study

In the bone marrow transplant study, 91 refractory acute lymphoblastic leukemia

patients were followed for 5 years, and their times of recurrence were recorded along

with their treatment methods. Among them, 46 patients were in the allogeneic

treatment group, and 45 were in the autologous treatment group. Sixty-eight patients

in total had recurrence, 33 in the allogeneic group and 35 in the autologous group.

The Kaplan-Meier plot in Figure 2.2 shows that the allogeneic group levels off at

around 2 years after treatment, and the autologous group levels off at around 1 year

after treatment. There are about 26% patients in the allogeneic group and about

20% in the autologus group that did not experience recurrence by the end of the

study. The absence of the event of interest for these patients suggests that a cure

model may be appropriate to analyze these data.

We fit our general family of cure models to these data. The profile likelihood

approach was used to estimate the parameters. The allogeneic group was used as

the reference group. Survival time was scaled into years. We searched in the range

for λ ∈ [−10, 5] with 0.01 intervals, and we obtained the maximum likehood at

λ̂ = −3.6. Table 2.10 presents the parameter estimates along with their standard

errors at different values of λ.
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Figure 2.2: Bone marrow transplant study: Kaplan-Meier plot

Table 2.10: Bone marrow transplant study: parameter estimates (full model)

Parameters λ = 0 λ = 1 λ = λ̂ λ = λ̂

(SE) (SE) (SE with λ fixed) (SE with λ estimated)
α0 0.30 0.26 0.46

(0.19) (0.19) (0.15) (0.87)
α1 0.19 0.22 0.17

Autologous vs Allogeneic (0.29) (0.26) (0.21) (0.95)
β1 0.69 0.75 1.25

Autologous vs Allogeneic (0.33) (0.26) (0.89) (1.00)
γ 1.30 1.14 2.21

(0.11) (0.10) (0.22) (0.99)
τ 1.01 1.43 0.15

(0.23) (0.27) (0.10) (0.61)
λ 0 1 -3.6

— — – (0.99)

logL -66.21 -67.26 -65.15



27

−10 −8 −6 −4 −2 0 2

−6
8.5

−6
8.0

−6
7.5

−6
7.0

−6
6.5

−6
6.0

−6
5.5

lambda

log
like

liho
od

Figure 2.3: Bone marrow transplant study: : log likelihood vs λ (full model)
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Figure 2.5: Bone marrow transplant study: predicted population survival probability (full model)
for a fixed λ

The parameter estimates suggest that the autologous treatment group has a higher

risk of recurrence compared to the allogeneic group. However, this difference is not

statistically significant based on the Wald test. Furthermore, the chance of being

cured does not differ statistically between these two treatment methods. Fixing λ

to either 0 or 1 does not change the above conclusions. We observe a big increase in

terms of variance estimates due to estimating the index parameter λ. The likelihood

ratio test of λ = 1 versus λ = 0 yields LR = −2((−67.2591)(−66.2149)) = 2.0884 <

3.84, and therefore an insignificant inference on the difference of the mixture model

versus the bounded cumulative hazard model (Figure 2.3 through 2.5).

This lack of significance may be due to the strong correlation among parameters

γ, τ , and λ. The estimated correlation coefficient can be as high as 0.83 between γ̂

and λ̂. To address this issue, we considered the exponential distribution (a special

case of Weibull distribution) for S0(t). Specifically, we fixed parameter γ to be 1,

and refit our model with this assumption.

Again, the profile likelihood approach was used to estimate the model parameters.
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Table 2.11: Bone marrow transplant study: parameter estimates (reduced model)

Parameters λ = 0 λ = 1 λ = λ̂ λ = λ̂

(SE) (SE) (SE with λ fixed) (SE with λ estimated)
α0 0.29 0.27 0.26

(0.20) (0.19) (0.19) (0.54)
α1 0.18 0.21 0.21

Autologous vs Allogeneic (0.28) (0.27) (0.27) (0.85)
β1 0.48 0.65 0.67

(0.39) (0.25) (0.25) (0.28)
τ 0.95 1.43 1.53

(0.25) (0.28) (0.29) (0.47)
λ 0 1 1.20

— — – (0.76)

logL -69.71 -68.28 -68.25

The allogeneic group was used as the reference group. Survival time was scaled into

years. We searched in the range for λ ∈ [−10, 5] with 0.01 intervals and obtained the

maximum likehood at λ̂ = 1.2. Table 2.11 presents the parameter estimates along

with their standard errors at different values of λ.
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Figure 2.6: Bone marrow transplant study: log likelihood vs λ (reduced model)

The results suggest that there is no statistically significant difference in terms

of the cure rate between these two treatment groups. However, the autologous



30

0 1 2 3 4 5 6

0.0
0.2

0.4
0.6

0.8
1.0

Years Since Treatment

Su
rvi

va
l P

rob
ab

ility

Allogeneic

Autologus

Figure 2.7: Bone marrow transplant study: predicted population survival probability (reduced

model) at λ̂
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Table 2.12: Tonsil cancer Study: patient demographics part 1
Covariates Mean S.D.
Total Dose 58.18 9.36
Age (10 yr) 6.01 1.11
Duration 3.69 1.34

Table 2.13: Tonsil cancer study: patient demographics part 2
Covariates Frequency Percent

Gender Female 201 29.91
Male 471 70.09

Node No 286 42.56
Yes 386 57.44

T-Stage 1 96 14.29
2 259 38.54
3 254 37.80
4 63 9.38

treatment group has a significantly higher risk of recurrence compared to the al-

logeneic group. The likelihood ratio test of λ = 1 versus λ = 0 yields LR =

2((−68.2752)(−69.7141)) = 2.8778 < 3.84, and therefore the difference between the

two cure models is insignificant. Again we are not able to distinguish the mixture

model from the bounded cumulative hazard model based on our model (Figure 2.6

through 2.8). Since our data set only has 91 patients, it is very difficult to obtain a

precise estimate for the Box-Cox transformation parameter λ based on such a small

sample. A larger sample size will be needed if λ is one of the parameters of interest.

2.5.2 Tonsil Cancer Study

To see how this model works in a larger data set, we also applied it to a tonsil

cancer study which had 672 patients with 206 events. Patients were followed up to

15 years, and baseline information including age, gender, node, tumor stage, total

dose, and treatment duration was collected along with the time from treatment to

cancer recurrence. The patient demographics are presented in Table 2.12 and 2.13.

The Kaplan-Meier plot in Figure 2.9 shows that the survival distribution starts
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to level off at around 3 years, and that there are about 70% patients who did not

experience an event even with a 15-year follow-up period. It will be appropriate to

use a cure model to fit this data.
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Figure 2.9: Tonsil cancer study: Kaplan-Meier plot

After dropping the insignificant covariates, we are left with the model presented

in Table 2.14. The results show that compared to the T-stage 1 group, the T-stage

3 and 4 groups are significantly lower in the cure rate. Also higher total dose will

increase the cure rate. There is a statistically significant association between node

and cure rate as well. On average age has a negative effect on tonsil cancer survival

probability. These findings are presented graphically in Figure 2.10 through Figure

2.14. If we limit λ ∈ [0, 1], then the likelihood ratio test of λ = 1 versus λ = 0 yields

LR = 2(−507.868 − (−513.434)) = 11.13 , suggesting that, statistically speaking,

the bounded cumulative hazard model is a better fit to these data compared to the

mixture model, as shown in Figure 2.15. Instead of increased variance estimates due

to estimating λ, we observe a decrease in variance estimates for the parameters in

p(Z) and stable variance estimates for the parameters in S0(t). We believe this is
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Table 2.14: Tonsil cancer study: parameter estimates

Parameters λ = 0 λ = 1 λ = λ̂ λ = λ̂

(SE) (SE) (SE with λ fixed) (SE with λ estimated)
p

Intercept -1.02 -0.93 -1.17
(1.00) (1.00) (0.66) (0.40)

T-stage 2 0.61 0.64 0.45
(0.58) (0.94) (0.46) (0.29)

T-stage 3 1.42 1.43 1.17
(0.55) (0.88) (0.46) (0.29)

T-stage 4 1.91 1.87 1.47
(0.68) (1.00) (0.47) (0.30)

Node 0.43 0.40 0.35
(0.98) (1.00) (0.12) (0.12)

Total Dose -0.02 - 0.02 -0.01
(0.02) (0.03) (0.006) (0.005)

S0

Age (per 10 yr) -0.27 -0.25 -0.33
(0.04) (0.11) (0.05) (0.06)

γ 1.17 1.09 1.52
(0.06) (0.21) (0.11) (0.12)

τ 4.73 5.03 3.30
(1.00) (1.00) (1.00) (1.01)

λ 0 1 -3.81
— — – (0.99)

logL -507.87 -513.43 -500.86
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Figure 2.10: Tonsil cancer study: predicted population survival probability, λ = MLE, node = 1,
dose = 58, age = 60
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Figure 2.11: Tonsil cancer study: predicted population survival probability, λ = MLE, node = 0,
dose = 58, age = 60
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Figure 2.12: Tonsil cancer study: predicted population survival probability, λ = MLE, dose = 58,
T-stage = 3, age = 60
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Figure 2.13: Tonsil cancer study: predicted population survival probability, λ = MLE, node = 0,
T-stage = 3, age = 60
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Figure 2.14: Tonsil cancer study: predicted population survival probability, λ = MLE, node = 0,
T-stage = 3, dose = 58
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Figure 2.15: Tonsil cancer study: predicted population survival probability, λ = MLE, node = 1,
T-stage = 4, dose = 58, age = 60

due to the fact that the covariates in these two parts of the model do not overlap.

We observe the similar behavior in the simulation results (Table 2.1 - 2.4).

2.6 Discussion

In this chapter, we developed a general family of cure models indexed by a Box-

Cox type transformation parameter λ. At different values of λ, the mixture model

formulation and the bounded cumulative hazard model become special cases of this

general family of cure model. By varying the values of λ, different intermediate

cure models can be considered and estimated. We showed that unbiased parameter

estimates can be obtained using the profile likelihood approach. The likelihood ratio

test can be used to compare these two existing formulations of cure models.

The aim of our research is the development of a general family of cure models to

include both the mixture model and the bounded cumulative hazard model. With

the same general purpose, Yin and Ibrahim (2006) proposed a unified approach to

model cure rate based on the transformation of the population survival function.
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Similar to our model, Yin’s approach also linked these two different formulations of

cure models based on one index parameter. However, the cure rate p derived from

Yin’s approach is a function of the index parameter, and sometimes it is difficult to

obtain a precise estimate of the index parameter. In contrast, we formulated our

model in the way that the cure rate p does not depend on the index parameter λ,

and λ can be considered as a nuissance parameter in certain studies. Hence, our

estimate of the cure rate p is more robust to the different choices of λ.

When applying our model to the two real data sets, we observe that the maximum

likelihood estimates of λ fall outside of the range [0,1]. When |λ| becomes very large,

it may introduce instability to the model estimation, and may also be difficult to

interpret the results. An alternative to the choice of λ is to restrict λ to the range

of [0,1], and thus we still have both the mixture model and the bounded cumulative

hazard model as the two special cases (i.e., λ = 0 or 1), and we also have the

intermediate cure models obtained from λ values between 0 and 1.

Our experience also indicates that for small samples, the likelihood function as a

function of λ is often quite flat. Thus, obtaining an accurate estimate of λ requires

a relatively large sample size, and may not be practical in many medical studies.

However, when we do have relatively large sample sizes, we showed in our simulation

studies that the profile likelihood approach can yield unbiased parameter estimates,

and estimating λ does not necessarily cause a significant increase in the variance

estimates of the parameters of interest.

Our family of cure models assumes a log-log link for the cure rate p. Future studies

could explore the possibility of logit link for p. Our model also assumes a Weibull form

for S0(t). It will be interesting to see other forms for S0(t) such as semiparametric or

nonparametric forms. For parameter estimation, we chose the maximum likelihood
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approach, but future investigations using Bayesian analysis could be performed to

obtain the posterior distributions for the parameters.



CHAPTER III

Joint Non-parametric Models of Longitudinal and Survival

Data

3.1 Introduction

In recent years, there have been an increasing number of medical studies collecting

both longitudinal biomarkers and survival information. In medicine, a biomarker

is frequently used as an indicator of a particular state within disease progression.

Longitudinal biomarkers are those markers measured repeatedly over a certain time

period. For example, in prostate cancer research patients are often followed starting

from cancer treatment until an event such as tumor recurrence or death occurs, or

the patients are lost to follow-up. Here, the PSA values are the biomarkers that

are measured repeatedly over the follow-up period. Another well-cited example is in

AIDS research where biomarkers such as CD4 lymphocyte counts or RNA viral loads

are measured routinely during patients’ visits over the follow-up period. Along with

these biomarkers, we also know the survival information such as the length of follow-

up for each patient and whether each patient experiences the event. This information

is typically referred to as survival data. Depending on the research question, a mixed

effects model is often used to model the longitudinal biomarkers, and a separate Cox

proportional hazard model is used for the survival data analysis.

Instead of modeling the longitudinal biomarkers and survival data separately, joint

39
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modeling of the longitudinal biomarkers and survival data has gained growing interest

recently. In the literature, two approaches have been proposed to carry out the joint

modeling: a two-stage model (Raboud et al. 1993, Tsiatis et al. 1995, Bycott and

Taylor 1998, Dafni and Tsiatis 1998) and a likelihood based joint model(DeGruttola

and Tu 1994, Faucett and Thomas 1996, Wulfsohn and Tsiatis 1997, Xu and Zeger

2001a, Xu and Zeger 2001b, Wang and Taylor 2001). It can be shown that the

likelihood based joint model effectively corrects bias and improves the efficiency of

parameter estimates, and therefore is preferrable to the two-stage model.

One important aspect of the joint modeling is the accurate representation of the

longitudinal biomarkers. It is typically assumed that for each patient there is a true

underlying biomarker process (curve) that is unobservable, and the observed longi-

tudinal biomarkers are the true values plus some noise such as measurement errors.

Past research has made extensive use of a linear mixed effects model with random

intercepts and slopes to model the biomarker process. However, when applying the

joint model to real medical data, we often observe a nonlinear trend in the longi-

tudinal biomarker trajectories. To accomodate this behavior, the likelihood based

joint model was extended to include various nonlinear parametric functional forms

to better represent the biomarker process(Pauler and Finkelstein 2002, Wu 2003, Yu

et al. 2004). These parametric assumptions are typically data driven, and often

times are not flexible enough to capture the curvatures of longitudinal trajectories

in different medical studies.

To address the issue of nonlinearity with a great degree of flexibility, nonparamet-

ric smoothing techniques have been proposed to model the longitudinal trajectories

(Brown, et al. 2005). Eiler and Marx (1996) proposed a penalized B-spline approach

(P-splines) based on a number of equally spaced B-splines, in which the variability
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of the associated coefficients is controlled by a penalty. In this research, we develop

a joint model in which the longitudinal biomarkers are modeled using penalized B-

splines following Eiler and Marx (1996) and Wen (2007) and linked with the survival

data using a proportional hazard model with time dependent covariates. Following

Fahrmeir, et al. (2004), a Bayesian algorithm is developed to fit the joint model.

This model provides a more parsimonious covariance structure for the random effects

in the longitudinal mixed model, and choosing the location of knots for the spline

basis is no longer an issue. The proposed model is applied to a prostate cancer study.

The rest of the chapter is organized as follows. In section 2, we provide some

background information. In section 3, we present the model and develop the Bayesian

estimation methods. In section 4, simulation studies are presented. In section 5, we

apply this model to a prostate cancer study. Section 6 gives some concluding remarks.

3.2 Background

In this section, we discuss the two main approaches used for joint modeling of the

longitudinal and survival data. We describe the two-stage model and the likelihood

based model, and we illustrate some of the difficulties in modeling the longitudinal

biomarker trajectories.

3.2.1 Two-stage Model

The main goal of a two-stage model is to fit the survival model (usually a Cox

model) with the true underlying longitudinal biomarker as a time-dependent covari-

ate. The issue here is that we do not know what the true longitudinal biomarker

is due to the periodic measurements of the biomarker and the measurement error.

Therefore, in the first stage, a mixed effects regression model is used to represent the

true longitudinal trajectory. Then at each event time, the biomarkers are assumed
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to be missing data and are imputed using this mixed model for all patients in the

risk set. This imputation is carried out across all event times and all risk sets. In

the second stage, these imputed biomarker values are treated as the true values at

the time of event and incorporated in the Cox model to estimate the risk of failure.

Tsiatis, et al. (1995) used this model on an AIDS study in which CD4 counts were

the longitudinal biomarker and death was the event of interest. In stage one, a linear

mixed model was used to model the logarithm of the CD4 counts and subsequently

derive the imputed values. In stage two, a Cox regression model with time dependent

covariates was fitted. They concluded that CD4 may not be a good surrogate marker

for death in AIDS patients. Bycott and Taylor (1998) used a random intercept plus a

Brownian motion error term to fit the CD4 data, and then performed the imputation

on the event times. This research suggested that the two-stage model can reduce

the bias in the parameter estimates in the survival model. However, it can be shown

that this method does not use the survival information in modeling the longitudinal

data, and therefore there is a loss of information and bias in parameter estimates.

3.2.2 Likelihood Based Joint Model

To better use the data, a likelihood based joint model has been proposed where the

likelihood of both longitudinal biomarkers and survival times is maximized simulta-

neously. Let Yi(t) and Zi(t) be the observed and true biomarker values, respectively,

for subject i at time t, i = 1, ..., n. Let mi be the number of repeated measure-

ments for subject i, so that Yi = (Yi1, ..., Yimi
) is the vector of observed longitudinal

biomarker values. Let Ti and ∆i be the observed survival time and survival indicator

for subject i. That is, Ti = min(Di, Ci) where Di is the event time and Ci is the

censoring time for subject i. ∆i is 1 if subject i has an event, and 0 otherwise. Let

Xi be the baseline covariates for subject i.
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For the longitudinal biomarkers, it is often assumed that

Yi(t) = Zi(t) + ei(t)

Zi(t) = Zi(t; βi).

Often a random effects model is used to model the longitudinal data with the as-

sumptions that ei(t) ∼ N(0, σ2
e) and βi ∼ N(β, Σ).

For the survival data, the survival times Ti are linked with the longitudinal

biomarkers through

λ(t) = g(Zi(t), Xi; θ),

where λ(t) can be hazard function in the case of porportional hazard model or a

one-to-one transformation of the survival times as in the accelerated failure time

model.

With the above assumptions, the joint likelihood function can be written as

n
∏

i=1

tmi
∏

t=t1

∫

f(yit|βi, σ
2
e)f(βi|β, Σ)f(Ti, ∆i|θ, βi)dβi,

where f(yit|βi, σ
2
e) is the normal density function of Yi(t), f(βi|β, Σ) is the density of

the random effects which takes a multivariate normal form here, and f(Ti, ∆i|θ) is the

density function derived from the survival model. By maximizing this joint likelihood

function, we can simultaneously estimate the parameters that control the longitudinal

biomarker process and those that describe the risk of failure, especially the parameter

that links the these two processes together. By borrowing the information from

each other, this joint modeling approach can correct bias and improve the efficiency

of parameter estimates, and therefore lead to a more accurate estimation of the

relationship between the longitudinal biomarker process and the risk of failure.

To apply this likelihood based joint model, DeGruttola and Tu (1994) analyzed an

AIDS study data set using a linear mixed model with single-knot quadratic regression
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splines to model the CD4 counts and a multiple linear regression model on survival

data. Faucett and Thomas (1995) considered a linear mixed model for longitudi-

nal biomarkers and proportional hazard model for the survival data, and the Gibbs

sampling technique was used for parameter estimation. Wulfsohn and Tsiatis (1997)

developed an EM algorithm to estimate this model. Xu and Zeger (2001a) adopted

a latent variable approach instead of a linear mixed model and used the MCMC

algorithm to estimate the parameters. Xu and Zeger (2001b) extended their latent

variable model to include multiple longitudinal biomarkers, and again the MCMC

algorithm was implemented for estimation. Wang and Taylor (2001) proposed to

model the longitudinal data with an integrated Ornstein-Uhlenbeck stochastic pro-

cess such that the mixed effects model and the Brownian motion structure are both

special cases, and an MCMC algorithm was developed to estimate the model.

These studies showed that the maximum likelihood estimates of the parameters

using the likelihood based method are efficient and unbiased, whereas those using

two-stage model are biased and inefficient. Due to the advantages of the likelihood

based joint model, we focus on this approach throughout the rest of this chapter.

3.2.3 Nonlinearity and Variation in the shape of Longitudinal Biomarker Trajectories

One important aspect of joint modeling is to model the longitudinal biomarkers.

As shown in Section 3.2.2, it is typically assumed that for each patient there is a true

underlying biomarker process (curve) that is unobservable to us, and the observed

longitudinal biomarkers are the true values plus some noise such as measurement

error. In the past, a linear mixed effects model with random intercepts and slopes

has been extensively used to model the biomarker process. However, when applying

the joint model to real medical data, we often observe a nonlinear trend in the

longitudinal biomarker trajectories. For example, in prostate cancer studies, the PSA
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Figure 3.1: Ten sample patients with different nonlinear PSA profiles

values for a patient may have a nonlinear trend. Figure 3.1 shows the longitudinal

trajectories of PSA following radiation therapy for 10 random patients. All of these

ten patients did not receive hormonal therapy initially, but a few of them received

hormonal therapy later in the course of the disease progression. We can clearly see

the nonlinear pattern of the PSA trajectories for some of these patients in this graph.

To deal with the nonlinearity, Pauler and Finkelstein (2002) modeled the PSA

trajectory with a two-piece linear spline within a non-linear hierarchical Bayesian

approach. Yu, et al. (2004) used a double exponential mixed effect model to de-

scribe the nonlinear PSA profile. Similarly, Wu (2003) used a nonlinear (multiphase

exponential decay) mixed effects model to describe the CD4 counts decline after HIV

infection.

By introducing nonlinearity into the longitudinal models, these approaches suc-
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cessfully modeled the biomarker process for their specific data sets. However, their

parametric assumptions are typically data driven, and may not be flexible enough

to capture the curvatures of longitudinal trajectories when there is a large variation

in the shape of the curves. Again using Figure 3.1 as an example, we can see that

the PSA trajectories typically start low due to the effect of radiation therapy. As

time passes, some patients see an exponential increase in their PSA values, while

other patients’ trajectories remain steadily low. In other words, the shape of PSA

trajectories can vary significantly among different patients. In this situation, the pre-

viously mentioned longitudinal models may not be adequate to model the biomarker

process. Therefore, a flexible model is required to accomodate the nonlinearity and

variation of the longitudinal trajectories.

To address the issue of nonlinearity with a greater degree of flexibility, nonpara-

metric smoothing techniques have been proposed to model the longitudinal tra-

jectories. There are many different types of smoothing methods, including spline

smoothers, kernel smoothers, local regression methods, wavelets, running medians,

etc. Brown, et. al. (2005) proposed to use cubic B-splines to model the profiles of

CD4 counts and a Cox model to link the longitudinal biomarkers to the risk of fail-

ure. The number of knots for the cubic B-splines was selected using the Conditional

Predictive Ordinate (CPO) and the Deviance Information Criterion (DIC).

While the cubic B-splines provide a flexible and robust estimation of the longitudi-

nal model, the random effects can have a large number of parameters in the covariance

structure, and it may be difficult to determine the number and the location of knots

for the B-splines. Eiler and Marx (1996) proposed a penalized B-spline approach (P-

splines) based on a number of equally space B-splines, in which the variability of the

associated coefficients is controlled by a penalty. Specifically, let (xi, yi), i = 1, ..., n,
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be the observed data. In B-spline context, we write ŷ(x) =
∑m

j=1 α̂jBj(x; q) where

Bj(x; q) is the jth B-spline of degree q. The least square objective function with a

continuous smoothing penalty is

S =
n

∑

i=1

(yi −

m
∑

j=1

αjBj(x; q))2 + λ

∫ xmax

xmin

(
m

∑

j=1

αjB
′′

j (x; q))2dx.

This continuous second order derivative can be approximated by the finite discrete

difference function. That is,

h2

m
∑

j=1

αjB
′′

j (x; q) =
m

∑

j=1

∆2αjBj(x; q − 2),

where h is the distance between knots, and ∆2αj = αj −2αj−1 +αj−1, a second order

difference function. Therefore, the least square objective function with the order k

finite difference penalty can be written as

S =
n

∑

i=1

(yi −
m

∑

j=1

αjBj(x; q))2 + λ

m
∑

j=k+1

(∆kαj)
2,

where k is the kth order of the difference function ∆. In the same way, the penalized

likelihood function is

logL = logL(y; α) +
λ

2

m
∑

j=k+1

(∆kαj)
2.

In the frequentist setting, we can maximize this penalized likelihood function to

obtain the maximum penalized likelihood estimates (MPLE) of the parameters. Wen

(2007) applied this P-spline method to joint modeling of longitudinal and survival

data and derived the MPLE this way. On the other hand, from the Bayesian per-

spective, we can specify a prior distribution for the parameters α = (α1, α2, . . . , αm)

in the form of

p(α|τ 2) ∝ exp(
αKα′

2τ 2
),
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where K is a penalty matrix that controls for the smoothness or the abrupt changes

in the objective function, and hence the matrix K serves the same purpose as the ∆k

in the penalized likelihood function above. Here τ 2 is like the smoothing parameter

in the frequentist setting. Fahrmeir, et. al. (2004) extended the penalized B-splines

model to space-time data and developed empirical Bayesian algorithm to estimate

the parameters.

In this chapter, we develop a joint model by adopting the Penalized B-spline

method to model the longitudinal biomarkers and link with the survival data using

proportional hazard model with time dependent covariates. A Bayesian algorithm is

developed to derive the posterior distribution, and the MCMC technique is used to

estimate the parameters.

3.3 Model and Method

3.3.1 Longitudinal Penalized B-Spline Model

Let Yi(t) be the observed biomarker value for subject i at time t, and Zi(t) be the

true underlying longitudinal trajectory for subject i, i = 1, ..., n. We define

(3.1) Yi(t) = Zi(t) + ei(t)

where ei(t) is the measurement error which is assumed to be independently dis-

tributed from N(0, σ2
e). Following Rice and Wu (2001),

(3.2) Zi(t) =

q1
∑

k=1

B1k(t)βk +

q2
∑

k=1

B2k(t)bik

where B1k and B2k are, respectively, the q1 and q2 dimensional B-spline basis func-

tions on [0, T ] with some fixed equally spaced knots. Here T is the maximum

follow-up time for all subjects. The quantity
∑q1

k=1 B1k(t)βk defines the fixed effects

representing the population mean curve, and the quantity
∑q2

k=1 B2k(t)bik defines the
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random effects capturing the individual variation. In matrix notation,

(3.3) Zi(t) = B1(t)β + B2(t)bi,

where β is a column vector of (β1, β2, ..., βq1
), and bi is a column vector of (bi1, bi2, ..., biq2

).

To control the variability of the coefficients β and bi and hence the smoothness or

curvature of the population and individual trajectories, we apply a penalty term to

these coefficients. Let K1 = D′

1D1 and K2 = D′

2D2 be the penalty matrix where D1

and D2 are the second order difference matrices in the form of

D =





















1 −2 1 0 . . . 0

0 1 −2 1 . . . 0

...
. . .

...

0 0 0 0 . . . 1





















.

We can then decompose the coefficients β and bi into unpenalized and penalized

parts. That is,

β = ΨUN
1 βUN + ΨP

1 βP(3.4)

bi = ΨUN
2 bUN

i + ΨP
2 bP

i(3.5)

where the matrix ΨUN
1 is a q1 × 2 matrix with the first column being constant 1 and

the second column containing the null space of the penalty matrix K1, the matrix ΨP
1

is a q1 × (q1 − 2) matrix defined by ΨP
1 = D′

1(D1D
′

1)
−1, βUN is a vector of dimension

2 × 1, and βP is a vector of dimension (q1 − 2) × 1. Similarly, the matrix ΨUN
2 is a

q2 × 2 matrix containing the null space of the penalty matrix K2, the matrix ΨP
2 is a

q2×(q2−2) matrix defined by ΨP
2 = D′

2(D2D
′

2)
−1, bUN

i is a vector of dimension 2×1,

and bP
i is a vector of dimension (q2 − 2) × 1. Clearly, βUN and bUN

i represent the

parts of β and bi that are not penalized by the penalty matrix K1 and K2, whereas
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βP and bP
i represent the deviations of the parameters β and bi from the null space

of the penalty matrix K1 and K2. In other words, the unpenalized part controls

the linear trend of the longitudinal trajectory through intercept and slope terms,

and the penalized part represents the curvature and smoothness of the longitudinal

trajectory through the penalties to the coefficients. Later in this chapter, we will

develop a Bayesian algorithm where prior densities will be placed on the parameters

βP , bUN
i , and bP

i to control the smoothness of both the population and the individual

trajectories.

Let Xi be the p baseline covariates including the intercept. We further specify

that the fixed effects βUN depend on these baseline covariates, that is,

(3.6) βUN
i = Xiγ,

where γ is some p × 2 matrix of fixed effects parameters. Therefore, the complete

longitudinal model based on the penalized B-splines is

(3.7) Yi(t) = B1(t)Ψ
UN
1 Xiγ + B1(t)Ψ

P
1 βP + B2(t)Ψ

UN
2 bUN

i + B2(t)Ψ
P
2 bP

i + ei(t)

3.3.2 Survival Model

Let Ti and ∆i be the observed survival time and survival indicator for subject i.

That is, Ti = min(Di, Ci) where Di is the event time and Ci is the censoring time

for subject i. ∆i is 1 if subject i has an event, and 0 otherwise. We assume the

longitudinal data is linked to the risk of failure through a proportional hazard model

with time dependent covariates,

(3.8) λ(t) = λ0(t)exp(αZi(t) + Xiφ).

Here, λ0(t) is the baseline hazard function, α is the coefficient that links the true

longitudinal curve to the risk of failure, and φ is the parameter that links the baseline

covariates to the risk of failure.
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3.3.3 Joint Model

Let θ = (γ, βP , σ2
e), and ωi = (bUN

i , bP
i ).

For subject i, the contribution to the likelihood from the longitudinal model is

L(θ, ωi|yi(t)) =
1

√

2σ2
e

exp(−
1

2σ2
e

[yi(t) − B1(t)Ψ
UN
1 Xiγ − B1(t)Ψ

P
1 βP

−B2(t)Ψ
UN
2 bUN

i − B2(t)Ψ
P
2 bP

i ]2)(3.9)

The contribution to the likelihood from the survival model is

L(α, φ|Ti, ∆i) = λ0(Ti)
∆iexp(∆i[αZi(Ti) + Xiφ])

exp(−

∫ Ti

0

λ0(u)exp(αZi(u) + Xiφ) du)(3.10)

The likelihood function conditional on the data from the joint longitudinal and

survival model is

L(θ, ω1, ...ωn, α, φ|Y, T, ∆) =
n

∏

i=1

tmi
∏

t=t1

1
√

2σ2
e

exp(−
1

2σ2
e

[yi(t) − B1(t)Ψ
UN
1 Xiγ

−B1(t)Ψ
P
1 βP − B2(t)Ψ

UN
2 bUN

i − B2(t)Ψ
P
2 bP

i ]2)

λ0(Ti)
∆iexp(∆i[αZi(Ti) + Xiφ])

exp(−

∫ Ti

0

λ0(u)exp(αZi(u) + Xiφ) du).(3.11)

3.3.4 Priors and Posterior Distributions

To control the smoothness of both the population and the individual longitudinal

trajectories, we apply the Bayesian approach to the joint model. The prior distri-

butions for the longitudinal model parameters are assumed to be γ ∼ constant,

bUN
i ∼ N(0, Σ), βP ∼ N(0, σ2

β), and bP
i ∼ N(0, σ2

b ), where Σ is a 2 × 2 matrix in the

form of

Σ =







σ2
b1 σb1,b2

σb1,b2 σ2
b2






.



52

Compared to Brown et. al. (2005), these assumptions yield a more parsimonious

covariance structure for the random effects. For the other parameters in the joint

model, we assume the following prior densities: σ2
e ∼ IG(a, b), α ∼ N(0, σ2

α), and φ ∼

N(0, σ2
φI). Furthermore, we also assume conjugate hyperpriors for σ2

β ∼ IG(κ1, κ2),

σ2
b ∼ IG(υ1, υ2), and Σ ∼ IWν(V ). Here, we choose noninformative priors where

a = 0.001, b = 0.001, σ2
α = 100, σ2

φ = 100, κ1 = 0.001, κ2 = 0.001, υ1 = 0.001,

υ2 = 0.001, ν = 2,

V =







0.1 0

0 0.1






.

The posterior distribution is proportional to the product of the likelihood function

and the prior densities of the parameters, that is,

ÃL(θ, ω1, ...ωn, α, φ|Y, T, ∆)

×f(σ2
e)f(γ)f(bUN

i |Σ)f(βP |σ2
βP )f(bP

i |σ
2
bP )f(α)f(φ)f(σ2

βP )f(σ2
bP ][Σ)(3.12)

3.3.5 MCMC Estimation

Some parameters have closed form conditional posterior distributions.

[σ2
e | •] ∼ IG(a +

N

2
, b +

∑

i

∑

t(yit − Zit)
2

2
)

[σ2
βP | •] ∼ IG(κ1 +

N

2
, κ2 +

N(βP )′(βP )

2
)

[σ2
bP | •] ∼ IG(υ1 +

N

2
, υ2 +

∑

i(b
P
i )′(bP

i )

2
)

[Σ | •] ∼ IWN+ν(
∑

i

(bUN
i )(bUN

i )′ + V )

For the rest of the parameters, since it is not feasible to sample directly from the

posterior conditional distribution, we implement the Metropolis-Hastings (MH) al-

gorithm to build a Markov chain of random samples from the posterior distributions.

The MH algorithm requires sampling from a known proposal density and uses MH
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steps to update the MCMC chain. Here, we use a normal proposal density with the

accepted parameter values from the previous step as the new mean, and the variance

of the proposal normal density is tuned to achieve a certain acceptance rate (20% and

above). Due to the large number of parameters, we use Gibbs sampling algorithm

to update each parameter from the conditional distribution given all the other pa-

rameter estimates from the previous step. The autocorrelation of the MCMC chain

is taken into account by identifying the appropriate burn-in period and only keeping

every tenth value in the chain. Trace plots are visually examined for proper mixing

of chains. Different starting values are used to examine the convergence.

3.4 Application

We applied our method to prostate cancer data that we obtained from the Ra-

diation Therapy Oncology Group and the BC Cancer Agency in Vancouver. The

data included both repeated longitudinal measurements of PSA values and survival

information such as time of tumor recurrence (local, nodal, and distant metastasis),

death from prostate cancer, and loss to follow-up. Also included was baseline infor-

mation such as age, tumor stage, baseline PSA value, Gleason score, radiation dose,

and radiation duration. We focus our attention to those patients who received both

radiation therapy and planned hormonal therapy as the primary treatment method

because the longitudinal PSA trajectories from these patients had a much larger

variation in shape compared with those from the patients who did not receive initial

hormonal therapy. Due to the heterogeneity in the shapes of the PSA trajectories,

the parametric models have great difficulty fitting these data.
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3.4.1 The Data

The data we used in our application consisted of 2434 patients in total, 280 from

study RTOG9406, 560 from study RTOG9202, 517 from the BC Cancer Agency, and

1077 from study RTOG9413.

RTOG9202 study was a phase III clinical trial to evaluate the effectiveness of

elective versus therapeutic androgen deprivation and disease progression. Study

subjects recruited for this trial were late stage prostate cancer patients. They had

a clinical T-stage ranging from T2C, T3 and T4. About 20% of these subjects had

a Gleason score between 2 and 5, about 21% had a Gleason score of 6, and 59%

had a Gleason score of 7 to 10. The logarithm transformed baseline PSA values of

these subjects had an average of 3.1 with a range of 0.12 to 5.53. All patients in this

study were administered hormonal therapy before radiation. About half of them got

a short period of planned hormonal therapy which ended at the end of radiation, and

the other half got a longer period of planned hormonal therapy which ended about

two years after the end of radiation therapy. The 560 patients we chose to include

in our application were those who received the shorter schedule of planned hormonal

therapy for a larger variation of the shapes of the longitudinal PSA trajectories.

Study RTOG9406 was a phase I/II clinical trial with a dose escalation schedule

intended to find the maximum tolerable dose. The study subjects in this trial were

primarily early and mid stage prostate cancer patients. Roughly 46% of the patients

had a tumor stage of 1, 44% had a tumor stage of 2, and only 10% had a tumor

stage of 3 and 4. About 11% of these patients had a Gleason score between 2 and

5, 78% had a Gleason socre of 6 and 7, and only 11% had a Gleason score of 8 to

10. The logarithm transformed baseline PSA values of these subjects had an average

of 3.26 with a range of 0.09 to 4.25. For the same purpose as above, we chose 280
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patients who had induction hormonal therapy ending within one year from the end

of radiation to include in our application.

Study RTOG9413 was a phase III clinical trial to compare the survival probability

among radiation treated patients with different types of planned hormonal therapies.

The study subjects recruited into this trial were mostly mid to late stage prostate

cancer patients. Among these patients, about 14% have a tumor stage of 1, 52% had

a tumor stage of 2, and 33% had a tumor stage of 3 and 4. In terms of the Gleason

score, 2% patients had a Gleason score between 2 and 5, 25% had a Gleason score

of 6, 44% had a Gleason score of 7, and 29% had a Gleason score of 8 to 10. The

logarithm transformed baseline PSA values of these subjects had an average of 3.1

with a range of 1.1 to 4.6. Again, for the same reason, 1077 patients with planned

hormonal therapy ending within one year from the end of radiation were chosen to

be included in our application.

We also received prostate cancer data from the BC Cancer Agency. The study

subjects recruited into this cancer registry were mostly early to mid stage prostate

cancer patients. Among these patients, about 22% have a tumor stage of 1, 61% had

a tumor stage of 2, and 17% had a tumor stage of 3 and 4. In terms of the Gleason

score, 39% patients had a Gleason score between 2 and 5, 32% had a Gleason score

of 6, 22% had a Gleason score of 7, and 6% had a Gleason score of 8 to 10. The

logarithm transformed baseline PSA values of these subjects had an average of 2.6

with a range of 0.3 to 5.4. The 517 study subjects we included in our study all

received planned hormonal therapy ending within one year from the end of radiation

therapy.

By combining these four cohorts together, we had a well balanced sample of pa-

tients with all stages of cancer progression. While the hormonal therapy tended to
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keep PSA values low while it was in effect, the restriction that planned hormonal

therapy had to end within one year of the end of radiation therapy ensured a wide

range of trends in the longitudinal PSA trajectories. After the end of planned hor-

monal therapy, some patients saw a fast exponential increase in PSA levels whereas

other patients were able to maintain a steady low PSA profile, possibly due to the

lingering effects of the initial hormonal therapy. As the residual effect from the initial

hormonal therapy wore off, the PSA values of some patients started to grow higher

after the plateau, whereas others remained low and leveled off all the way until the

last day of observation. For these patients, the radiation therapy may have cured

the patients by eliminating the cancer cells. Figure 3.1 shows the different patterns

of some sample patients.

The patients with follow-up times of less than one year were excluded from the

study. Out of these 2434 patients, we randomly sampled 1934 patients to create

our training dataset, and the rest of the 500 patients became our test dataset. We

used the training set to build our joint model and used the test set to assess the

performance of the joint model. The training set consisted of 19527 PSA measure-

ments. For the test set, patients were arbitrarily censored at 3 years or 5 years.

Those who did not have follow-up time long enough to reach 3 years or 5 years

were excluded from the test sets. This left 417 patients for the 3-year test set with

2943 PSA measurements, and 333 patients for the 5-year test set with 3275 PSA

measurements.

Baseline information including T-stage, Gleason score, baseline PSA, radiation

dose, radiation duration, and age were recorded together with salvage hormonal

therapy information. The event of interest was defined to be clinical tumor recur-

rence, which included local recurrence, regional recurrence, and distant metastasis,
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Table 3.1: Patients Demographics: T-stage, Gleason Score, Hormonal Therapy
Covariate Training set 3-year test set 5-year test set

T-stage 1 or 2 1156 (59.77%) 256 (61.39%) 209 (62.76%)
3 or 4 778 (40.23%) 161 (38.61%) 124 (37.24 %)

Gleason score < 7 731 (37.79%) 156 (37.41%) 133 (39.94 %)
7+ 1203 (62.21%) 261(62.59%) 200 (60.06 %)

salvage hormonal therapy Yes 244 (12.62%) 63 (15.11%) 50 (15.02%)
No 1690 (87.38%) 354 (84.89%) 283 (84.99%)

Event Yes 389 (20.11%) 57 (13.67%) 36 (10.81%)
No 1545 (79.89%) 360 (86.33%) 297 (89.19%)

Table 3.2: Patients Demographics: Baseline PSA, Total Dose, Age, Treatment Duration
Covariate Mean (S.D.)

Training set 3-year test set 5-year test set
log(Baseline PSA + 1) 2.93 (0.79) 2.86 (0.78) 2.89 (0.79)

Total Dose 70.16 (3.79) 70.11 (3.96) 70.00 (3.90)
Age 69.21 (6.58) 69.51 (6.26) 69.52 (6.33)

Treatment Duration (days) 53.95 (6.18) 54.08 (6.28) 53.86 (5.26)

or death from prostate cancer. Patients who did not have a clinical recurrence or

did not die from prostate cancer were censored at the last contact date or date of

death from other causes. Only PSA measurements prior to an event or censoring

were used in the model. For patients who have later salvage hormonal therapy, PSA

measurements after the date of hormonal therapy were excluded from modeling.

Table 3.1 presents the frequencies of the baseline T-stage, Gleason score, salvage

hormonal therapy, and events. Table 3.2 presents the summary statistics of the

continuous variables.

3.4.2 The Model Built on the Training Set

We follow the same joint model framework as described in the Section 3.3 to fit

the training set using all available patients and all PSA measurements in this set.

For simplicity, B1(t) and B2(t) are assumed to be the same B-spline basis with the

same equally spaced knots, and therefore are both denoted as B(t). We chose to have

11 equally spaced knots between 0 and 12.27 years which is the maximum follow-up
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time in our training set. The baseline hazard was assumed to be a step function. All

baseline covariates enter the longitudinal and survival models. In addition, the slope

of the PSA trajectory calculated using the linear combination of the derivatives of the

B-spline bases B(t) also entered the proportional hazard model as a time-dependent

covariate. An indicator variable was created to indicate the administration of salvage

hormonal therapy, and is included in the survival model as well.

Therefore, the longitudinal model in (3.7) becomes

(3.13) log(PSAit+1) = B(t)ΨUNβUN
i +B(t)ΨPβP +B(t)ΨUNbUN

i +B(t)ΨP bP
i +eit

βUN
i =







γ10 + γ11log(BaselinePSAi + 1) + γ12Tstagei + γ13Gleasoni

γ20 + γ21log(BaselinePSAi + 1) + γ22Tstagei + γ23Gleasoni







and the survival model in (3.8) becomes

λ(t) = λ0(t)exp(α1
ˆlog(PSAi(t) + 1) + α2

∂ ˆlog(PSAi(t) + 1)

∂t

+φ1log(BaselinePSAi + 1) + φ2Tstagei + φ3Gleasoni + φ4HTi(t)).

Here, ˆlog(PSAi(t) + 1), the slope, and HT (t) are time-dependent covariates.

HT (t) is a binary variable which takes 1 if a patient has had salvage hormonal

therapy at time t and 0 otherwise. Tstage takes value 0 if the tumor stage is 1 or

2, and 1 if the tumor stage is 3 or 4. Gleason takes value 0 if the Gleason score

is between 2 and 6, and 1 if the Gleason score is between 7 and 9. Note that the

treatment duration, total radiation dose, and age are omitted from our model due

to their statistically insignificant effects.

All priors are chosen to be noninformative priors as described in Section 3.4. To

generate the starting values for the MCMC chains, we did preliminary analyses on
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the data using a linear mixed model and a Cox proportional hazard model. We used

PROC MIXED to fit the longitudinal model, and took the fixed effects output as the

starting values for the MCMC chains for parameters γ and βP . The starting values

for the random effects parameters were set to zero. For some patients, we had to

adjust the starting values of the random effects parameters to achieve convergence.

We also used PROC PHREG to fit the Cox proportional hazard model with the

last observed PSA value (log(PSA(t) + 1)), the slope of the the PSA trajectory

calculated using the last two observed PSA values, and the hormonal therapy status

as the time dependent covariates, along with baseline PSA, T-stage and Gleason

score in the model. We took the SAS output to be the starting values for the

survival model parameters (α and φ). In the MH steps, the proposal densities were

all normal densities with the accepted values from previous step as the new means,

and the variances were selected to ensure an acceptance rate of minimum 20%. For

example, the proposal density for γ1 was γ
(s)
1 ∼ N(γ

(s−1)
1 , σ2

γ1
), where s was the s-th

step.We ran 20000 iterations with the first 10000 iterations being burn-in period. For

the rest of the 10000 iterations, we kept only the draws from every 10th iteration.

Our analysis concluded that age, total dose, and treatment duration did not have

a statistical significant effect on the PSA value or risk of event, therefore they were

not included in our final model. The parameter estimates from the training set are

shown in table 3.3.

This analysis suggested a statistically significant positive association between the

slope of PSA and risk of tumor recurrence or death from prostate cancer. Our

previous analysis showed that without the slope of PSA in the model, the current

PSA value has a strong positive association with the risk of failure. With the inclusion

of the slope, the current PSA value is no longer significant. Also, the T-stage and
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Table 3.3: Parameter Estimates
Parameter Estimate S.D. Lower 2.5% Upper 2.5%
Longitudinal Part
Intercept -0.05 0.04 -0.10 0.05
log(baseline PSA + 1) 0.14 0.01 0.12 0.16
T-stage 0.08 0.02 0.04 0.13
Gleason -0.02 0.02 -0.06 0.03
Intercept*t -0.42 0.04 -0.49 -0.35
log(baseline PSA + 1)*t 0.23 0.01 0.21 0.25
T-stage*t 0.18 0.01 0.16 0.22
Gleason*t 0.25 0.02 0.22 0.29
Survival Part
T-stage 0.31 0.14 0.04 0.57
Gleason 0.32 0.15 0.04 0.63
log(baseline PSA + 1) 0.14 0.09 -0.02 0.31
PSA(t) -0.01 0.03 -0.06 0.06
Slope of PSA(t) 1.11 0.12 0.90 1.31
Salvage Hormonal Therapy 0.001 0.17 -0.33 0.33

Gleason score are both significant, and higher T-stage or Gleason score is associated

with higher risk of failure. Baseline PSA and salvage hormonal therapy are not

significant in our model. One possible explanation is that all patients in our data

have had initial planned hormonal therapy, and these patients may have developed

a resistance to further hormonal therapy, thereby eliminating the effectiveness of the

salvage hormonal therapy in reducing the risk of tumor recurrence or death.

Due to the P-spline formulation of our longitudinal model, it was difficult to inter-

pret each individual parameter estimate associated with the B-spline basis. Instead,

we used the Bayesian draws to generate 1000 estimated PSA trajectories for each in-

dividual. Figure 3.2 and 3.3 show the median and 95% credible interval for 8 sample

longitudinal trajectories. The solid vertical lines are the times of event or censoring.

The dashed vertical lines are the times of salvage hormonal therapy. The little stars

in the graphs are the value of log(baselinePSA + 1). Table 3.4 summarizes the av-

erage percentage of observed PSA values that fall within the 95% credible interval.

There are altogether 19527 PSA values in the training set, and 18629(98.40%) of
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Table 3.4: percentage of observed PSA values within the 95% CI
Training set 3-year test set 5-year test set

Total # observed PSA 19527 1633 655
Percentage within 95% CI 95.40% 96.02 % 94.50 %

Total # patients 1934 343 228
Average percentage within 95% CI 94.77 % 94.69 % 95.29 %

them fall within the 95% credible interval. On the individual level, we can calculate

the coverage rate of the credible interval for each patient, and then compute the

average of these coverage rates over 1934 patients in the training set. On average

a patient has about 94.77% of the observed PSA measurements included within the

95% credible interval.

To check the proper mixing of the Markov chains, trace plots are graphed and

visually examined. Figures 3.4 show eight samples of the trace plots. We can see

that the correlation among consecutive iterations of the Markov chains is not very

strong.

3.4.3 Validation Based on the Test Set

We then made predictions for the patients in the test set using the joint model

that we built from the training set. We used the samples of fixed effects parameters

(γ, βP , α, φ, σ2
e , σ2

b , Σ) from the training set model, and ran smaller size MH draws

on the test sets to generate MCMC chains for the random effects parameters (bUN
i

and bP
i ). We generated 200 MH draws of these random effects parameters based on

each fixed effects parameter draw, and kept the last value. This yielded 1000 samples

of every parameter in our model. We then calculated the predicted individual PSA

trajectory beyond the censoring year (3 or 5 year) until year 12.27 and their credible

interval (Figure 3.5 and 3.6) based on the longitudinal model of (3.11) with the

same baseline covariates as in the training model. Table 3.4 summarizes the average
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Figure 3.2: Sample patients with observed PSA values and estimated PSA trajectories and their
95% credible intervals
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Figure 3.3: Sample patients with observed PSA values and estimated PSA trajectories and their
95% credible intervals
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percentage of observed PSA values that fall within the 95% credible interval over all

patients in the test sets. For example, when we censor the test set on year 3, there

are altogether 1633 PSA values measured after year 3 from 343 test patients. Among

these 1633 observed PSA values, 1568 (96.02%) of them lie within the 95% credible

interval. And if we look at the individual-level prediction, on average a patient has

about 94.69% of the observed PSA measurements included within the 95% credible

interval. We see similar results when we censor the test set on year 5, suggesting a

well-constructed 95% credible interval.

To validate the survival model, we calculated the predicted survival probability

conditional on information up to the censoring year (3 or 5 year). That is, for patient

i,

P (t > Tj|t > Ti) = exp(−

∫ Tj

Ti

λ(u; ˆlog(PSAi(u) + 1),
∂ ˆlog(PSAi(u) + 1)

∂u
,

HTi(u), Xi, α̂1, α̂2, φ̂1, φ̂2, φ̂3, φ̂4)du),

where Ti < Tj <= t and Ti = 3 or 5 depending on where we censor the test set,

and Xi are baseline covariates including T-stage, Gleason and log(baseline PSA+1).

Specifically, we have 1000 samples of each of the parameters in this hazard model.

We can then construct 1000 estimated survival probability curves for each individ-

ual. The median survival probability and its assoociated 95% credible interval are

therefore obtained using a sample median and 95% quantiles from these 1000 survival

estimates.

Figures 3.7 and 3.8 show the plot of predicted conditional survival probabilities

with 95% credible interval for eight sample patients from the two test sets. Table 3.5

shows the predicted number of events obtained from our model versus the expected

number of events based on Kaplan-Meier estimates in the two test sets. We can see
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Figure 3.5: Predicted PSA trajectory beyond the censoring year 3
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Figure 3.6: Predicted PSA trajectory beyond the censoring year 5
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Figure 3.7: Predicted conditional survival probability beyond the censoring year 3
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Figure 3.8: Predicted conditional survival probability beyond the censoring year 5
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Table 3.5: Number of predicted and observed events in the test sets
1 year 2 years 3 years

3-year test set
Predicted number of events 12 26 40
Expected number of events 10 24 42

5-year test set
Predicted number of events 13 22 34
Expected number of events 13 24 39

that the predicted number events using our model is reasonably close to the expected

number of events using Kaplan-Meier estimates.

3.5 Conclusion

In medical studies, we often observe both patients’ longitudinal biomarkers and

their survival status. The joint modeling of these two data components has been

shown to be advantageous compared to two-stage models. In this chapter, we pro-

posed a joint non-parametric model by adapting the penalized B-splines approach

proposed by Eiler and Marx to model the longitudinal biomarker process, and link-

ing it with the risk of failure by the Cox proportional hazard model. Compared to

parametric assumptions on the longitudinal biomarker process, the non-parametric

model does not require the longitudinal trajectories to follow a certain shape or

trend, and hence has a much larger degree of flexibility in terms of accommodating

the nonlinearity and variation in the longitudinal trajectories. This feature allows

our model to be widely applied to various type of medical studies such as cancer and

HIV studies.

Brown et. al. (2005) modeled the longitudinal trajectories with cubic B-splines,

which has a relatively large number of parameters to estimate for the random effects

covariance structure. We used penalized B-splines approach which effectively reduced

the number of parameters one has to estimate. The penalized B-splines approach was
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based on a number of equally spaced B-splines, and hence there is no issue in terms of

determining the location of knots for the B-splines. We developed Bayesian algorithm

to estimate the parameters of our joint model, and derived posterior distributions

assuming noninformative priors. When the conditional posterior distributions for

certain parameters do not have closed form, the Metropolis-Hastings technique was

used to estimate these parameters.

We applied our model to prostate cancer data using about three quarters of the

data as a training set to build our model and estimate parameters, and about one

quarter of the data as a test set to validate our model and evaluate the predic-

tion performance. From this data application, we concluded that the slope of PSA

trajectory, T-stage, and Gleason score are all positively associated with the risk of

tumor recurrence and death from prostate cancer. Baseline PSA values and salvage

hormonal therapy are not significant risk factors. Using the validation data, we

demonstrated that the predicted PSA trajectories followed the observed PSA values

reasonably closely, the coverage rates of the 95% credible intervals for the predicted

PSA trajectories are fairly close to the theoretical value. We also computed the

conditional survival probabilities given the information up to the censoring year for

the test sets, and the predicted number of events within the first three years after

censoring is reasonably close to the observed number of events. However, more sim-

ulation studies are needed to better understand our model. In the next chapter,

we will present some simulation results to further evaluate the performance of the

survival predictions from our model.



CHAPTER IV

Evaluation of Predicted Conditional Survival Estimates

Using Absolute Distance Measures

4.1 Introduction

In cancer clinical practice, it is often of interest to predict the survival outcome of a

cancer patient. An accurate prediction of disease outcome can help clinicians to tailor

therapies for unique patients, to better make difficult clinical decisions, or to select

certain patients for clinical trials. Patients can also use this knowledge to improve

their quality of life. In recent years, many prognostic models have been proposed to

facilitate the prediction of survival outcome. In the previous chapter, we proposed a

nonparametric joint model to analyze survival and longitudinal data simultaneously.

Specifically, we modeled the longitudinal trajectories with the penalized B-splines,

and linked them to the risk of failure using a Cox proportional hazard model. We

developed a Bayesian algorithm to estimate the model. In this chapter, we focus on

the predictive power of our model by examining the conditional survival probability

estimates derived from this joint model.

For any prognostic model, before being applied to any future patients, it is im-

portant to evaluate the predictive accuracy of the model. In the previous chapter,

we applied the joint model to prostate cancer data where a training set was used to

build the model and a test data set was used to evaluate the predictions. We showed

72
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that the predicted number of events within the first three years after censoring was

reasonably close to the expected number of events. In this chapter, we conduct a

simulation study to evaluate the predicted conditional survival probability estimates

using absolute distance measures.

The rest of the chapter is organized as follows. In section 2, we present some

background information on the measures developed in the literature to assess the

predictive accuracy of a prognostic model. In section 3, we describe the measures

that we use in our simulation study to compare three alternative approaches to model

the longitudinal and survival data with our joint model from chapter 3. In section

4, we give the details of our simulation study design and results. We also present

some results from the data application. In section 5, we close this chapter with some

conclusions and discussions.

4.2 Background

In the field of survival data analysis, various measures of predictive accuracy have

been proposed to evaluate prognostic models. In this section, we summarize the two

main types of measures: the ROC based measure and the proportion-of-explained-

variation (R2) based measure.

4.2.1 The ROC Based Measure

A Receiver Operating Characteristic, or ROC, analysis is a widely used tool in

statistics to select possibly optimal models where the outcome variable is typically

binary. An ROC curve is a plot of the sensitivity versus (1 - specificity) as the

decision threshold is varied. Heagerty and et. al. (2000) applied the ROC curve to

the situation where the outcome variable is time-dependent such as survival status.

A time-dependent ROC curve based on Kaplan-Meier estimator was proposed to
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accomodate the censored survival data. The sensitivity and specificity are therefore

defined by

P (X > c|D(t) = 1) =
[1 − S(t|X > c)]P (X > c)

1 − S(t)

P (X ≤ c|D(t) = 0) =
S(t|X ≤ c)P (X ≤ c)

S(t)
,

where X is baseline covariate, D(t) = 1 indicates that the subject had an event before

time t, and c is the cut-off point. Here S(t) can be estimated using Kaplan-Meier

method.

Heagerty and Zheng (2005) propsed using Cox proportional hazard model to esti-

mate the time-dependent ROC curve, and demonstrated the connection between this

ROC method and the concordance measure. Zheng and Heagerty (2007) extended

their previous work to the longitudinal biomarker setting, and defined a longitudinal

time-dependent ROC curve which can be estimated using a semiparametric model.

This method was illustrated using the multicenter AIDS cohort study data.

4.2.2 The Proportion-of-Explained-Variation(R2) Based Measure

In multiple linear regression analysis, the proportion of explained variation, or R2,

measures the proportion to which the regression model accounts for the variation of

a given data set. If the R2 is large, the regression model is considered to give a good

fit of the data, and the significant covariates have a high predictive power. If this R2

is small, then the regression model is said to be less satisfactory or less powerful. In

the context of survival analysis, R2 based measure has been proposed to assess the

predictive accuracy of a Cox proportional hazard model.

Schemper and Henderson (2000) defined the prediction error based on absolute

distance measure. Let D(t) be the true underlying survival status of a subject at

time t. Clearly, D(t) is a Bernoulli random variable with the marginal probability of
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success being 1 − S(t) and the conditional probability of success 1 − S(t|X), where

S(t) is the marginal survival function and S(t|X) is the conditional survival function

given baseline covariates X. The marginal prediction error at time t defined by the

mean absolute deviation between S(t) and D(t) is

E(|S(t) − D(t)|) = [S(t) − 0]Pr(D(t) = 0) + [1 − S(t)]Pr(D(t) = 1)

= S(t)[1 − S(t)] + [1 − S(t)]S(t)

= 2S(t)[1 − S(t)].

Similarly, the conditional prediction error at time t is given by 2S(t|X)[1− S(t|X)].

When interested in a follow-up time period between time 0 to time τ , the prediction

error can be defined as

PE(τ) = 2

∫ τ

0
S(t)[1 − S(t)]f(t)dt

∫ τ

0
f(t)dt

PE(τ ; X) = 2

∫ τ

0
EXS(t|X)[1 − S(t|X)]f(t)dt

∫ τ

0
f(t)dt

,

and the relative predictive accuracy of the conditional Cox model versus marginal

model is given by

R(τ) = 1 −
PE(τ ; X)

PE(τ)
.

This measure resembles the R2 measure in the sense that R(τ) can be interpreted as

the relative gain or the proportion of variation explained by the covariates X.

Henderson, et. al. (2002) extended Schemper and Henderson’s work to incor-

porate the longitudinal biomarker process to Cox proportional hazard model, and

focused on the relative gain in predictive accuracy due to the biomarker information.

The relative predictive accuracy is therefore defined by

R(τ) = 1 −
PE(τ ; X,Y )

PE(τ ; X)
,
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where Y is the longitudinal biomarker.

Instead of absolute distance, Graf et. al. (1999) also developed similar R2 based

predictive accuracy measures, but using the quadratic loss function. This measure

was shown to be a version of the Brier score, and can be interpreted as the mean

square error of prediction. It was applied to standard Cox proportional hazard model

without considering longitudinal biomarker information. Gerds and Schumacher

(2006) modified the estimator assuming the censoring and event times are condi-

tionally independent given the covariates, and the modified estimator was based on

the regression models for the censoring distribution. Schoop et. al. (2008) adapted

the quadratic loss function approach to include the longitudinal biomarker as covari-

ates in the Cox proportional hazard model, and re-derived the mean square error of

prediction based on the updated information.

So far, there has not been a standard approach to assess the predictive accuracy

of a survival model. The ROC based method emphasizes on comparing and discrimi-

nating among different diagnostic tests or prognostic models. The R2 based measure,

on the other hand, focuses on evaluating and assessing the predictive accuracy of a

prognostic model, and seems to be easier to interpret and is more straightforward to

use in model comparison. Proust-Lima and Taylor (2008) compared four different

specifications of the R2-based measure using simulation studies, and concluded that

using the absolute loss function in the measure specification yielded systematically

smaller bias than the quadratic loss function. In this chapter, our analysis will focus

on the R2 based absolute distance prediction error measure.
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4.3 Models and Method

Consider the situation where we have already built a prognostic survival model

using a sample of patients. A new patient comes in. We follow this patient until

time s when the patient asks about the chance of survival at time t > s. If we can

assume this patient comes from the same population as the sample of patients we

used to build our prognostic model, then we can make prediction on this patient’s

conditional survival probability using our prognostic model given his or her follow-

up information up to time s. The aim of this chapter is to derive this predicted

conditional survival probability and assess its accuracy.

In the literature, the R2-type measures were proposed with the aim to validate

the prognostic model by quantifying the explained variation due to the prognostic

model, and hence naturally the same sample subjects that were used to build the

prognostic model will be used again in estimating the R2-measures. On the other

hand, what we are interested in is a more realistic situation for clinical practice.

We are essentially assuming a split sample design where one sample is used to build

the prognostic model and the other sample is used to validate the model and make

predictions. We do not have any additional information about the new patients

after their censoring time s, and we want to evaluate how accurate our predicted

conditional survival probabilities are with the existing prognostic tool.

4.3.1 Predictive Accuracy Measures

Let Si(t; s,Xi, Yi(s), θ, δi) be the true conditional survival function at time t > s

given the information up to a certain censoring time s for subject i, i = 1, ..., n,

where θ is the vector of the true fixed effects parameter values, δi is the vector

of the true random effects parameter values, Xi is the baseline information, Yi(s)
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is the time-dependent biomarker. Let Ŝi(t; s,Xi, Yi(s), θ̂, δ̂i) be the corresponding

estimated conditional survival function for subject i, where θ̂ is the vector of the

estimated fixed effects parameter values, and δ̂i is the vector of the estimated random

effects parameter values. We define the prediction error to be

err(t; s,X, Y (s)) =
1

n

∑

i=1:n

erri(t; s,Xi, Yi(s))

=
1

n

∑

i=1:n

|Si(t; s,Xi, Yi(s), θ, δi) − Ŝi(t; s,Xi, Yi(s), θ̂, δ̂i)|

=
1

n

∑

i=1:n

|
Pr(u > t|Xi, Yi(s), θ, δi)

Pr(u > s|Xi, Yi(s), θ, δi)
−

Pr(u > t|Xi, Yi(s), θ̂, δ̂i)

Pr(u > s|Xi, Y(s), θ̂, δ̂i)
|.(4.1)

This prediction error captures the absolute distance between the predicted con-

ditional survival probabilities and the true conditional survival probabilities at a

certain time t averaged over all the test subjects. Obviously, at any given censoring

time s, this prediction error is a process in time t ∈ (s, T ) where T is the maximum

follow-up time of the study. Hence, we can plot the curve of the prediction error

against time t, and the model that produces the least prediction errors (the lower

prediction error curve) will be preferred to the other models.

Sometimes, one model might yield a smaller prediction error when time t is close

to censoring time s, and larger prediction error when time t is farther away from

time s. Another model might behave oppositely. It can be misleading to compare

these two models solely based on the prediction error at one certain time t. In this

case, we can summarize the prediction errors by defining a time-averaged prediction

error. That is,

AE(t; s,X, Y (s)) =
1

n

∑

i=1:n

1

t − s

∫ t

s

erri(u; s,Xi, Yi(s))du.(4.2)

This time-averaged prediction error calculates the average prediction error between

time s and time t conditional on information up to the censoring time s. Depending
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on the different study purpose, we can vary the prediction duration t−s to assess the

predictive accuracy either in a short time frame (by choosing t− s to be small) or in

a long time frame (up to the maximum follow-up time t = T ). Alternatively, given

the same prediction duration t− s, the predictive accuracy may differ depending on

the time in the follow-up period that we perform the predictive accuracy assessment

at (varying s). If the risk of failure is dependent on the accumulated information

during time interval (0, s), then we would expect a different predictive accuracy

at a different censoring time s. Therefore, we can also vary the censoring time s

to evaluate the predictive accuracy during the entire follow-up time period. The

time-averaged prediction error AE(t; s) can be plotted in a three-dimensional space

for a graphical comparison among different models, and again the smaller average

prediction error (lower curve) gives the preferrable model.

Based on the concept of proportion of explained variation, we can define the

relative gain of predictive accuracy due to incorporating the biomarker information

to be

R(t; s) = 1 −
AE(t; s,X, Y (s))

AE(t; s,X)
,(4.3)

where AE(t; s,X)) is the time-averaged prediction error assuming the baseline sur-

vival model. This relative measure quantifies the improvement in predictive accuracy

comparing the survival model with the time-dependent biomarker information as a

predictor and the baseline survival model where the time-dependent biomarker in-

formation is ignored.

The previous measures are based on the assumption that the true conditional

survival distribution is known. When the true survival distribution is unknown, we

adapt the prediction error measure proposed by Schemper and Henderson (2000). We

want to characterize the distance between the observed survival status di(t) and the
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predicted conditional survival estimate Ŝi(t; s,Xi, Yi(s), θ̂, δ̂i). The more accurate the

prediction is, the smaller distance there is between di(t) and Ŝi(t; s,Xi, Yi(s), θ̂, δ̂i).

Therefore, for this subject i, the estimated prediction error based on the expected

absolute distance measure at time t given all the information up to time s is

P̂Ei(t; s,Xi, Yi(s)) = [1 − (1 − Ŝi(t; s,Xi, , Yi(s), θ̂, δ̂i))](1 − Ŝi(t; s,Xi, Yi(s), θ̂, δ̂i))

+[(1 − Ŝi(t; s,Xi, Yi(s), θ̂, δ̂i)) − 0]Ŝi(t; s,Xi, Yi(s), θ̂, δ̂i)

= 2Ŝi(t; s,Xi, Yi(s), θ̂, δ̂i)(1 − Ŝi(t; s,Xi, Yi(s), θ̂, δ̂i)).

This estimated prediction error is essentially assuming that a subject who is cen-

sored at time s will have the same risk as those with a known survival status at time

s and the same baseline characteristics. This subject is then classified as either dead

or alive by extrapolation based on the corresponding conditional probabilities. Using

the test data which have n subjects, the mean estimated prediction error becomes

P̂E(t; s,X, Y (s)) =
1

n

∑

i=1:n

P̂Ei(t; s,Xi, Yi(s))

=
2

n

∑

i=1:n

Ŝi(t; s,Xi, Yi(s), θ̂, δ̂i)(1 − Ŝi(t; s,Xi, Yi(s), θ̂, δ̂i))

=
2

n

∑

i=1:n

Pri(u > t|Xi, Yi(s), θ̂, δ̂i)

Pri(u > s|Xi, Yi(s), θ̂, δ̂i)
(1 −

Pri(u > t|Xi, Yi(s), θ̂, δ̂i)

Pri(u > s|Xi, Yi(s), θ̂, δ̂i)
).(4.4)

In the similar way as equation (4.2), the time-averaged estimated prediction error

is given by

ˆAPE(t; s,X, Y (s)) =
1

n

∑

i=1:n

1

t − s

∫ t

s

P̂Ei(u; s,Xi, Yi(s))du.(4.5)

In the discrete-time world, this time-averaged prediction error can be estimated by

ˆAPE(t; s,X, Y (s)) =
1

n

∑

i=1:n

1

J

∑

s<tj<=t

P̂Ei(tj; s,Xi, Yi(s)),(4.6)

where s < tj ≤ t are the discrete times where the conditional survival probabilites

are estimated. When the interest is in the long-term predictive accuracy, one might



81

want to take into account the decreasing number of events due to censoring as time

passes. A weighted average prediction error can be obtained by applying weights to

the estimated prediction errors at different times. That is,

ˆWPE(t; s,X, Y (s)) =

∑

s<tj<=t dtjĜ(tj)
−1P̂E(tj; s,X, Y (s))

∑

j=1:J dtjĜ(tj)−1
,(4.7)

where s < tj ≤ t : j = 1, ..., J are the death times along the prediction region,

dtj are the number of deaths at time tj, and ˆG(tj) is the Kaplan-Meier estimates

of the censoring distribution at time tj. dtj and ˆG(tj) can be obtained using the

sample that we build the prognostic model with. These weights can compensate the

decrease in observed number of deaths as time passes. Here the standard assumption

of noninformative censoring applies.

Following the concept of proportion of variation explained, we can define the

relative predictive accuracy comparing the survival model with the time-dependent

biomarker information as a predictor and the baseline survival model where the

time-dependent biomarker information is ignored as

R̂(t; s) = 1 −
ˆWPE(t; s,X, Y (s))

ˆWPE(t; s,X)
,(4.8)

where ˆWPE(t; s,X)) is the weighted average prediction error assuming the base-

line survival model. This relative measure quantifies the improvement in predictive

accuracy due to incorporating the biomarker information in the survival model.

4.3.2 Models For Comparison

In this chapter, we conduct a simulation study to to assess the predictive accuracy

of the joint nonparametric model that we proposed in chapter 3 using the measures

we described in section 4.3.1. In chapter 3, we developed a likelihood based joint

model of longitudinal and survival data based on penalized B-splines, wherein the
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true longitudinal trajectory was linked to the risk of failure by the Cox model with

time-varying covariates. We can then derive the true conditional survival probability

as

Si(t; s) = exp[−

∫ t

s

λ(u; Zi(u), Xi, θ, δi)du],

and the predicted conditional survival probability as

Ŝi(t; s) = exp[−

∫ t

s

λ(u; Ẑi(u), Xi, θ̂, δ̂i)du],

where Zi(u) and Ẑi(u) are the true and predicted longitudinal trajectory for subject

i, Xi is the baseline covariates, θ and θ̂ are the true and estimated fixed effects

parameters, and δi and δ̂i are the true and estimated random effects parameters.

For comparison purposes, we consider three alternative approaches. The first

approach is to ignore the longitudinal biomarker information and assume the risk of

failure only depends on the baseline information. This is a standard Cox proportional

hazard model with only baseline information as risk factors, which we call the ”naive”

approach. The second approach is to incorporate the extra information from the

longitudinal biomarkers by assuming that the risk of failure depends both on the

baseline information and the last observed biomarker value before the censoring

time. This essentially predicts that the biomarker trajectory will stay flat after the

last observation time, and future biomarker values will not change with time. This

approach is termed as ”last value carry forward”, or ”LVCF” approach. The third

approach is a two-stage model in which a mixed effects model is assumed for the

longitudinal biomarkers and then the imputed biomarker values at all event times

are used as a time dependent covariate in the Cox proportional hazard model.

More formally, we considered the following four methods to obtain the conditional
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survival probability. The naive approach:

λ(t) = λ0(t)exp(ηX).

The last value carry forward approach:

λ(t) = λ0(t)exp(αYobs(t) + ηX).

The two-stage model:

λ(t) = λ0(t)exp(αẐTS(t) + ηX).

The conditional survival estimates from the joint model in Chapter 3:

λ(t) = λ0(t)exp(αẐJO(t) + ηX).

Here, X is the baseline covariate, Yobs(t) is the last observed biomarker value up

to time t, ẐTS(t) is the imputed biomarker value using the two-stage model, and

finally ẐJO(t) is the estimated longitudinal biomarket value based on the joint model

developed in Chapter 3. Also, λ(t) is the hazard function and λ0(t) is the baseline

hazard function.

In our simulation studies, we know the true survival curves that the simulations

are based on for each subject . Let the true survival function for subject i be

Si(t; Xi, Zi(t), θ, δi). To assess the predictive accuracy of approach D compared to

the other three alternatives, we can calculate the prediction error err(t; s) using these

true parameter values and the estimated parameter values. Equation (4.1) therefore

becomes

err(t; s) =
1

n

∑

i=1:n

|
Si(t; Xi, Zi(s), θ, δi)

Si(s; Xi, Zi(s), θ, δi)
−

Ŝi(t; Xi, θ̂)

Ŝi(s; Xi, θ̂)
|

for the naive approach,

err(t; s) =
1

n

∑

i=1:n

|
Si(t; Xi, Zi(s), θ, δi)

Si(s; Xi, Zi(s), θ, δi)
−

Ŝi(t; Xi, Yobs,i(s), θ̂)

Ŝi(s; Xi, Yobs,i(s), θ̂)
|
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for the last value carry forward approach,

err(t; s) =
1

n

∑

i=1:n

|
Si(t; Xi, Zi(s), θ, δi)

Si(s; Xi, Zi(s), θ, δi)
−

Ŝi(t; Xi, ẐTS,i(s), θ̂, δ̂i)

Ŝi(s; Xi, ẐTS,i(s), θ̂, δ̂i)
|

for the two stage model, and

err(t; s) =
1

n

∑

i=1:n

|
Si(t; Xi, Zi(s), θ, δi)

Si(s; Xi, Zi(s), θ, δi)
−

Ŝi(t; Xi, ẐJO,i(s), θ̂, δ̂i)

Ŝi(s; Xi, ẐJO,i(s), θ̂, δ̂i)
|

for the joint model. The time-averaged prediction error (AE) using equation 4.2 can

then be subsequently obtained. We use the naive approach as the benchmark model

in our comparisons. That is, all the other three models will be compared to the naive

approach, and R(t; s) in equation 4.3 will be be calculated to evaluate the relative

gain in terms of explained variation due to incorporating the longitudinal biomarker

Y (s) into the survival model.

Assuming we do not know the true survival function of our simulation data,

we can also use equation 4.6 and 4.7 to obtain the estimated average prediction

error ( ˆAPE(t; s)) and the estimated weighted average prediction error ( ˆWPE(t; s)).

Again, using the naive approach as the reference model, we can compute R̂(t; s) and

compare these four approaches in terms of their increased power in explaining the

variation in the survival data through biomarker information.

4.4 Simulation Studies and Data Application

4.4.1 Design of the Simulation Study

We carry out a simulation study to evaluate the predictive accuracy of the pro-

posed model in section 3.3 in comparison with the three other alternatives described

in section 4.3.2. Similar to the strategy in chapter 3 for model validation, we adopt

a split sample design where training data are generated to build the model and test

data are used to validate the model. Each training data set is associated with six



85

test data sets corresponding to six different censoring times, and the subjects in the

same test data set have the same censoring time.

For simplicity, we assume both the longitudinal biomarker and survival probabil-

ity depend on the same baseline covariate. That is, the longitudinal biomarker is

simulated based on the following model:

Yi(t) = Zi(t) + ei(t),

Zi(t) = −0.4 + 0.35Xi + 0.2t + 0.45Xit − 0.15t2 + 0.02t3 + β1i + β2it + β3it
2 + β4it

3,

where Xi ∼ Bernoulli(1
2
) for subject i. The random effects parameters are dis-

tributed as β1i ∼ N(0, 0.3), β2i ∼ N(0, 0.01), β3i ∼ N(0, 0.01), and β4i ∼ N(0, 0.0001).

The measurement errors are assumed to be ei(t) ∼ N(0, 0.1). The maximum follow-

up time is chosen to be 10.

For the survival data, we assume:

λi(t) = λ0(t)exp(Zi(t) + 2Xi),

where the baseline hazard is a constant over the entire follow-up period, that is,

λ0(t) = 0.01. For the training data set, censoring is included using a uniform dis-

tribution over (0, 10), and this yields about 50% censoring rate on average. For the

six corresponding test data sets, we censor the survival times at times 1, 2, 3, 4, 5,

and 6. That is, the subjects in the first 200 test sets are all censored at time 1; the

subjects in the second 200 test sets are all censored at time 2; and so on. So no

additional censoring needs to be introduced to the test data.

In our simulation, two hundred training data sets are generated, and each training

data set has 300 subjects. Correspondingly, 1200 data sets are generated as test data

sets, and each test data set has 100 subjects. We sample Y (t) at 25 random time

points along the longitudinal trajectories as our observed longitudinal measurements.
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These 25 Y (t) samples are further censored by the event or censoring times obtained

from the survival model. We force each subject to have at least one longitudinal

measurement, and no more than 25 longitudinal measurements.

Figure 4.1 shows some sample longitudinal trajectories. We can see a very large

shape variation in the longitudinal profiles. All the longitudinal trajectories display

a general upward slope trend. But some subjects have their longitudinal biomarkers

dropping low in the first few years and then picking back up high, whereas some

other subjects show an upward trend right away. Figure 4.2 shows the Kaplan-Meier

survival plot from one random training data set.

4.4.2 Fitting the Simulated Data

We use the four approaches described in Section 4.3.2 to fit the training data

sets, and make predictions on the test data sets by calculating the corresponding

predicted conditional survival probabilities. Let superscript D represent training

data, and superscript C represent test data. Specifically, let XD
i be the baseline

information of subject i from the training data, and XC
i′ be the baseline information

of subject i′ from the test data. For the naive approach, we run SAS PROC PHREG

with baseline information XD
i as covariates on every training dataset, and obtain the

cumulative baseline hazard estimates Λ̂0(t) and the parameter estimate η̂. We assume

the baseline hazard λ0(t) to be a step function, and is estimated by the difference of

the cumulative baseline hazard estimates of two consecutive event times. We then

can calculate the predicted conditional survival probabilities using the test datasets

conditional on each censoring time. That is,

Ŝi′(t; s) = exp(−

∫ t

s

λ̂0(u)exp(η̂XC
i′ )du),

where the censoring time s takes integer values from 1 to 6, and t > s.
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Figure 4.1: Sample longitudinal trajectories
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Figure 4.2: Sample Kaplan-Meier survival plot

For the ”last value carry forward” approach, we again run SAS PROC PHREG on

every training set with both the last observed longitudinal values Y D
i (t) and baseline

information XC
i as covariates, and obtain the cumulative baseline hazard estimates

Λ̂0(t) and the parameter estimates α̂ and η̂. The baseline hazard function can be

estimated in the same way as before. Using these parameter estimates, the predicted

conditional survival probability becomes

Ŝi′(t; s) = exp(−

∫ t

s

λ̂0(u)exp[α̂Y C
i′ (s) + η̂XC

i′ )]du,

where Y C
i′ (s) is the last observed longitudinal measurement before time s for subject

i′. Obviously, Y C
i′ (s) does not change with time, and this model is again a standard

Cox proportional hazard model.

For the two-stage approach, we first run SAS PROC MIXED on the training

longitudinal data based on model 3.7. Let F be the fixed effects design matrix, and
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R be the random effects design matrix. In terms of model 3.7, we choose the same

B-spline basis for B1(t) and B2(t), that is, B1(t) = B2(t) = B(t). Thus, for the

training subjects, FD(t) = B(t)ΦUN , and RD(t) = B(t)(ΦP + ΨUN + ΨP ). Then the

mixed model can be written as

Y D
i (t) = ZD

i (t) + ei

= FD
i (t)γ + RD(t)θD

i + ei,

where γ is the fixed effects parameter corresponding to the γ in (3.7), and θD
i are

the random effects parameters from the training data including βP , δUN
i , and δP

i .

Let G be the random effects covariance matrix, and E be the residual covariance

matrix. The mixed model on training data produce estimates of Ĝ, Ê, α̂, and θ̂D
i .

We plug these parameter estimates back into the Y D
i (t) model to impute the missing

longitudinal biomarkers at each event times. That is, ẐD
i (t) = FD

i (t)γ̂ + RD(t)θ̂D
i .

We then implement the time-dependent Cox proportional hazard model with the

imputed longitudinal biomarkers ẐD
i (t) as the time-dependent covariate, and XD

i as

baseline covariate. This yields the survival parameter estimates of α̂ and η̂. To make

survival predictions on the test data, we need to impute the longitudinal profile

for the test subjects too. Let FC(t) and RC(t) be the fixed effects and random

effects design matrix for the test subjects. The fixed effects parameter estimates

γ̂ has been obtained from the mixed model fit. The random effects parameters of

the test subjects can be estimated using θ̂C = ĜRC(t)′V̂ −1(Y C(t) − FC(t)γ̂), where

V̂ = RC(t)ĜRC(t)′ + Ê. Then, we can plug these parameter estimates back to the

model to obtain the imputed longitudinal profile as ẐC
i′ (t) = FC

i′ (t)γ̂ + RC(t)θ̂C
i′ .

Thus, the predicted conditional survival probabities can be obtained by

Ŝi′(t; s) = exp(−

∫ t

s

λ̂0(u)exp(α̂ẐC
i′ (u) + η̂XC

i′ )du).
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Lastly, our Bayesian joint model as described in chapter 3 is used to fit the training

data. Again, we assumed the same B(t) in model 3.7, and we choose six equally-

spaced knots (between 0 and 10) to construct B(t). Similar to chapter 3, we apply

noninformative priors to the parameters and derive the posterior distributions ac-

cordingly. MCMC chains are generated using the Metropolis-Hastings algorithm, and

1000 samples of the parameter estimates are kept after running 20000 iterations and

taking the first 10000 as burn-in period. To make predictions on the test subjects,

we need first to predict their longitudinal trajectories, which requires us to estimate

their random effects parameters. We run another short MCMC chain using the test

data and the 1000 samples of fixed effects parameters including (γ̂, β̂P , σ̂2
βP , α̂, η̂) ob-

tained from fitting the training data set. Conditional on each sample of the fixed

effects parameters, we run a 50 iteration MCMC chain of the random effects param-

eters based on the conditional posterior distribution derived from our joint model,

and we keep the last iteration from this small MCMC chain. Thus we end up with

1000 samples of the fixed effects parameters obtained using the training data and

1000 samples of the random effects parameters estimated using the test data. We

then can predict the longitudinal trajectories by

ẐC
i′,JO(t) = B(t)ΦUNXC

i′ γ̂ + B(t)ΦP β̂P + B(t)ΨUN β̂UN
i′ + B(t)ΨP β̂P

i′ ,

and the conditional survival probabilities can be predicted by

Ŝi′(t; s) = exp(−

∫ t

s

λ̂0(u)exp[α̂ẐC
i′,JO(u) + η̂XC

i′ )]du.

4.4.3 Simulation Results

We use the above strategy to calculate the predicted survival probabilities con-

ditional on the information up to the censoring time for each subject in each of the
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Table 4.1: True versus predicted number of events

Censoring Time Model
Prediction Time

2 3 4 5 6 7 8 9 10
1 Truth 7 14 22 31 39 49 51 61 77

Naive 11 20 30 35 44 55 58 67 84
LVCF 10 18 25 35 43 50 57 66 82
Two-stage 9 15 20 30 36 46 55 65 80
Joint 8 13 20 30 41 51 54 65 73

2 Truth 7 16 25 33 40 47 57 75
Naive 10 19 29 38 48 55 64 85
LVCF 10 18 29 38 46 54 63 82
Two-stage 8 14 23 36 44 42 52 80
Joint 9 14 27 35 44 51 61 72

3 Truth 10 20 29 36 44 55 73
Naive 14 25 33 44 50 61 79
LVCF 14 23 27 41 51 60 79
Two-stage 9 22 30 32 46 50 74
Joint 9 18 29 38 44 52 72

4 Truth 12 22 30 38 50 70
Naive 14 25 34 44 45 77
LVCF 14 24 36 41 59 76
Two-stage 12 24 32 35 45 71
Joint 11 21 32 36 47 70

5 Truth 11 20 30 43 67
Naive 15 24 35 50 61
LVCF 13 24 31 38 73
Two-stage 12 23 26 46 71
Joint 11 21 32 46 64

6 Truth 10 21 36 62
Naive 15 29 30 52
LVCF 14 25 42 70
Two-stage 12 23 31 66
Joint 10 22 34 60

1200 simulated test sets. Table 4.1 compares the predicted number of events (aver-

aged over 200 simulated test data sets) from these four approaches versus the true

number of events in the simulated test data. We can see that the predicted number

of events using the joint model is closer to the true number of events than using the

other three methods.

To compare the predictive accuracy of these four approaches, we calculate the

time-averaged predition errors (AE) and the estimated weighted average prediction

errors ( ˆWPE)for each test data set at the six different censoring times. We then
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Figure 4.3: Average prediction error (AE(s, t))
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Figure 4.4: Relative predictive accuracy(R(s, t))
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Figure 4.5: Estimated average prediction error ( ˆWPE(s, t))
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Figure 4.6: Estimated relative predictive accuracy(R̂(s, t))
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compute the mean of AE and ˆWPE across the 200 test sets. The mean time-averaged

predition errors (AE) are plotted in figure 4.3. The solid vertical line is the censoring

time, which varies from 1 to 6, and the prediction region varies from 2 to 10. The

graphs suggest the further away the prediction time is, the higher average prediction

errors are for all four models. The naive approach and the last value carry forward

approach both yield very similar and relatively high average prediction errors with

the last value carry forward approach performing slightly better. Comparing the two-

stage model with our joint model, our joint model yields consistently lower average

prediction errors across all six different censoring times. Also the later the censoring

time s is, the bigger difference in the average prediction error there is between our

approach and the two-stage approach. We believe this is because the longer follow-up

time in the test set allows more accurate estimates of the longitudinal trajectories,

and hence relatively more accurate survival prediction.

Figure 4.4 shows the relative predictive accuracy (R(t; s)) comparing the LVCF,

two-stage, and the joint model approaches to the naive approach. The joint model

approach gives the largest relative gain in terms of the explained variation compared

to the other two models. Also the closer the prediction time to the censoring time,

the higher the relative predictive accuracy. As the prediction time moves further

away from the censoring time, the relative predictive accuracy decreases and then

flattens out. The LVCF approach gives a very minimal increase in relative predictive

accuracy than the naive approach, and this suggests the last observed longitudinal

value is not a very good predictor for the risk of failure in this survival model.

We observe similar results in figure 4.5 which presents the mean estimated weighted

average prediction errors ( ˆWPE) at different censoring times and figure 4.6 which

gives the estimated relative predictive accuracy (R̂(t, s)). That is, our joint model
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approach yields larger predictive accuracy compared to the other three alternatives,

and therefore is a better prognostic tool in predicting the risk of failure.

4.4.4 Data Application

In chapter 3, we applied our joint model to a prostate cancer data set where we

used part of the data as a training set to build our model and estimate parameters,

and the remaining data as a test set to validate our model. Now we apply the

concepts of predictive errors and relative predictive accuracy to this prostate cancer

data, and we evaluate the performance of the joint model in terms of predictive

accuracy by using the same strategy in our simulation studies, that is, by comparing

it with the three alternative approaches mentioned in section 4.3.2. Specifically, these

four approaches are the following. The naive approach:

λ(t) = λ0(t)exp(η1log(BaselinePSAi + 1) + η2Tstagei + η3Gleasoni).

The last value carry forward approach:

λ(t) = λ0(t)exp(αlog(PSAobs(t) + 1)

+η1log(BaselinePSAi + 1) + η2Tstagei + η3Gleasoni).

The two-stage model:

λ(t) = λ0(t)exp(α ˆlog(PSATS(t) + 1)

+η1log(BaselinePSAi + 1) + η2Tstagei + η3Gleasoni + η4HTi(t)).

The conditional survival estimates from the joint model in Chapter 3:

λ(t) = λ0(t)exp(α ˆlog(PSAJO(t) + 1) + η1log(BaselinePSAi + 1)

+η2Tstagei + η3Gleasoni + η4HTi(t)).
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The estimation method has been described in detail in section 4.4.2, and will not be

repeated here.

Our test data were censored at two different time points, 3 year time point and 5

year time point. Figure 4.7 shows the estimated average prediction error ( ˆWPE(s, t))

using the test data censored at year 3. We observe an increasing estimated prediction

error as the prediction time passes for all four approaches, and the joint model

consistently yields the least amount of estimated prediction error followed by the

two-stage method and the LVCF method. The naive method produces the largest

estimated prediction error.

Figure 4.8 presents the relative predictive accuracy using the naive method as the

reference model, and comparing all the other three methods to it. We can see that

within the one to two year time period after the censoring time, the joint method and

the two-stage method give very high relative gain in terms of predictive accuracy.

This relative gain decreases as the prediction time passes. The joint model yields

about 10% more relative gain in variation explained than the two-stage model.

For the test data with censoring time at year 5, we observe very similar results

(figure 4.9 and figure 4.10) to those from the test data censored at year 3. The

estimated prediction error is about the same when the test data were censored at

year 5 as when censored at year 3 for all four approaches. The relative predictive

accuracy curves behave similarly as before, but the relative gain is slightly smaller

when the test data are censored at year 5 than when censored at year 3.

4.5 Conclusions

In this chapter, we focused on predicting the survival outcome of a disease and

evaluating the accuracy of that prediction. We presented absolute distance measures
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Figure 4.7: Estimated average prediction error ( ˆWPE(s, t)) with censoring time = 3
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Figure 4.8: Estimated relative predictive accuracy(R̂(s, t)) with censoring time = 3
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Figure 4.9: Estimated average prediction error ( ˆWPE(s, t)) with censoring time = 5
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Figure 4.10: Estimated relative predictive accuracy(R̂(s, t)) with censoring time = 5
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to quantify the predictive accuracy of a survival prognostic model. We conducted

simulation studies to evaluate the predictive accuracy of the joint model we developed

in chapter 3 by comparing it with three alternative approaches: the naive approach,

the last value carry forward approach, and the two-stage approach. We divided the

simulated data into training data and test data. We built the prognostic models

based on the training data sets, and made the predictions of survival probaility on

the test data sets with six different censoring times. We formulated true predic-

tion errors based on absolute distance measures, and derived a formula to estimate

prediction errors when the true underlying survival probabities are unavailable. We

compared these prediction errors obtained from these four approaches using the sim-

ulated data, and observed that our model performed consistently better in terms of

the prediction accuracy than the three alternative approaches. We believe this is

due to the relatively unbiased parameter estimates generated from our joint model

whereas the three alternative approaches all introduced different amounts of bias

into the parameter estimates as suggested in the literature.

We also applied our predictive accuracy measures to the prostate cancer data

we introduced in chapter 3. The results from this data application gave similar

conclusions as from the simulated data. We demonstrated that our model can yield

fairly high short-term predictive accuracy, which suggested that our model can be a

useful prognostic tool for clinicians and patients.

The proposed predictive accuracy measures can incorporate time-dependent co-

variates in them, and hence allow us to compare different models using frequently

updated information. This is especially useful in clinical practice where patients are

followed over a long time period and the biomarkers are measured frequently along

the way. We can also generate additional R2-type measures to quantify the gain in
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predictive accuracy by taking the ratio of the prediction errors from our model versus

the prediction error from a beachmark model such as a marginal survival model or

a meaningful reference model. Due to the finite support of the B-splines, we are

not able to extrapolate the longitudinal trajectories beyond the last follow-up time,

and hence the survival probability prediction is also limited to this time range. The

three alternative approaches will still be able to make predictions beyond the last

follow-up time, although the predictive accuracy may be decreased even further.



CHAPTER V

Conclusions and Discussions

In the field of survival analysis, we often encounter the situation where a fraction of

the study subjects will never experience an event. Cure models have been formulated

to address this issue. We developed a family of cure models, indexed by a Box-Cox

type transformation parameter, such that different formulations of cure models can

be obtained by varying the index parameter. A profile likelihood approach was used

for the parameter estimates. Simulation studies were conduted to show unbiasedness.

This model was applied to bone marrow transplant data and tonsil cancer data.

Along with survival information, medical studies also often collect longitudinal

biomarkers. In recent years, joint models have been proposed to analyze these

data simultaneously. We developed a non-parametric joint model of longitudinal

biomarker and survival data where the longitudinal trajectories are modeled based

on penalized B-splines and linked with the risk of failure by the Cox proportional

hazard model. This model can accomodate nonlinearity in the longitudinal trajecto-

ries with a great degree of flexibility. A Bayesian approach was used for parameter

estimates, and the Metropolis-Hastings algorithm was implemented to construct the

MCMC chains. This model was applied to a prostate cancer data, and a validation

set was fit to evaluate the model performance.

103
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Furthermore, we evaluated our joint model in terms of its prognostic power by

focusing on the predicted conditional survival probabilities. We derived the predicted

conditional survival function using our joint model. We proposed absolute distance

based measures to assess the predictive accuracy. We carried out simulation studies

to evaluate the predictive accuracy of our joint model by comparing it with three

alternative approaches: the naive approach, the last value carry forward approach,

and a two-stage model. The simulation results showed that our joint model yielded

consistently lower average prediction errors, and hence out-performed the other three

approaches in terms of its prognostic power.

For future studies, in terms of the family of cure models, we made certain paramet-

ric assumptions of the survival function. Future research can explore the possibilities

of semiparametric or nonparametric assumptions for the survival function. In our

model we used the maximum likelihood approach to obtain the parameter estimates.

The Bayesian algorithm can also be used to estimate the posterior distributions of

the parameters.

In terms of the joint models of longitudinal and survival data, we applied our

model to a prostate cancer data, and we were able to obtain good prediction results.

It will be interesting to see this model applied to other medical fields such as in

HIV studies. Although we used the estimated longitudinal trajectories and their

slopes as time-dependent covariates in the Cox proportional hazard model, further

investigation can try to incorporate the entire longitudinal trajectory into the hazard

model. In our joint model, we only considered the situation of univariate longitudinal

measurements. We believe our model can be easily extended to multivariate repeated

measurements. We considered a Cox proportional hazard model for the risk of failure,

but the assumption can be relaxed to allow nonproportional hazard situation. We can
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furthermore use the proposed absolute distance measures to evaluate the predictive

accuracy of these new models and compare with our joint model. Even though we

focused on absolute distance measures when we evaluated the predictive accuracy,

a quadratic loss function in the form of mean squared error could alternatively be

considered.
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APPENDIX A

First and Second Derivatives of the Likelihood Function

Model

Sλ − 1

λ
=

pλ − 1

λ
(1 − S0)

S0 = exp(−τtγexp(β1X1 + β2X2))

h0 = τγtγ−1exp(β1X1 + β2X2)

p = exp(−exp(α0 + α1X1 + α2X2))

Therefore,

S = [pλ + (1 − pλ)S0]
1/λ

f =
1 − pλ

λ
S0h0S

1−λ

Li = f δ
i S1−δ

i

Plugging in, we get

Li = (
(1 − pλ)S0h0

λ
)δS1−λδ

Taking the log of both sides, we get

logLi = δ[log(1 − pλ) − logλ + logS0 + logh0] + (1 − λδ)logS
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First Derivatives:

S(α0) = (
λδ

pλ − 1
+

(1 − λδ)(1 − S0)

Sλ
)pλlogp

S(α1) = S(α0)X1

S(α2) = S(α0)X2

S(β1) = (−
δt

γ
+

δ

h0

−
(1 − λδ)(1 − pλ)S0t

λγSλ
)h0X1

S(β2) = (−
δt

γ
+

δ

h0

−
(1 − λδ)(1 − pλ)S0t

λγSλ
)h0X2

S(γ) = −
δh0tlogt

γ
+

δ

γ
+ δlogt −

(1 − λδ)(1 − pλ)S0h0tlogt

λγSλ

S(τ) = (−
δt

γ
+

δ

h0

−
(1 − λδ)(1 − pλ)S0t

λγSλ
)
h0

τ

S(λ) =
δpλlogp

pλ − 1
−

δ

γ
−

logS

λ
−

(1 − λδ)(1 − S0)p
λlogp

λSλ
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Second Derivatives:

I(α0, α0) = pλ[
δλ(pλ − 1 − λlogp)

(pλ − 1)2
+

(1 − δλ)(1 − S0)(λS0logp + Sλ)

S2λ
]logp

I(α0, α1) = I(α0, α0)X1

I(α0, α2) = I(α0, α0)X2

I(α0, β1) =
(1 − λδ)h0S0X1tp

λlogp

γS2λ

I(α0, β2) =
(1 − λδ)h0S0X2tp

λlogp

γS2λ

I(α0, γ) =
(1 − λδ)h0S0tp

λlogtlogp

γS2λ

I(α0, τ) =
(1 − λδ)h0S0tp

λlogp

γτS2λ

I(α0, λ) = [
δ(pλ − 1 − λlogp)

(pλ − 1)2
+

(1 − S0)[−δSλ + (1 − δλ)S0logp]

S2λ
]pλlogp

I(α1, α1) = I(α0, α0)X
2
1

I(α1, α2) = I(α0, α0)X1X2

I(α1, β1) = I(α0, β1)X1

I(α1, β2) = I(α0, β2)X1

I(α1, γ) = I(α0, γ)X1

I(α1, τ) = I(α0, τ)X1

I(α1, λ) = I(α0, λ)X1

I(α2, α2) = I(α0, α0)X
2
2

I(α2, β1) = I(α0, β1)X2

I(α2, β2) = I(α0, β2)X2

I(α2, γ) = I(α0, γ)X2

I(α2, τ) = I(α0, τ)X2

I(α2, λ) = I(α0, λ)X2
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I(β1, β1) = −
δtX2

1h0

γ
−

h0S0X
2
1 t(1 − δλ)(1 − pλ)(γSλ − h0tp

λ)

λγ2S2λ

I(β1, β2) = −
δtX1X2h0

γ
−

h0S0X1X2t(1 − δλ)(1 − pλ)(γSλ − h0tp
λ)

λγ2S2λ

I(β1, γ) = −
δtX1h0logt

γ
−

h0S0X1t(1 − δλ)(1 − pλ)(γSλ − h0tp
λ)logt

λγ2S2λ

I(β1, τ) = −
δtX1h0

γτ
−

h0S0X1t(1 − δλ)(1 − pλ)(γSλ − h0tp
λ)

λγ2τS2λ

I(β1, λ) =
S0th0X1[(1 − pλ)Sλ + (1 − δλ)pλλlogp]

λ2γS2λ

I(β2, β2) = −
δtX2

2h0

γ
−

h0S0X
2
2 t(1 − δλ)(1 − pλ)(γSλ − h0tp

λ)

λγ2S2λ

I(β2, γ) = −
δtX2h0logt

γ
−

h0S0X2t(1 − δλ)(1 − pλ)(γSλ − h0tp
λ)logt

λγ2S2λ

I(β2, τ) = −
δtX2h0

γτ
−

h0S0X2t(1 − δλ)(1 − pλ)(γSλ − h0tp
λ)

λγ2τS2λ

I(β2, λ) =
S0th0X2[(1 − pλ)Sλ + (1 − δλ)pλλlogp]

λ2γS2λ

I(γ, γ) = −
δth0(logt)2

γ
−

δ

γ2
−

(1 − λδ)(1 − pλ)S0h0t(γSλ − h0tp
λ)(logt)2

λγ2S2λ

I(γ, τ) = −
δth0logt

γτ
−

(1 − λδ)(1 − pλ)S0h0t(γSλ − h0tp
λ)logt

λγ2τS2λ

I(γ, λ) =
S0th0logt[(1 − pλ)Sλ + (1 − δλ)pλλlogp]

λ2γS2λ

I(τ, τ) = −
δ

τ 2
−

(1 − λδ)(1 − pλ)t2h2
0S0p

λ

λγ2τ 2S2λ

I(τ, λ) =
S0th0[(1 − pλ)Sλ + (1 − δλ)pλλlogp]

λ2γτS2λ

I(λ, λ) = −
δpλ(logp)2

(1 − pλ)2
+

δ

λ2
−

(1 − S0)p
λlogp

λ2Sλ
+

2logS

λ2
+

(1 − S0)[−pλSλ + (1 − δλ)λpλS0logp]logp

λ2S2λ
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