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ABSTRACT 

 

 

CHARACTERIZATION OF COPY NUMBER ABERRATIONS AND EPIGENETIC 

MODIFICATIONS IN PROSTATE CANCER 

 

by 

  

Jung H. Kim 

 

 

Co-Chairs: Arul M. Chinnaiyan and Kerby Shedden 

 

Prostate cancer (PCa) is the most common epithelial cancer and second leading 

cause of cancer death among men in the US. Prostate cancer tumorigenesis is associated 

with numerous molecular events including transcriptomic, epigenetic, and copy number 

alterations. In this thesis, we characterized two major types of genome-wide events to 

understand their global implications and contributions in PCa.  

First, we assessed genome-wide copy number variations (CNVs) using array 

comparative genomic hybridization of laser-capture microdissected prostate cancer 

samples representing multiple stages of PCa progression. Minimal common regions 

(MCR) of CNVs, including novel regions, were defined for each sample type. Integrative 

analysis of MCRs with matched gene expression profiles revealed genes with coordinated 

CNV and altered transcript expression during PCa progression. We also identified MCRs 

that distinguished PCa samples harboring or lacking an ETS gene fusion.  
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Secondly, we characterized genome-wide DNA methylation patterns, an 

epigenetic mark known to repress gene transcription.  We employed a novel technology 

termed Methylplex-Next Generation Sequencing (M-NGS) which uses methylation 

sensitive restriction enzymes to enrich methylated genomic regions.  The performance of 

M-NGS to characterize global methylation was tested in LNCaP prostate cancer and 

PrEC benign prostate epithelial cells. Multiple techniques, including bisulfite sequencing, 

validated the results.  Detailed analyses revealed diverse promoter methylation patterns 

which correlated with transcriptional repression. Interestingly, integration of DNA 

methylation and H3K4me3 ChIP-Seq data in LNCaP identified differential epigenetic 

regulation of  specific transcript isoforms.  

We next employed M-NGS to characterize PCa tissue samples.  We identified 

2,481 cancer-specific methylated regions, including WFDC2 promoter methylation, 

which served as a PCa biomarker and was validated on an independent tissue cohort. 

Finally we used a 3-way integrative analysis of these genome-wide events and identified   

regions with co-occurrence of copy number gain/loss and DNA methylation, associated 

with aberrant gene expression in PCa .  

In summary, this thesis work presents a comprehensive analyses of genome-wide 

copy number and methylation changes and its global implications on transcriptional 

regulation for the first time in prostate cancer. The datasets generated here will be a 

valuable public resource for genome-wide analysis in the future.   
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CHAPTER 1 

 

INTRODUCTION 

 

 

The Prostate 

Prostate (Greek: prohistani, meaning to stand in front of) was described by 

Herophilus in 355 B.C.E. as a small organ located in front of the bladder.   The prostate, a 

male accessory sex gland located below the bladder is found exclusively in mammals and 

produces many components such as fructose, zinc ions and various proteins that maintain 

the fluid nature of semen.   The prostate gland has been extensively studied as a model 

for androgen action in regulating epithelial cell growth.  Androgens are important 

regulators of male sexual differentiation including their essential role in directing the 

development of prostate (1-2). The effects of androgens have been extensively studied in 

prostate models due to the relationship between androgens and the development of 

widely prevalent neoplastic diseases of the prostate such as benign prostatic hyperplasia 

(BPH) and prostate adenocarcinoma (PCa)(3).   

In light of this, prostatic diseases remain widely prevalent in the Western world. 

An estimated 75% of men show histologic evidence of BPH by age eighty,  and PCa 

remains the second most common cancer-related death in the US (4). Several factors such 

as age, lifestyle and diet as well as inheritable factors are known to play a role in the 
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development of prostate cancer (4). The mortality rate of prostate cancer varies among 

races, and African American men have 5 fold higher mortality frequency compared to 

Asian Americans and 2 fold greater compared to Caucasians. The incidence of prostate 

cancer also correlates with age, where around 63% of new cases occur among men over 

65 years of age. According to 2009 report from American Cancer Society, the number of 

estimated new cases of prostate cancer is 192,280 and estimated death is 27,360 in US 

males. The improvement in early prostate cancer diagnosis and treatment made during 

last two decades raised the 5-year survival rate from 69% to 99%. 

 

Stages of Prostate Cancer 

The cellular architecture of a human prostate duct primarily consists of three cell 

types organized in two layers 1) secretory luminal cells (cytokeratin, 8, 18 and CD57 

positive) that form the inner layer and 2) cytokeratin5, 14 and CD44 positive basal cells 

found between the luminal layer and the underlying basement membrane (Fig. 1.1). A 

minor population of neuroendocrine cells that make the third cell type are found 

dispersed in the basal layer and specifically expresses a maker protein called 

chromagraninA.   

The commonly used Gleason grading system of prostate cancer was developed by 

Dr. Donald Gleason in 1974 based on the breach that occurs in the tissue glandular 

architecture (shape, size and differentiation of glands) during tumorigenesis (5). By 

histologic evaluation pathologists determine a primary (representing the majority of 

tumor) and secondary Gleason grades (assigned to the minority of tumor), such as 

Gleason  grades 3, 4 or 5.   The sum of the primary and secondary Gleason grades are 



3 

 

then considered as Gleason Score (GS) which is a number that ranges from 2 to 10 

(primary grade + secondary grade = GS).  For example a primary grade of 3 and a 

secondary grade of 4 will give a Gleason score of 7.    

A high Gleason score (≥8) represents severe disease with a poorly differentiated 

glandular pattern.   Currently, the histologic grade defined by Gleason score, along with 

serum levels of Prostate Specifc Antigen (PSA) and clinical stage are the most commonly 

used parameters for treatment decisions, prediction of organ confined disease and disease 

progression after treatment.   However patients with similar clinicopathologic findings 

frequently display widely heterogeneous disease courses and clinical responses to 

treatment. Compounding these observations is the conundrum that patients with prostate 

cancer often have highly heterogeneous disease, with several distinct foci of tumor 

(which may have differing Gleason grades) and preneoplastic lesions (such as Prostatic 

Intraepithelial Neoplasia (PIN) and Proliferative Inflammatory Atrophy (PIA) are found 

in a single patient.  Hence an effort to fully understand the genetics of disease initiation 

and progression is a top priority in prostate cancer research.  Advent of high throughput 

technologies have provided a wealth of information in transcriptome changes and 

genomic abberations that occur in cancer, hence a review of the available literature under 

the headings Pre and post microarray era in these areas are presented below.    

 

Molecular Characterization of Prostate Cancer 

Pre-microarray Era 

Earlier detection of prostate cancer is important. While the tumor from earlier 

stage is small and non-invasive and easily curable, the advanced form of this disease is 
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often associated with cancer-related mortality and morbidity. Prostate-specific antigen 

(PSA) is a tumor marker with high sensitivity used for the earlier detection of prostate 

cancer. Yet it has low specificity as there is significant overlap between PSA levels found 

in cancer and benign prostatic hyperplasia, and it often fails to detect cancer in significant 

number of patients undergoing prostate biopsy (6).  

Several studies have characterized genetic events that underlie prostate cancer 

which include PTEN genomic deletion.   PTEN (Phosphatase and tensin homolog) is a 

tumor suppressor biomarker that negatively regulates cell migration and cell survival (7-

9). PTEN induces G1 cell-cycle arrest in prostate cancer development (9) acting as an 

“off” switch for PI3K/AKT signaling pathway, which plays a role in proliferation, 

apoptosis, nutrient response, DNA damage, and cell size (10). PTEN is located within 

10q23 and is one of the most frequently deleted and mutated genes in prostate cancer. As 

a result of PTEN loss, PIP3 is accumulated and activates PI3K/AKT pathway (8-11). 

Loss of PTEN activity in prostate cancer is implicated in several studies. The paraffin 

tissues of 109 cases were immunostained with PTEN antiserum, and the absence of 

PTEN expression was correlated with Gleason score, especially those with gleason score 

of 7 or higher (9). PTEN has a haploinsufficient property for prostate cancer progression. 

While the transgenic adenocarcinoma of mouse prostate model containing PTEN (+/-) 

progressed significantly faster than its wildtype control, there was no statistical 

significance between the progression rate of PTEN (+/-) and PTEN(-/-) mouse prostate 

model, although the author has mentioned that it was somewhat slower in PTEN (+/-) 

than PTEN (-/-) model (12). The researchers have suggested the dosage effect of PTEN 

in prostate cancer progression and proposed the role of homozygous PTEN loss in 



5 

 

invasive cancer development. In a murine prostate cancer model, the mice with 

heterogeneous PTEN loss developed PIN within 12-16 months time frame, while the 

mice with homozygous loss took only 9 weeks to develop invasive form of carcinoma 

(11). Comparing the mouse model with decreasing PTEN activity (PTEN +/+, PTEN 

hypomorphic/+, PTEN +/-, and PTEN hypomorphic/-), the PTEN downstream genes such 

as Akt, p27, mTOR, and FOXO3 are affected in dosage-dependent manner (13).   

Similar to loss of PTEN expression observed in earlier stage of prostate cancer, 

the NKX3.1 loss in pre-cancerous PIN is widely reported (14-17),and is also a useful 

biomarker for earlier detection of prostate cancer. NKX3.1 is a prostate-specific 

homeobox gene regulated by Androgen (18). This gene is only expressed in androgen-

dependent cell line such as LNCaP and plays an opposing role to androgen-driven 

differentiation (18). The loss of heterozygosity (LOH) in 8p21, where NKX3.1 is located, 

is a well reported event during prostate cancer progression and speculated to play an 

important role during earlier stage of cancer development (19-20).  It is reported that 

LOH in 8p21 was present in 34 out of 54 PIN samples, and consequently more than half 

of PIN samples showed either reduced or absent NKX3.1 expression (20).  NKX3.1 is a 

tumor suppressor gene, and the mouse model with NKX3.1 deletion developed PIN (15, 

17). Importantly the loss of NKX3.1 expression correlated with tumor progression, and 

loss of NKX3.1 expression is more notable in advanced tumors and hormone refractory 

prostate cancers (14). The combined study of FISH and methylation-specific PCR (MS-

PCR) on 48 primary prostate cancer samples summarized the silencing mechanism of 

NKX3.1 in dosage dependent manner (16). NKX3.1 is not only subjected to a deletion, 

but prone for methylation changes as well. The LOH was reported in 27 out of 43 
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samples, and the increased level of methylation is also reported in 33 out of 40 malignant 

compared to adjacent normal samples. The samples with combined LOH and increased 

level of methylation had lowest expression (16). Interestingly, NKX3.1 and PTEN 

together has a synergistic effect on AKT pathway activation (21) playing a role in cell 

growth and survival, and this activation is only restricted to prostate, such that AKT 

pathway activation is not observed in non-NKX3.1 expressing tissues (21).  

Another biomarker that is used for earlier detection of prostate cancer is GSTP1 

(22). The decrease in GSTP1 expression is studied using immunohistochemical staining 

on 91 prostate cancer samples with GSTP1 antibodies, where 88 of them failed to show 

detectable amount of enzymes (23). The repression via hypermethylation of GSTP1 is 

addressed from both functional analysis and sequencing-based validation (24-25). The 5-

aza-deoxycytidine (5Aza) is an inhibitor to DNA methylation, which acts as a 

demethylating agent. The reactivation of GSTP1 transcription was demonstrated using 

5Aza treatment on prostate cancer cell lines, implicating the role of CpG methylation in 

GSTP1 gene repression (25). GSTP1 is especially useful for earlier detection of prostate 

cancer, because more than 70% of HGPIN samples already exhibits hypermethylation in 

its promoter, and in localized prostate cancer, the percentage harboring GSTP1 promoter 

hypermethylation increases to over 90% (22, 24). GSTP1 serves as non-invasive 

biomarker, since its hypermethylation status can be detected in urine, ejaculate, and 

plasma from men with prostate cancer (22). 

 

Post-microarray Era 
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With the advent of the microarray technology, the gene expression profiling on 

large number of cancer samples provided new insights to the prostate cancer disease 

progression and development, as well as a new understanding of the molecular events 

that occur.  The microarray analysis had been successfully used to characterize various 

types of cancer since 1995.  To date, Oncomine, an online gene expression database 

consortium (26) with data-mining and visualization tools, features 39,000+ samples from 

more than 500 profiling studies on various types of cancer (2,244 samples from 43 

different studies on prostate cancer). This reveals the extent to which microarray 

technology has been used in cancer biology.  Recently, the copy number profiling of 

3,490 samples from 27 studies has also been added to this application, and this data can 

be integrated with existing gene expression microarray data.    

Using this genome-wide approach, several genes have been identified based on 

their differential expression in prostate cancer and evaluated as biomakers as shown in 

the case of  Hepsin, AMACR, and EZH2 (27-31).  From the gene expression analysis on 

more than 50 tissues samples (normal adjacent, BPH, localized and metastatic prostate 

cancer), Hepsin is found to be correlated with the clinical outcome (27), and is 

differentially expressed between localized and metastatic samples, and while it is over-

expressed in primary tumor, a decreased expression is observed in metastatic cancer 

samples (28). The role of Hepsin in prostate cancer progression is shown in a mouse 

model study, where the over-expression of Hepsin has caused the disorganization of 

basement membrane, promoting tumor progression and metastasis (32). It is also reported  

by quantitative-PCR (qPCR) analysis on 90 patient samples, that there is a change in its 
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expression with statistical significance between samples that are with low risk compared 

to those with high risk for relapse (33).  

AMACR is a proven biomarker originally nominated from multiple microarray 

datasets including Dhanasekaran, Luo, Welsh studies, (27, 34-35), where it was up-

regulated in prostate cancer. Moreover, the elevated level of protein is also detected from 

tissue microarray study (29). AMACR performed better as the serum biomarker than 

PSA with higher sensitivity and specificity (29, 36). As a non-invasive approach, the 

urinalysis on AMACR protein showed 100% sensitivity and 58% specificity in urine 

samples collect from 26 individuals (37).   

EZH2 is a transcriptional repressor and a marker of aggressive cancer as shown in 

tissue microarray on over 900 patient samples (31). Functionally, a polycomb-group 

(PcG) protein, EZH2, is a gene silencer and methylates histone repression marker 

H3K27me3, which leads to chromatin condensation (38). It is shown from microarray 

data analysis, that EZH2 is over-expressed in metastatic prostate cancer, especially in 

hormone-refractory metastatic samples (30-31), and the prostate cancer samples with 

higher level of EZH2 were noted to have a poorer prognosis (30). Later, the mechanism 

of EZH2 over-expression is explained by miRNA (hsa-mir-101) deletion. The expression 

of EZH2 is inhibited by hsa-mir-101, and the genomic loss of hsa-mir-101 in prostate 

tumors lead to over-expression of EZH2 (39). Yu et al. have identified the 14 direct 

targets of PcG called “polycomb repression signature” using chromatin 

immunoprecipitation (ChIP) with EZH2, SUZ12, H3K27me3 antibodies and established 

the relationship between the PcG repression signature with poor
 
clinical outcome in 

multiple microarray data sets of breast and prostate cancer (38).  
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In addition to the biomarker discovery, the microarray analysis can be used to 

classify and predict the patient outcome in various cancers including prostate using 

“underlying gene expression differences” (40). Using the microarray profiling data, Singh 

et al. have accurately distinguished prostate tumor samples from normal with up to 92% 

accuracy (40). Similarly, using the gene expression of 12,625 transcripts on microarray, 

Glinsky et al. have identified the clusters of genes that can differentiate recurrent from 

non-recurrent prostate cancer samples, where 88% of recurred prostate samples were 

correctly classified into poor-prognostic group based on Kaplan-Meier analysis (41).  

The pathways that are often dysregulated in prostate cancer can be also revealed 

through microarray analysis (42-43). One of the examples is shown from the meta-

analysis performed across multiple independent microarray dataset of prostate cancer.  In 

this study, the cohort of genes involved in polyamines and purine biosynthesis pathway 

from KEGG database are found to be consistently and significantly dysregulated across 

multiple prostate cancer microarray studies (42). The gene expression analysis on oligo-

array with 63,175 probes identified the genes involved in cell cycle and DNA replication 

and repair, and the samples with the alteration in these genes indeed had high 

proliferation rate (43). 

 

Gene Fusion  

Recently paradigms of prostate cancer have been radically altered by the 

discovery of recurrent gene fusion events involving ETS family of transcriptional factors. 

Through fusion event, a dormant gene can be activated, when repositioned to tissue-

specific or ubiquitously active genome loci (44). The path that leads to the gene fusion 
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discovery in prostate cancer is described below.  Microarray analysis of prostate cancer 

tissues identified transcriptional dysregulation that specifically occurred in the cancer 

epithelial compartment (27, 45). The Cancer Outlier Profile Analysis (COPA) of multiple 

PCa microarray dataset revealed the presence of distinct molecular subtypes among the 

cancer samples. Unlike a standard statistical test, COPA analysis was specifically 

designed to identify highly expressed genes in a subset of samples
 
(46). It revealed 

overexpression of the transcription factor ERG in 40-50% of PCa cases and ETV1 in 10% 

of the specimens, and their expression was found to be mutually exclusive.  A subsequent 

measurement by qPCR revealed disparity in exon level expression of these ETS genes in 

corresponding ETS over-expressing samples, where the 5‟ exons had very 

low/undetectable expression, while the 3‟ exons, recorded exceedingly high expression 

values which ranked them as number one outlier in the cancer samples.  This intriguing 

finding necessitated Rapid Amplification of CDNA Ends (RACE) analysis to examine 

the 5‟ region of these outlier ETS family genes to explain the disparate exon level 

expression in cancer.  Results from the RACE analysis provided the first confirmation of 

a gene fusion event in prostate cancer between ETS family genes and TMPRSS2, a 

prostate specific androgen regulated gene.  The gene fusion event explained the outlier 

expression pattern of these genes and copy number analysis in prostate cancer by aCGH 

(discussed in detail under Copy Number and Microarray) explained the low expression of 

5‟ exons.  There are around 30 genes harbored in the genomic region between ERG and 

TMPRSS2 genes on human chromosome 21.  Array CGH data revealed genomic deletion 

of this region and deletion boundaries fell within TMPRSS2 and ERG genes exactly 

accounting for the disparate exon expression levels.     Several studies have now looked 
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at the prevalence of these events and their value as prognostic/ diagnostic makers in 

prostate cancer (47-48). The role of these gene fusions in prostate cancer initiation and 

progression has also been studied (44, 49).  A complete list of various types of gene 

fusion identified in prostate cancer is schematically represented in Figure 1.2. The above 

described is just one example to demonstrate the important contribution of high 

throughput technologies and its integrative analysis in understanding disease biology and 

much more.    

 

Genomic Aberrations in Prostate Cancer Progression 

Background in Copy Number Aberration in Prostate Cancer 

In cancer cells, chromosomal aberrations may result in activation of oncogenes 

and inactivation of tumor suppressor genes (50).  Amplification of oncogenes such as 

AKT2 in ovarian cancer, REL in Hodgkin lymphoma, ERBB2 in breast and ovarian 

tumors, MYCL1 in small cell lung cancer, MYCN in neuroblastoma, EGFR in glioma 

and non-small cell lung cancer and MYC in various cancers have been studied in detail 

(51).Understanding the contours of a cancer genome, may provide valuable mechanistic 

insights into the disease as well as in identifying therapeutic gene targets.  This fact is 

highlighted by the development of Trastuzumab (Herceptin) a targeted therapy for 

metastatic breast cancer patients with ERBB2 gene amplification (52).  

Traditionally, to study the copy number variations among given samples, the  

techniques such as comparative genomic hybridization (CGH), fluorescence in situ (FISH) 

hybridization, and PCR-based LOH analysis were employed (19-20, 53-54). Several 

important findings were made using these techniques including the copy number 
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aberration such as deletion in 8p12-21 (19-20, 53-54). PTEN and NKX3.1 are located 

within this frequently deleted 8p region (16, 55). Besides  recurrent regions of alterations 

such as gains in 7q, 8q, 18q, and Xq and losses in 1p, 8p, 10q, 13q, 16q, 19, and 22 , the 

altered genes such as AR, MYC, and Cyclin-D1 in prostate cancer are also reported (53-

54, 56). 

Androgen receptor (AR), a transcription factor of major importance in normal 

prostate function, is reported to be frequently amplified and mutated in prostate cancer 

(57). The AR gene amplification status is detected using FISH in hormone-refractory 

samples, and cancer samples with AR amplification had 2-fold increase in AR level 

compared with the ones without AR amplification (58). The increased level of AR 

mRNA is shown to be both necessary and sufficient for the transformation into hormone-

refractory cancer, also known as androgen-independent prostate cancer.  While the 

hormone therapy with AR antagonists is initially effective at first in tumor growth, 

eventually the prostate cancer becomes androgen-independent, thus fails to respond. The 

hormone-sensitive and hormone-refractory prostate cancer xenograft pairs were profiled 

on the microarray to uncover the mechanism behind the resistance to hormone therapy, 

and AR cDNA was the most differentially expressed probe. When mice were implanted 

with LAPC4 cells infected with androgen knockdown, the growth of tumor is stopped 

(59). Recently, the compounds named RD162 and MDV3100 is developed as a second-

generation anti-androgen treatment (60). Unlike previously developed anti-androgen drug 

for hormone therapy, they work under the increased level of AR, and these compounds 

are currently being clinically tested.  In addition to the increased AR, the mutation in AR 

also plays a role in androgen independency in prostate cancer (61-62).  
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In prostate cancer, a dramatic increase in number of aberrations by more than 50% 

in recurrent tumor compared to corresponding primary tumor has been previously 

reported (54). In general, the metastatic samples exhibit wide-ranges of amplified and 

deleted regions from various sites in entire sets of chromosomes. This genome-wide 

events support the hypothesis that “the accumulation of multiple genetic changes, perhaps 

as a result of genomic instability, is associated with prostate cancer progression” (63). 

The new findings and understanding of this event not only will help to uncover the 

pathogenesis of prostate cancer, but to design new therapeutic targets for clinical use as 

well (64). 

 

Copy Number and Microarray 

Identifying the regions of genomic aberration such as amplification and deletion 

in genome-wide manner is also benefited from the microarray technology. Unlike the 

traditional approaches limited by low resolution of several megabases or single-gene 

approach, array CGH (aCGH) based on microarray technology, was developed to 

overcome this limitation and began new era of genome-wide copy number analysis.  In 

brief, more than decade ago, Pinkel and Albertson successfully showed the copy number 

variation on aCGH platform using chromosome 20 and four copies of X chromosome 

from breast cancer (65). Since then, aCGH is widely performed on BAC, PAC, cosmid, 

cDNA and SNP arrays using samples from various sources including tissues, cell lines, 

and xenografts (66-71). The tumor suppressor genes located in 16q23-q terminus is 

identified from 16 prostate cancer tissues using aCGH technique on the microarray 

platform made from BAC, PAC, cosmid clone contigs covering 78% of entire q arm of 
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chromosome16 (66). Using similar approach, the 8q amplification containing MYC and 

TPD52 oncogenes with elevated expression in tumor is identified using BAC and SNP 

arrays (67-69).  

In addition to the identification of aberration-prone genomic regions in cancer, the 

result from aCGH could be integrated with the gene expression array analysis from 

matched samples to give the insights of underlying biology and  in identifying the genes 

of interest and studying the effect of copy number changes on gene expression in a 

genome-wide scale (70-71).  Genome-wide integrative analysis between aCGH and gene 

expression on matched samples in breast and prostate cancer show 40-60% correlation 

rate between genes that are highly amplified and over-expressed (72-73). More recently, 

the recurrent gene fusion events involving ETS transcriptional family in prostate cancer is 

reported. According to initial report, TMPRSS2 is fused to either ETV1 or ERG in 

mutually exclusive manner in 23 out of 29 prostate cancer samples (74).  Using high-

density BAC aCGH, the locus of TMPRSS2 from 21q22.3 is shown to be a hotspot for 

rearrangement with 75% genomic alteration rate (75). Furthermore, the use of high-

resolution tiling array allowed to pin-point the breakpoints along the chromosomes (76). 

 

Diagnostic and Prognostic Use of Copy Number Aberrations 

Several groups have attempted to determine the types of cancer based on copy 

number alterations observed in each sample group or classify samples with bad prognosis 

(77-79). Using aCGH technology, the recurrent copy number alterations in samples that 

are linked to good prognosis vs. bad prognosis are addressed (77). Among genomic 

alterations that are linked with the samples with bad prognosis include gain in 8q24 
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containing MYC and loss at 10q23 containing PTEN (77). In a similar study, the copy 

number analysis from the cohort of 64 patients on aCGH platform proposed the gain at 

11q13.1 to be a predictor of recurrence independent of tumor stage and grade and the loss 

at 8p23.2 to be the marker for advanced form of the disease (79). The DNA copy number 

analysis on androgen-sensitive (AS) and androgen-insensitive (AI) cell lines revealed 

vast differences between these two sample types (78). AI samples exhibited more 

extensive degree of amplification and higher number of genomic aberrations compared to 

AS samples. Transcriptional regulation differences between these two were previously 

known, and some of these transcriptomic differences can now be explained by underlying 

genomic copy number variations (78). 

 

Epigenetic Modification in Prostate Cancer Progression.   

Background on DNA Methylation – Age, Race, Cancer, and Field Effects 

In addition to the genomic aberrations, the epigenetic modifications such as DNA 

methylation and histone modifications also occur simultaneously during prostate cancer 

progression. The epigenetic changes tend to occur earlier in cancer development, 

believed to be therapeutically reversible (80) and plays an essential role in transcript 

regulation. Unfortunately, the mechanism of epigenetic changes in prostate cancer 

development still remains to be unveiled.  

The hyper and hypomethylation events during cancer progression is widely 

known, however, the variation in methylation between populations also depends on age 

and ethnicity (81-82). The age-related methylation is observed in normal tissues from 

older population. Although, the matched tumor tissues exhibited significantly higher level 
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of methylation than the matched normal pairs, there was a strong correlation between the 

level of methylation and the age among the genes (such as GSTP1, RASSF1, and 

RARbeta2) monitored by pyrosequencing technique (82). The occurrence of prostate 

cancer differs among African-American, Caucasian, and Asians. While the African-

Americans have the highest susceptibility of the disease, the Asians have the lowest 

incidents of prostate cancer. The GSTP1 promoter methylation is a diagnostic marker in 

prostate cancer and is hypothesized to play a role in cancer progression via gene 

inactivation resulting from promoter methylation, and its methylation status is monitored 

in each ethnic group. The highest difference between the rate of GSTP1 promoter 

methylation in cancer and benign samples is observed among African Americans who 

have the highest occurrence rate of the disease (81).  

In addition to the age- and ethnicity-driven methylation differences among 

general public, the field effect of cancer also should be taken in concern. The field effects 

have been reported in gene expression, protein expression, and gene promoter 

methylation in tumor-surrounding tissues (82-83).  For example, the methylation status of 

5 known prostate cancer methylation-target genes in surrounding tissues (up to 3mm 

from the malignancy) is monitored. A total of 4 genes out of 5 harbored the promoter 

methylation as a result of field effect.  The use of distanced benign tissues or tissues from 

cancer-free organs in paired sample analysis should be useful for field effect 

minimization.  

 

Hypermethylated Genes as Diagnosis and Prognostic Biomarker 
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Promoter methylation resulting in loss of gene expression especially in tumor 

suppressor genes are widely reported in prostate cancer. The frequently hypermehylated 

genes can serve as diagnostic and prognostic markers for prostate cancer as shown in 

well-characterized GSTP1. The epigenetic modification such as DNA methylation occurs 

earlier in prostate cancer progression (84-85), such that the majority of HGPIN samples 

already retained GSTP1 and Cyclin D2 promoter hypermethylation (85-87). Because of 

its possible advantage as an early detection marker for prostate cancer and ability to be 

detected from urine samples as a non-invasive method, the methylation marker is gaining 

in strength (88-89).  

Instead of using methylation marker from a single gene, the use of 

hypermethylation status in multiple loci such as TIG1, APC, PTGS2, and GSTP1 not 

only improved the specificity and sensitivity in disease diagnosis, it also showed stronger 

correlation with the disease progression and gleason score as well (90). The increased 

risk for prostate-specific mortality in the patients with RUNX3 and APC promoter 

hypermethylation is reported (91). The hypermethylated genes such as ASC and CDH13 

showed increased risk for recurrence after radical prostatectomy (92). The target genes of 

DNA methylation can be used as a prognostic tool to determine the clinical outcome of 

the disease as shown above (90-92). 

 

Therapeutic Relevance in Methylation Study 

Identifying methylation target genes from earlier stage of prostate cancer also has 

a therapeutic value for the treatment of the disease. The DNA sequence is not altered 

during epigenetic modification, thus it is believed to be reversible (80, 93). Promoter 
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methylation alters the gene expression especially if it resides on gene promoter regions. 

In vitro, the use of demethylating agent 5-Aza demonstrated its ability to re-activate 

silenced genes (94-95). Although the use of such approach in clinical setting is still under 

trial and at developmental stage, several drugs such as 5-azacytidine (Vidaza
®
) and 5-

aza-2‟-deoxycytidine (decitabine) have been clinically tested and FDA-approved to be 

used in terminal blood cancer patients.  

 

Hypomethylation during Cancer Progression 

Unlike promoter hypermethylation starting to accumulate during earlier stage of 

prostate cancer, DNA hypomethylation arises at much later stage (96). Using the 

antibody for 5-methylcytosine (5MeC), the immunocytochemistry levels of stained tumor 

sections from different stages of prostate cancer were quantified, and revealed that the 

metastatic samples showed significant reduction of 5 MeC compared to normal and 

localized prostate cancer samples (96). While the hypermethylation event is more 

targeted for gene promoter, the hypomethylation occurs in genome-wide manner, 

especially within repeat elements such as LINE1 and Alu (96-97). Also, with the 

integrative analysis with gene expression microarray, it was revealed that the genes that 

are over-expressed and hypomethylated include subset of testis antigen genes, whose 

change was present among localized samples, but more pronounced among metastatic 

samples (96). Lastly, in contrast to the hypermethylation events especially targeting CpG 

islands, the hypomethylation is more heterogeneous, such that the samples from same 

patient evidently showed wide variability in hypomethylation sites (96-97). 
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DNA Methylation and Histone Modification 

The histone modifications along with DNA methylation may play an important 

role in tumorigenesis. While the histone acetylation opens up the chromatin for 

transcriptional activation, the histone methylation is generally associated with 

transcriptional repression as seen in H3K9 and H3K27 trimethylation. H3K4me3, 

however, is associated with active chromatin, thus gene activation.  The previous studies 

indicate the rare presence of H3K4me3 in the regions of DNA methylation (98). In rice 

genome, while strong association between DNA methylation and transcriptional 

repression is established, in presence of both H3K4me3 and DNA methylation, the 

transcriptional activity was reduced by lesser degree (99). The tri-methylated histone H3 

methylated at Lys27 (H3K27me3) is a key histone marker for epigenetic repression. As 

seen in H3K4me3 histone marks, DNA methylation and H3K27me3 is also occupying 

mutually exclusive regions on the genome (100). The independence between H3K27me3 

histone repressive mark and DNA methylation is demonstrated using chromatin 

immunoprecipitation microarrays (ChIP-chip). Among the genes that contain H3K27me3 

and silenced in prostate cancer, only small portion of these gene contained promoter 

DNA methylation.  The downregulation of EZH2 also had no effect on the genes 

containing promoter DNA methylation, while it successfully restored the expression of 

H3K27me3 target genes (101). DNA methylation and histone modification is believed to 

be two independent mechanisms for gene silencing, and the association between these 

two mechanisms are not yet fully understood (101). 
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Figure 1.1 Schematic depiction of the cell types found in a human prostatic duct. 
Secretory luminal cells that form the inner layer and basal layer found encased by the 

basement membrane are indicated.   The figure has been reproduced from the review by 

Shen and Shen et al (102). 

 

 

http://genesdev.cshlp.org/content/14/19/2410/F3.large.jpg
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Figure 1.2 List of gene fusions in prostate cancer.  The schematic represents the gene 

fusions characterized in prostate cancers. The 5' fusion partners  and their corresponding 
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3‟ partners are depicted on the right and left respectively.  . Coding exons are depicted in 

darkly shaded boxes and  non-coding regions in lighter shade.  Arrows indicate androgen 

regulation ; Upregulation- upward pointing arrows , downregulation- downward pointing 

arrow, no influence- horizontal arrows.  This figure has been reproduced from review 

published by Kumar et.al., on gene fusions in prostate cancer (47). 
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CHAPTER 2 

 

GENOME-WIDE COPY NUMBER CHANGES IN PROSTATE CANCER 

UNRAVELED USING ARRAY COMPARATIVE GENOMIC HYBRIDIZATION 

(aCGH) 

 

Chromosomal aberrations due to genome instability are a characteristic of human 

solid tumors (1) and are considered the primary drivers in the development and 

progression of cancer (2). Precise measurements of gene copy number alterations with 

high resolution are now possible with array CGH (aCGH) performed on BAC arrays, 

cDNA microarrays, or oligoCGH arrays (3).  Several tumors including breast, prostate, 

and lung cancers among others have been analyzed using aCGH technology (4-5). More 

recently, studies have been documenting genome-wide copy number changes with 

parallel mRNA expression profiling for various cancers using microarray platforms (6-

10).  

aCGH analyses of human prostate cancer cell lines (11-13),  xenografts(14-15) 

and prostate cancer tissues (16-17) have been reported. While all of the above studies 

have used grossly dissected tissues, profiling of laser captured, microdissected prostate 

cancer specimens has been shown to resolve cancer specific genomic aberrations with 

higher sensitivity (17), Recently Hughes et al. reported aCGH profiling of a small set of 

laser captured prostate cancer specimens (18).  In this chapter, we carried out a 
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comprehensive characterization of cytogenetic profiles of 62 prostate cell populations 

using aCGH on a cDNA microarray platform as described by Pollack and colleagues (19).  

Cells from specific prostate tissue foci were isolated by laser capture microdissection and 

the samples belonged to various groups that include: benign prostatic hyperplasia (BPH), 

stromal, atrophic epithelia, proliferative inflammatory atrophy (PIA) (20), postatrophic 

hyperplasia (PAH) (21), prostatic intraepithelial neoplasia (PIN), clinically localized 

prostate cancer (PCA) low-grade, L-PCA (Gleason pattern 3); foamy, F-PCA; high-grade, 

H-PCA (Gleason pattern 4); and metastatic prostate cancer (MET). Our group has 

recently noted the enrichment of various molecular concepts in gene expression signature 

of prostate cancer progression using this sample set (22). In the present study, we defined 

the minimal common regions (MCRs) corresponding to various sample groups and 

identified novel regions of aberrations and candidate genes that lie within.  Our study also 

provides information on the occurrence of these MCRs in successive stages of cancer 

progression.  

 

Results and Discussion: 

Chromosomal aberrations in prostate cancer 

We used laser capture microdissection (LCM) to isolate 62 specific cell 

populations from 38 patients representing a histopathologic spectrum of prostate cancer 

progression to perform aCGH analysis (Table 2.1).  This thesis work describes the results 

from the aCGH (in this chapter) and its integrative analysis with gene expression data in 

next chapter, which has been reported previously (22).  Analysis of the array CGH data 

using CGH-Miner software identified significantly altered contiguous chromosomal 
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regions (q-value<0.01) within each sample (23) (and Materials and Methods). The total 

number of genes located within these altered regions was highest (average n=800) in 

metastatic samples (Fig. 2.1 and Table 2.1) while it was lowest in the benign samples 

(average n=61).  On average, high-grade PIN (HGPIN) samples had 194 gene alterations, 

while 151 and 360 altered genes were found in low- and high- grade localized prostate 

cancer samples, respectively. PAH and atrophy had 74 alterations on average, and the 

range of the number of observed chromosomal aberrations in these samples was not 

significantly different (p-value>0.05) from benign/normal samples.  However in both 

HGPIN and cancer cases, the variability in the number of alterations compared to that of 

benign/normal samples was significantly different (HGPIN p-value<0.0005, H-PCA p-

value<0.0003, and MET p-value<0.0001).  

To calibrate the resolution of our array CGH technique, we used genomic DNA 

samples with varying copies (1 to 5) of chromosome X hybridized against normal human 

male genomic DNA obtained from a commercial source.   The gain in copy number was 

evident with increasing signal for all genes derived from chromosome X (Fig. 2.2). Using 

this data, when the mean fluorescence ratios of the genes located in X chromosome from 

each experiment was plotted, the slope was 0.2228 with R
2
 = 0.9998 (data not shown). In 

addition, genomic DNA from the epithelium and stroma of normal prostate tissue from a 

cadaveric donor, previously diagnosed with Down‟s syndrome, showed a single copy 

gain in chromosome 21 (Fig. 2.2). Resolution of the X chromosome copy number 

changes, as well as the detection of a single copy gain in chromosome 21, validated the 

performance of our arrays and the amplification technique employed with laser captured 

specimens.   



32 

 

The significantly altered genes from various prostate samples identified in the 

above analysis (Fig. 2.1) were ordered according to human genome map position from 

chromosome 1 to Y and the regions of gains and losses were displayed as a heatmap (Fig. 

2.2).  Benign samples, as expected, showed no significant regions of alteration (excluding 

the two samples with chromosome 21 amplification), while metastatic samples displayed 

the most alterations. Among the metastatic prostate cancer samples, frequent 

amplifications were observed in chromosomal arms 2p, 3q, 7, 8q, 9q, 16p, and 20q, and 

deletions in 6q, 8p, 10q, 13q, and 18q (Fig. 2.2).  When the size of the altered span was 

considered, the H-PCA (Gleason Pattern 4) samples showed more resemblance to the 

MET samples than to L-PCA (Gleason Pattern 3), and the alteration sites tended to 

extend further, even encompassing entire chromosomal arms, for example in 3q, 8q, and 

13 (Fig. 2.2). Next we calculated the percent alteration in each group, and the alteration 

frequency is displayed for all the chromosomes (Fig. 2.3). The aberrations observed in 

PIN, L-PCA, H-PCA, and MET groups in chromosomes 8, 10 and 13 revealed a distinct 

overlap (Fig. 2.4).  Several known alterations, including amplifications in TPD52 and 

MYC (8q21.13 and 8q24.22) and deletion in PTEN (10q23.3) are located within the 

highly altered regions on these chromosomes. For 8q24.22 and 10q23.3, the percent 

alteration in MET and H-PCA ranged from 30 to 50%, while 8q21.13 had a 40% 

alteration in MET samples. Among the PIN samples, the whole-arm amplification in 8q, 

which is often observed in the advanced form of the disease, was present in at least one 

sample. None of our other PIN samples had chromosomal-arm spanning alterations, 

although there were a number of smaller altered sites throughout the entire chromosome. 

Besheshti et al. have previously reported that more extensive aberrations are observed in 
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PCA than in PIN, and in contrast to 8q gain that was consistently observed from different 

tumor foci, 8q gain in PIN is not a common event (17).  A recent prostate cancer aCGH 

study by Hughes et al. on a BAC platform consisting of 2,400 clones identified both 

8q21.11-qter gain and 8p11.23-p23.3 loss in PIN and PCA samples, with gain in more 

than 37.5 and 50% and loss in more than 50% of PIN and PCA samples, respectively 

(sample size n = 7 for PIN and 8 for PCA) (18).  Aberrations in chromosome 8 were not 

very common in our PIN sample cohort, with only 1 case of 8p loss and 1 case of 8q gain.  

However gain of 8q and loss of 8p were frequent events (40% and 30%, respectively) in 

the tumor samples.   

 

Minimal common regions in prostate cancer 

In order to refine the regions of alteration obtained from CGH-Miner output, we 

used MCR identification as described in the Materials and Methods. The automated 

algorithm we used has been previously applied to define overlapping regions of 

amplification, deletion, and focal regions of recurred alterations in myeloma, pancreatic, 

and lung cancer aCGH studies (9-10, 24). By using this method we identified minimal 

common regions (MCRs) in PCA and MET sample groups in our prostate cancer dataset 

(Table 2.2).  More detailed information on all MCRs, including precise aberration sites, 

cytogenetic bands, number of samples altered and the gene names within the predicted 

regions that meet the cutoff threshold for amplification and deletion, along with the over- 

and under-expressed genes from matching mRNA profiles is provided (see APPENDIX 

to download). 
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The region 8q24.22 (132.98-134.64 Mb) had the highest percentage of alterations 

(50%) among the METs.  Other frequently amplified regions with more than 40% of 

MET samples showing the alterations are, 2p23.3 (24.06-24.34 Mb), 7p15.1 (29.48-31.5 

Mb), 8q21.13 (31.6-81.62 Mb), 8q22.2 (99.21-99.65 Mb), 8q22.2-q22.3 (101.23-101.99 

Mb), 8q22.3 (102.57-103.29 Mb).  Regions 10q23.31 (90.96-91.08 Mb), 18q21.31 

(53.37-54.17 Mb), 18q21.32 (54.68-55.25 Mb), and 18q22.1 (63.32-64.54 Mb) were 

among the frequently deleted regions exhibited by 40% of MET samples. The region 

18q21.2 which harbors SMAD4 is deleted in 30% of MET samples.  SMAD4, a TGF beta 

superfamily signaling molecule is significantly under-expressed in prostate cancer (25). 

In PCA samples, regions 5q32 with 30% amplification and 13q14.12 with 30% 

deletion were the most frequently altered sites.  Other alterations which include 

amplification in 5q32 and 8q24.11 and deletion in 5q13.3, 6q14.3-q15, 10q23.2-q24.1, 

13q14.12-q14.2, 16p12.2, and 17q21.31 were observed with a frequency greater than 

20%. In H-PCA samples, the deletion in 13q14.2 (47.55-48.9 Mb) was observed in more 

than 40% of the cases. Previously, van Dekken et al. compared Gleason pattern 3 and 4 

tumors obtained from same cases by 2,400-element BAC array, and a 34% overlap in 

genomic aberrations, mainly in deleted regions was reported (26). The defined MCRs for 

H-PCA and L-PCA samples in our cohort show overlap in deleted regions 5q13.3, 

6q14.2-q21, and 16p12.2; however, there were no overlapping regions of amplification 

between the two groups.  This could be due to the identification of only four altered sites 

by automated MCR definition in L-PCA. 

The shared regions of alterations among PIN, L-PCA, H-PCA, and MET samples 

were further investigated by the following method. If a given cytogenetic band shows 20% 
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recurrent aberration within a sample type, it is mapped to the same cytogenetic band 

region in other sample types to assess percent recurrent aberration in that region. 

Identifying these shared regions is of great interest as it might shed light on the 

mechanism of tumor progression, especially when the alteration is detected in the 

precursor lesions such as PIN and is preserved or becomes more frequent in other 

progressive stages of the cancer.    The cytogenetic bands harboring the shared amplicons 

in all four groups are 1q21.1-q21.3, 1q24.1-q24.2, 3q21.1-q21.3, 3q29, 6p21.33-p21.1, 

7p15.1-p14.3, 8q22.2-q24.12, 11p15.4-p15.1, 11q13.1, and 12p13.32-p13.2. In most of 

the PCA and PIN samples, the aberration within designated cytogenetic region was seen 

in less than 20% cases. Gain in 1q or 6p denotes poor outcome in melanomas (27), 

suggesting that alterations in those region may be associated with poor prognosis and 

lower survival rate in prostate cancer as well. All groups shared deletion at 6q16.2-q22.31, 

13q12.12-q32.1, 17p12-p11.2, and 18q21.1-q23, whereas the deleted region in 

chromosome 13 is a frequent event in both MET and H-PCA cases (>30%).  Among 13 

defined MCRs in PIN, 9 are shared with PCA.  These regions include amplifications in 

3q29, 5q31.3-q32, 5q32, 6q27, and 8q24.3 and deletions in 6q22.31, 16p12.2, 17q21.2, 

and 17q21.31. 17q21.31 is known to be completely lost in the PC3 cell line (28). 

However, among 3 defined MCRs in PIA samples, none are shared with PIN or PCA. 

Among the putative precursor lesions, PIN, but not PIA, bears a closer resemblance to 

prostate cancer in copy-number alterations.   

Overall, the most frequent amplifications are observed in 2p, 3q, 5q, 7p, 8q, 9q, 

16p, and 20q for MET and 3q, 5q, 7q, and 8q for PCA. Deletion-prone sites in MET are 
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6q, 8p, 10q, 13q, and 18q, and they are 1q, 3q, 5q, 6q, 10q, 13q, 16p, 17q, and Xp in PCA, 

where most of the alterations are obtained from H-PCA samples.  

 

Chromosomal aberrations in distant metastases 

Several metastatic specimens from a single patient (case 34) that include lymph 

node, lung, liver, soft tissue around bone, other soft tissue, and tissue from the residual 

prostate gland were profiled in this study (Table 2.1). CGH-Miner output of significant 

alterations (q-value<0.01) for each sample was displayed for comparison (Fig. 2.5). 

Common alterations that occur in at least 3 samples are detected in 3q, 5q, 11q, 12p, 13q, 

16q23-q24, 17p, 18q, and 22q (Fig. 2.5). The majority of the alteration sites are 

overlapping; however, there are also unshared altered sites present, likely accounted for 

by the heterogeneity in each clonal group as well as due to the alterations that occur after 

metastasis. The number of genes within the identified aberrant sites ranges from 583 to 

1723, and the residual carcinoma of prostate gland and lymph node MET displayed lower 

number of altered genes compared to the other sites. Interestingly, in an earlier 

integrative mRNA and copy-number study on chromosome 16q, deletion in 16q23.1 to 

16qter (a region harboring many candidate tumor suppressor genes) was reported in more 

than 50% of prostate cancer samples examined (29). Many other genes known to be 

deleted in prostate cancer such as, CYP1B1, TNFRSF10B, ATAD1, and PTEN are located 

within the commonly deleted regions in these distant metastasis samples.  

 

In conclusion, aCGH analysis of laser-capture microdissected prostate cancer 

samples detected a multitude of chromosomally altered regions through the various 
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stages of prostate cancer progression. Samples like PAH and PIA, were characterized for 

the first time by aCGH in this study.  Minimal common regions were identified and the 

percentage of alterations in various prostate cancer stages that reflect the entire spectrum 

of the disease progression was calculated.  This generated a list of altered regions and 

candidate genes that might play a role in cancer progression. The prostate cancer 

precursor lesion PIN resembled PCA in its genetic alterations.   The complete prognosis 

information for this patient cohort is still being collected and is incomplete at the moment.  

Extensive analysis will be performed when this information is made available at a future 

date.    

 

Materials and Methods: 

Tissue specimen and genomic DNA isolation 

Tissues were obtained from the radical prostatectomy series at the University of 

Michigan and from the Rapid Autopsy Program, which are both part of University of 

Michigan Prostate Cancer Specialized Program of Research Excellence Tissue Core. All 

samples were collected with informed consent of the patients and prior institutional 

review board approval. The prostate cancer samples obtained from a total of 38 

patients/organ donors include 7 normal/benign prostatic hyperplasia, BPH; 8 stromal, S; 

5 postatrophic hyperplasia, PAH (2 atrophic epithelium, ATR; 3 proliferative 

inflammatory atrophy, PIA), 7 prostatic intraepithelial neoplasia, PIN; 18 localized 

prostate cancer, PCA (8 low-grade PCA, L-PCA; 1 foamy PCA, F-PCA; 9 high-grade 

PCA, H-PCA) and 17 metastatic prostate cancer, MET (Table 2.1). A precision cut using 

laser-capture microdissection was performed on frozen tissue sections (6 microns) 
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containing a minimum of 10,000 cells placed on specially manufactured membrane slides 

(MMI, Knoxville, TN) with the SL Microtest device (MMI, Knoxville, TN) using 

u(micro)CUT software (MMI, Knoxville, TN) (22). Genomic DNA was isolated from the 

cells using QIAamp DNA Mini Kit (Qiagen, Valencia, CA) and DNA concentration was 

determined using Quant-iT DNA Assay Kit, High Sensitivity (Invitrogen, Carlsbad, CA). 

For the threshold analysis, human genomic DNA samples having varying copies (1 to 5) 

of the X chromosome were purchased from the NIGMS Human Genetic Mutant cell 

repository (http://www.nigms.nih.gov/Initiatives/HGCR/).  Normal human male and 

female genomic DNA was purchased from Promega Inc.   

 

Array-CGH on cDNA microarrays 

In-house cDNA microarrays containing 20,000 spotted elements representing 

~13,000 different UniGene clusters used in our previous gene expression profiling studies 

(22, 30) were used for the aCGH studies. One hundred nanograms of genomic DNA was 

amplified using OmniPlex Whole Genome Amplification (WGA) kit (Sigma-Aldrich, St. 

Louis, MO) following the manufacturer‟s protocol. Amplified normal human male 

genomic DNA was used as reference for all the hybridizations. The amplified DNA was 

quantified by Quant-iT DNA Assay Kit, High Sensitivity (Invitrogen, Carlsbad, CA) and 

4 µg of DNA from each sample was labeled using BioPrime® Array CGH Genomic 

Labeling System (Invitrogen, Carlsbad, CA). Two color hybridizations were performed 

as described earlier by Pollack et al. (19) The use of whole genome amplification was 

previously evaluated on frozen and formalin-fixed, paraffin-embedded (FFPE) Wilm‟s 

tumor specimens on aCGH platform by Little et al (31). 
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Data collection and analysis  

cDNA microarray slides were scanned using an Axon GenePix 4000B dual-laser 

scanner, and its fluorescence signal was quantified with GenePix Pro 6.0 software (Axon 

Instruments, Union City, CA). Bad spots were flagged out, and data was Lowess 

normalized (32). Genes with multiple representations were averaged using GEPAS 

software (33), and log2-transformed. A total of 9,550 unique genes were analyzed as 

follows. Cutoff values were set at log2 ratio ≥0.22 for amplification and ≤-0.22 for 

deletion (97% and 3% quantiles, respectively); the cutoff values for complementary 

expression profiling data were set at log2 ratio of ≥0.4 for over-expression of genes and 

≤-0.4 for under-expression ( 4 standard deviations of the middle 50% quantile of data) 

(9-10, 24).  For the genome-wide integrative analyses, the data from aCGH and gene 

expression microarrays was moving averaged (symmetric 5-nearest neighbors) using 

CGH-Miner software (23). The CGH-Miner output for 9,550 unique genes was ordered 

according to the genome map positions from chromosome 1 to Y, and the moving 

averaged (symmetric 5-nearest neighbors) fluorescence ratios were depicted using log2-

based pseudocolor scale.  

 

Percentage of Alterations in Prostate Cancer 

Prostate cancer data represented in global view analysis was classified into 4 

different sample groups: PIN, L-PCA (Gleason Pattern 3), H-PCA (Gleason pattern 4), 

and MET. From the region of chromosomal aberrations, the amplified and deleted genes 

were selected using the thresholds set above. Among the samples profiled in the 

metastatic group, data from six hormone refractory tumors obtained from different 
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metastatic sites from a single patient (case number 34) was averaged to reduce sample 

bias. Three additional samples (2 MET and one PIN) excluded in the global view analysis 

(as transcript profiling was not available) were included here, taking the total number of 

samples in the MET group to twelve and PIN group to seven. The percentage of 

alterations for the selected genes was calculated for each group. The gene list was 

ordered according to the chromosomal location of each gene and was moving averaged 

(n=5) for graphical representation.  The residual prostate carcinoma obtained from case 

34 was included in the metastatic group in all of our analyses as the gene expression 

analysis clustered this sample in the metastatic group.  This sample had 851 alterations, 

which is in the range of alterations observed in metastatic samples from case 34 (456-

1588 altered genes).    

 

Minimal Common Region (MCR) characterization 

MCR characterization was performed as described earlier (9-10, 24), with some 

modifications.  A Perl-based algorithm was applied to the normalized data. Genes with 

log2 ratios greater or less than the predefined cutoff values (as described above in Data 

collection and analysis), within the significantly altered regions identified by CGH miner, 

were considered as altered.  The CGH-miner output arranges genes according to their 

chromosomal location. Samples were grouped into 6 categories (PIA, PIN, L-PCA, H-

PCA, PCA, MET). To identify most commonly amplified or deleted genes, a score was 

given to each gene based on the number of samples with alteration.  We then scanned the 

scores to identify contiguous spans of altered genes having at least 75% of the peak 

alteration percentage to denote the MCRs.    
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Notes 

 

 This chapter has been previously published: Kim JH, et al. (2007) Integrative 

analysis of genomic aberrations associated with prostate cancer progression.  Cancer Res 

67(17):8229-8239.  All rights reserved. 
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Table 2.1 Clinical Information of LCM samples profiled by aCGH. AA = African 

American, C = Caucasian, UO = Unknown/Others 

 
Italic: Samples without transcript data *Trisomy in Chromosome 21       

†ERG-Over-expression Samples  ‡ETV1 Over-expression Samples 
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Table 2.2  The most frequently observed chromosomal alteration sites in prostate 

cancer progression. Using automated locus definition (Materials and Methods in 

CHAPTER2), the minimal common regions in localized and metastasized prostate cancer 

samples are defined. The cytogenetic bands where the located genes showing frequent 

amplification and deletion in MET and PCA are listed.   
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Figure 2.3 Recurrence in PIN, L-PCA, H-PCA, and MET. Recurred regions of 

amplification and deletion are examined. 
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Figure 2.4 Representative chromosomal alterations in prostate cancer. The 

chromosomal aberrations observed in chromosomes 8, 10, and 13 of PIN, L-PCA, H-

PCA, and MET samples are depicted. The peaks moving to the right indicate 

amplification, and to the left indicate deletion. The amplified genes, MYC and TPD52, 

and deleted tumor-suppressor PTEN are located within these frequently amplified and 

deleted regions, respectively. Regions harboring genes including E2F5, COX6C, P2RY5, 

MYC, and ZIC2 are altered in specimens from all stages of prostate cancer.   
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CHAPTER 3 

 

GENOMIC ABERRATION  PLAYS A ROLE IN TRANSCRIPTIONAL CHANGE 

IN PROSTATE CANCER PROGRESSION 

 

The role of copy number changes on transcriptional regulation has been reported 

in several studies including breast, pancreatic, lung among other cancers.  Using 

integrative analysis, several groups have identified the regions of differentially expressed 

genes that accompany copy number change. For example, in lung cancer, the genome-

wide aCGH and expression array profiling  of adenocarcinoma (AC) and squamous-cell 

carcinoma (SCC) tumor types identified 3q26-29 as the key region of genomic difference, 

where both copy number gain and corresponding increase in gene expression is observed 

in SCC samples, but not in AC samples (1).  The concordance between the amplification 

and corresponding gene-upregulation is reported to be around 40-60%, recognizing 

genomic aberration as a strong driving mechanism for gene expression changes.  In breast 

cancer, an aCGH study coupled with gene expression on cDNA microarray platform 

estimated a 62% (representing 54 unique genes) association between 117 highly 

amplified genes and transcript over-expression (2). Other similar study also on breast 

cancer reported a 44% concordance between amplification and over-expression, and 

identified gene amplification as the underlying mechanism in 10.5% of highly over-

expressed genes (3). In pancreatic cancer, as many as 60% of the genes located within 
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highly amplified regions were reported over-expressed (4). Similar high level 

concordance between DNA copy number change and mRNA expression level was also 

observed in our prostate study, supporting the role of gene copy number in transcriptional 

up-regulation. In this dissertation study, we integrated aCGH and corresponding gene 

expression data (5) obtained from matched samples to evaluate genomic aberrations 

accompanying gene expression changes during prostate cancer progression. Recent 

finding in prostate cancer include the recurrent gene fusion events involving ETS 

transcriptional family. This event plays a crucial role in prostate cancer development, and 

these gene fusions appear to be one of the earliest events involving prostate cancer (6). 

We hypothesized the samples with ETS gene fusion might use an alternate path for 

tumorigenesis compared with non-ETS samples. The copy number differences between 

ETS and non-ETS prostate samples are addressed through Molecular Concept Map 

(MCM) analysis (5) and identified various chromosomal regions including 6q21 that 

distinguish ETS overexpressing samples from others.  

 

Results and Discussion: 

Analysis of array CGH data and mRNA expression profiles on matched LCM prostate 

specimens 

The aim of our integrative analysis was to identify candidate regions with genetic 

alterations that accompany corresponding transcriptomic changes. Transcript expression 

patterns of genes located in the chromosomal regions with significant aberrations in 

identical samples were compared (Fig. 3.1). An association between mRNA over-

expression and chromosomal gain was observed, such that among highly amplified genes 
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(log2 ratio≥0.5), there was a 26% and 20% concordance in high level mRNA expression 

(log2 ratio≥1) for MET and PCA samples respectively, while at moderate level mRNA 

expression (log2 ratio≥0.4), a 42% and 22% concordance was observed, for MET and 

PCA tissues. Among all the amplified genes (log2 ratio≥0.22), a moderate level over-

expression (log2 ratio≥0.4) was observed in 38% of MET and 20% of PCA cases, and a 

high level over-expression (log2 ratio≥1) was observed in 23% MET and 15% of PCA 

cases. A previous breast cancer aCGH and coupled gene expression study estimated a 62% 

(representing 54 unique genes) association between 117 highly amplified genes and 

transcript over-expression (2). Hyman et al. have reported 44% highly amplified genes 

associated with over-expression, and 10.5% of highly over-expressed genes to be 

amplified in breast cancer (3). In pancreatic cancer, as many as 60% of the genes located 

within highly amplified regions were reported over-expressed (4). Similar high level 

concordance between DNA copy number change and mRNA expression level was also 

observed in our prostate study, in which the increased dosage in the gene copy number 

most likely plays a major role in their transcriptional up-regulation. The MCM analysis (5) 

from the Oncomine database revealed the enrichment of over-expressed genes in 

chromosomal arms 8q, 1q, 7p, 9q, 16p, 10p, and 3q (p-value<0.05), where 8q, 7p, 9q, 

16p, and 3q are among the top chromosomal alteration sites in our MCR analysis from 

Chapter 2 (Table 2.2).  Integrative analysis of our aCGH and gene expression data allows 

a direct comparison between the change in copy number and transcript expression levels, 
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and genes within regions of significant genomic alterations show concordance at the 

mRNA expression level.   

 

Integrative analysis of genomic and transcriptomic profiles associated with prostate 

cancer progression 

To identify the top altered genes that are associated with a change in expression 

level, we selected the candidate genes based on three criteria mentioned under integrative 

analysis of copy-number-based differential gene expression section in Materials and 

Methods. These significantly altered genes are located within the commonly observed 

regions of chromosomal aberrations and are accompanied with the altered mRNA 

expression in a correlated manner.  The chosen genes from PCA and MET samples are 

likely to play a role in mRNA expression level, and they are cross indexed with three 

independent gene expression datasets available in public domain (Fig. 3.2). The gene 

expression data was obtained from grossly dissected localized and metastatic prostate 

tumor tissues from previously reported studies from our group (7-8) and others (9). The 

amplified gene section was enriched with transcript overexpression and the deleted 

section with mRNA down regulation.  These differentially expressed genes are located in 

either PCA and MET or both. Well-known amplified genes such as MYC and TPD52(10-

13) (10-13) are among the top genes that show over-expression pattern in PCA and MET 

samples in various datasets. The tumor suppressor PTEN and suppressor of cytokine 

signaling, SOCS6 that are known to be deleted in various cancers are also seen as under-

expressed.  Some of the other previously described gains are PTK2, KIAA0196, PVT1, 

NSE2, and RAB25, and some of the earlier reported losses include SPTA1, NEFL, FVT1, 
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TNFRSF6, EDNRB, C13ORF1, LCP1, BMPR1A, and CDH19.  Some of the novel 

amplified and deleted genes identified in this study include DDEF1, LCHN, F5, DDX56, 

P2RY5, ATAD1, ZNF532, RAB27B, and PPIL6 which merit further characterization.  In 

addition, a progressive gene signature was identified by the transcriptome analysis 

performed on identical samples studied here.  These genes showed a robust progression 

signature whose expression increased or decreased during the progression from benign 

epithelium to PIN to PCA to MET (5).  We used the aCGH data for the corresponding 

samples to look for possible underlying genetic alterations involving the proposed 

candidate genes.  The data is presented in Table 3.1.   

 

Genetic alterations in ETS versus non-ETS samples 

ETS transcription factors that include ERG, ETV1, and ETV4 were identified as 

outliers in prostate cancer gene expression data set and are demonstrated to be involved 

in recurrent gene fusion (14). Two recent studies, one using SNP arrays on human 

prostate cancer tissues and the other using BAC arrays on prostate cancer xenografts (15) 

propose interstitial deletions
 

as a mechanism of TMPRSS2:ERG gene fusion on 

chromosome 21 (14). These gene fusions appear to be one of the earliest events involving 

prostate cancer and lead to the over expression of the fused ETS gene in an androgen-

regulated manner (6). We previously characterized ETS expression in the cancer samples 

used in this study (5).  Accordingly the localized and metastatic prostate cancer samples 

were either grouped into ETS (ERG or ETV1 overexpressing) or non-ETS samples (Fig. 

3.3A). A significance test was performed to identify regions that distinguish between 

these two sample groups from the CGH miner output (q-value<0.01).  A total of 50 genes 
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passed the cutoff of p-value<0.05, and this list was analyzed using MCM.   MCM 

identified chromosome sub-region concepts like 1q23 (p-value<4.1e-4), 6q16 (p-

value<1.4e-9), 6q21 (p-value<1.5e-5), 10q23 (p-value<7.5e-7), and 10q24 (p-value<2.1e-

4). Importantly, various oncomine gene expression signature concepts that define ETS 

positive versus non-ETS samples from the matched mRNA dataset (5), and other 

independent dataset like Lapointe et al. (9) and Glinsky et al. (16) were enriched in this 

analysis (Fig. 3.3B). The aberration summary and accompanying gene expression pattern 

in these chromosomal subregions are presented as a heatmap (Fig. 3.3C). Gene 

expression analysis by Tomlins et al. showed differential enrichment in chromosome 

subarm 6q21 between ETS and non-ETS samples.  We speculated either amplification of 

6q21 in ETS or loss in non-ETS tumors.  Our aCGH data showed several non-ETS 

samples with loss of 6q21 region (>45%), suggesting that under-expression of genes from 

this region could be due to deletions in a subset of non-ETS samples.  Several groups 

have previously identified loss of 6q21 in localized prostate cancers (17), and here we 

demonstrate this phenomenon to be mainly associated with non-ETS samples.  FOXO3A  

(18) and CCNC (17) that have been proposed to participate in prostate carcinogenesis are 

located in this region.  These alterations on 6q21 and others identified in this analysis 

may collectively play a role in tumor development in the non-ETS group, and further 

molecular characterization of these alterations is required to understand its importance in 

prostate cancer.  This observation was also validated in an independent grossly dissected 

prostate cancer aCGH dataset (data not shown).  

 

Integrative analysis of copy-number-based differential gene expression 
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The lists of genes that are candidates for the copy-number-based differential 

expression were selected on the basis of three criteria: 1. The percent alteration among 

samples (described above), 2. The correlation between mRNA expression and aCGH, and 

3. The significance of copy number change. Genes were ranked by their correlation with 

mRNA expression data and the degree of copy number change in either direction. The 

genes that ranked among top 500 in either category were selected individually from MET 

and PCA groups. Among these, the genes that show aberration in more than 5 samples in 

MET and PCA groups (n=364), were mapped and compared (n=210) to the other prostate 

cancer gene expression datasets from Dhanasekaran et al. (7), LaPointe et al. (9), and 

Varambally et al. (19) studies, obtained from the Oncomine database 

(www.oncomine.org). For candidate gene progression analysis, a given gene must have 

chromosomal alteration in all stages of prostate cancer progression starting from the 

precursor lesions. A total of 504 (over-expressed and amplified) and 241 (under-

expressed and deleted) filtered genes were mapped to the mRNA expression progression 

list (p-value<0.05) from our matched study available in the Oncomine database (5). 

Genes that are ranked among the top/bottom 100 genes in mRNA expression progression 

list are reported in Table 3.1.  

 

In conclusion, the direct relationship between copy-number change and mRNA 

expression levels were investigated utilizing a parallel transcriptomic study, where more 

than 40% of the highly altered genes were associated with elevated mRNA expression 

level. This study also has identified some novel regions of aberrations and candidate 

genes in prostate cancer. Lastly, MCM analysis of the cancer specimens identified 
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chromosomal regions including 6q21 and gene expression concepts that distinguish ETS 

overexpressing samples from non-ETS samples.  

 

Materials and Methods: 

Integrative analysis of copy-number-based differential gene expression 

The lists of genes that are candidates for the copy-number-based differential 

expression were selected on the basis of three criteria: 1. The percent alteration among 

samples (described above), 2. The correlation between mRNA expression and aCGH, and 

3. The significance of copy number change. Genes were ranked by their correlation with 

mRNA expression data and the degree of copy number change in either direction. The 

genes that ranked among top 500 in either category were selected individually from MET 

and PCA groups. Among these, the genes that show aberration in more than 5 samples in 

MET and PCA groups (n=364), were mapped and compared (n=210) to the other prostate 

cancer gene expression datasets from Dhanasekaran et al. (7), LaPointe et al. (9), and 

Varambally et al. (19) studies, obtained from the Oncomine database 

(www.oncomine.org). For candidate gene progression analysis, a given gene must have 

chromosomal alteration in all stages of prostate cancer progression starting from the 

precursor lesions. A total of 504 (over-expressed and amplified) and 241 (under-

expressed and deleted) filtered genes were mapped to the mRNA expression progression 

list (p-value<0.05) from our matched study available in the Oncomine database (5). 

Genes that are ranked among the top/bottom 100 genes in mRNA expression progression 

list are reported in Table 3.1. 
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Statistical Analysis 

Molecular Concepts Map analysis.  Molecular Concepts Map (MCM) analysis (20) is a 

bioinformatic tool offered through the Oncomine database that enables integration of 

molecular concepts, pathways, and networks previously defined in the literature or other 

datasets.  In brief, MCM analysis uses Fisher‟s exact test to find various significantly 

enriched concepts in an uploaded gene list and provides visual interaction networks. 

Querying a user-defined uploaded gene set against the MCM database allows for an 

integrative analysis of the strength of overlap between the user-defined gene set and all 

MCM gene sets (which represent the previously defined molecular concepts, pathways, 

and networks).  The results are then visualized as a series of nodes and lines, where lines 

represent significant overlap between gene sets (shown as nodes).   
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Table 3.1  Progression gene list. Genes that are ranked in the top 100 of a parallel 

transcriptome study and whose chromosomal alterations are observed during the early 

onset of cancer progression are shown along with chromosomal location information as 

well as the rank from the progression analysis.  
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Figure 3.1 Genome-wide view of integrative analysis of chromosomal alterations 

and change in gene expression in prostate cancer. Top: Chromosomal aberrations are 

depicted for cell lines containing different numbers of X chromosomes, followed by 

benign and tumor prostate samples. Each column represents one of 9,550 unique genes, 

ordered by genome map position from chromosome 1 to Y (red reflects fold-

amplification, blue reflects fold-deletion, and white indicates no change). Lower panel  

displays the mRNA expression of matched samples within regions of significant genomic 

alteration. NOR- normal prostate from organ donors and patient; BPH- benign prostatic 

hyperplasia; S- adjacent stroma; Atrophy- atrophic epithelium; PAH- postatrophic 

hyperplasia; PIN- prostatic intraepithelial neoplasia; L-PCA- low-grade localized prostate 

cancer (Gleason Pattern 3); F-PCA- foamy localized prostate cancer; H-PCA- high-grade 

localized prostate cancer (Gleason Pattern 4); MET- metastatic prostate cancer. Arrows 

indicate single copy gain in chromosome 21 in a Down‟s syndrome patient. † indicates 

ERG-overexpressing samples.   ‡ indicates ETV1-overexpressing samples. 
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Figure 3.2 Concordantly altered candidate genes in various prostate cancer studies. 
The proposed candidate amplified/deleted genes that are correlated with matched mRNA 

expression data with high percentage of alterations are mapped to Dhanasekaran et al., 

Lapointe et al., and Varambally et al. datasets available from www.oncomine.org and are 

displayed. Left panel indicates the percentage of alterations in CGH (blue indicates the 

percentage of deleted samples, and red indicates the percentage of amplified samples) 

and the percentage of samples with over-expressed/under-expressed genes in matched 

mRNA expression data. 

  

http://www.oncomine.org/
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Figure 3.3 Genetic alterations in non-ETS vs. ETS samples in prostate cancer. The 

genomic aberration differences as well as the enriched concepts of the genes located 

within differentially altered regions in non-ETS and ETS samples were analyzed using 

the Molecular Concept Map (MCM) (5) (A) mRNA expression of non-ETS and ETS 

over-expressing prostate cancer samples (red bar for ERG and green bar for ETV1 

expression values). Upper left inset represents an average of the data presented.  (B) 

Network map showing enrichment in chromosomal sub-regions and gene expression 

signatures that define non-ETS and ETS samples. “CGH non-ETS vs. ETS” represents 

the data gathered from this study.  (C) Heatmap of differentially aberrant genomic 

regions between non-ETS and ETS samples   *Data not available (ETV1 expression is 

confirmed from an independent sample obtained from the same case) 
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Notes 

 

 This chapter has been previously published: Kim JH, et al. (2007) Integrative 

analysis of genomic aberrations associated with prostate cancer progression.  Cancer Res 

67(17):8229-8239.  All rights reserved. 
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CHAPTER 4 

 

CHARACTERIZATION OF PROSTATE CANCER CELL LINE DNA 

METHYLOME BY METHYLPLEX-NEXT GENERATION SEQUENCING 

 

CpG residues, the targets of DNA methylation, have an asymmetric distribution in 

mammalian genomes and are often found in small clusters termed CpG islands(1).  In 

total, CpG islands populate the promoter regions of 60-70% of all human genes(2), and in  

cancer, hypermethylation of gene promoters commonly marks disease progression, 

silencing putative tumor suppressor genes.  In prostate cancer, aberrant DNA methylation 

is established in at least two waves(3), with promoter  methylation of GSTP1, APC, 

COX2 occurring earlier in localized disease and promoter methylation for ER and 

p14/INK4a detected only during metastatic stages(4).  Previously, DNA methylation 

studies in prostate cancer have employed methodologies of variable scale, focusing on 

either a few promoters(5) or several thousand genomic regions with a CpG island 

array(6).  Alternatively, functional approaches that monitored gene expression changes 

after treatment with the demethylating agent 5-Aza-2‟-deoxycytidine (5-Aza) have also 

been utilized(4, 7).  However, to date only 85 genes are listed in the Pubmeth database 

(www.pubmeth.org) as known targets of methylation in prostate cancer(8).  The advent 

of next generation sequencing (NGS) now presents a novel approach to assess genome-

wide epigenetic changes without the limitations of probe-based microarray platforms.  

http://www.pubmeth.org/
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Recently, several groups employed NGS with bisulfite converted genomic DNA for 

plant(9) and mammalian genomes(10).  Yet, to achieve better representation of the 

methylome, enrichment of methylated regions based on methylation-specific 

antibodies(11-12), binding proteins(13), restriction enzymes(14)  or capture 

technology(12, 15) has also been employed.  In this chapter, we have described the first 

example of NGS with a restriction enzyme-based enrichment method coupled with 

amplification to characterize the DNA methylome of the prostate cancer cell line LNCaP 

and primary benign prostate epithelial cells PrEC.  

 

Results and Discussion: 

Characterization of DNA Methylation in Prostate Cancer 

To prepare LNCaP and PrEC methylome samples, we employed the M-NGS 

workflow to enrich regions with DNA methylation and generate next generation 

sequencing libraries.  Fifty nanograms of genomic DNA from LNCaP and PrEC cells 

were used as input DNA to create Methylplex libraries. Methylplex
 
libraries were 

constructed by digesting input DNA with methylation-sensitive restriction enzymes, 

followed by adaptor ligation and subsequent PCR amplification with universal primers.  

A second round of enzymatic treatment depleted non-GC rich sequences, followed by an 

additional amplification to ensure enrichment of highly methylated DNA fragments.  The 

amplification adaptors were enzymatically removed prior to NGS library preparation. 

The schematic of sample preparation is presented in Figure 4.1.  The Methyplex libraries 

described above were constructed through the commercial service option provided by 

Rubicon Genomics Inc, Ann Arbor, MI as a part of early access to the technology.  While 
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many NGS methodologies to date require several micrograms of input genomic DNA(11-

12, 14), the very low input requirement in this protocol facilitates the use of finite 

samples of limited availability. This technology if further validated, opens up the 

possibility of carrying out differential global DNA methylation analyses with similar ease 

as is currently carried out with gene expression technologies. 

For this study, we used two different concentrations (1 and 5 ug) of each 

Methylplex library as starting material to obtain single-read sequencing on the Illumina 

Genome Analyzer II (see Methods for protocol details).  For each cell type (LNCaP and 

PrEC) a total of 4 sequencing libraries (200bp-1, 200bp-5, 400bp-1 and 400bp-5)  were 

prepared corresponding to 200- and 400-bp size selections of 1 ug and 5 ug of 

Methylplex product.  We obtained an average of 5 million mappable reads per M-NGS 

sample (see Table 4.1).  CG dinucleotides were enriched by the Methylplex procedure up 

to three-fold in mapped reads from M-NGS as compared to previously obtained pan-

histone Chip-Seq data (Table 4.1).  A Hidden Markov Model (HMM)-based algorithm 

described in the Methods section (http://www.sph.umich.edu/csg/qin/HPeak) was used to 

detect enriched regions from mapped reads obtained in each sequencing run (Table 4.1).  

While direct counting of the sequencing reads would have achieved the same purpose, 

this application highlighted significantly enriched genomic regions by inferring true 

peaks over background signal.  The H-peak results from two independent LNCaP 

experiments done in two separate batch of samples showed over 80% overlap. Moreover, 

the HPA II methylation-sensitive restriction enzyme sites analyzed in our sample is 

around 600,000, which is 5-fold higher than 113,000 sites analyzed by Brunner et al. (14). 
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To demonstrate experimental consistency, a comparative analysis of data from 1 

and 5ug Methylplex DNA exhibited high correlation both for reads mapping to 

chromosome 21 and for reads mapping to all CpG islands (see Fig. 4.2 and Materials 

and Methods). Hybridizing the Methylplex product to an Agilent CpG island array 

showed maximum overlap (70%) with the 400bp-5ug runs and therefore data from these 

runs were selected for further analysis (Fig. 4.3). Globally, we found a 70% overlap in 

methylated genomic regions between LNCaP (56,727 regions) and PrEC cells (61,615 

regions) (Fig. 4.4A). While the overall number of methylated regions between two cell 

lines were comparable (Fig. 4.4B), 8 out of 10 genes known to have CpG island 

hypermethylation in prostate cancer tissues(5)  were methylated in LNCaP cells and not 

in PrEC, as expected.   

 

Global Differences in CpG Methylation 

Because aberrant hypermethylation in CpG rich promoters is a common feature of 

tumorigenesis(16) and thought to contribute to the repression of tumor-suppressor 

genes(17), we assessed the extent of CpG island methylation in our samples.  Of the 

71,120 (56Mb) CpG islands identified by using Takai Jones criteria(18) in the human 

genome, 6,865 (7.6Mb) and 5,767 (6.1Mb) CpG islands were methylated in LNCaP and 

PrEC respectively.  An overall 1.7-fold difference in uniquely methylated CpG islands 

observed between LNCaP and PrEC increased to ~7-fold specifically in CpG islands 

associated within gene promoters and not located elsewhere (Fig. 4.4C).   

In total, 3,496 Ref-Seq gene promoters ( 1,500bps flanking transcription start site) 

contained methylation in at least one sample (Fig. 4.4D).  Visualization of these in the 
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context of promoter CpG islands revealed the presence of distinct methylation patterns on 

gene promoters (Fig. 4.4D). Broadly, the promoters fell into 2 groups based on the 

presence or absence of a CpG island within this specified region.  Interestingly, 35% of 

promoters (n=1,232) lacked CpG islands but nevertheless exhibited methylation around 

the transcription start site (TSS) (Fig. 4.4D, X to XII).  The remaining 65% (n=2,264) (I 

to IX) had CpG islands spanning the TSS and 3 distinct methylation patterns were 

observed in this group: (1) Methylation was mostly confined (39.6%, n=1,383) to the 

island (I to III), and interestingly with much higher frequency (greater than 6 fold 

difference) in LNCaP (n=952) compared to PrEC (n=147) cells (Fig. 4.4D).  (2) 

Methylation was positioned 5‟ to the CpG island (11.8%, n=412, IV to VI); and (3) 

methylation was positioned 3‟ to the CpG island (13.4%, n=469, VII to IX).  In total, 

methylation flanking the 5‟ or 3‟ of promoter CpG islands accounted for 25.2% of all 

promoter methylation observed (n=881), which corroborates the methylation of “shores” 

as observed by Irizarry et al.(19) up to 2kb away from CpG islands. Among the 

differentially methylated regions (DMRs), LNCaP showed comparable DNA methylation 

in shores and CpG islands, whereas PrEC cells exhibited 2-fold more methylation in 

shores, using the Irizarry et al. criteria (data not shown). In total, this promoter analysis 

identified 813 unique gene promoters methylated only in LNCaP, which were then 

considered for further analysis. 

 

Independent Validation of DMRs 

We next characterized DMRs identified by M-NGS using 3 independent 

approaches including “Methyl-Profiler” qPCR (SABiosciences, Frederick, MD), bisulfite 
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sequencing (see Table 4.2 for primers), and a functional strategy using gene expression 

arrays.  First, bisulfite sequencing and methyl-profiler qPCR, which also provides a 

quantitative estimate of percent methylation, validated the methylation status of 15/15 

genes (100%) tested for LNCaP-specific and PrEC-specific methylation, as well as an 

unmethylated control region in the MYC promoter (Figs. 4.5A and B).  Finally, 

following treatment of LNCaP cells with the demethylating agent 5-Aza, we observed 

upregulation of 246 out of 973 methylated genes identified by M-NGS by using Agilent 

244K gene expression arrays (Significance Analysis of Microarray, 5% false discovery 

rate) (Fig. 4.5C).   This approach provided a functional validation for DNA methylation 

observed in these target regions. 

 

Molecular Concepts Map Analysis 

To identify molecular concepts, pathways or networks enriched in the 813 

promoter regions with LNCaP-specific methylation, we analyzed our dataset using the 

Molecular Concept Map (MCM) derived from the Oncomine database(20-21).  Out of 

813 genes, 789 mapped to the Oncomine database, and MCM analysis of these genes 

revealed preferential enrichment with methylated and under-expressed genes signatures 

from localized and metastatic PCa samples (lowest p-value<1.90E-14) from several 

independent studies, as well as datasets representing genes with higher expression in 

benign prostate tissue relative to cancer. (Fig. 4.6A, and Materials and Methods).  Of 

note, we observed concepts such as, “genes previously known to be methylated in 

prostate cancer” (p-value<1.40E-06), “gene ontology-tumor suppressor genes” (p-

value<0.009), and “hypermethylated cancer genes” (p-value<4.10E-07) (Fig. 4.6A).  
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Importantly, we observed the enrichment of DMRs identified by an independent 

Differential Methylation Hybridization (DMH) profiling of 29 tissue samples from 

various stages of prostate cancer progression (Table 4.3).  Forty percent of mappable 

probes between the 2 platforms (134/309) had methylation in at least one PCa tissue 

sample (Fig. 4.7), which corroborates with the presence of a DMH-Tissue (“Methylated 

in PCa”) MCM concept demonstrating methylation-mediated repression in PCa.   By 

contrast, PrEC cells did not share this enrichment, and MCM analysis of PrEC-only 

methylated regions showed minimal overlap with LNCaP MCM analysis (Fig. 4.6B).  

Indeed, only MCM concepts relating to histone modification are common to both PrEC 

and LNCaP MCM analysis.   Taken together, these findings indicate that the targets of 

DNA methylation in LNCaP have significant overlap with genes that are methylated 

and/or repressed in prostate cancer tissues.  

 

Promoter Methylation and Transcriptional Repression 

This association of promoter methylation and gene repression was further 

confirmed by applying Gene Set Enrichment Analysis (GSEA) to transcriptome NGS 

data from LNCaP and PrEC cells to separately examine the expression levels of all 

respective genes identified as methylated by M-NGS in these individual samples 

(Materials and Methods).  As expected, LNCaP and PrEC cells showed significant 

enrichment of gene repression only among genes with methylated promoters in LNCaP (p 

<0.0013) and PrEC (p<0.03), and not gene body methylation (Figs. 4.8A and B).  

Methylation-mediation repression of 3 novel targets in LNCaP (KCTD1, TACSTD2, and 
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CALML3; see Figs. 4.5A, 4.5B and 4.9A), PrEC (SPON2, GAGE genes) and in both 

cell lines (HIC1; see Fig. 4.9A) highlight this phenomenon. 

Next, we explored the association between methylation and repression among the 

various methylation categories presented in Figure 4.4D.  In LNCaP cells, we observed a 

strong association between gene repression and promoter methylation regardless of 

whether the promoters contain CpG islands (p <0.0039 and p <0.0015, respectively) (Fig. 

4.8B), which is consistent with a recent report showing repression of Oncostatin M (OSM) 

by methylation despite the absence of CpG island in its promoter(22).   However, we 

failed to find a significant association among genes that displayed methylation in regions 

flanking promoter CpG islands.  These results suggest that methylation-mediated gene 

repression does not require a CpG island-containing promoter, but rather all gene 

promoters may be functionally regulated by DNA methylation.   

Finally, to identify putative methylation targets with low expression in PCa 

tissues we performed a meta-analysis using the Oncomine database.  Among 783 genes 

with greater than 5 fold repression in LNCaP RNA-seq data compared to PrEC, 81 genes 

were both represented in Oncomine and contained LNCaP-specific promoter methylation. 

Scoring these genes across 13 PCa datasets for gene repression validated GSTP1 as the 

top-ranked gene (Fig. 4.9B), and overall 44 out of 81 genes are in the top 25% repressed 

genes in at least one study.  Among the top 5 candidates from meta-analysis, the first 

four(5, 23-24) have been previously demonstrated to be methylated in prostate cancer.  

We validated the 5
th

 ranked gene WFDC2 as well as TACSTD2 (48
th

), by qPCR on a 

small PCa tissue cohort and cell line panel (Fig. 4.10A and 4.10B).  Both WFDC2 and 

TACSTD2 exhibited cancer-specific methylation (both methylated in 4/4 PCa samples 
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but 0/6 benign tissues); but interestingly only WFDC2 was observed methylated in 

metastatic samples. As a positive control, we validated GSTP1 methylation for this 

cohort as well (Fig. 4.10C).       

   

Transcript Isoform Regulation by DNA Methylation 

 During our M-NGS data analysis we observed that a subset of genes displayed 

selective promoter methylation in a transcript isoform specific manner, suggesting a 

novel mechanism for regulating isoform expression in cancer.  A well-known example, 

RASSF1, which is frequently inactivated by epigenetic alteration in human cancers(25), 

is comprised of three distinct isoforms.  In LNCaP, we observed silencing of the longer 

transcript of RASSF1, variant-1, by DNA methylation, while the smaller isoforms, 

variants-2 and -3, which code for N-terminal variant proteins expressed in multiple 

cancer cell lines and tissues including PCa(26-27)(Fig. 4.11A), retains high expression 

(Fig. 4.11B).  Active transcription of variants-2 and -3 in LNCaP cells is supported by 

histone 3 lysine 4 trimethylation (H3K4me3) as observed in ChIP-Seq data, and 5‟ Rapid 

Amplification of cDNA Ends (5‟RACE) showed presence of shorter transcripts but not 

variant-1 in LNCaP (Fig. 4.11A).  Isoform-specific methylation of variant-1 was 

confirmed by preferential re-expression of this transcript upon 5-Aza treatment of LNCaP 

cells (Fig. 4.11B).  Interestingly, when we superimposed the promoter methylation (Fig. 

4.4D) and H3K4me3 ChIP-seq data (Fig. 4.12) from LNCaP cells, we found that these 

epigenetic marks segregate into distinct genomic regions, and H3K4me3 binding was 

remarkably sparse among the promoters that lacked CpG islands compared to those with 

CpG islands. A recent publication from Adrian Bird‟s lab demonstrated the role of 
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protein Cfp1, a CpG binding protein in H3K4me3 modification of non-methylated CpG 

islands.   They observed a 93% overlap in Chip-Seq data between regions occupied by 

Cfp1 protein and those modified by H3K4me3 mark in mouse brain tissue.  Hence a low 

recruitment of Cfp1 could be the reason for sparse H3K4me3 modification in promoters 

without CpG islands (28). 

While the published paper states that Cfp1-histone H3K4 methyltransferase Setd1 

complex is recruited to unmethylated CpG islands, our observation supports an alternate 

notion.  We see both DNA methylation and H3K4me3 modification at distinct and 

mutually exclusive region on the same CpG islands (Fig. 4.12).  The boundaries between 

the two modifications is readily visible in promoters that exhibit CGI-shore DNA 

methylation.  This alludes to the scenario where DNA methylation could act like a foot 

print to histone H3K4 modifcations on certain promoters and this could be due to stearic 

hindrance of the protein complexes that make these epigenetic marks. While integration 

of other epigenetic marks is necessary for a full analysis, these data further suggest that 

multiple epigenetic modifications may co-occur in distinct patterns to regulate transcript 

expression in cancer. 

Since our M-NGS methodology accurately detected DNA methylation events of 

RASSF1, we queried our data for differential methylation of transcript variants compared 

to H3K4me3 marks, and identified 34 genes in LNCaP that exhibit isoform-specific 

promoter methylation (Table 4.4).  We validated 2 genes from this list namely NDRG2 

and APC (Fig. 4.11C and 4.11E).  In both of these candidates, the transcript variants 

(variants 1-4 in NDRG2 and variant-2 and -3 in APC) showing DNA methylation were 

confirmed to be under-expressed  in LNCaP as compared to PrEC by qRT-PCR and 
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5‟RACE (Fig. 4.11C-F).  Furthermore, these variants were preferentially re-expressed 

upon 5-Aza treatment of LNCaP cells.  To determine whether patient tissues 

demonstrated similar isoform-specific expression patterns, we tested for NDRG2 

isoforms in tissue samples by qRT-PCR.  Similar to LNCaP cells, variants 1-4 were 

significantly under-expressed as compared to variants 5-8 in localized PCa (p-

value=0.034) and adjacent benign prostate (p-value=0.012), but not in normal (non-

prostate cancer) samples (Fig. 4.13). These results indicate the presence of a global 

cancer-specific DNA methylation pattern that regulates the use of alternative TSS.  This 

mechanism may play a role in the differential expression of transcript variants between 

normal and cancerous cells, leading to functionally important transcriptomic differences 

in tumorigenesis.    

 

In summary, we used a high throughput M-NGS strategy to characterize the DNA 

methylome map of LNCaP and PrEC cells using a minimal amount of input DNA.  We 

observed distinct patterns of DNA methylation around TSSs that frequently occur on 

promoters either containing or lacking a CpG island.  We also found evidence that 

selective regional DNA methylation regulates expression of specific transcript isoforms 

between normal and cancer cells.      

 

Materials and Methods: 

Reagents, cell lines and prostate tissue samples 

Human primary prostate epithelial cells (PrEC) were purchased from Lonza Inc. 

(Mapleton IL.), and the prostate cancer cell line LNCaP was obtained from ATCC 
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(Manassas, VA).  The LNCaP cells were grown RPMI 1640 containing 10% FBS 

(Invitrogen, Carlsbad, CA).  The PrEC cells were cultured in PrEGM media (Lonza Inc. 

Mapleton, IL) and cells from passage 7 and 8 were used in this study.  Grossly dissected 

human prostate tissue samples from University of Michigan Prostate Cancer Specialized 

Program of Research Excellence Tissue Core (SPORE) were collected with informed 

consent of the patients and prior institutional review board approval. A total of 6 normal, 

12 localized cancer and 11 metastatic prostate samples (n=29) were characterized by 

DMH (Table 4.3).  Twelve thousand element CpG island microarray was purchased from 

University Health Network Microarray Center (Toronto, Ontario, Canada) and used for 

DMH analysis.  Agilent Human CpG Island (244K) microarray (Agilent Technologies, 

Santa Clara, CA) was used to hybridize methylplex products for validation. Genomic 

DNA was isolated from cultured cells and tissue using DNeasy Blood and tissue kit 

(Qiagen Inc, Valencia, CA) according to manufacturer‟s instructions. 5-Aza-2´-

deoxycytidine (5-Aza) was purchased from Sigma-Aldrich Co (St. Louis, MO) and used 

at 6 uM final concentration dissolved in DMSO. 

 

M-NGS library generation 

Early access to the Methylplex library synthesis and GC-enrichment was obtained 

through a commercial service provided by Rubicon Genomics Inc. Ann Arbor, MI. A kit 

version of this protocol is also under development by Rubicon.  Briefly, fifty nanograms 

of gDNA were digested with a proprietary cocktail of methylation-sensitive restriction 

enzymes (Rubicon Genomics) and then amplified by PCR with universal primers to 

create a MethylPlex library that is enriched for methylated DNA.  MethylPlex DNA was 
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then subjected to additional enzymatic treatment to deplete all non-GC-rich DNA 

sequences, purified and amplified in a second round of PCR.  This created a highly 

enriched library of fully methylated GC-rich regions of the human genome, representing 

about 1% of total DNA.  After purification the amplification adaptors were removed by a 

restriction enzyme digestion.  One and five micrograms of the purified products from 

each cell line were directly incorporated into the genomic DNA sequencing sample 

preparation kit procedure of Illumina  (Illumina Inc, San Diego, CA) at the end repair 

step, skipping the nebulization process.  An adenine base was then added to the purified 

end repaired products using Klenow exo (3‟ to 5‟ exo minus) enzyme.  The reaction 

product was purified, ligated to Illumina adaptors with DNA ligase and resolved on a 2% 

agarose gel.  Gel pieces were excised at 200 and 400 base pair positions and the DNA 

was extracted using Qiagen gel extraction kit (Qiagen Inc, Valencia, CA).  Four 

sequencing libraries (200bp-1, 200bp-5, 400bp-1 and 400bp-5) corresponding to 200- and 

400-bp size selections of 1 ug and 5 ug of Methylplex product were prepared for each cell 

line.  One microliter of this eluate was used as a template in a PCR amplification reaction 

with Phusion DNA polymerase (Finnzymes, INC., Woburn, MA) to enrich the adapter 

modified DNA fragments.  The PCR product was purified and analyzed by Bioanalyzer 

(Agilent Technologies, San Diego, CA) before using it for flow cell generation, where 

10nM of library was used to prepare flowcells with approximately 30,000 clusters per 

lane.  The raw sequencing image data were analyzed by the Illumina analysis pipeline, 

aligned to the unmasked human reference genome (NCBI v36, hg18) using the ELAND 

software (Illumina) to generate sequence reads of 25-32 bps. This data will be deposited 

to NCBI Sequence Read Archive (SRA) upon acceptance. 
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Choice of 400bp-5 Methylplex Libraries for Global Analysis 

We prepared 4 next generation sequencing (NGS) libraries for each Methylplex 

DNA sample (LNCaP and PrEC), which corresponded to two different size selections for 

NGS libraries prepared with 1ug and 5ug of Methylplex product (200bp-1, 200bp-5, 

400bp-1, 400bp-5).  All NGS libraries were sequenced in one lane on a Illumina Genome 

Analyzer II flowcell, using single read technology.  Each library generated an average of 

5 million mappable reads.  A regression analysis of the mappable reads revealed high 

correlation between the corresponding 400bp-1 and 400bp-5 samples for PrEC and 

LNCaP.  First, the 400bp-1 and 400bp-5 samples were compared for all reads that map to 

chromosome 21 (R
2
 = 0.9508 for LNCaP and R

2
 = 0.8556 for PrEC, Fig. 4.2A).  Next, 

these samples were compared for all reads that mapped to a CpG island, with slightly 

higher concordance observed (R
2
 = 0.9644 for LNCaP and R

2
 = 0.9819 for PrEC, Fig. 

4.2B).  When we looked at all regions obtained from the LNCaP 400bp-1 and 400bp-5 

sequencing runs (covering 22.15 Mb and 24.74 Mb, respectively), a significant overlap 

with the coverage of 20.38 Mb was observed.  Similar results were seen in PrEC, where 

we observed a coverage overlap of 21.19 Mb (overlapping between 22.71 Mb for 400bp-

1 and 26.54 Mb for 400bp-5).  We chose the LNCaP and PrEC 400bp-5 samples for 

analysis in this study because data from these sequencing runs showed slightly higher 

enrichment of CG-rich sequences (Table 4.1) and showed maximum overlap (70%) with 

methylation identified independently by hybridizing the Methylplex product to an Agilent 

CpG island array. 
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Methylplex Library Hybridization 

Two micrograms of the purified products from each PrEC and LNCaP 

MethylPlex DNA were labeled and hybridized to an Agilent Human CpG 244K array 

(G4492A, Santa Clara, CA), where LNCaP sample was coupled with Cy5 and PrEC to 

Cy3. A dye-flip experiment was also performed. The samples were labeled and 

hybridized according to the manufacturer‟s protocol (Agilent). The scanned images were 

analyzed and extracted using Agilent Feature Extraction Software 9.1.3.1. 

 

RNA Seq library preparation 

Poly-A RNA from LNCaP and PrEC cells (200 ng) was isolated from total RNA 

using SeraMag Magnetic Oligo(dT) Beads (Thermo Fisher Scientific, Waltham, MA). 

RNA was fragmented at 70 °C for 5 min in a fragmentation buffer (Ambion, Austin, TX), 

and converted to first-strand cDNA using SuperscriptII (Invitrogen, Carlsbad, CA).  

Second-strand cDNA synthesis was performed with Escherichia coli DNA pol I 

(Invitrogen, Carlsbad, CA). The double-stranded cDNA library was further processed 

following Illumina Genomic DNA sample preparation protocol which involved end 

repair using T4 DNA polymerase, Klenow DNA polymerase and T4 Polynucleotide 

kinase followed by a single „A‟ base addition using Klenow 3' to 5' exo
-
 polymerase.   

Illumina's adaptor oligo was ligated using T4 DNA ligase. The adaptor-ligated library 

was size selected by separating on a 4% agarose gel and cutting out the library smear at 

200 base pairs. The library was PCR amplified by Phusion polymerase (Finnzymes, INC., 

Woburn, MA), and purified by PCR purification kit (Qiagen, Valencia, CA). The library 

was quantified with Quant-iT picogreen dsDNA assay kit (Invitrogen, Carlsbad, CA) on a 
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Modulus single tube luminometer (Turner Biosystems Inc, Sunnyvale, CA) following the 

manufacturer's instructions. The library (10 nM) was used to prepare flowcells with 

approximately 30,000 clusters per lane. 

 

Statistical Analysis 

HMM analysis of M-NGS data. Hidden Markov Model (HMM) based next generation 

sequencing analysis is conducted in a two-step process that takes in raw reads and outputs 

refined boundaries of enriched chromosomal regions (29). The first step includes the 

formation of hypothetical DNA fragments (HDFs) from uniquely mapped reads, where 

the coverage of HDFs is determined by the specified DNA fragment size and overlapped 

HDFs are merged to represent one consecutive genomic region.  The second step is 

designed to refine the boundaries of enriched region using HMM with bin size of 25bp 

(by default).  Under null hypothesis, raw reads are assumed to land on the genome 

following a Poisson distribution with the background rate of r
0
, and enriched regions are 

expected to have more HDFs with statistical significance.  The rate of the Poisson 

distributions in a given sample is assumed to be r
1
, and the transition probabilities are 

estimated empirically, based on inferred enriched regions defined in the first step.  The 

output from HMM is selected based on the posterior probability of being in the enriched 

regions, and then further filtered using maximum read counts.  The threshold for 

maximum read counts is determined from Bonferroni corrected p-value of 0.001 

calculated using a Poisson distribution with background rate r
0
.  The output is provided in 

BED format as well as Wiggle format for UCSC genome browser visualization.  The 

ouput file annotation field contains information such as enriched genomic position and 
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length, max height, GC content, repeated sequencing genomic position and length, mean 

and standard deviation of conservative scores for enriched region, relationship with 

nearest genes including whether the enriched region is located within the gene or between 

genes, gene name, GB accession number, strand, distance to gene transcription start site.   

Molecular Concepts Map analysis.  Molecular Concepts Map (MCM) analysis (30) is a 

bioinformatic tool offered through the Oncomine database that enables integration of 

molecular concepts, pathways, and networks previously defined in the literature or other 

datasets.  In brief, MCM analysis uses Fisher‟s exact test to find various significantly 

enriched concepts in an uploaded gene list and provides visual interaction networks. 

Querying a user-defined uploaded gene set against the MCM database allows for an 

integrative analysis of the strength of overlap between the user-defined gene set and all 

MCM gene sets (which represent the previously defined molecular concepts, pathways, 

and networks).  The results are then visualized as a series of nodes and lines, where lines 

represent significant overlap between gene sets (shown as nodes).  In addition to over 

15,000 biological concepts from Oncomine, which include manual curation of the 

literature, target gene sets from genome-scale regulatory motif analyses, and reference 

gene sets from several gene and protein annotation databases, we have uploaded a gene 

list from differentially methylated regions identified from an independent Differential 

Methylation Hybridization profiling (concept named “DMH-Tissue Methylated in PCa”), 

as well as known methylated genes in cancers provided from Pubmeth database.   

Gene Set Enrichment Analysis (GSEA)  Gene Set Enrichment Analysis (GSEA)(31-33) 

is a computational method that assesses whether a defined set of genes shows statistically 

significant, concordant differences between any two given conditions.  The fold change 



86 

 

between the raw counts from RNA-seq NGS data on LNCaP and PrEC (representing 

24,167 unique genes) was calculated and genes were ranked by the order of expression in 

LNCaP. This list was uploaded as a pre-ranked gene list to GSEA v2.04 (Broad Institute, 

Cambridge, MA), and using respective gene lists of methylated targets in LNCaP and 

PrEC cell lines, GSEA was performed using a weighted enrichment statistic and default 

normalization mode.  

Oncomine Meta-analysis. A complete description of meta-analysis performed in 

Oncomine is available(20). In brief, a genelist of interest is uploaded to the Oncomine 

database, and the built-in meta-analysis tool rank-orders the genelist by the p-value, 

which is determined by Student´s t-test for comparisons made within each available 

dataset (for example Cancer vs. Normal). The ranked genes were visualized with pink 

and green shades (top ranked ones with darker shades, pink for over-expression and green 

for repression) in heatmap format, with each row representing genes and each column 

representing the dataset. Final order of the genes is determined by averaging ranks across 

the datasets.  

Calculating gene expression from RNA-Seq data. Gene expression levels of passing 

filter reads from RNA-Seq data that mapped by ELAND to exons (March 2006 assembly 

of UCSC KnownGene table) in LNCaP and PrEC cell lines are quantified as 

described(34).  

Significance Analysis of Microarray (SAM). Significance analysis of microarray (SAM) 

(35) (http://www-stat.stanford.edu/~tibs/SAM/) was performed on the gene expression 

dataset obtained from 5-Aza and DMSO-treated LNCaP cells by selecting genes that 

were methylated in LNCaP.  From 1,171 methylated genes from LNCaP M-NGS 

http://www-stat.stanford.edu/~tibs/SAM/
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(Supplementary Table 4), a total of 973 genes was mapped to Agilent expression 

profiling data. One-class SAM analysis was done using default settings, and significant 

genes were calculated with a false discovery rate (FDR) of 0.05. 

 

Differential Methylation Hybridization (DMH) 

Differential methylation hybridization was performed according to a previously 

published protocol(36).  DNA samples were isolated from tissues using DNeasy Blood 

and Tissue kit (Qiagen Inc, Valencia, CA).  DNA was digested with MseI and ligated to 

linkers, and while one half of the sample was digested with McrBC, the other half was 

mock digested.  The purified DNA was used as template in PCR amplification.  The 

amplified product was labeled with fluorescent dyes using indirect labeling method, 

where mock digested samples were coupled with Cy5 and McrBC digests were coupled 

to Cy3.  The labeled pair from each sample was combined, denatured at 95ºC for 2 

minutes and hybridized to the 12,000 element CpG array from University Health 

Network Microarray Center (Toronto, Ontario, Canada) overnight at 60ºC.  Washed 

slides were scanned using 4000A scanner (Axon Instruments) and acquired images were 

analyzed with GenePix 6.0 software. All clone annotations can be obtained from the 

supplier‟s website (http://data.microarrays.ca/cpg/).  The microarray data will be 

deposited in GEO for public access.  Universally methylated (Zymo Research 

Corporation, Orange, CA) and unmethylated DNA (Millipore, Billerica, MA) was 

purchased for experimental controls. 

 

Methyl-Profiler 

http://data.microarrays.ca/cpg/
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Methyl-Profiler
TM

 (SABiosciences, Frederick, MD) is a restriction enzyme 

digestion based novel technology for CGI methylation profiling, requiring less than 500 

ng input genomic DNA.  The samples were first digested with methylation-sensitive (Ms) 

and/or methylation-dependent (Md) restriction enzymes along with mock digestion 

according to manufacturer‟s instruction. PCR reactions were performed with ABI 

StepOne qPCR machine (Applied Biosystems, Foster City, CA) with RT
2
 SYBR 

Green/ROX qPCR Master Mix (SABiosciences, Frederick, MD) and primers targeting 

the region of interest.  The PCR reactions were carried out with following conditions: 10 

min at 95 C, followed by 40 cycles of 97 C for 15‟‟, 72 C 1 min as described in 

manufacturer‟s protocol. Using delta-Ct values, the relative amounts of methylation are 

calculated using an automated Excel-based data analysis template provided by the 

manufacturer. The mock digested template is used for initial DNA input quantification, 

the Ms enzyme is used for hypermethylation quantification, and the Md enzyme is used 

for quantifying unmethylated DNA.  A mixture of these 2 enzymes (Msd) is used to 

quantify the undigested amount of DNA. A methylation rate below 5 % is considered not 

significant. While the calculated methylation percentage between 10 and 60 is considered 

intermediate, the values above sixty are taken as heavy methylation. 

 

Bisulfite Sequencing 

Bisulfite conversion was carried out using EZ DNA methylation gold kit (Zymo 

Research Corporation, Orange, CA) according to manufacturer‟s instructions.  Briefly 

500ng of genomic DNA from either LNCaP or PrEC cells in 20ul volume was mixed 

with 130uls of CT conversion reagent and was initially incubated at 98ºC for 10 minutes 
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followed by incubation at 64ºC for 2.5 hours.  M-biding buffer (600ul) was added to the 

above reaction and DNA purified using a Zymo spin column.  Sequential washes were 

performed with 100ul M-Wash buffer, 200ul M-sulphonation buffer and 200ul of M-

wash buffer was carried out before eluting the DNA in 30ul of M-elution buffer.  Purified 

DNA (2ul) was used as template for PCR reactions with primers (Integrated DNA 

Technologies Inc. San Diego, CA) and synthesized according to bisulfite converted DNA 

sequences for the regions of interest using the Methprimer software (37).  The PCR 

product was gel purified and cloned into pCR4 TOPO TA sequencing vector (Invitrogen, 

Carlsbad, CA).  Plasmid DNA isolated from 10 colonies from each sample was 

sequenced by conventional Sanger Sequencing (University of Michigan DNA 

Sequencing Core). The “BIQ Analyzer”(38) online tool was used to calculate the 

methylation percentage and to generate the bar graphs.   

 

Gene expression profiling 

For 5-Aza stimulation experiments, LNCaP cells cultured in RPMI 1640 were 

treated with vehicle, dimethyl sulfoxide (DMSO) or 6 uM 5-Aza for 4 or 6 days in 

duplicates. Total RNA was isolated with Trizol (Invitrogen) and further purified using 

RNAeasy Micro Kit (Qiagen) according to the manufacturer's instructions. Expression 

profiling was performed using the Agilent 44K expression array.  One microgram of total 

RNA was converted to cRNA and then labeled according to the manufacturer's protocol 

(Agilent). Hybridizations were performed for 16 h at 65 °C. Scanned images from 

Agilent microarray scanner were analyzed and extracted using Agilent Feature Extraction 

Software 9.1.3.1, with linear and lowess normalization performed for each array. A total 
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of 4 hybridizations were performed including two 4 day and two 6 day 5-Aza treated 

samples (Cy5) against control DMSO-treated samples (Cy3). Gene expression data will 

be submitted to GEO database. 

 

5’ RACE 

5‟ RACE was performed as previously described(39). First-strand cDNA was 

amplified with gene-specific reverse primers RASSF1, APC, and NDRG2 (Table 4.2) 

and 5‟ GeneRacer primers (Invitrogen) using Platinum Taq High Fidelity enzyme 

(Invitrogen) after the touchdown PCR protocol according to manufacturer‟s instructions. 

PCR amplification products were cloned into pCR4-TOPO TA vector (Invitrogen) and 

sequenced bidirectionally using vector primers as described(40). 

   

Total RNA isolation and Quantitative real time PCR (QPCR) 

The total RNA was isolated from cells using RNeasy mini kit (Qiagen, Valencia, 

CA) according to manufacturer‟s instructions.  A DNAseI treatment step was included 

during the total RNA isolation procedure to remove genomic DNA from the samples.  

One microgram of total RNA was used in cDNA synthesis using Superscript III reverse 

transcriptase (Invitrogen, Carlsbad,CA).  Quantitative real time PCR (QPCR) was 

performed on prostate cell line cDNA samples using SYBR Green Mastermix (Applied 

Biosystems) on an Applied Biosystems  7900 Real Time PCR system as described(40).  

All oligonucleotide primers were synthesized by Integrated DNA Technologies and are 

listed in Table 4.2.  GAPDH primers were as described(41).  The amount of target 
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transcript and GAPDH in each sample was normalized by standard  ddCt methodology, 

and then to the reference PrEC or DMSO-treated LNCaP samples accordingly. 

 

ChIP-Sequencing  

ChIP-Seq data obtained from LNCaP cells for H3K4me3 antibody (Abcam) and 

PanH3 (Abcam)  is from the manuscript by Jindan Yu et al., currently under press 

(Cancer Cell 2010).  ChIP samples were prepared for sequencing using the Genomic 

DNA sample prep kit (Illumina) following manufacturers protocols.  To facilitate ChIP-

Seq data analysis, a Hidden Markov Model (HMM)-based enriched region identifying 

algorithm ( described in the Methods section under statistical analysis) was utilized.   
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Table 4.3 Clinical information of prostate tissue samples profiled by Differential 

Methylation Hybridization (DMH) Analysis 
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Table 4.4  Methylation marks and alternate transcription start site (TSS) 
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 Figure 4.1 The schematic of Methylplex library sample preparation. 
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Figure 4.2 Regression analysis of M-NGS mapped reads and HMM output. (A) 

Reads that mapped to chromosome 21 in LNCaP400bp-1 and -5, and PrEC400bp-1 and -

5 runs were compared using the window size of 25bp. In LNCaP samples, a total of 

33,627 reads were present at 25 bp windows with R
2
 value of 0.9508, and in PrEC, 

37,406 reads with R
2
 value of 0.8556 was observed. (B) Linear regression analysis of all 

DNA methylation that occurred on CGIs showed high correlation (R
2
 value = 0.9398 and 

0.9819, n=5,734 and 4,966, respectively).   
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Figure 4.3 High correlation between Methylplex-array and M-NGS results. 
Methylplex-array libraries made from LNCaP (Cy5) and PrEC (Cy3) cells were 

hybridized to Agilent human CGI microarray.   Array results are displayed on the left in 

heatmap form (Yellow: hypermethylated in LNCaP; Blue: hypermethylated in PrEC), and 

were compared to M-NGS results (Yellow: methylated regions) on right.  PrEC and 

LNCaP 200/400, indicates data obtained by M-NGS from size-selected bands excised at 

200 and 400 bp during sample preparation.  Gene names are displayed on the right and 

genes previously identified as methylated in prostate cancer are indicated in blue, with 

genes known to be methylated in other cancers indicated in pink. 
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Figure 4.4 Distinct patterns of promoter methylation revealed by Methylplex-Next 

generation sequencing (M-NGS) of prostate cells. (A) Venn diagram representing a 70% 

overlap between the regions methylated in LNCaP (blue) and PrEC cells (green). (B) 

DNA methylation in intergenic and intronic regions represents a large proportion of all 

DNA methylation and had similar number of total methylated regions in both LNCaP 
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(blue bars) and PrEC (green bars) cells.  (C)  While there is a 7 fold increase in the 

methylation of promoter associated CpG islands in LNCaP (blue) compared to PrEC 

(green) cells, this difference was not seen in non-promoter associated CpG islands. (D) 

Analysis of gene promoter regions (±1,500 bp from TSS) identified methylation in 3,496 

Refseq genes in either LNCaP and PrEC cells or both.  Each row represents a unique 

promoter region, ±1,500 bp from the transcription start site (white dotted line) at 100 bp 

window size.  CpG island location is indicated in red in the first column.  The 

methylation (yellow) observed in the corresponding location in each cell line is indicated 

(LNCaP second column and PrEC third column).  Among promoters represented, 3 

distinct patterns of methylation were found.  Methylation occurred either (1) on CpG 

islands, (2) in regions flanking the island (5‟ or 3‟) or (3) in promoters without any CpG 

island.   
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Figure 4.5 Validation of differentially methylated regions predicted by M-NGS.  (A) 

The Methyl-Profiler qPCR assay validation of the methylation of GSTP1, TACSTD2 and 

WFDC2 gene promoters in LNCaP cells. (B) Bisulfite sequencing validation of 

methylation of APC, C14orf23, CALML3, CDKN2A, KCTD1, LAMC2, RASSF1A, 

SHC1, TINAGL1 and TSPAN1 gene promoters in LNCaP cells and SPON2 in PrEC 

cells.   Methylation status of each CG residue was analyzed using the BIQ Analyzer (38) 

program, where the height of the blue bar indicates percent methylation at a given 

position, yellow indicates no methylation. The number between each bar indicates the 

distance between each CG residue.   * CpG islands were absent in these promoters. (C) 

Methylated target genes (n=973) that contained promoter methylation in LNCaP 

(depicted in Fig. 4.4D) are re-expressed after 5-Aza treatment (red points, n=246).   
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Figure 4.6 Molecular Concept Map (MCM) analysis of LNCaP and PrEC 

methylated genes. (A) MCM analysis of LNCaP methylated genes (black) revealed 

enrichment of gene signatures (red) repressed in prostate cancer and over-expressed in 

benign prostate. Histone modification concepts (green), gene ontology concepts such as 

tumor suppressor genes (blue), genes previously known to be methylated from the 

Pubmeth database(8) (pink) and genes methylated in prostate cancer by differential 

methylation hybridization (DMH, yellow)  EF = embryonic fibroblast, ES = embryonic 

stem cells. (B) MCM analysis of PrEC methylated genes (black) shows the enrichment 

only for histone modification concept. 
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Figure 4.7  The overlap between differentially methylated regions identified by 

DMH and M-NGS. The heatmap depicts methylation status of probes in a 12K CpG 

island array that overlap with differentially methylated regions identified by LNCaP M-

NGS.  Forty percent (134/309) of the probes were methylated in at least one prostate 

cancer tissue analyzed (yellow). PCa, clinically localized prostate cancer; MET, 

metastatic prostate cancer. 
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Figure 4.8 The association between gene repression and promoter methylation.via 

Gene Set Enrichment Analysis (GSEA) (A) Methylated genes from LNCaP and PrEC 

cells were tested for their corresponding ranked gene expression in next generation 

transcriptomic sequencing. Both LNCaP and PrEC methylated promoters show 

enrichment with gene repression in LNCaP (p-value<0.0013) and PrEC (p-value<0.03) 

respectively. (B) While no significant association was observed between gene body 

methylation and gene expression in LNCaP (p-value<0.623), candidates with gene 

promoter methylation with and without the presence of CGIs in LNCaP cells are enriched 

with under-expressed genes (p-value<0.0039 and 0.0015, respectively). 
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Figure 4.9 The association between DNA methylation and gene repression. 
Methylation status as determined by M-NGS of a gene was correlated to transcript 

expression assessed by RNA-Seq.   (A) Genes with promoter methylation in LNCaP cells 

(TIG1, GSTP1, CALML3, TACSTD2, KCTD1) and PrEC cells (SPON2, GAGEs) had 

low transcript expression in their corresponding cell lines.  HIC1, which is methylated in 

both LNCaP and PrEC, was minimally expressed in both.  (B) Meta-analysis (cancer vs. 

normal) on 13 different prostate cancer datasets for genes methylated and repressed in 

LNCaP cells were also mostly repressed in tumors. Genes are ranked according to 

percent repression across the datasets, with GSTP1 indicated as the top-repressed gene in 

this meta-analysis. Forty four out of 81 methylated genes appear within the top 25% of 

repressed genes in at least one study. Previously characterized methylated genes are 

indicated (red). Analysis was derived from www.oncomine.org (see Materials and 

Methods).   

 

http://www.oncomine.org/
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Figure 4.10 Methylation target gene validation on prostate tissues. DNA methylation 

is associated with gene repression and WFDC2 and TACSTD2 are validated as 

methylated target genes in both LNCaP and prostate cancer tissues. (A) WFDC2, (B) 

TACSTD2 and (C) GSTP1 genes were assessed by qPCR on 14 prostate tissue samples 
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(3 normal, 8 benign adjacent, 12 PCa, and 11 Mets) and 7 different prostate cell lines.  

GSTP1 and WFDC2 shows high level of methylation in majority of cancer samples (n = 

17 out of 22 samples), compared to normal and benign prostate specimens (n = 10), while 

TACSTD2 was methylated predominantly in localized PCa samples.  
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Figure 4.11 Cancer-specific DNA methylation enables switching of alternate 

transcriptional start sites (TSS) leading to transcript isoform regulation.  Next 

generation sequencing for DNA methylation and histone 3 lysine 4 trimethylation 
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(H3K4me3) in LNCaP cells reveals genome-wide patterning that couples CpG 

methylation with H3K4 marks to repress or activate, specific transcript variants (A,C,E).  

Independent epigenetic modifications mark specific alternative TSS.  In RASSF1 (A) and 

NDRG2 (C), CpG methylation occurs at the TSS of the longer variants, with H3K4me3 

marks positioned on the TSS of the shorter variants.  By contrast, APC (E) exhibits the 

reverse, with H3K4me3 on the longer variant 1 and CpG methylation at the shorter 

variants 2 and 3.  (B,D,F)  Preferential silencing and 5-Aza-induced re-expression of 

CpG-methylated variants in LNCaP cells.  Variants exhibiting CpG methylation on their 

TSSs show preferential silencing compared to variants with H3K4me3 marks in LNCaP 

cells.  These variants show preferential re-expression upon treatment of 48 hr androgen-

starved LNCaP cells with 6uM 5-Aza.  qRT-PCR data is normalized to variant expression 

levels in PrEC prostate primary epithelial cells or DMSO-treated LNCaP cells in the 

respective panels.   (A,C,E) 5‟RACE results validated RASSF1 variant-3, NRDG2 

variants 5-8 and APC variant-1 expression in LNCaP cells. 
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Figure 4.12  Promoter DNA methylation and histone H3K4me3 marks in LNCaP 

prostate cancer cell line. Promoter DNA methylation and histone H3K4me3 marks are 

mutually exclusive in LNCaP. Each row represents a unique promoter region, ±1,500 bps 

of the transcription start site (white dotted line) at 100 bp window size.  CpG island 

location is indicated in red in first column. The second column represents histone 

H3K4me3 marks (blue), and the third column (yellow) depicts DNA methylation 
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observed in the corresponding location in LNCaP. Superimposed data is displayed in the 

fourth column.  
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Figure 4.13  Isoform-specific expression patterns of NDRG2 in the prostate tissue 

cohort (n=12). qRT-PCR results on variants 1-4 (red) and 5-8 (yellow) of NDRG2 in 12 

prostate tissue samples are shown as box plots. Variants 5-8, which share a common 

transcriptional start site,  were significantly over-expressed compared to variants 1-4, 

which share a different common transcriptional start site, in adjacent normal (p-

value=0.012) and localized prostate cancer (p-value=0.034) samples. 
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CHAPTER 5 

 

INTEGRATIVE ANALYSIS OF PROSTATE CANCER TISSUE METHYLOME, 

COPY NUMBER AND GENE EXPRESSION CHANGES 

 

 

DNA methylation is one of the mechanisms of gene repression, when it targets 

CpG rich regions usually found in small clusters termed CpG islands in gene 

promoters(1-2).  In cancer, hypermethylation of gene promoters commonly marks disease 

progression, silencing putative tumor suppressor genes. More recently, using the 

methylation profiling, there were several attempts to classify cancer types based on 

methylation patterns, and to identify methylated gene predictors, which could be used as 

a diagnostic tool for determining samples with good vs. poor outcome. In addition to 

DNA methylation, the genomic aberrations such as deletion and amplification also play a 

significant role in transcriptional regulation. Defining tumor subtypes based on the 

presence of genomic aberrations and evaluating its prognostic value is a key research area 

in post-microarray era.  In this chapter, we present results from our global methylation 

analysis obtained using M-NGS strategy (described in Chapter 4) of normal prostate and 

various clinical specimens that represent different stages of prostate cancer. We next 

layout the results from our integrative analysis of DNA methylation, copy number and 

gene expression dataset obtained from the same clinical samples. As described in the 
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introduction part, DNA methylation events are known to occur throughout prostate 

cancer progression, and while genes such as GSTP1 and APC which show methylation 

changes early on, might play a role in tumor initiation, other methylation targets such as 

p14 and ER are thought to play a role in more advanced stages of prostate cancer (3). The 

sequence of copy number alteration also display a similar pattern, where certain genomic 

alterations such as chromosome 8p deletion are known to occur even in precursor lesion 

PIN stage, while clinically advanced stages of prostate cancer show several late onset 

genomic aberrations affecting vast regions of multiple chromosomes. Both DNA 

methylation and genomic alterations could drive transcriptional dysregulation. These two 

events are believed to act independently in gene regulation, and they could either act in 

the same direction (such as hypermethylation-deletion leading to gene repression, or 

hypomethylation-amplification leading to gene over-expression) or act as an opposing 

force (such as deletion and amplification). Knudsen‟s two-hit hypothesis(4-5), that was 

formulated more than 20 years ago, was visited using the methylation event as one of the 

hits, and heterozygous deletion as the other which together could lead to gene silencing. 

Most of the tumor suppressors require two hits for complete loss of their activity, as seen 

in RB1, TP53, and APC in various tumor types (6-8). Although a nonsense or a 

frameshift mutation is a usual 1st hit(5), DNA methylation has been reported as the first 

hit event in several tumor suppressor genes such as VHL in renal and MLH1 in colon and 

gastric tumors(9-10). Unlike mutation or the methylation event, allelic loss involving 

deletion, mitotic recombination, and chromosomal disjunction has been rarely seen as the 

1st hit and is mostly considered a 2nd hit. However, recent discovery in gene fusion 

events commonly occurred in prostate cancer indicates that the allelic loss may not be a 
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rare 1
st
 hit.  In this chapter, we also identify potential target regions for a two-hit model 

by assessing for co-occurrence of DNA methylation and loss of heterozygosity due to 1 

copy deletion in the prostate cancer genome. As a next level of analysis we integrated 

aCGH, gene expression profiling and M-NGS datasets obtained from the same specimens 

to investigate the relation between these genome wide changes in prostate cancer, and the 

results are discussed here.  

 

Results and Discussion: 

Characterization of DNA Methylation in Prostate Cancer Tissues 

We generated eleven next generation sequencing libraries with M-NGS workflow 

from prostate tissue samples which include transplant normal, benign adjacent, localized, 

and metastatic tissues (Table 5.1).  As described in Chapter 4, fifty nanograms of 

genomic DNA were used as input to create Methylplex libraries. The Methyplex libraries 

described above were constructed through the commercial service option provided by 

Rubicon Genomics Inc, Ann Arbor, MI as a part of early access to the technology.  The 

very low input requirement of tissue DNA in this procedure is a definite advantage when 

one deals with low sample availability and holds a promise for characterization of FFPE 

tissue  sections that might provide most valuable information.  The sequencing libraries 

size selected for  350-450 bp size range were sequenced using single-read option on the 

Illumina Genome Analyzer II (see Methods for protocol details in Chapter 4).  We 

obtained an average of 6 million mappable reads per M-NGS sample (see Table 5.2).  

CG dinucleotides in mapped M-NGS reads were enriched up to five-fold as compared to 

previously obtained pan-histone Chip-Seq data and this implied a good enrichment for 
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methylation target regions by the Methylplex procedure (Table 5.2).  A Hidden Markov 

Model (HMM)-based algorithm described in the Methods (from Chapter 4) section (11) 

was used to detect regions highly represented by the mapped reads obtained in each 

sequencing run.  The coverage from tissue M-NGS runs ranged from 28 to 56 Mb which 

was comparable to cell line study presented in chapter 4 (Table 5.2 and Table 4.1).  The 

benefit of using this application over raw reads was discussed in Chapter 4. Comparison 

of sequencing data obtained from two independent LNCAP cell line DNA M-NGS 

library preparations, processed in separate batches, showed a high experimental 

reproducibility with over 80% correlation between the runs (data not shown).  

 

Global Differences in Prostate Tissue CpG Methylation 

The genomic distribution of methylated regions in all the prostate tissue samples 

analyzed is shown in Figure 5.1A. Regardless of tissue types, most of the methylation 

occurred within intergenic and intronic regions. The normal specimens had the lowest, 

and metastatic samples the highest methylation level in all genomic locations among the 

various prostate tissue types analyzed (Fig 5.1). The promoter hypermethylation plays a 

role in gene repression (12)  and tumorigenesis(13). Analysis of the CpG island / 

promoter methylation in our tissue samples was done essentially following the cell line 

dataset analysis described in Chapter 4.     Of the 71,120 (56Mb) CpG islands identified 

by using Takai Jones criteria in the human genome (14) on average the cancer samples 

showed higher number of CGIs methylated 9,507 (ranged from 7,371 to 11,566)  

compared to normal 7,676 (ranged from 6,845  to 8,475) (Table. 5.2).  A total distance of 

3000bps (1,500bps on either side of transcription start site) was considered as promoter 
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region for each gene in this analysis. On average, 2,816 genes from normal tissues 

harbored methylation within its promoter, and this number increases to 3,859 in tumor 

samples and this difference was statistically  significantly (p-value < 0.0125) (Table 5.2). 

The methylation frequency of promoters with CpG islands was twice higher compared to 

promoters that lack  CpG islands in all tissue types (Fig. 5.1B). Unlike the methylation 

pattern observed in genes with promoter CpG islands, the comparable number of 

methylation on gene promoter without CpG islands was observed from benign adjacent, 

localized, and metastatic samples.  Overall, twice many numbers of genes were 

methylated in metastatic compared to transplant normal samples regardless of the 

presence and absence of CpG islands (Fig. 5.1B).  

In order to get an unbiased visualization of promoters targeted by DNA 

methylation in our prostate cohort we queried our data set for presence of promoter 

methylation in any one sample.  In total, 6,619 unique transcriptional start sites 

(corresponding to 6,077 unique Refseq genes) contained methylation in at least one 

sample and this information is displayed in a heatmap format for better visualization.   

(Fig. 5.2) Heatmap representation revealed a clear distinction in promoter methylation 

patterns present among the prostate tissue types analyzed (Fig. 5.2). Broadly, the 

promoters fell into 2 groups based on the presence or absence of a CpG island.  

Interestingly, 32.5% of promoters (n=2,154) lacked CpG islands but nevertheless 

exhibited methylation around the transcription start site (TSS) (Fig. 5.2).  The remaining 

67.5% (n=4,465) (I to IV, CpG islands indicated with red bars from 1
st
 column) had CpG 

islands spanning the TSS and 3 distinct methylation patterns as shown in cell line model 

from Chapter 4 were again observed in the tissue samples: (1) Methylation was mostly 
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confined to the island with higher frequency (2) Methylation was positioned 5‟ to the 

CpG island and (3) Methylation was positioned 3‟ to the CpG island.  In addition to the 

correlation between methylation and location/ presence of CpG islands on gene promoter, 

we also observed a tissue type specific methylation pattern (regions I, II, III and  IV) (Fig. 

5.2).   Importantly there exists a cancer-specific methylation pattern that encompasses 

region I (N=1,045; metastatic samples) and II (N=1,436; localized and metastatic samples) 

which may play a pivotal role in tumor progression. The methylation present in all 

sample types observed in region IV is thought to be prostate tissue specific (N=2,737) 

and only comparison with methylation dataset from other organs will provide a 

confirmation. Lastly, promoters that were methylated in prostates derived from prostate 

cancer patients (Normal adjacent, localized and metastatic prostate cancers) and not in 

normal prostates obtained individuals with no known prostate disease are clustered in 

region III (III, N=1,401).  The well studied gene GSTP1 is present in this cluster and in 

general the methylation observed on these promoters could be due to factors such as age, 

cancer field effect etc. The normal cases in our tissue cohort came from a relatively 

younger population group (21 and 46 years of age), and hence age can be a factor in 

differential methylation observed mainly in region III.  The cell line LNCaP and PrEC 

methylation profiles are displayed along with tissues in Figure 5.2 for comparison and to 

show the overall resemblance between metastatic tissues and the metastatic prostate cell 

line LNCaP. Another interesting observation here was the higher similarity between 

PrEC and benign adjacent tissue methylomes compared to normal tissue, indicating 

possible cell culture induced quasi normal-states. In summary this analysis identified 

2,481 unique gene promoters that constituted a cancer-specific methylation signature 
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Promoter Methylation and Transcriptional Repression in Prostate Cancer 

After indentifying class specific promoter methylation patterns as described in the 

previous section, we next investigated the relationship between promoter DNA 

methylation and gene expression.  The gene expression data (described in materials and 

methods section) was obtained by hybridizing the labeled probes prepared from the 

corresponding samples to Agilent human gene expression microarray platform.  A two 

fold cutoff was used in the gene expression dataset to classify genes to be either under or 

overexpressed.  First we looked at expression pattern of genes in each of the four regions 

identified in Figure 5.2. Interestingly genes in region II (methylated only in PCa and 

metastatic tissues) and region I (methylated only in metastatic tissues) showed a marked 

enrichment of gene repression (upto 43%) in cancer tissues compared to both type of 

normal tissues employed (p-value < 1.57e-11) (Fig. 5.3A and Table 5.3).  Genes with 

and without promoter CpG islands were indistinguishable in this analysis showing an 

equal effect of DNA methylation on gene repression even in promoters that lacked CGI.  

Genes from region IV (methylated in all samples) however, did not show a cancer 

specific enrichment in gene repression as expected (Fig. 5.3A).  The percent correlation 

between gene repression and DNA methylation was the highest (60-70%) in cancer 

samples when the analysis was restricted to matched samples with statistical significance 

(Fig. 5.3B and Table 5.3).  The correlation rate between gene repression and promoter 

methylation with and without the presence of CpG islands were no differential (Fig. 5.3B, 

CpG vs. Non-CpG), suggesting that methylation-mediated gene repression does not 

require a CpG island-containing promoter, but rather all gene promoters may be 
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functionally regulated by DNA methylation. Not all genes with promoter methylation are 

subjected to gene repression, however using the gene list from cancer-specific region I+II 

from Figure 5.2, we were able to distinguish normal samples from tumor samples (Fig. 

5.4).  In hope of finding the presence of certain transcription factors or genes involved in 

certain pathways that gives more vulnerability to the methylation-driven transcription, the 

Genomatix software is utilized.  The presence of the differences in transcription binding 

factors and pathways involved between repressed and non-repressed genes harboring 

promoter methylation is accessed, and found no significant difference between two 

groups.    

 

Analysis of aCGH data, mRNA expression and methylation profiles in matched 

prostate specimens 

The eleven prostate tissue samples listed in Table 5.1 were simultaneously 

characterized by M-NGS for global genome-wide methylation analysis, agilent gene 

expression microarray to monitor transcript expression and by Agilent aCGH microarrays 

to document copy number aberrations.  The results from the integrative analysis between 

gene expression and DNA methylation were discussed in the previous section.  We next 

investigated the relationship between gene expression and aCGH results to identify 

regions that exhibit coordinate copy number and transcript changes.    Here we first listed 

the chromosomal regions that displayed significant aberrations in each sample using the 

Nexus copy number analysis software (BioDiscovery Inc., CA) using rank segmentation 

algorithm. Threshold used for high gain and loss was 0.7 and -0.75, and single copy gain 

and loss was 0.4 and -0.25, respectively. We then looked at the transcript expression 
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patterns of genes located within these chromosomal regions in the corresponding 

sample‟s gene expression data.  Gene expression pattern of the chromosomal regions 

with significant aberrations in the analyzed sample cohort is presented as a heat map in 

Figure 5.5A. One of our normal prostate sample derived from a chromosome 21 trisomy 

individual (sample obtained from Down‟s syndrome patient) displayed 1 copy gain in 

chromosome 21 as expected and  served as an internal control (Fig. 5.5A). While the 

metastatic samples had multiple expansive regions of aberration (Fig. 5.5A and 5.5B). 

The heterozygous loss was the most common event in localized PCa tissues. In metastatic 

group, 2 out of 3 samples harbored comparable numbers of gain and loss, while 

homozygous loss was not frequently observed except in single copy Y chromosome (Fig. 

5.5B).  We also observed an association between mRNA under-expression and 

chromosomal loss (Fig 5.5C), where as high as 55% concordance (average value was 

46%) in moderate level mRNA expression (log2 ratio<-1), was observed for tumor 

samples including MET and PCA tissues. The concordance rate between gain and over-

expression was as high as 48% (average value was 35%). A previous prostate cancer 

aCGH and coupled gene expression study estimated a 38% (in average) association 

between highly amplified genes and transcript over-expression in MET samples (15). In 

breast cancer, Pollack et al. have reported a 62% (representing 54 unique genes) 

association between 117 highly amplified genes and transcript over-expression (16), and 

Hyman et al. have reported 44% highly amplified genes associated with over-expression, 

and 10.5% of highly over-expressed genes to be amplified in breast cancer (17). 

Integrative analysis of our aCGH and gene expression data allowed a direct comparison 

between the change in copy number and transcript expression levels, and genes within 
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regions of significant genomic alterations showed concordance at the mRNA expression 

level.  In respect with the methylation events, the enrichment of repression is shown 

among genes that are both methylated and deleted with highest concordance at 60% 

among tumor samples. In presence of both methylation and amplification, these regions 

are enriched with neither down-regulation nor up-regulation due to the presence of two 

opposite driving forces. Despite of having small number of prostate samples analyzed in 

this chapter, we were still able to demonstrate the major role of gene copy number 

variation in their transcriptional regulation in tumor samples. 

 

Knudson’s Two-hit Hypothesis 

 In cancer, loss of gene function by simultaneous promoter methylation and loss 

of heterozygosity in tumor suppressor genes such as RB1, VHL, CDKN2A, and 

CDKN2B, has been reported supporting Knudson‟s two-hit hypothesis (18). The first hit 

usually is a mutation (5), followed by inactivation of the second allele through genomic 

loss or DNA methylation. In case of VHL and MLH1 genes, DNA methylation was 

previously shown to serve as a first hit in various cancer (9-10, 18). Promoter methylation 

as a second hit is believed to be a rare event; however some incidents have been reported 

in von Hippel-Lindau syndrome and gastric cancer (5). Integrative analysis between 

methylation and copy number analysis opens up the possibility for insightful 

understanding of cooperating methylation-deletion events in Knudson‟s two-hit model 

(Fig. 5.6A). We examined the frequency of obtaining methylation-deletion events in our 

met samples (N=3). We divided all Ref Seq gene promoters (UCSC build 36.1, 2006) in 

each sample into two groups, 1) Promoters that contain DNA methylation and 2) 
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Unmethylated promoters.  The groups were then queried in their respective sample aCGH 

data to know if they lie in a LOH region.  From our analysis in metastatic samples, while 

a small percent (3%) of genes with promoter methylation was found to lie in regions of 

genomic amplification, as high as 28% (average of 23%) of genes with promoter 

methylation are harbored in regions of heterozygous loss (Fig. 5.6B).  Hence the 

frequency of methylation-deletion event was significantly higher (p-value < 0.016) 

compared with methylation-amplification event (the highest with 6.9%, the average of 

3.2%) (Fig. 5.6B). We also performed this analysis on localized PCa samples where the 

incident of methylation-deletion events in this tissue group were significantly lower at 

less than 5% (data not shown). This difference indicates possible occurrence of 

methylation-deletion two-hit event at later stage of cancer progression. Among genes 

lacking promoter methylation methylation, even though genomic deletion is observed at 

higher frequency than genomic amplification; this difference was not statistically 

significant (Fig. 5.6C). The frequency of deletion among the genes harboring methylation 

or lacking methylation showed no statistical difference. Methylation-deletion event is not 

the only scenario for two-hit activation. As mentioned previously, somatic mutations can 

make a significant contribution towards a first hit. Hence only an integrative analysis 

inclusive of the somatic mutation data in these samples will provide a complete picture.   

The frequency of the methylation-deletion event can be compared with no mutation/no 

methylation-deletion event for more complete analysis in future (Fig. 5.6C).  Based on 

our analysis with metastatic samples, cooperation between promoter methylation and 

genomic deletions could play a major role in a two-hit inactivation model for prostate 

tumorigenesis. In order to represent candidate loci that exhibit frequent two-hit 
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methylation-deletion, a “Two-hit frequency score” was calculated for all refseq genes and 

plotted in Figure 5.6D. The highest peak indicates most frequent site for two-hit event, 

and interestingly, NKX3.1, a known tumor suppressor gene in prostate cancer, resides 

within that locus. Few other loci with high peaks harbored well-known tumor suppressor 

genes such as WT1, RB1, and SMAD4 and the sites of LOH in prostate cancer such as 

chromosome 16 and 19 (Fig. 5.6D). The list of genes that contain both methylation and 

deletion in more than two metastatic samples is listed in Table 5.4.  When these genes 

were mapped to the heatmap represented in Figure 5.2, all were located within cancer-

specific methylated region I and II, implicating the role of two-hit inactivation in 

tumorigenesis. Characterization of a larger sample set will definitely strengthen this 

analysis in identifying causal genetic loci.   Again, characterizing multiple samples from 

the same patient might provide the information on whether the methylation comes in as a 

fist hit or a second hit player in this model, which remains to be demonstrated by global 

analysis. 

 

In summary, we used a high throughput M-NGS strategy to characterize the DNA 

methylome map of prostate tissue specimen using a minimal amount of input DNA.  In 

addition to the identification of distinct patterns of DNA methylation around TSSs that 

frequently occur on promoters either containing or lacking a CpG island, the cancer-

specific methylation observed only among localized and metastatic samples and prostate-

specific observed among all sample types were discovered.  Upon integrative analyses 

with copy number, gene expression and methylation data from  identical samples we 
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found the evidence for methylation-deletion two-hit events, identified the frequent two-

hit loci, and the candidate genes with two-hit inactivation in metastatic samples.  

 

Materials and Methods: 

Reagents and prostate tissue samples 

Grossly dissected human prostate tissue samples from University of Michigan 

Prostate Cancer Specialized Program of Research Excellence Tissue Core (SPORE) were 

collected with informed consent of the patients and prior institutional review board 

approval. A total of 2 normal, 2 benign adjacent, 3 localized cancer and 3 metastatic 

prostate samples (n=10) were characterized by M-NGS, aCGH and GE microarray 

(Table 5.1).  Genomic DNA was isolated from tissue using DNeasy Blood and tissue kit 

(Qiagen Inc, Valencia, CA) according to manufacturer‟s instructions. For M-NGS library 

generation and hybridization, please see materials and methods in Chapter 4. 

 

Agilent GE and aCGH Hybridization 

Total RNA isolated from tissue samples was further purified using RNAeasy 

Micro Kit (Qiagen) according to the manufacturer's instructions. Expression profiling 

was performed using the Agilent 44K expression array.  Briefly, one microgram of total 

RNA was converted to cRNA and then labeled according to the manufacturer's protocol 

(Agilent). The aCGH profiling was performed on the Agilent Human Genome CGH 

244K array. Genomic DNA was isolated from tissue samples and further purified using 

DNeasy Blood and Tissue Kit (Qiagen) according to the manufacturer's instructions. Two 

microgram of gDNA was labeled according to the manufacturer‟s protocol (Agilent). 
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Hybridizations were performed for 16 h at 65 °C. Scanned images from Agilent 

microarray scanner were analyzed and extracted using Agilent Feature Extraction 

Software 9.1.3.1, with linear and lowess normalization performed for each array. The 

prostate tissue samples (Cy5) were hybridized against control pooled prostate RNA 

normal samples (BD Clontech, Heidelberg, Germany) (Cy3).   

 

Statistical Analysis 

HMM analysis of M-NGS data. Hidden Markov Model (HMM) based next generation 

sequencing analysis is conducted in a two-step process that takes in raw reads and outputs 

refined boundaries of enriched chromosomal regions. In detail, please refer to materials 

and methods in Chapter 4.  

Nexus Copy Number Analysis. The detailed protocol on Nexus Copy Number Analysis 

is available (19).  The output from Agilent Feature Extraction Software were imported to 

Nexus copy number analysis tool. The transplant normal sample with known 

chromosome 21 trisomy served as an additional internal control for one copy gain and it 

was included as one of our insetting threshold for the copy number analysis. 

Genomatix analysis. The GenomatixSuite is a web-based software available at 

www.genomatix.de. RegionMiner analysis was used to identify the global over-

representation of transcription factors binding sites. Using the list of genes as input, 

BiblioSphere Pathway allowed to rank and explore the multiple pathways. 

 

Two-hit Frequency Analysis 
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 The RefSeq genes (UCSC genome build 36.1, March 2006) are arranged 

according to their chromosomal location. In each sample, a score was given to each gene 

based on the presence of heterozygous loss and promoter methylation. For each gene, the 

scores from metastatic samples were combined, then the moving average value of 

consecutive 20 genes are plotted to identify the frequent two-hit locus.  
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Table 5.1 Clinical information of prostate tissue samples profiled by M-NGS 

analysis 
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Table 5.3   The concordance between differentially methylated regions identified by 

M-NGS and gene repression 
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Table 5.4  Top candidate gene list for two-hit inactivation 

  

Type: indicates the regions from heatmap represented  in Figure 5.2 

T- CpG Islands present 

F-CpG Islands Absent 
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Figure 5.1 Genomic regions targeted by DNA methylation in prostate tissue samples 

as revealed by Methylplex-Next generation sequencing (M-NGS). (A) DNA 

methylation in intergenic and intronic regions represents a large proportion of all 

observed DNA methylation in tissue samples. While the normal samples exhibited the 

lowest number of methylation peaks, total number of methylated peaks in benign 

adjacent, localized and metastatic samples was comparable. (B)  Methylated promoters in 

all tissue types are two fold more likely to have a CpG island. While the number of 

promoter methylation with CpG islands is increased gradually with the cancer 

progression from normal to metastatic samples, this increase is not evident among 

promoters without CpG islands.  

 

 



136 

 

 

Figure 5.2 Prostate tissue samples with distinct patterns of promoter methylation. 
Analysis of gene promoter regions (±1,500 bp from TSS) identified methylation in 6,619 

RefSeq transcriptional start sties (corresponding to 6,077 unique genes) present in any 

one tissue sample.  Each row represents a unique promoter region, ±1,500 bp from the 
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transcription start site (white dotted line on 1
st
 column) at 100 bp window size.  CpG 

island location is indicated in red in the first column.  The methylation (yellow) observed 

in the corresponding location in each tissue and cell line is indicated.  Among promoters 

represented, 3 distinct patterns of methylation were found.  Methylation occurred either 

(1) on CpG islands, (2) in regions flanking the island (5‟ or 3‟) or (3) in promoters 

without any CpG island.  In addition, the tissue-type specific methylation was also 

present (cluster I, II, III, and IV). Cluster I and II is defined as cancer-specific, and cluster 

IV is defined as the methylated genes in prostate tissues. The information on age and race 

as well as their ETS fusion status of each sample are provided. 
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Figure 5.4 Hierarchical clustering of prostate cancer transcriptome (microarray 

data) by methylation target genes.  Hierarchical clustering of gene expression values 

(prostate cancer microarray dataset n=155) of  methylated  targets in prostate cancer 

(clusters I and II from Fig. 5.2) was able to differentiate between normal and cancer 

samples.    
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Figure 5.5 Genome-wide chromosomal alterations and their matched gene 

expression changes in prostate cancer. (A) Chromosomal aberrations are depicted for 

tissue samples, normal(yellow), followed by benign (green) and tumor prostate samples 

(cyan and dark red). Each row represents one of 20,990 unique genes, ordered by genome 

map position from chromosome 1 to Y (red reflects fold-amplification, blue reflects fold-

deletion, and white indicates no change on left panel). Right panel displays the mRNA 
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expression of matched samples within regions of significant genomic alteration. (red 

reflects over-expression, blue reflects under-expression, and white indicates no change on 

right panel). Trisomy in chromosome 21 is observed in one of transplant normal samples 

as single copy gain, and corresponding changes in gene expression is also shown. (B) The 

number of genomic aberrations including heterozygous loss, single copy gain, and high 

copy gain in each tumor sample is shown. The heterozygous loss was the most frequently 

observed event in localized samples, while metastatic samples harbor comparable 

numbers of deletion and amplification in two out of three samples. (C) The association 

between deletion and gene repression and amplification and gene up-regulation in tumor 

samples is displayed. Around 50% of deleted genes were repressed and 40% of amplified 

genes were over-expressed in prostate tissues. 
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Figure 5.6 Association between copy number alteration and DNA methylation. (A) 

A schematic of two-hit hypothesis involving methylation and deletion is provided. (B) 

Among genes with promoter methylation, significantly more number of regions was 

deleted than amplified (p-value < 0.016). (C) Among the genes without promoter 

methylation, deletion was more frequently observed than amplification, this difference 

was not statistically significant. (D) Two-hit frequency scores for each RefSeq gene was 

calculated and plotted. Tumor suppressor genes such as NKX3.1, WT1, RB1, and 

SMAD4 and frequently reported regions of LOH such as chromosome 16 and 19 was 

among the regions with highest scores. 
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CHAPTER 6 

 

CONCLUSION 

 

Prostate cancer is the most common epithelial cancer and second leading cause of 

cancer death in men in the US. The list of molecular events that take place during cancer 

initiation and progression includes, a) transcriptomic changes, b) epigenetic changes such 

as DNA methylation and histone modification and c) copy number alterations d) somatic 

mutations. The goal of my thesis work was to gain understanding of prostate cancer 

biology by investigating the relationship between some of these major genome-wide 

events through integrative analysis. 

 

In Chapter 2, we monitored genome-wide copy
 
number changes using array 

comparative genomic
 
hybridization (aCGH) of laser-capture microdissected prostate 

cancer
 
samples (N=62) on a cDNA microarray platform.  The samples represented 

multiple stages of prostate cancer progression, including
 
precursor lesions (PIN and PIA), 

clinically localized disease, and metastatic cancer in addition to normal epithelium and 

stromal compartments. Minimal common regions (MCR) of copy number alterations 

were
 
defined for each sample type, and metastatic samples displayed

 
the most number of 

alterations. We identified several novel MCRs in addition to detecting known regions of 

copy number aberration. The genomic aberrations identified in each stage of tumor 
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comprised of both unique and recurrent events. There were genomic aberrations unique 

to localized and metastatic cancers, but not in normal samples. Also there were shared 

aberration sites throughout progression starting with PIN stage.  Identifying these shared 

regions is of great interest as the candidate genes that lie within might play a role in 

tumor progression, especially when the alteration is detected in early precursor stage and 

is preserved or becomes more frequent in other progressive stages of the cancer. The role 

of PIN as neoplastic precursor lesion for prostate cancer is supported by our study. First, 

the whole arm amplification, often observed among advanced form of the disease, was 

also present in at least one PIN sample (8q amplification). Secondly, several genetic 

alterations indentified in our PIN samples resembled the events observed in PCA 

including the amplified regions such as 8q22.2-q24.12 or deleted regions such as 

18q21.1-q23.   

 

From Chapter 2, we identified the regions with genomic aberrations in the entire 

spectrum of prostate cancer from normal to metastatic prostate cancer. We hypothesized 

that this genomic aberration observed within each sample group is one of the key 

underlying mechanisms for transcriptional regulation and responsible for transcriptional 

differences among sample groups. This hypothesis was tested in Chapter 3, which 

describes the integrative
 
analysis performed on genomic aberration and gene expression 

dataset obtained simultaneously from identical samples. In our analysis, we identified 42% 

of amplified genes to be over-expressed in metastatic samples. This percentage was lower 

in localized prostate samples, only 22% of amplified genes were over-expressed. Top-

altered genes with corresponding gene expression change were identified from our aCGH, 
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and this includes well-studied MYC, TPD52, and PTEN among several novel candidates.  

Recently, using the same prostate cohort on gene expression array, our lab has identified 

several outlier genes that are overexpressed in a subset of cancer tissues.  Further 

characterization of one such outlier namely ERG (an ETS family transcription factor), 

lead to the discovery of the first gene fusion phenomenon in prostate cancer  involving 

the genes TMPRSS2 and ERG.  ETS fusion are found in upto 60% of the prostate cancers 

and may play crucial role in prostate cancer development. We speculated that prostate 

cancer samples based on their ETS fusion status (fusion positive or negative) might use 

alternative pathways / mechanisms to promote tumorigenesis and differential genomic 

aberrations, and the genomic difference may be present between the two categories.  

Analysis of copy number differences between ETS fusion positive and negative samples 

identified alterations in various chromosomal regions including 6q21 present only among 

fusion negative tumor samples. The genomic region 6q21 whose deletion is present in 

over 45% of our non-ETS cases contains genes such as FOXO3A and CCNC that are 

reported to play a role in prostate carcinogenesis.  This significant finding will help in 

further characterizing the ETS fusion negative prostate cancers samples. 

 

In addition to genomic aberrations, there are epigenetic events that occur during 

cancer progression. Histone and DNA modifications are key mechanisms for 

transcriptional regulation. Unlike histone modification marks, which are associated with 

both gene activation and repression, DNA methylation is generally considered to be 

involved with gene repression. However, according to the latest literature, an epigenetic 

mark can either repress or support transcription based on the location of the mark in the 
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gene.  In Chapter4, we uncovered the genome-wide DNA methylation events that mark 

a normal (PrEC) and cancer (LNCaP) prostate cell line genomes using novel technology 

termed Methylplex-Next Generation Sequencing (M-NGS). First we performed extensive 

independent validation by bisulfite sequencing and methylation-specific QPCRs and 

confirmed the robustness of this methodology in identifying methylated target regions. 

Detailed promoter analysis revealed the presence of diverse methylation patterns in two 

cell lines around transcription start sites, including direct methylation of CpG islands, 

methylation of regions flanking CpG islands, and methylation of promoters devoid of 

CpG islands.   

Our integrative analysis showed high correlation between methylated promoters 

and gene repression in the corresponding prostate cells. Further analysis of LNCaP 

methylated and repressed genes (oncomine meta-analysis) with publically available 

prostate cancer gene expression dataset identified several potential biomarkers similar to 

well-characterized gene GSTP1. From this list, we characterized genes including WFDC2 

and TACSTD2, which exhibited cancer-specific DNA methylation pattern.  

In our next analysis we integrated DNA methylation (considered as a silencing 

mark) and histone 3 lysine 4 trimethylation (H3K4me3, considered as an active histone 

mark) ChIP-Seq data in LNCaP cell line to study the relationship between the two 

epigenetic modifications.   This analysis revealed several interesting scenarios that are 

listed below 1) Methylated promoters that contain CpG islands (CGI) had more 

H3K4me3 compared to methylated promoters without CGI 2) Among CGI promoters 

that contained both DNA methylation mark and H3K4me3, the modifications had distinct 

boundaries and were mutually exclusive.  3) Alternate transcription start sites of  several 
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genes had mutually exclusive genomic modification with either H3K4me3 or DNA 

methylation marks, showing differential regulation of transcript isoforms. The last 

observation later enabled us to identify differential regulation of specific transcript 

isoform expression by DNA methylation. Based on H3K4me3 occupancy and DNA 

methylation on genes with multiple TSSs, we nominated candidates including RASSF1 

and NDRG2 for isoform-specific methylation and they were validated. This isoform-

regulation by DNA methylation is not limited to the cell line samples and also present in 

patient tissues. We demonstrated differential expression of NDRG2 transcript isoform in 

a tissue panel by qRT-PCR as inferred from the cell line model.  As seen in our LNCaP 

cells, variants 1-4 were significantly under-expressed as compared to variants 5-8 in 

localized PCa (p-value=0.034) and adjacent benign prostate (p-value=0.012), but not in 

normal (non-prostate cancer) samples. These results indicate the presence of a global 

cancer-specific DNA methylation that regulate transcript isoform expression by 

regulating the use of alternate transcription state sites.   

Some of the limitations of our M-NGS methodology are the inability to detect all 

methylated regions in the genome mainly due to the lack of restriction enzyme 

recognition sites in a given target region, does not provide information on hemi-

methylation status, and quantitative measure of percent methylation of each CG residue 

cannot be calculated.  The last limitation can be addressed by including a bi-sulfite 

conversion in our M-NGS workflow and this is one of our future goals.    

 

Finally, we expanded our M-NGS methylation study using M-NGS from cell lines 

to a panel of prostate tissue specimens that include normal, benign adjacent, localized and 
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metastatic prostate cancer in Chapter 5. As seen in Chapter 2 with genomic copy 

number changes, we hypothesized each tumor type may exhibit methylation patterns that 

distinguish each other. As expected, distinct methylation patterns were revealed in each 

sample group, and the cancer-specific regions, had the highest concordance with gene 

repression among the samples. Additionally, we identified the methylation patterns 

observed on gene promoters, coding regions, intergenic regions, CpG islands, and regions 

that harbored microRNAs, among others in each sample type.  

In tissues, DNA methylation had major effect on gene repression that nearly 60% 

of methylated genes in prostate cancer samples were repressed. In an independent 

analysis, hierarchical clustering with the list of genes methylated (M-NGS data, cluster I 

and II) in prostate cancer of a large prostate cohort (n=155) gene expression dataset 

robustly differentiated normal and cancer samples, and we found an enrichment in gene 

repression.  The mechanisms behind remaining 40% of genes that are methylated, but not 

repressed remain to be characterized. However, the one mechanism that we have an 

explanation for is gene amplification. The genomic aberration and DNA methylation are 

two independent mechanisms for transcriptional regulation; however they can co-occur 

within same genomic regions. In case of the co-occurence of genomic deletion and DNA 

methylation, both events were driving the gene to get repressed. However, in the event of 

genomic amplification and DNA methylation, due to two opposite forces in 

transcriptional regulation, neither the enrichment of gene over-expression nor under-

expression is observed. 

Related to these studies in methylation is Knudson‟s two-hit hypothesis, 

established 20 years ago, which postulates that two genomic or epigenomic events is 
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required to inactivate a tumor suppressor gene. While the frame-shift or nonsense 

mutations are the most frequently reported first hit, the DNA methylation event is also 

proposed to be one of two hits for tumor suppressor genes such as VHL and MLH1. We 

used a 3-way integrative analysis on copy number, DNA methylation, and gene 

expression, to identify regions displaying co-occurrence of copy number loss and DNA 

methylation, supporting a two-hit model for gene silencing. The methylation-harboring 

regions were mostly associated with methylation-deletion over methylation-amplification 

events with statistical significance, and moreover, the genomic regions with highest two-

hit frequency include tumor-suppressor genes such as NKX3.1, RB1, and SMAD4 and 

several novel candidates.  

Though our current study Chapter 5 has a small sample size, and addition of 

more samples in future will add strength.  The observations made here are very 

significant and in addition was able to classify gene expression dataset from a large 

sample cohort.  This implies that our dataset has captured the key predominant epigenetic 

events (DNA methylation) that underlie prostate tumorigenesis.   

 

In summary, we characterized two major types of genome-wide events that occur 

in prostate cancer in order to understand their global implications on transcriptional 

regulation and contributions to this disease phenotype. Some aspects that will be further 

investigated in the lab are 1) The genetic aberrations that characterize ETS fusion 

negative samples.  2) We validated one of our methylation candidate genes, WFDC2, 

which is both repressed and frequently methylated in prostate cancer tissues at high levels 

similar to the previously known gene GSTP1, and is also repressed in prostate tumor 
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samples. Evaluating the performance of this and other methylation targets identified in 

this study as methylation biomarkers is of immediate interest.  3) Studies will be carried 

out on select epigenetic target regions with functional relevance to further our 

understanding of prostate cancer biology. 4) Characterizing more samples by methylation 

sequencing and increase our sample number.  Finally, the datasets generated in this thesis 

work will be a valuable public resource for several genome-wide analyses in future. 
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APPENDIX 

 

 

CHAPTER 2 

Minimal Common Regions (MCRs) table for Chapter 2 is available online at the 

following address: 

http://cancerres.aacrjournals.org/cgi/data/67/17/8229/DC1/4 

 

Minimal Common Regions (MCRs) Table. The genes within the MCRs that meet the 

cutoff threshold are listed under amplified/deleted candidate gene category. The over- 

and under-expressed genes from matching mRNA data are also listed, where the cutoff 

values for over- and under-expressed genes are defined as log2 ratio of >0.4 and <-0.4 ( 4 

standard deviations of the middle 50% quantile of corresponding data).  

 

 

Multiple individuals contributed to the work presented in these chapters.  Contributions 

of individuals for each chapter are as follows: 

 

CHAPTER 2 and 3  

Jung Kim, Saravana Dhanasekaran, and Arul Chinnaiyan conceived the experiments and 

wrote the manuscript represented in this chapter.  Jung Kim performed all in silico 

http://cancerres.aacrjournals.org/cgi/data/67/17/8229/DC1/4
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analyses. Jung Kim and Saravana Dhanasekaran performed aCGH profiling of prostate 

cancer tissues and cell lines. Scott Tomlins performed gene expression profiling of 

prostate cancer tissues. We like to thank A. Menon for help with microarray production, 

D. Rhodes, B. Laxman, S.  Subramaiam, for helpful discussions, S. Bhagavathula, J. 

Siddiqui, R.Varambally for tissue database help.  A.M.C. is supported by a Burroughs 

Wellcome Foundation Award in Clinical Translational Research. K.J.P. is supported by 

an American Cancer Society Award. S.A.T. is supported by the Medical Scientist 

Training Program and a Rackham Pre-doctoral Award. This research was supported in 

part by National Institutes of Health Grant RO1 CA97063 (A.M.C and D.G.); RO1 

CA102872 (K.J.P.); U01 CA111275 (A.M.C and D.G.); P50 CA69568 (K.J.P., A.M.C 

and D.G.); Department of Defense PC040517 (R.M.); and PC051081 (A.M.C.); and the 

Ralph Wilson Medical Research Foundation Grant (K.J.P.). 

 

CHAPTER 4 and 5  

Jung Kim, Saravana Dhanasekaran, and Arul Chinnaiyan conceived the experiments and 

wrote the manuscript represented in this chapter. Jung Kim performed all in silico 

analyses. Jung Kim, Saravana Dhanasekaran, and Dan Robinson performed next 

generation sequencing preparation of cancer tissues and cell lines. Jung Kim and 

Saravana Dhanasekaran performed bisulfate sequencing and methylprofiler qPCR.  

Xuhong Cao performed Agilent aCGH profiling of prostate cancer tissues.  Xiaojun Jing 

performed Agilent GE profiling of prostate cancer tissues. John Presner performed 

5‟RACE and qRT-PCR on methylation-driven isoforms. We thank Vladimir Marakarov, 

Emmanuel Kamberov Takao Kurihara, and John Langmore from Rubicon Genomics for 
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early access to the methylplex technology. We thank Robert Lonigro, Shanker Kaylana-

Sundaram, Terrence Barrette, Mike Quist, and Jianjun Yu for help with data analysis, 

Roger Moorey for help with illumina sequencing, Xiaojun Jing, Rajal Shah, Bo Han, and 

Javed Siddiqui for providing prostate tissue samples, and Jill Granger for editing this 

manuscript.  C.A.M. was supported by a National Institutes of Health (NIH) Ruth L. 

Kirschstein postdoctoral training grant, and currently derives support from the American 

Association of Cancer Research Amgen Fellowship in Clinical/Translational Research 

and the Canary Foundation and American Cancer Society Early Detection Postdoctoral 

Fellowship. J.Y. was supported by NIH Grant 1K99CA129565-01A1 and Department of 

Defense (DOD) Grant PC080665, and her current address is Division of 

Hematology/Oncology at Northwestern University, IL.  J.R.P was supported by a NIH 

Cancer Biology Training Grant CA009676-18.  J.R.P is a Fellow of the University of 

Michigan Medical Scientist Training Program. A.M.C. was supported in part by the NIH 

(Prostate SPORE P50CA69568, R01 R01CA132874), the DOD (BC075023, W81XWH-

08-0110), the Early Detection Research Network (U01 CA111275), a Burroughs 

Welcome Foundation Award in Clinical Translational Research and a Doris Duke 

Charitable Foundation Distinguished Clinical Investigator Award. This work was also 

supported by National Center for Integrative Biomedical Informatics Grant U54 

DA021519. 


