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CHAPTER I

Introduction

The work presented in this thesis covers a wide range of projects that, if presented

independently, would have seemingly little in common. However, when presented in

order, each project is shown to build on the previous ones, all leading up to the

ultimate goal: high-repetition-rate, high-harmonic generation from solid targets in

the relativistic regime achieved by tight focusing of low-energy ultrashort pulses.

1.1 The λ3 regime

All of the work presented in this thesis was performed in the λ3 lab at the Center

for Ultrafast Optical Science (CUOS), University of Michigan. The purpose of the λ3

system is to make relativistic laser-plasma experiments accessible without the need for

a massive laser facility. By reducing the focal spot size to approximately one square

wavelength (λ2) and the pulse duration to approximately one cycle (1/ν) all of the

pulse energy can be confined to a volume of approximately one cubic wavelength:

λ2(c/ν) = λ3. This allows very high intensities (> 1018 W/cm2) to be achieved with

very small energies (∼1 mJ). Consider the intensity of 1 mJ of 800 nm light with a

single-cycle pulse duration, τ , and single wavelength focus size, w0:
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I ≈ E

τw2
0

=
1 mJ

(800 nm/c)(800 nm)2
≈ 6× 1019 W/cm2 (1.1)

This is well above the relativistic threshold for 800 nm light of 2 × 1018 W/cm2.

By operating at such low pulse energies the size and repetition rate of the system are

much more favorable. The λ3 system fits on two standard optical tables and has a

repetition rate of 500 Hz. In fact, similar systems with multikilohertz repetition rates

are now commercially available.

1.2 Dissertation outline

In the first chapter, the design and implementation of a high-ASE contrast regen-

erative amplifier are described. Sufficient contrast is necessary in high-intensity laser

experiments to avoid the formation of an expanding plasma prior to the arrival of the

main pulse.

In Chapter III, an ultrashort pulse measurement technique is proposed and tested.

This technique is a modification of an existing pulse measurement method, multipho-

ton intrapulse interference phase scan (MIIPS). The new method simplifies spectral

phase measurements by employing pre-existing components in the amplifier system.

The single beam nature of MIIPS allows spectral phase measurements to be made

under more realistic, even in situ, experimental conditions.

The minimum pulse duration of systems such as λ3 is limited to approximately

20 fs by gain narrowing in the amplifier. Filamentation compression is an increas-

ingly popular technique for shortening amplified pulses to the sub-10 fs range. The

experiment discussed in Chapter IV extends the filamentation technique to higher

energies, potentially raising the achievable λ3 intensity closer to 1020 W/cm2.

One of the most challenging aspects of working in the λ3 regime is obtaining a

2



high quality single wavelength focus. The λ3 system utilizes a high-numerical aperture

paraboloidal mirror and adaptive optics to produce its tight focus. Chapter V presents

a new method for optimizing the adaptive optics to produce the highest possible

focused intensity.

Finally, in Chapter VI all of the previous work leads to the production of high-

harmonics from solid target experiments.
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CHAPTER II

High ASE Contrast Regenerative Amplifier

2.1 Introduction

In high-intensity laser experiments, radiation arriving prior to the main pulse is

capable of ionizing material and forming a preexisting plasma. The properties of this

“pre-plasma” can have a significant effect on the interaction of the main pulse. One

of the most important properties of the pre-plasma is its density scale-length, usually

defined as

L = n

(

dn

dz

)−1

(2.1)

where n is the density. In general, the earlier the plasma is formed and the higher

the intensity of the light that formed it, the longer the scale-length will be.

In high-power laser systems, there are three primary sources of energy arriving

before the main pulse: amplified spontaneous emission (ASE), the “pedestal,” and

pre-pulses. In any amplifier, the spontaneous emission undergoes gain along with

the pulse being amplified. ASE exists for as long as gain is available (∼3 µs in

Ti:Sapphire). Switching optics can suppress very early ASE, but it will always exist

for a few, or even a few hundred, nanoseconds before the main pulse and is often
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strong enough to ionize materials. The pedestal is an energy ramp in the picosecond

time range that occurs in chirped pulse amplification (CPA) systems when phase

errors during stretching and compression temporally scatter energy that should have

been in the main pulse [1]. Finally, pre-pulses are additional compressed pulses caused

by multiple reflections or scattering of the main beam from optics in the system.

The strengths of the ASE, pedestal, and pre-pulses are usually characterized by

the contrast ratio of the main pulse intensity to their own. Because the scale-length

can be intentionally increased to control the parameters of the interaction (e.g. by

the introduction of a controlled pre-pulse), it is usually desirable to have as high a

contrast ratio as possible. A number of techniques exist for improving the contrast

ratio, including saturable absorption [2], cross-polarized wave generation (XPW) [3],

frequency doubling [4], and plasma mirrors [5]. All of these techniques require extra

amplification stages or lossy post-amplification processes. For the case of ASE, an

alternative or complementary approach to improving the contrast is to specifically

design the amplifier to produce very little ASE to begin with.

2.2 Design

The λ3 system is a millijoule level, titanium sapphire, chirped pulse amplification

(CPA) system. A schematic diagram is shown in Fig. 2.1.

Prior to the work described in this thesis the λ3 amplification stage consisted of

a 6-pass, high gain amplifier followed by a 3-pass power amplifier. In designing the

new, low ASE amplifier, both stages were replaced by a single regenerative amplifier

(Fig. 2.2). Injection and dumping is performed by a single Pockels cell (PC1) and a

pair of thin film polarizers. The cryogenically cooled Ti:Sapphire crystal is pumped

from both sides by a pair of intracavity frequency-doubled Nd:YLF lasers (Spectra-

Physics Evolution-30 and Evolution-X) with a total of 30 mJ of energy at 527 nm.

Concave cavity end mirrors with a 3 m radius of curvature at 2.5 m from the crystal

5



Oscillator PC
AOPDF

(Dazzler)

Preamplifier

IR85

Stretcher

Amplifier

Evolution-X

10 mJ Nd:YLF

Evolution-30

20 mJ Nd:YLF

PC

Compressor

to experiment

Figure 2.1: λ3 laser system diagram. PC: Pockels cell; IR85: saturable absorber.

produce a free space Gaussian mode size (w0) of 500 µm.

The key design concept behind the λ3 regenerative amplifier is to use a mode with

a very low divergence angle. All other parameters being equal, the divergence angle

of the amplifier mode determines how much spontaneous emission will be collected

and amplified. The instantaneous power of the spontaneous emission immediately

after pumping can be expressed as

PSE =
Epump

λseed/λpump

1

τ
(2.2)

where Epump is the total pump energy, λseed is the lasing wavelength, λpump is the

pump wavelength, and τ is the lifetime of the gain medium. The ratio (λseed/λpump)
−1

is the quantum defect of the gain medium and expresses what fraction of the pump

energy is available for gain at the lasing wavelength.

The spontaneous emission power expressed in Eq. (2.2) is emitted isotropically

into a solid angle of 4π sr. However, the cavity collects only that radiation emitted

into a solid angle comparable to that of the lowest order mode:

6



Figure 2.2: Diagram of the λ3 regenerative amplifier. T1: input telescope; PC1:
Pockels cell for injection and dumping; R: concave mirrors; T2: output
telescope; P1, P2, P3: polarizers; PC2: pulse-cleaning Pockels cell.

Ω0 = π

(

λseed

πw0

)2

(2.3)

where w0 is the free space waist size of the fundamental cavity mode. The collected

solid angle is reduced by an additional factor of n3
crystal due to refraction at the faces of

the Brewster-cut crystal (the factor is only n2
crystal for a crystal at normal incidence).

Combining Eqs. (2.2) and (2.3), dividing by the isotropic 4π sr, and including the

extra solid angle factor gives the total collected spontaneous emission power:

PSE,collected =
Epump

λseed/λpump

1

τ
π

(

λseed

πw0

)2
1

4π

1

n3
crystal

(2.4)

The w−2
0 dependence of the ASE is the motivating factor for working with a large

mode size and has been briefly discussed in regard to similiar amplifier designs [6].

The variables of Eq. (2.4) and their values for the λ3 system are shown in Table 2.1.

7



Inserting these values into Eq. (2.4) yields a collected spontaneous emission power of

70 W.

Epump 30 mJ τ 3 µs
λseed 800 nm w0 500 µm
λpump 527 nm ncrystal 1.8

Table 2.1: Parameters of the λ3 regenerative amplifier.

The λ3 system can be operated with and without the preamplifier and saturable

absorber. Without them the seed energy for the regenerative amplifier is ∼1 nJ. With

them the seed energy is increased to ∼100 nJ. In either case the number of roundtrips

in the cavity is adjusted to deplete the gain, giving the same output energy.

The contrast can be estimated by comparing the collected spontaneous emission

power (70 W) to the power of the seed. Because both signals experience approximately

the same gain, their ratio stays constant throughout amplification. However, the

random spectral phase of the spontaneous emission prevents it from being compressed,

so the ratio of interest is actually that of the spontaneous emission to that of the

compressed seed. Assuming a compressed pulse duration of 30 fs, the powers of

the seed with and without the preamplifier are 3.3 MW and 33 kW, respectively.

The expected ASE contrast ratios are therefore 3.3 MW/70 µW = 5 × 1010 and

33 kW/70 µW = 5× 108.

2.3 Testing

In operation the λ3 regenerative amplifier requires 11 round trips to deplete the

gain. Fig. 2.3 shows a typical trace of the energy buildup in the cavity. The buildup

and the necessary round trips varied according to the alignment of the cavity and

the output of the pump lasers. In general the system is capable of delivering approx-

imately 3 W (6 mJ per pulse) to the compressor gratings.

A third order autocorrelator (Fig. 2.4) was used to measure the ASE, the pedestal,

8
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Figure 2.3: Regenerative amplifier buildup trace. The pulse shown here is dumped
one or two round trips late to demonstrate the saturation and subsequent
loss.

and the prepulses (Fig. 2.5). The autocorrelation was performed with the preamplifier

and saturable absorber in operation.

At negative delays, postpulses in the second harmonic arm of the autocorrelator

can overlap with pulses in the fundamental arm, leading to the appearance of pre-

pulses. All of the prepulses in Fig. 5 can be matched to such postpulses, most of

which are generated by multiple reflections in the BBO crystals and BG39 filter.

BG39

SHG

BS

SFG

FS

FS

FS

IF

PMT

Iris
TS

Figure 2.4: Third order autocorrelator. BS: beamsplitter; TS: translation stage; SHG:
10 µm BBO crystal for second harmonic generation; SFG: 50 µm BBO
crystal for sum frequency generation; BG39: 3 mm BG39 glass filter; FS:
fused silica Brewster prisms; IF: (267 ± 5) nm interference filter; PMT:
photomultiplier tube.
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Figure 2.5: Third order autocorrelation showing nanosecond scale contrast (a) and
picosecond scale contrast (b).

Real prepulses can be generated inside CPA systems by the nonlinear transfer of

postpulse energy [7]. Postpulses that fall within the stretched pulse duration (∼30 ps

in the λ3 system) will undergo nonlinear mixing with the main pulse via χ(3) processes,

generating weaker, mirror images of themselves before the main pulse. Unfortunately,

the postpulses that cause this effect will also appear as artificial prepulses in the third

order autocorrelation. Because the artificial prepulses and the real prepulses occur at

the same delay, it is impossible to distinguish them. None of the resolvable prepulses

in Fig. 2.5 that fall within the stretched pulse duration can be attributed to this

effect. If they exist—and they must—they are either weaker than the pedestal or

obscured by the artificial prepulses.

From Fig. 2.5, the measured ASE contrast is (1.2×10−10)−1 = 8.3×109. This is a

factor of 6 worse than the predicted contrast of 5× 1010. This is due to a few factors:

(i) The gain of the spontaneous emission is higher than that of the main pulse due

to saturation. If the majority of this difference occurs in the last pass of gain, then

it should be approximately equal to a single pass of gain, about 2. (ii) The system

amplifies only about half of the bandwidth of the seed due to gain narrowing. (iii)
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Decay traces of the seeded, unpumped amplifier show that approximately 20–30% of

the seed is lost due to its spatial quality when coupling to the cavity. Combined, these

three factors reduce the expected contrast by a factor of 5, matching the measured

contrast very well.

Experimentally it was found that the contrast of the system without the pream-

plifier and saturable absorber was sufficient for generating short scale-lengths on glass

targets. A third order autocorrelation was not performed without the preamplifier.

Only the strength of the ASE is expected to change along with the strength of the

seed. The source of the other major contrast feature, the pedestal that begins rising

at ∼20 ps, was discussed earlier. The pedestal is generated by uncorrectable spectral

phase noise in the stretcher and compressor [1], which is unaffected by the absence of

the preamplifier.

A simple photodiode measurement of the ASE was performed without the pream-

plifier and saturable absorber. The amplifier was operated under normal conditions

but with the seed blocked. The full beam before the compressor was collected by a

lens and measured using a standard silicon photodiode with a response time of ∼1 ns.

Terminated into 50 Ω, the peak of the signal was 300 mV. Three neutral density filters

totaling (5.6 ± 0.1) OD were used to attenuate the beam. Using the manufacturer

specified responsivity of 0.4 A/W at 800 nm, the peak power of the ASE could be

calculated as

P =
1

T

1

R
V

R
= 10−5.6 1

0.4

300 mV

50 Ω
= 6 kW (2.5)

where T is the transmission of the filters, R is the responsivity, V is the voltage

and R is the termination resistance.

The pulse into the compressor has an energy of 6 mJ and a compressible pulse
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duration of 30 fs, giving a power of 2 × 1011 W. The contrast ratio is therefore

2× 1011 W/6 kW = 3.3× 107. The predicted gain without the preamplifier is about

a factor of 100 lower than that measured by the third order autocorrelator (Fig. 2.5):

8.3 × 109/100 = 8.3 × 108. The photodiode measurement was performed without a

seed, eliminating the effect of gain depletion. Assuming most of the depletion occurs

during a single pass, the measured ASE is approximately a factor of 2 higher than it

would be with a seed. Scaling the measured ASE by this factor gives a contrast ratio

of 6.6× 107, which matches well with the predicted contrast.

The ASE contrast of the λ3 system prior to this modification was 1 × 108 [1].

The improved contrast from the regenerative amplifier (8.3 × 109) is approximately

80 times higher. Also, the contrast without the preamplifier and saturable absorber

(6.6× 107) is less than a factor of 2 lower.

The goal of the λ3 system is to achieve on-target relativistic intensities above

2 × 1018 W/cm2. If the contrast ratio is taken to be 6 × 107, then the on-target

ASE intensity will be 3.3 × 1010 W/cm2. The final Pockels cell of the system allows

approximately 5 ns of ASE through before the main pulse. The damage threshold of

fused silica for 5 ns pulses is (140 ± 60) J/cm2 [8] or an intensity of (2.8 ± 1.2) ×

1010 W/cm2, which is close to the measured ASE intensity depending on the accuracy

of the measurements and the quality of the surface.

2.4 Conclusion

In conclusion, a high ASE contrast regenerative amplifier was designed, con-

structed and tested. By increasing the mode size of the cavity the amount of spon-

taneous emission collected was reduced. The predicted ASE contrast matched well

with a third order autocorrelation and a simple photodiode measurement. The im-

provement in ASE contrast compared to the previous 2-stage multipass amplifier was

approximately a factor of 80. The system is operated primarily without the pream-
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plifier and saturable absorber. Under these conditions, the ASE intensity is similar

to the measured damage threshold of fused silica. However, high-harmonic experi-

ments have shown that the contrast is sufficient for short scale-length interactions on

SiO2 targets (see Chapter VI). For more demanding target materials (e.g. metals),

an increase in ASE contrast of approximately 100 can be achieved by employing the

preamplifier and saturable absorber.
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CHAPTER III

Grating-based Multiphoton Intrapulse Interference

Phase Scan

3.1 Introduction

The measurement of ultrashort optical pulses is a subject of ongoing research.

The fundamental difficulty in measuring ultrashort pulses is the lack of a shorter

probe. When a shorter probe is available, measurements are straightforward. When

a shorter probe is not available, one must resort to indirect methods in which pulses

are used to measure themselves. A host of techniques have been developed to do just

this. Some, such as second and third-order autocorrelations, are fairly simple but rely

on significant assumptions about the shape of the pulse. Spectral interferometry for

direct electric field reconstruction (SPIDER) [9] is a powerful technique for measuring

the spectral phase of ultrashort pulses, but it has low resolution and requires a high

signal-to-noise ratio. A third technique, frequency resolved optical gating (FROG)

[10], is capable of measuring both the amplitude and phase of ultrashort pulses, but

in most cases it requires a fairly complex setup.

All of these techniques-and others-have their advantages and disadvantages. The

choice of measurement depends largely on the situation. The pulse energy, wave-

length, beam quality, and other factors all play a role in determining the appropriate
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technique. A fourth technique, multiphoton intrapulse interference phase scan (MI-

IPS) [11], is a relative newcomer to the field of pulse measurement, but is well-suited

to the needs of a λ3 type system.

3.2 MIIPS theory

The theory behind multiphoton intrapulse interference phase scan is very simple.

Start with an expression for the spectral power of a second harmonic signal:

S(2ω) =

∣

∣

∣

∣

∣

∣

∞
∫

−∞

E(ω + Ω)E(ω − Ω)dΩ

∣

∣

∣

∣

∣

∣

2

(3.1)

which is simply the autoconvolution of the fundamental electric field, E(ω). Then,

separate the field into its magnitude, |E(ω)|, and phase, eϕ(ω):

S(2ω) =

∣

∣

∣

∣

∣

∣

∞
∫

−∞

|E(ω + Ω)E(ω − Ω)|eiϕ(ω+Ω)+iϕ(ω−Ω)dΩ

∣

∣

∣

∣

∣

∣

2

(3.2)

The two phase terms in Eq. (3.2) can be expanded in a Taylor series to second

order about Ω:

ϕ(ω ± Ω) ≈ ϕ(ω)± ϕ′(ω)Ω +
1

2
ϕ′′(ω)Ω2 (3.3)

Summing the two expansions yields

ϕ(ω + Ω) + ϕ(ω − Ω) ≈ 2ϕ(ω) + ϕ′′(ω)Ω2 (3.4)
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Using the approximation of Eq. (3.4) in Eq. (3.2) yields

S(2ω) =

∣
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=
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∣

∣
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2

(3.6)

where the constant phase term i2ϕ(ω) has been pulled out of the integral and elim-

inated by the absolute value. Looking at Eq. (3.6), it is obvious that the second

harmonic signal will be maximized when ϕ′′(ω) = 0 and the exponential is unity.

Physically this means that the signal at any particular second harmonic frequency 2ω

is maximized when the group delay dispersion (GDD) at the corresponding fundamen-

tal frequency ω is zero. The approximation of Eq. (3.4) is actually two approximations

in disguise: (i) the phase is slowly varying over a sufficiently small frequency range,

and (ii) widely spaced fundamental frequency components do not strongly contribute

to the signal at their sum frequency. To see how the condition on the GDD can be

used we consider the phase, ϕ(ω), to be the sum of an intrinsic phase (i.e. the phase

being measured), φ(ω), and a known phase that is intentionally applied as part of the

MIIPS process, θ(ω):

ϕ(ω) = φ(ω) + θ(ω) (3.7)

The condition ϕ′′(ω) = 0 implies that

φ′′(ω) = −θ′′(ω) (3.8)
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That is, in order to maximize the second harmonic signal at 2ω, the applied GDD,

θ′′(ω), must exactly cancel the intrinsic GDD, φ′′(ω), at ω. The phase of the pulse

can then be obtained by simple integration:

φ(ω) =

ω
∫∫

ω0

φ′′(ω)dω = −
ω
∫∫

ω0

θ′′(ω)dω (3.9)

The procedure for using MIIPS is therefore to apply a known spectral phase to

the pulse being measured, frequency double that pulse, determine the GDD that

maximizes the second harmonic signal at each frequency, then integrate.

3.3 Implementation

The applied phase, θ(ω), can come from any source as long as it is known and

spans the range of GDD required to cancel the intrinsic GDD, φ′′(ω), at every fre-

quency being measured. Traditionally the phase has been applied using a spatial light

modulator (SLM) inside an f-to-f grating arrangement [11] (Fig. 3.1a).

This has the advantage of allowing the spectral phase to be both measured and

corrected to high order. However, there are three significant downsides to this ap-

proach. The first is that SLMs cannot generally be used following amplification. The

efficiency of SLMs is usually several tens of percent. Not only does this sacrifice a sig-

nificant amount of amplified energy, it also limits the power that an SLM can handle.

Not being able to employ the device after amplification leads to the second downside

of using SLMs for MIIPS. In any amplifier operating above ∼1 mJ, a non-negligible

amount of self phase modulation (SPM) can occur during amplification. Any spectral

phase applied prior to amplification will not be linearly mapped to the spectral phase

on the pulse at the output of the amplifier, leading to errors in the phase retrieval.

The third downside to using SLMs is their expense and complexity.
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Figure 3.1: Dispersive elements for MIIPS pulse measurement. (a) A programmable
SLM prior to amplification. (b) An adjustable grating compressor follow-
ing amplification.

It was noted above that any method of applying spectral phase is acceptable as

long as the GDD spans the necessary range. Any number of devices could potentially

satisfy this criterion including SLMs, prisms, chirped mirrors, acousto-optic dispersive

devices, and grating pairs. Grating pairs (Fig. 3.1b) have some unique advantages

over other devices when measuring short pulses from typical chirped pulse amplifica-

tion (CPA) systems. First, many, if not most, CPA systems already contain a pair

of gratings at the end to perform compression. Second, the grating compressor is

situated at the end of the system after any SPM has occurred, so the applied spectral

phase is not distorted by any nonlinearity. Finally, since the gratings are already part

of the system, no additional loss needs to be introduced. The GDD of a double-passed

grating pair is [12]

θ′′ = −G
N2λ3

πc2 cos3 β
(3.10)

where G is the perpendicular separation between gratings, N is groove density, λ is
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Figure 3.2: Simulated MIIPS traces demonstrating the use of grating separation (a)
versus grating rotation (b). (c) The retrieved GDD for both methods
plotted against the exact GDD.

the wavelength, c is the speed of light, and β is the diffracted angle according to the

grating equation:

sin γ − sin β = mλN (3.11)

where γ is the incidence angle and m is the order of diffraction (almost always

1 for a compressor pair). From Eq. (3.10) one can see that there are two possible

means of scanning the GDD of a grating pair: changing the separation and changing

the angle. In principle, changing the angle of the gratings affects their reflectivity,

which would cause errors in the phase retrieval, but in practice, the angle change is

usually too small to effectively alter the reflectivity. Fig. 3.2 shows simulated MIIPS

traces of a transform limited pulse obtained by scanning (a) the separation and (b)

the rotation.
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3.4 Advantages and disadvantages

Most of the advantages of MIIPS are derived from its simplicity. One of the

simplicities of MIIPS is that it depends not on the absolute value of any spectral

component, but on the occurrence of a maximum. This is especially advantageous

for pulses with large bandwidths, over which the response of optics, detectors, and

the SHG process itself can vary significantly. The efficiency of second harmonic

generation [13], for example, can be expressed as

R(ω) =

[

ωχ(1)(ω)χ(1)(ω/2)sinc

(

∆k(ω/2, ω/2)L

2

)]2

(3.12)

where ω is the frequency at the second harmonic, χ(1) is the linear susceptibility of

the crystal, L is the length of the crystal, and ∆k is the phase mismatch between the

fundamental and second harmonic:

∆k(ω1, ω2) = k(ω1) + k(ω2)− k(ω1 + ω2) (3.13)

Eq. 3.12 has been plotted in Fig. 3.3 for several different type-I crystals. This

efficiency must be accounted for in broadband FROG measurements to yield accurate

results. For sufficiently large bandwidths, the wings of a spectrum might fall where the

SHG efficiency is very low, leading to large uncertainties if the R factor is not precisely

known. However, when performing a MIIPS measurement, this frequency dependent

“filter” is irrelevant. The GDD that produces the maximum at each frequency is

independent of the shape of R(ω). This independence also applies to the spectral

response of the spectrometer, any filters used and optics, eliminating many sources

of systematic error.
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Figure 3.3: Type-I second harmonic efficiency for several different nonlinear crystals.
All crystals are 10 µm thick. The crystal angle was chosen independently
for each crystal to maximize efficiency near 800 nm.

Another advantage of MIIPS is the fact that it uses only a single beam. This

allows pulse measurements to be performed in situ, further eliminating systematic

errors. Multiple beam techniques must take into account the tabulated or measured

dispersion of beamsplitters and other optics. By replacing a target or sample with a

doubling crystal, a single beam MIIPS measurement can be performed that introduces

no additional dispersion and contains all of the inherent dispersion of the delivery

optics.

While MIIPS is a remarkably powerful technique, especially given its simplicity,

there are some disadvantages, including: (i) introducing positive and negative GDD

is difficult without the inherent control of dispersion devices found in amplifiers, (ii)

it is not single shot and (iii) it can be inaccurate for complicated phases.

Inherent dispersive devices make MIIPS straightforward in CPA systems. How-

ever, the measurement of isolated pulses is difficult. In most cases, small amounts

of both positive and negative GDD must be applied. A grating pair can only be

used when the large total GDD is used to compress an initially chirped pulse and
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differential GDD is applied near the compression point. Likewise, the SLM concept

relies on knowledge of the GDD difference as the pixels are modulated, not on the

total GDD of the system. Prism arrangements can provide adjustable GDD of both

signs, but are not as easy to adjust as gratings or SLMs. A rotating etalon can also

provide adjustable GDD of both signs, but the complex, oscillatory nature of etalon

dispersion can introduce errors in the phase retrieval, as discussed below.

In theory, MIIPS could be implemented in a single shot fashion by imposing vary-

ing dispersion across a uniform beam. The dispersion of an etalon in a converging or

diverging beam offers one possibility. However, no single shot MIIPS implementation

has been demonstrated. On the other hand, single shot autocorrelations and FROG

measurements are of similar complexity to their standard designs.

Finally, the approximation made in Eq. (3.4) can introduce GDD retrieval errors

for complicated phases. The higher the order of the inherent phase, the greater the

retrieval error will be [14]. Fig. 3.4 shows simulated, grating-based MIIPS retrievals

for four different orders of phase, 2nd (GDD) through 5th. In the figures on the

right, the retrieved GDD (red) for 2nd and 3rd order phase is indistinguishable from

the exact GDD (green). For 4th and 5th order phase, the retrieved GDD begins to

deviate from the exact values. Higher order phases will be retrieved with increasing

error.

3.5 Experiments

The λ3 system uses a standard grating pair compressor following amplification,

consisting of two gold-coated, 1200 grooves/mm gratings and a roof mirror (Fig. 3.5).

The second grating is mounted on a manually actuated linear translation stage, while

the pair is situated on a manually actuated rotation stage. The incidence angle

was measured very accurately by rotating the gratings until second order Littrow

diffraction of a collinear HeNe was achieved.
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Figure 3.4: Simulated grating MIIPS GDD retrieval for various orders of phase (top
to bottom): 500 fs2, 500 fs3, 417 fs4 and 417 fs5. Figures on the left
are the second harmonic spectra as a function of frequency and relative
grating separation. The blue curve tracks the optimum grating separation
for each frequency. Figures on the right show the fundamental pulse
spectrum (blue), the exact GDD (green) and the retrieved GDD (red).
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Figure 3.5: Grating based MIIPS arrangement.

The bandwidth of the amplified pulses is approximately 30 nm (FWHM). A 10 µm

thick BBO crystal cut for type-I frequency doubling is used. A 3 mm thick BG39

filter is used to block the fundamental light. The second harmonic beam is then

focused by a 5 cm focal length achromatic doublet. The doublet is not designed for

the second harmonic spectrum, but because MIIPS does not depend on the relative

intensity of the colors, any wavelength dependent coupling into the spectrometer due

to the focusing optic is irrelevant. The focused spectrum is recorded with a miniature

USB spectrometer (OceanOptics USB4000). The spectrometer has a resolution of

approximately 1 nm.

In order to verify the accuracy of the technique, two different MIIPS measurements

were made (Fig. 3.6): one in which the grating separation was scanned (Fig. 3.6a), the

other in which the grating rotation was scanned (Fig. 3.6b). The λ3 system contains a

programmable acoustic dispersion device (Fastlite Dazzler), but the pulse was allowed

to have large, uncorrected phase errors for the purpose of this measurement.

The calculated group delays are shown in Fig. 3.7a and their difference is shown in

Fig. 3.7b. Over most of the spectrum the error was less than 5 fs out of a full range of

almost 200 fs. Large errors occur only in the wings of the spectrum where the power

is too low to accurately find a maximum. The agreement is expected to be better

if a larger set of data is acquired. Unfortunately, at the time of this experiment,

both the separation and rotation of the compressor were manually actuated, making
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Figure 3.6: MIIPS traces acquired using (a) grating separation and (b) grating rota-
tion.

it prohibitive to acquire data at more than about 100 points.

Fig. 3.8a a shows an independent measurement of the pulse spectrum and the

spectral phase, obtained by integrating the group delay. The resulting temporal pulse

shape based on both techniques (separation and rotation) is shown in Fig. 3.8b. The

agreement is very good in terms of peak power, pulse width, and satellite structure.

3.6 Noise effects

Noise is a factor that affects any experimental measurement. To estimate the effect

of noise on a MIIPS trace we consider the measurement of a transform limited pulse.

If the applied phase is purely second order then the pulse will simply be stretched

and compressed and the doubling efficiency at every color will be proportional to the

pulse duration. If the pulse is stretched by a factor of two, then the second harmonic

signal will be reduced by a factor of two. If the pulse is stretched by only ten percent,

then the second harmonic signal will be reduced by a factor of approximately ten

percent. This leads to an approximate rule regarding the error caused by signal

noise. If the fundamental pulse has energy fluctuations of ∼2% (typical for a low
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energy CPA system) then the second harmonic signal will have fluctuations of ∼4%,

so the expected error in the measured pulse duration would be around 4%. In fact, the

error should be smaller since the integrations average the fluctuations over multiple

values.

3.7 Conclusions and future work

In conclusion, the MIIPS pulse measurement technique has been demonstrated

using the dispersion of standard grating pair compressor. Grating compressors are

common to most amplified ultrashort pulse systems, making MIIPS accessible with

no additional components. The agreement between two separate measurements using

the separation and rotation of the gratings confirmed the accuracy of the technique.

Advantages and disadvantages of MIIPS, retrieval errors, and noise sensitivity were

discussed.

Immediate future work includes automating the translation and/or rotation stages

to allow faster acquisition and denser sampling. This will not only make the measure-

ment easier, but also improve the accuracy by allowing for smaller steps. In addition,

an automated system could be coupled to an energy diagnostic allowing shot-to-shot

fluctuations to be corrected for, further improving the measurement accuracy.

Additional work could include implementing other methods of applying phase.

One of the downsides to grating pairs is the large total dispersion they introduce.

This dispersion is not an issue when the gratings are already part of the system, but

if one wishes to measure a pulse independent of the amplifier system then gratings

are not appropriate. A device that applies a small amount of phase (both positive

and negative GDD) is necessary. One possibility is an etalon. The sinusoidal positive

and negative phase of an etalon can be scanned by rotation, and a Girres-Tournaeau

etalon has unity power reflection.
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CHAPTER IV

Filamentation Compression

4.1 Introduction

The ability to amplify ultrashort pulses is limited largely by gain narrowing [15]

in high gain amplifiers. Typical millijoule level chirped pulse amplification (CPA)

systems with gains on the order of 106 cannot produce pulses much shorter than about

30 fs. Spectral shaping prior to amplification [16] or inside the amplifier cavity [17]

can be used to reduce pulse durations to approximately 20 fs. Optical parametric

CPA (OPCPA) systems have been demonstrated for shorter pulse durations [18], but

these systems are significantly more complex than standard CPA systems.

A significant effort has been made during the last two decades to develop post-

amplification pulse compression techniques. Perhaps the simplest technique involves

passing high intensity pulses through a solid material leading to self-phase modulation

induced spectral broadening [19]. Subsequent phase correction allows the new spectral

components to be aligned, shortening the pulse. However, this technique suffers from

strong spatial inhomogeneities.

Confining the pulse helps reduce the spatial inhomogeneity problem. This is the

concept behind spectral broadening in gas-filled hollow core fibers. Hollow core fibers

with inner diameters of ∼200 µm provide weak confinement via grazing incidence

reflection. Fibers of approximately 1 m length filled with a (usually) noble gas can
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lead to significant spectral broadening. Subsequent phase compensation (e.g. using

chirped mirrors) can produce pulses shorter than 10 fs [20]. The downside to hollow

core fibers is their limited energy capacity (∼1 mJ), coupling sensitivity, and need for

additional dispersion compensation.

A similar approach has been demonstrated in which self-focusing provides the

confinement in a gas free of any external structure [21]. A pulse with power above

the critical power of the surrounding gas will be focused by Kerr-lensing. As the pulse

intensity climbs it begins to ionize the gas, forming a plasma. The shape of the plasma

leads to a phenomena known as plasma defocusing. At some point the Kerr-lensing

and plasma defocusing will balance each other causing the beam to propagate without

diffracting, in the form of a “filament.” Eventually energy loss and redistribution

destroy the balance and cause the beam to defocus. During this process, SPM and

other nonlinear effects produce additional bandwidth just as in a gas-filled fiber. The

advantages of the filamentation technique are the lack of coupling sensitivity, the

greater simplicity of the apparatus, and the fact that under the correct conditions

the pulse will compensate its own phase, requiring no additional dispersion [22].

It should be noted that the processes involved in filamentation are not completely

agreed upon. It has recently been demonstrated that simulations utilizing negative

higher order nonlinear terms (χ(5), χ(6), ...) are able to better describe filamentation

even without considering plasma effects [23].

One of the downsides to filamentation compression is instability. If the power is

sufficiently far above the critical power of the gas then the focusing beam can break

into multiple filaments, where the power of each filament is above the critical power.

It has been shown that this instability can be reduced by introducing astigmatism in

the focusing beam [24] (e.g. by rotating the focusing lens). An alternative method

for reducing beam instability is to eliminate SPM prior to the point where focusing

and defocusing are balanced.
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284 Torr Ar

vacuum pump needle valve, Ar

< 1 Torr

2.2 mJ, w = 4.5 mm

f = 3 m

pinhole
b iris

160 Torr Ar

f = 3 m

2.2 mJ, w = 4.5 mm

a iris

Figure 4.1: Comparative filamentation geometries. (a) Standard static pressure fila-
mentation arrangement and (b) pinhole-initiated filamentation arrange-
ment.

4.2 Experiment

Fig. 4.1 shows a diagram of the filamentation experiment performed on the λ3

laser system. 2.2 mJ pulses with a 33 nm FWHM bandwidth centered at 800 nm

were focused by a 6 m ROC dielectric mirror into a 1 in diameter tube. An adjustable

iris was placed before the focusing lens allowing minor adjustment of the f /#. The

collimated beam size at the mirror was 4.5 mm (Gaussian beam radius). The mirror

was placed as close as possible to the output of the compressor to avoid SPM in the

air. The windows on the filamentation tube were 500 µm thick fused silica. Thicker

windows would have introduced undesirable SPM. Thinner windows would have had

poorer wavefront quality and may not have withheld the pressure difference during

evacuation of the tube. Two different filamentation configurations were employed: (i)

the tube was filled with a static gas (Fig. 4.1a) and (ii) a 700 µm diameter pinhole

separated two sections of the tube, before and after focus, maintaining a constant

pressure of gas on the far side while the focusing side was kept evacuated (Fig. 4.1b).

The separation of the gratings in the compressor of the laser system was adjusted in

all cases to produce the broadest output spectrum.
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4.3 Pressure gradient

The goal of the pinhole-initiated filament is to enter the filamentation regime

immediately, avoiding spatial distortion caused by gradual self-focusing. Therefore, it

is desirable to have a steep pressure gradient at the pinhole, where the pulse instantly

transitions from linear focusing in vacuum to the balanced filamentation regime. To

determine if this was the case, the steepness of the pressure gradient at the pinhole

was investigated by numerically solving the Navier-Stokes equations (Eqs. (4.1) and

(4.2)) using a finite element analysis package.

ρu · ∇u = ∇ · [−ρI+ η(∇u+ (∇u)T] (4.1)

∇ · u = 0 (4.2)

In Eqs. (4.1) and (4.2) ρ is the density, u is the velocity, I is the identity matrix,

and η is the viscosity. Fig. 4.2 shows the solution of the Navier-Stokes equations

for a cylindrically symmetrical geometry with a 1 in diameter tube and a 1 mm

long, 1 mm diameter pinhole. The pressures at the tube boundaries (500 mm in

either direction) were fixed to 0 Torr and 300 Torr. The pressure, integrated over

the 500 µm radius of the pinhole is shown in Fig. 4.3. The pressure drops from 90%

to 10% in approximately 800 µm. Given that the Rayleigh range of the focusing

system is ∼11 cm, an 800 µm rise distance for the pressure can be considered nearly

instantaneous.

4.4 Spectrum

In all cases, as the pressure in the tube is increased the spectral broadening also

increases. However, the maximum pressure is limited by spatial and spectral stability.
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Figure 4.2: Finite element analysis of the pressure gradient across the pinhole.
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Figure 4.3: Pressure across filament pinhole. Values were integrated over the entire
500µm radius of the pinhole.
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When the pressure is taken too high the beam begins to form multiple, unstable

filaments and the spectrum, especially in the wings, also becomes unstable.

Spectra were acquired with the aid of an integrating sphere. The integrating

sphere allowed the spectrum of the entire beam to be sampled, even when the beam

was highly unstable and contained multiple filaments. The beam was collected by the

integrating sphere immediately after exiting the output window of the filamentation

tube. A miniature spectrometer (Ocean Optics USB4000) with a spectral range of

500 nm to 1100 nm was placed at the output port of the integrating sphere to record

the spectrum. The integration time of the spectrometer was 30 ms (15 pulses).

In the case of filamentation with static gas pressure, the maximum pressure of ar-

gon for a stable filament was 160 Torr. The output spectrum for this case is shown by

the blue curve in Fig. 4.4b. For the case of pinhole-initiated filamentation, the max-

imum pressure of argon for a stable filament was 284 Torr. This led to much greater

spectral broadening (Fig. 4.4a). Two other configurations were tested to determine

the effect of the pinhole (Table 4.1). To provide a more direct comparison of the two

scenarios, the pressure without a gradient was increased to 284 Torr (Table 4.1 row 4).

The spectrum is shown by the red curve in Fig. 4.4b. The spectrum has stronger short

wavelength components, but does not extend as far into the longer wavelengths, nor

is it as smooth on either side as the pinhole-initiated filament spectrum. In addition,

the spectrum at 284 Torr without a gradient is very unstable.

When the system was operated with a pinhole and no gas (Table 4.1 row 2) the

energy throughput was only 1.8 mJ. This suggests that a significant amount of energy

was distributed well outside of the main focal spot and blocked by the pinhole. To

make sure that this energy loss was not responsible for the stability at 284 Torr, the

pinhole-free system was operated at 284 Torr with a reduced input energy of 1.7 mJ.

However, the filament was still unstable, demonstrating that the pinhole does not

stabilize the system by reducing the energy.
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Pressure Output
Pinhole [Torr] Energy [mJ] Stable Spectrum Profile

yes 284 1.7 yes Fig. 4.4a Fig. 4.6a
yes 0 1.8 yes - -
no 160 2.1 yes Fig. 4.4b (blue) -
no 284 2.1 no Fig. 4.4b (red) Fig. 4.6b

Table 4.1: Filamentation configurations.
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Figure 4.4: Output filamentation spectra. (a) Pinhole-initiated spectrum at 284 Torr.
(b) Spectra with no pinhole at 160 Torr (blue) and 284 Torr (red).

The spectra are replotted in Fig. 4.5a along with their transform limited temporal

profiles (Fig. 4.5b). Despite having 20% less energy, the pinhole-initiated spectrum

supports a transform-limited pulse with 30% higher peak power than the pinhole-free

spectrum.

The spatial profiles of the three configurations are compared in Fig. 4.6. The

beam following filamentation was attenuated by near normal reflection from a glass

wedge and scattered by a white card. The card was then imaged by a CCD coupled

with a standard zoom lens. While the pinhole-free filament at 160 Torr produced a

stable beam, its profile was not very symmetric (Fig. 4.6a). Increasing the pinhole-

free pressure to 284 Torr produced a much lower divergence beam (Fig. 4.6b), but it

was highly unstable. The pinhole-initiated filament at 284 Torr produced the most

symmetric beam profile (Fig. 4.6a). The improvement over the stable, pinhole-free

filament at 160 Torr is partly due to the spatial filtering performed by the pinhole.

34



600 700 800 900
0

10

20

30

40

50

60

Wavelength [nm]

E
ne

rg
y 

[µ
J/

nm
]

−20 0 20
0

50

100

150

200

250

Time [fs]
P

ow
er

 [G
W

]

Figure 4.5: Spectra (a) and transform-limited pulse shapes (b) for the original spec-
trum (blue), pinhole-free at 160 Torr (green) and pinhole-initiated at
284 Torr (red).

a b c

Figure 4.6: Spatial profiles of the beam for (a) pinhole-free at 160 Torr (stable), (b)
pinhole-free at 284 Torr (unstable) and (c) pinhole-initiated at 284 Torr
(stable).
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4.5 Conclusion and future work

The use of a pressure differential was demonstrated to improve the spectrum and

beam quality during filamentation compression. By eliminating self-focusing in the

converging beam, spatial and spectral stability were maintained at a higher gas pres-

sure. The higher gas pressure led to greater spectral broadening and therefore a

potentially shorter pulse duration. A throughput of 1.7 mJ with a spectrum support-

ing 6.4 fs (FWHM) transform-limited pulses was achieved.

Measurement and correction of the spectral phase must still be performed before

the pulses can be used. In addition, high order phase distortions were present in the

original spectrum when this work was performed. A programmable dispersive device

(Fastlite Dazzler) has been added to the λ3 system subsequent to these measure-

ments. Correction and control of the original spectral phase is expected to improve

the spectral power and phase of the filamentation output.

In addition, the λ3 system is being upgraded with the addition of a second ampli-

fication stage, which is expected to increase the compressed pulse energy to > 10 mJ.

Filamentation compression has never been demonstrated at such a high pulse energy,

but the pinhole-initiated concept may make it possible. If spectral broadening similar

to that shown here can be achieved using 10 mJ pulses the final pulse power may

exceed 1 TW.
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CHAPTER V

Focus Optimization

5.1 Introduction

The fundamental component for achieving relativistic intensities in the λ3 system

is the high-NA off-axis paraboloid. Unfortunately, the production of high quality

paraboloids is difficult. Off-axis paraboloids can have significant wavefront aberra-

tions compared to conventional spherical optics. Well-corrected, transmissive aspheric

optics and microscope objectives are available, but these components are highly dis-

persive and incapable of handling millijoule, ultrashort pulses. In addition, when

trying to achieve diffraction limited focusing, wavefront aberrations in the system

due to spherical lenses, thermal lensing, and self-phase modulation can become sig-

nificant.

The problem of correcting wavefront distortions is well known in the field of as-

tronomy. The Earth’s atmosphere causes a significant amount of wavefront distortion,

limiting the resolution of terrestrial telescopes. To correct for the aberrations of the

atmosphere, high resolution telescopes utilize adaptive optics that reshape the incom-

ing wavefront [25]. Using reference beams to measure the distortions caused by the

atmosphere, adaptive optics can compensate for these distortions and produce much

higher quality images.
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rigid substrate

flexible mirror

actuators

Figure 5.1: Diagram of a deformable mirror employing a solid, flexible surface and
piezoelectric style actuators.

5.1.1 Deformable mirrors

One of the most common types of adaptive optics is the deformable mirror. By

connecting a very thin mirror to an array of programmable actuators, the mirror

surface can be deliberately and predictably deformed (Fig. 5.1). Various types of

actuators can be used depending on the application requirements (e.g. range, speed,

linearity, and hysteresis). Piezoelectrics are a popular choice for deformable mirror

actuation due to their relatively low cost and fast response time.

5.1.2 Deformable mirrors in laser experiments

The laser community has adopted deformable mirrors for multiple uses, including

the optimization of high-NA, high-intensity focusing. One of the challenges of imple-

menting a DM is determining the appropriate mirror shape. Multiple approaches have

been developed including direct measurement of the wavefront [26], optimization of

second harmonic generation (SHG) in a nonlinear crystal [27] and in situ optimization

of SHG at a surface [28].

Each technique has advantages and disadvantages. Direct wavefront measurement

is fast but requires an expensive wavefront measurement device (e.g. Shack-Hartmann

or shearing interferometer). Optimization of SHG in a crystal uses relatively simple

components but requires a slow, iterative algorithm. Optimization of in situ surface

SHG is free of aberrations introduced by additional optics, but requires very sensitive

detection and a slow algorithm.
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One disadvantage common to all three of these techniques is the need to signifi-

cantly attenuate the pulse energy to avoid damage to optics. Attenuation not only

introduces wavefront distortions from the attenuation optics (usually reflective or ab-

sorptive neutral density filters), but also modifies the wavefront distortions due to

thermal and nonlinear effects. A second, shared disadvantage is that the plane of

optimization is fixed by the alignment of the optics. The Rayleigh range of a high-

NA focus is on the order of a few microns. Proper alignment of diagnostics for an

optimization routine must match this sensitivity. Also, prior to wavefront correction,

the proper position of the focus may not be clear.

An alternative to the methods above is to optimize SHG in a rarefied gas. The

second order polarization of a plasma can be written as [29]

P(2ω) = χ

[

(E · ∇)E+
iω

c
E×B

]

+
eE(∇ · E)
8πmω2

(5.1)

where χ = nee
3/4m2ω4. For a neutral plasma ∇ · (εpE) = 0 with εp = 1− ω2

p/ω
2

and Eq. (5.1) can be rewritten as

P(2ω) = χ

[

1

2
∇E2 + 2

1

εp
E(E · ∇ lnne)

]

(5.2)

The gradient term has zero curl and therefore cannot radiate. The second term de-

scribes a nonlinear polarization proportional to the electron density gradient, ∇ lnne,

and the square of the fundamental field. An electron density gradient is produced by

the ponderomotive force:

f = − e2

4mω2
∇⊥E

2 (5.3)
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HR

M
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Figure 5.2: Focusing and collection setup for optimization of the deformable mirror
via SHG in helium. DM: deformable mirror; OAP1: 2 in diameter, f /1.4,
gold-coated off-axis paraboloid; HR: 800 nm high-reflector; OAP2: 1 in
diameter, f /1, aluminum-coated off-axis paraboloid; M: flat, silver mirror;
B390: 3 mm thick Hoya B390 filter; L: lens; PD: silicon photodiode.

Second harmonic generation in air by this mechanism has been demonstrated

using 270 fs pulses at an intensity of 1015 W/cm2 [30].

5.2 Experiment

The λ3 system contains a 2 in diameter, silver coated deformable mirror (Xinetics)

between the compressor and the paraboloid (Fig. 5.2). The mirror is controlled by

an array of 49 piezolectric actuators. After being expanded to 9 mm (FWHM) by a

two-mirror telescope, the beam reflects off the DM at an incidence angle of 8◦. The

beam then propagates approximately 2 m to a vacuum chamber, entering through an

anti-reflection coated, 3 mm thick fused silica window. The beam is focused by a 2 in

diameter, off-axis paraboloidal mirror with an angle of 60◦ and focal length of 7 cm.

Initial angular alignment of the paraboloid is performed by maximizing the bright-

ness of a visible spark in ambient air. The pulse energy is reduced using filters and

adjustment of the voltage on the final Pockels cell of the system until the spark is
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barely visible by eye. The mirror is then aligned to produce the brightest spark.

Next, the pulse is further attenuated and the spark is again optimized. This process

is repeated until no more optimization can be made.

The chamber is then filled with rarefied helium. A UV aluminum coated, 1 in

diameter, f /1 off-axis paraboloidal mirror recollimates the focused beam. A dielectric

mirror designed for broadband reflection at 800 nm is used before the collimating

paraboloid to eliminate the fundamental light. Without this mirror, a significant

second harmonic signal is generated on the surface of the aluminum paraboloid. An

insignificant amount of surface second harmonic from the gold, focusing paraboloid

was measured by temporarily placing the mirror before the focus.

The collimated beam is directed out of the chamber by a flat silver mirror through

a 3 mm thick uncoated MgF2 window. The beam is then focused by a 7.5 cm focal

length doublet onto a small area silicon photodiode (Thorlabs DET210). A 3 mm

thick B390 glass filter is placed before the recollimating paraboloid to further atten-

uate the fundamental light.

The impulse response of the photodiode is approximately 5 ns when terminated

into 50 Ω. The photodiode signal is amplified and integrated by a triggerable boxcar

device (Stanford Research Systems SR200). The boxcar output is digitized by a PC-

based data acquisition device (National Instruments 6024E). The digitized signal is

used as a figure of merit for a genetic algorithm that optimizes the DM figure [27].

The genetic algorithm iteratively searches for the optimum mirror figure by form-

ing “generations” of figures from the best performing figures of the previous gen-

eration. In the runs described here, the algorithm produced 100 figures for each

generation from the 10 best figures of the previous generation. Portions of each of the

ten “parents” are randomly selected to construct each new figure. A small probability

(usually 15% here) of random mutation of each new figure is imposed to supply new

“genetic material” to each generation. The algorithm starts from a random figure,
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Figure 5.3: Second harmonic power versus incident power. Solid line shows the closest
square law match.

a fixed figure (e.g. a constant voltage on all actuators), or a previously optimized

figure.

The system was operated with a helium pressure of 4 Torr, which produced a

photodiode signal of ∼200 mV when the signal was optimized. Fig. 5.4a shows the

genetic improvement chart for a run starting with a random mirror figure. The

improvement saturates after approximately 15 generations. Images of the focus were

taken for two different DM figures: zero voltage on all actuators (Fig. 5.4b) and an

optimized figure (Fig. 5.4c). The corrected focus has a higher peak intensity, better

circularity and a larger fraction of the energy in the main spot. In order to verify that

the signal was indeed second harmonic, energy scaling data was taken and shown to

fit well to a square power law (Fig. 5.3).

5.3 Helium wavefront distortion

One of the purposes of performing high-intensity laser-plasma experiments in vac-

uum is to avoid self-phase modulation and other distortions due to the presence of
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Figure 5.4: (a) Strength of the 2nd harmonic signal for the best child of each genera-
tion starting from a random mirror configuration. Inset: low power focus
images for a flat mirror (b) and corrected mirror (c).

material (air) in the focusing beam. It is important then to determine what effect

the presence of helium during the optimization process has. The amount of self-

phase modulation can be determined by a simple B-integral calculation, where the

B-integral is defined as

B(z) =
2π

λ

z
∫

z0

n2I(z)dz (5.4)

In Eq. (5.4), n2 is the nonlinear index of the medium and I(z) is the spatially

dependent intensity. Assume a Gaussian beam of the form

I(z, t, r) = I(z = 0, t = 0, r = 0)
w2

0

w2(z)
e−2r2/w2(z)e−4 ln 2t2/τ2 (5.5)

where w0 is the 1/e2 focal spot size and τ is the FWHM pulse duration. For

tightly focused beams, the Gaussian approximation is not strictly valid. However,

experimentally, the focal intensity of the λ3 system is overestimated by Gaussian

beam calculations, so the B-integral estimated here represents an upper bound. Since
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we are only interested in the maximum amount of accumulated phase, which occurs

on axis and at the peak of the pulse, we can reduce Eq. (5.5) to

I(z) = I(z, t = 0, r = 0) = I(z = 0)
w2

0

w2(z)
= I0

w2
0

w2(z)
(5.6)

The beam size of a Gaussian is

w2(z) = w2
0(1 + z2/z2R) (5.7)

where zR is the Rayleigh range. Inserting Eq. (5.7) into Eq. (5.6) gives

I(z) = I0
1

1 + z2/z2R
(5.8)

The B-integral of Eq. (5.4) can now be performed:

B(z) =
2π

λ

z
∫

z0

n2I0
1

1 + z2/z2R
dz (5.9)

=
2π

λ
n2I0zR

[

tan−1 z/z2R
∣

∣

z

z=0
(5.10)

=
2π

λ
n2I0zR[tan

−1 z/z2R − tan−1 z0/z
2
R] (5.11)

Since we are interested in the phase accumulated from the focusing optic at z0 �

zR to the focus at z = 0 we have
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B(z) ≈ 2π

λ
n2I0zR

[

0−
(

−π

2

)]

=
π2

λ
n2I0zR (5.12)

Using the Gaussian beam relations I0 = 4E/(w2
0τ
√
π3 ln 2) and f/# = (πw0)/2λ

gives

B(z) =
4E

λ2τ
n2

√

π3/ ln 2 (5.13)

The nonlinear index of helium at atmospheric pressure is 3.5× 10−21 cm2/W [31].

The index scales linearly with pressure, dropping by a factor of 190 at 4 Torr. Using

parameters from the λ3 system of E = 3 mJ, λ = 800 nm and τ = 30 fs gives a net

B-integral of 7.7× 10−3 rad or approximately λ/800. Therefore, the nonlinear phase

of helium at this pressure is negligible.

Another contributing factor is the linear plasma dispersion. Using the plasma

dispersion relation:

k2
pc

2 = ω2 − ω2
p (5.14)

the linear phase is given by

φ = kpz =
z

c

√

ω2 − ω2
p (5.15)

Subtracting the phase of vacuum gives
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φ = kpz − kz =
z

c

[√

ω2 − ω2
p − ω

]

(5.16)

For the case of low pressure helium ωp � ω and Eq. (5.16) can be approximated

as

φ ≈ z

c

[

ω − 1

2
ωp − ω

]

=
zωp

2c
(5.17)

Helium at 4 Torr has a density of (2.5 × 1019 cm−3)(4 Torr)/(760 Torr) = 1.3 ×

1017 cm−3. Therefore, fully ionized helium at 4 Torr has an electron density of ne =

2.6 × 1017 cm3. This corresponds to a plasma frequency of 290 rad/ps. Double

ionization of helium does not become significant until an intensity of∼ 3×1015 W/cm2

[32]. For a 3 mJ, 30 fs pulse focused by an f /1.4 optic this intensity is achieved

approximately 130 m before the focus. Using Eq. (5.17), the accumulated phase due

to the helium plasma would be zωp

2c
= (130 m)(290 rad/ps)

2(300 m/ps)
= 0.63 rad, or approximately

one tenth of a wave. In fact, the fraction of doubly ionized He is more than an order

of magnitude lower than that of singly ionized He even at 1016 W/cm2. Therefore,

the majority of the propagation 130 um prior to focus occurs in a singly ionized He

plasma with a plasma frequency of only 21 rad/ps leading to an accumulated phase

of 0.44 rad, or ∼ λ/14. This is smaller than the distortion one would expect from

strongly attenuating filters and SPM.

The influence of SPM, plasma dispersion and other distorting effects (e.g. ion-

ization blue-shifting) can be qualified by measuring their effect on the fundamental

spectrum. To do this, the beam was collected by a paraboloidal mirror as in Fig. 5.2

without the high-reflector and directed out of the chamber. An integrating sphere

was used to capture the entire beam, and a miniature spectrometer (Ocean Optics
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Figure 5.5: Fundamental spectra after focusing in various pressures of helium.

USB4000) measured the spectra at the output port of the sphere. The chamber was

pumped down to 80 mTorr using only a rotary vane pump. The pump was then closed

off and helium was leaked into the system, stopping to record a spectrum at several

pressures up to 20 Torr. Each spectrum was integrated for 30 ms (15 laser shots) and

averaged over 10 acquisitions, leading to a signal error of ∼2% due to uncertainty in

the number of pulses collected.

As seen in Fig. 5.5, the spectra for all helium pressures < 10 Torr were indistin-

guishable within the stability of the spectrum. However, at 20 Torr a clear blue-shift

in the range from 755 nm to 765 nm is visible. Since the optimization algorithm was

performed at a pressure of only 4 Torr, and no detectable change in the spectrum

occurs below 10 Torr, it is safe to say that the phase distortions introduced by the

presence of helium are negligible.

5.4 Conclusion

In conclusion, a new method of optimizing the deformable mirror figure for high-

intensity, high-NA experiments was presented. The primary advantage of the method
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is that it can be run with no attenuation, thereby correcting for all nonlinear and

thermal aberrations present during normal operation and avoiding the aberrations

introduced by attenuating filters. In addition, the optimization is not constrained to

a fixed plane or dependent on fine alignment of diagnostics. This focal optimization

method was successfully used in the high-harmonic experiment described in Chapter

VI of this thesis.

In principle, this technique should be applicable to even higher intensity systems

by further reducing the gas pressure. In such systems, the benefits of a full-power

optimization method may be even greater, owing to the additional difficulty in at-

tenuating beams in higher energy systems. For example, in multi-Joule systems,

amplifiers must often be disabled to achieve sufficient attenuation.

This technique may also be implemented without the need for breaking vacuum

between optimization and the experiment. The limited number of optics required to

collect the second harmonic could be manipulated remotely. By maintaining vacuum,

alignment errors caused by shifting of the optics during pressure changes (especially

of the very sensitive paraboloidal mirrors) would be eliminated.

48



CHAPTER VI

High-order Harmonics

6.1 Introduction

The generation of ever shorter wavelengths of light is driven by a host of applica-

tions. In imaging, shorter wavelengths lead to higher spatial resolution. In studies of

ultrafast dynamics, shorter wavelengths can be used to synthesize shorter duration

pulses and achieve higher temporal resolution. In other applications, shorter wave-

lengths are of interest for their difference in absorption. For example, the so-called

“water window” from 2.3 nm to 4.4 nm is a spectral region where the differential

absorption between water and carbon allows high-contrast imaging of biological sys-

tems.

The main advantages of laser-based harmonic sources are their size and their

ability to generate sub-femtosecond pulses. Synchrotrons are capable of producing

very bright, short pulses, but require large facilities. Small, bright, continuum sources

are available, but incapable of producing ultrashort pulses. Laser-based sources are

a compromise. While not yet nearly as bright as synchrotrons, laser-based harmonic

sources are compact and capable of producing sub-femtosecond pulses.

The generation of high-harmonics using gas targets is a maturing technology and

has already been applied to many unique measurements. Unfortunately, the fun-

damental physics of harmonic generation in gases limits the driving intensity, and
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therefore the conversion efficiency. By moving to solid targets and employing different

harmonic generation mechanisms, the intensity limit can be eliminated. High-order

harmonics from high-intensity laser interactions with solid targets have the potential

to produce coherent, high-brightness UV, and even x-ray, sources at higher conversion

efficiencies than gas harmonics [33].

Here, the use of the term “harmonics” is mainly one of convenience and tradition.

When discussing the generation of higher (or lower) energy radiation by perturbative

processes in materials, the generation of harmonics is clearly understood. Multiple

photons of the original wavelength (two for SHG, three for THG, etc.) are consumed

to produce single photons of the new wavelength. These processes have a clear quan-

tum mechanical nature.

Harmonic generation from solids is a very different process. While the fundamen-

tal laws of conservation of energy and momentum hold, the generation of harmonics

cannot be regarded as simple whole number addition of fundamental photons. The

harmonic nature of radiation from such experiments is due rather to the periodic

nature of the driving radiation. The physical processes involved are repeated peri-

odically during each cycle of the driving radiation. Fourier theory demands that a

periodic signal must be composed of harmonics of the fundamental period. When

the same processes occur only once, due to the use of single-cycle driving pulses for

example, the generated radiation will not be found in the form of harmonics.

6.2 Harmonic generation mechanisms

Two dominant harmonic generation mechanisms in laser-solid interactions have

been proposed and studied: coherent wake emission (CWE) [34] and the relativistic

oscillating surface described by the oscillating mirror model (OMM) [35, 36]. Which

of the two mechanisms is responsible for harmonic emission depends on the laser

intensity and the plasma density scale-length. Roughly, CWE dominates for lower
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laser intensities (a0 < 1) and shorter scale-lengths (L < λ/2), while OMM dominates

for higher laser intensities (a0 > 1) and longer scale-lengths (L > λ/2). Here, a0

is the so-called normalized vector potential describing the intensity of laser-plasma

interactions:

a0 =

√

2eλ2I

πm2
ec

5
(6.1)

= 0.86× 10−9I1/2 [W/cm2] (6.2)

6.2.1 Coherent wake emission

In coherent wake emission, electrons driven into the overdense plasma form plasma

wakes that match the momentum of harmonics leaving the plasma and can therefore

coherently amplify optical waves [34]. The limiting frequency in CWE is the plasma

frequency of the target, because the turning point of an optical wave in a plasma,

where the phase matching occurs, is near the critical density. Unfortunately, because

the plasma does not have a step-like density profile, each harmonic is generated at

different depth (deeper for higher orders), leading to a positive chirp of the spectrum.

It is believed that CWE requires a short scale-length so that the electrons causing

the wake can be driven deeply enough into the plasma [37].

6.2.2 Oscillating mirror model

In the oscillating mirror model, harmonic emission is a result of Doppler upshifting

of the incident radiation reflected off the oscillating critical surface. The periodic mo-

tion of the critical surface, driven by the incident radiation itself, alternately stretches

and compresses the light which is reflected off the surface. If the motion of the surface

is described by x(t) = d1 sin(ωt) + d2 sin(2ωt) then the phase shift of the reflected

wave is
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φ(t) = 2
x(t) cos θ

λ
= 2

cos θ

λ
(d1 sin(ωt) + d2 sin(2ωt) (6.3)

where θ is the angle of incidence. The component at 2ω is due to the v×B force,

which, being the product of two components at ω, occurs at twice the frequency. The

field of the reflected wave is

Er(t) ∝ eiωteiφ(t) (6.4)

Since eiωt and eiφ(t) are both periodic with frequency ω, the spectrum of the

reflected field must be composed of harmonics of ω. The Fourier transform of Eq. (6.4)

is

Er(Ω) ∝ F
{

eiωtei2d1 cos θ sinωt/λei2d2 cos θ sin 2ωt/λ
}

(6.5)

= δ(Ω− ω) ∗ F
{

ei2d1 cos θ sinωt/λ
}

∗
{

ei2d2 cos θ sin 2ωt/λ
}

(6.6)

= δ(Ω− ω) ∗
∞
∑

p=−∞

Jp

(

2d1 cos θ

λ

)

δ(Ω− pω) ∗
∞
∑

q=−∞

Jq

(

2d2 cos θ

λ

)

δ(Ω− 2qω)

(6.7)

=
∞
∑

p=−∞

∞
∑

q=−∞

Jp

(

2d1 cos θ

λ

)

Jq

(

2d2 cos θ

λ

)

δ(Ω− (p+ 2q + 1)ω) (6.8)

If d1 = 0 (i.e. no fundamental motion of the critical surface) then the first Bessel

function is nonzero only for p = 0 and only odd harmonics, (2q+1)ω, are allowed. If

d2 = 0 (i.e. no v×B motion of the critical surface) then the second Bessel function is

nonzero only for q = 0 but all harmonics (p+1)ω are still allowed. Eq. (6.8) describes

the dependence of harmonic order on the frequency of the critical surface motion. It

52



does not however describe the correct amplitudes of the harmonics. The reason is

that Eqs. (6.3) and (6.4) are not self-consistent. Since the total field at the surface

is the sum of the incident and reflected fields, the reflected field also plays a role in

the motion of the surface. More rigorous theories account for this effect and predict

more accurate conversion efficiencies [36, 38].

Selection rules can be derived for the existence of even- and odd-order harmonics

as a function of incident polarization [38]. Table 6.1 shows these selection rules for

linear, oblique incidence.

Driving Polarization Harmonic Polarization
Odd Even

P P P
S S P

Table 6.1: Selection rules for the polarization of OMM harmonics for given driving
polarizations.

The reason for the selection rules is that there are two oscillation components of

the critical surface: a fundamental component due to the driving electric field and

a second harmonic component due to the v × B force. There are also two forms of

radiation: the upshifted, reflected light (which will have the same polarization as the

incident light) and the light radiated by the surface itself (which will be P-polarized).

For P-polarized driving, the surface oscillates at both ω and 2ω, radiating both odd

and even P-polarized light. The reflected light (P-polarized) is modulated at both ω

and 2ω, and therefore contains both odd and even harmonics as well. For S-polarized

driving, the surface oscillates only at 2ω, radiating even order P-polarized light. The

reflected light (S-polarized) is modulated at 2ω, and therefore contains only odd

harmonics (ω + 2ω, ω + 4ω, ...).
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6.2.3 Scale-length dependence

One of the most important characterizations of the target interface is its density

profile at the time of the arrival of the main pulse. In practice, the density profile

could be a very complex function falling from solid density in the unaffected region

of the plasma to vacuum. In most theoretical and numerical models of laser-solid

interactions, however, the plasma is assumed to have a simple profile (e.g. linear or

exponential) with a characteristic scale-length, often defined as

L = n

(

dn

dz

)2

(6.9)

For an exponential profile, n = n0exp(αz), this gives the convenient result:

L = n0e
αz(n0αe

αz)−1 = α−1 (6.10)

It is generally agreed that a sharp plasma profile (usually < λ/2) is necessary

for efficient generation of harmonics with good spatial coherence. In experiments

with long-pulse lasers (on the order of 1 ps or longer) it has been shown that the

ponderomotive pressure of the laser is able to steepen an initially long scale-length

to the necessary scale-length for efficient high-harmonic production [39]. However,

femtosecond scale pulses are too short to cause considerable profile steepening during

their duration. Therefore, the scale-length must be kept short prior to the arrival of

the pulse. This requires sufficiently low prepulse and ASE energy and intensity in the

leading edge of the pulse.

Whether there is an optimum scale length is still a matter of debate. Most exper-

imental data have demonstrated monotonically decreasing conversion efficiency with
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scale length [40]. However, some simulations have predicted that an optimal scale

length exists [37]. In addition, 2D PIC simulations have shown an optimum target

density of n = a0ncr/2 [41].

6.2.4 Calculating scale-length

Physically measuring a sub-micron scale-length is a daunting task. Visible wave-

length probing does not have the resolution to distinguish the desired features [42,43].

X-ray wavelengths can be used, but the spatial coherence of x-ray sources is not high

enough to support better resolution than visible probes. In the literature, scale-

lengths are generally simulated from hydrodynamic codes (e.g. HYADES [44,45]) or

calculated based on self-similar plasma expansion at the ion sound speed:

cs =

√

γZ ∗ kTe

mi

(6.11)

where the ionization number, Z∗, and the electron temperature, Te, are estimated

from other measurements or calculations.

6.3 λ3 and high-harmonics

The λ3 regime was described in the introduction of the thesis. Some of the unique

properties associated with high-NA focusing and their possible effects on harmonic

generation are worth mentioning here.

6.3.1 Longitudinal field component

In a tightly focused beam (w0 ≈ λ) strong longitudinal electric fields are present

at focus [46]. The first order correction to the Gaussian beam formulation states

that the longitudinal component is proportional to the square of the divergence angle
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(Ez ∝ θ2) [47, 48]. However, the first-order correction works accurately only up to a

few degrees. Higher-order correction terms can be added, but the number of necessary

terms becomes asymptotically large in the limit of tightly focused beams (w0 ≈ λ) and

different formulations become necessary [49]. If this longitudinal field is sufficiently

strong then it will directly drive electrons in the same direction as the v × B force.

In contrast to the v × B force, a longitudinal field will oscillate at the fundamental

frequency, generating all orders of P-polarized harmonics. P-polarized driving already

leads to P-polarized harmonics of all orders, however, the odd harmonics due to S-

polarized driving are S-polarized. A longitudinal field would therefore contribute

additional harmonics to S-polarized driving.

6.3.2 Large divergence

Because the divergence angle of an f /1 optic is ∼ 45◦ the divergence angle of

the harmonics might also be large. The simplest method of estimating the harmonic

divergence is to assume that the source size is equal to the focal size of the driving

beam and that the wavefront is flat. Gaussian beam theory then gives a divergence

angle of

θn =
λn

πw0

(6.12)

In the case of harmonics, λn = λ/n and Eq. (6.12) can be written as

θn =
λ/n

πw0

=
θ

n
(6.13)

where θ is the fundamental divergence angle. This type of divergence has not

in fact been observed. One possible explanation is that the ponderomotive force of
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the driving pulse dents the target surface, modifying the divergence properties of the

harmonics [50, 51].

6.3.3 Spatial gradients

In many simulations the incident electromagnetic field is taken to be planar or

nearly planar, simplifying the interaction. In many experimental cases this approxi-

mation is valid given that the focal spot size is many times larger than the wavelength

(w0 � λ). However, for a tightly focused beam (w0 ≈ λ) the plane wave approxima-

tion no longer holds and the significant, transverse, spatial gradients can play a role in

the interaction. In extreme cases, the spatial gradients have led to the production of

attosecond pulses that are emitted in completely different directions during different

cycles of the driving pulse [52].

6.4 Experiment

The experiment was performed on the λ3 laser system at the University of Michi-

gan, described in the first chapter of this thesis. A diagram of the experiment is

shown in Fig. 6.1.

Wavefront corrected, 50 fs, 2 mJ pulses are focused onto a bulk target by an

f /1.4 off-axis paraboloid (OAP). The measured focal spot size was 1.7 µm (FWMH),

producing an intensity of 1.1×1018 W/cm2. For most of the shots, the target material

was polished fused silica, however other types of glass and metals were also used. The

P-polarized beam was incident on the target at 35◦. This angle was chosen mostly

due to constraints set by the necessary proximity and angle of the grating. The

target was held by a motorized, three-axis translation stage which allowed the target

to be positioned at focus and raster scanned to expose fresh surface for each shot.

A shot separation of 100 µm was found to be sufficient for reliable operation. The

specular beam was collected by an iridium coated, 1200 grooves/mm, spherical grating
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Figure 6.1: Diagram of the high-harmonic experiment. OAP: gold-coated, f/1.4, off-
axis paraboloidal mirror; FS: fused silica target; DG: iridium-coated,
1200 grooves/mm diffraction grating; AF: 650 nm aluminum filter; MCP:
phosphor-backed microchannel plate; L: zoom lens.

(Princeton Instruments 02-120H-03) which dispersed the spectrum across the surface

of a microchannel plate (MCP). The incidence angle on the grating was either 5◦ or

6◦ depending on which spectral range was being observed. The specifications of the

MCP are shown in Table 6.2.

Active diameter 75 mm
Enhancement coating none
Maximum operating voltage 2.4 kV
Number of plates 2 (chevron configuration)
Phosphor P20
Maximum phosphor voltage 5 kV

Table 6.2: Specifications of the MCP (Photonis 75/32/25/8 I 40:1).

The MCP was sufficiently insensitive to the fundamental light that no filter was

necessary. However, a 650 nm thick aluminum filter was often used to block lower

order harmonics and reduce the noise due to charged particles. A standard machine

vision CCD camera and zoom lens were used to record the signal from the phosphor.

Ray-tracing (ZEMAX) and CAD software were used to determine the geometry of
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all the components. Tolerances on the position and rotation of the grating were

sufficiently large to allow it to be installed by hand with no need for remote manipu-

lation during experiments. The chamber was evacuated by a turbo-molecular pump

to pressures below 10−5 mbar in order to allow safe operation of the MCP.

While the λ3 system is capable of operating at 500 Hz, the geometry of the vac-

uum chamber required the use of a target manipulator that could not be operated at

high repetition rates. However, with an appropriate vacuum chamber no fundamental

obstacles prevent the use of a target manipulator compatible with multi-kilohertz rep-

etition rates. Many other solid target experiments have been successfully conducted

on the λ3 system at its full 500 Hz operation rate.

6.4.1 MCP gain

The MCP was operated primarily between 0.9 kV and 1.4 kV, however, the only

published gain value was 4×106 at 2 kV. A mercury lamp was used to illuminate the

MCP at various voltages. The lamp was placed outside of the chamber, visible to the

MCP through a 3 mm thick fused silica window. Images of the MCP phosphor were

acquired and integrated for several different values of MCP voltage (Table 6.3). The

phosphor voltage was held at 5 kV for every acquisition. At the higher voltage values

the MCP current was measured with a nanoammeter. The MCP has a dark current

of approximately 20–30 µA in this voltage range. However, the nanoammeter was

capable of offsetting the dark current and measuring only the difference in current

as the mercury lamp was switched on and off. The differential currents for the three

highest voltages used (1.4, 1.5, and 1.6 kV) were 0.1, 0.4, and 1.2 µA, respectively.

The current values were used for two purposes. The first was to approximate the

gain of the MCP. A manufacturer specified gain was only available at only one point:

4× 106 at 2 kV. In order to determine the gain at lower voltage where the MCP was

operated, a power scaling was used [53]:
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Figure 6.2: Power law fit to the measured MCP currents at 1.4, 1.5, and 1.6 kV during
illumination by a mercury lamp.

G = (V/Vc)
m (6.14)

Vc represents the voltage at which electron amplification and loss are balanced,

resulting in no net gain. From Eq. (6.14), the MCP current is simply

I = I0G = I0(V/Vc)
m (6.15)

where I0 is the rate of charge production (a current) produced at the front of the

MCP (via photoionization by the mercury lamp or by harmonics). Fig. 6.2 shows

a fit using the three measured current values and extrapolation of the gain to lower

voltages.

The values were fit to a function of the form I ′ = (V ′/V ′

c )
m where the primed

values are dimensionless: I = I ′(1 kV), V = V ′(1 µA), and I0/V
m
c = (1/V ′

c )
m. The
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fitting parameters were m = 17.5 and Vc′ = 1.58. Extrapolating to 2 kV gives a

current of 59 µA. Because the gain is known to be 4× 106 at 2 kV, the current at the

front of the MCP can be calculated from Eq. (6.15) as

I0 = I/G = 59 µA/4× 106 = 15 pA (6.16)

Since the illumination was unchanged for all of the data shown in Table 6.3, the

initial current, I0 = 15 pA, is also unchanged. A response value for the combination of

MCP and camera can be therefore be calculated. The total charge that passed through

the MCP for each acquisition was calculated by multiplying the initial current by the

integration time of the camera (Table 6.3, column 6). The integration time had to be

increased as the voltage was lowered to maintain a measurable signal. The number

of counts from each image was then obtained and normalized by the setting of the

camera gain (Table 6.3, column 5). Dividing these two values gives a response in

counts/pC (Table 6.3, column 7).

Voltage Phosphor Integration Camera Charge Response
[kV] Voltage [kV] Time [ms] Gain Counts [pC] [counts/pC]

1.6 5 5.48 3.29 2.8× 108 0.11 2.6× 109

1.5 5 5.48 3.29 1.5× 108 0.11 1.4× 109

1.4 5 32.4 3.29 3.3× 108 0.65 5.2× 108

1.3 5 93 3.29 3.3× 108 1.9 1.8× 109

1.2 5 305 3.29 2.9× 108 6.1 4.8× 107

1.1 5 950 3.29 2.1× 108 19 1.1× 107

1.0 5 2460 3.29 1.1× 108 49 2.3× 106

0.9 5 11700 3.29 1.3× 108 230 5.5× 105

Table 6.3: MCP calibration data. The number of counts is scaled to the number that
would be expected for a gain of 1. The charge is found by multiplying the
known current (15 pA) by the integration time.
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6.4.2 Grating efficiency

The grating used for this experiment (Princeton Instruments 02-120H-03, Table

4) was removed from a commercial EUV monochromator (Acton VM-502).

Dimensions 40 mm × 45 mm
Radius of curvature 224.1 mm
Groove density 1200 mm−1

Groove type Unblazed holographic
Modulation depth Very low (44 nm, estimate)
Coating Iridium
Intended wavelength range 100 nm – 200 nm

Table 6.4: Diffraction grating specifications.

Information on the diffraction efficiency (both relative and absolute) of the grating

was unavailable despite requests to the manufacturer. However, it was known that the

modulation depth was very low, which is typical for EUV gratings. It was also known

that the maximum diffraction efficiency occurred at approximately 150 nm. The

diffraction efficiency of very low modulation depth gratings is accurately modeled by

simple scalar diffraction theory [54], with the maximum diffraction efficiency occuring

at

λB = 3.4h (6.17)

where h is the peak-to-valley modulation depth.

Scalar diffraction theory calculates the efficiency by simply Fourier transforming

the transfer function of the grating (i.e. Fraunhoffer diffraction) [55]. The transfer

function of a sinusoidal phase grating is

T = exp

[

i
h

2
sin(2πNx)

]

(6.18)
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Fourier transforming yields

F{T} =
∞
∑

m=−∞

Jm(
2πh

λ
)δ(fx −mN) (6.19)

The sum in Eq. (6.19) is over the various diffraction orders represented by the

same variable, m, in the grating equation sin γ − sin θ = mλN . The delta function

is simply an expression of the grating equation, where the transform variable fx is

related to the diffraction angle. The efficiency is found by squaring Eq. (6.19):

[

∞
∑

m=−∞

Jm

(

2πh

λ

)

δ(fx − qN)

]2

=
∞
∑

m=−∞

J2
m

(

2πh

λ

)

δ2(fx −mN) (6.20)

Pulling the square inside the sum of Eq. (6.20) is allowed because the delta func-

tions prevent the orders from overlapping. In the case of a finite grating, the delta

functions are replaced by other functions (sinc functions for a square grating), but as

long as the orders are sufficiently spaced (which they are in most practical situations)

Eq. (6.20) is still valid.

Using the optimum diffraction wavelength of 150 nm in Eq. (6.17) gives a peak-

to-valley modulation depth of h = 150 nm/3.4 = 44 nm. Fig. 6.3 shows a plot of

Eq. (6.20) for this modulation depth.

The most striking feature of the theoretical diffraction efficiency is the presence of

nulls at 72 nm, 39 nm, 27 nm, and so on. The efficiency drop around 72 nm is clearly

visible in the experimental spectrum (Fig. 6.4) between harmonics 10 and 11. The fact

that the 11th harmonic should fall almost exactly on the null (800 nm/11 = 72.7 nm)

but is still visible can be attributed to several factors: (i) the broad bandwidth

of the laser and the central wavelength being closer to 790 nm than 800 nm; (ii)

imperfections in the ruling of the grating, which effectively smooth the efficiency
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Figure 6.3: Theoretical first-order (m = 1) absolute diffraction efficiency for a mod-
ulation depth of 44 nm.

curve and eliminate the nulls; (iii) the wavelength of maximum diffraction efficiency

is not exactly known. The third peak in diffraction efficiency around 32 nm is also

visible in the experimental spectrum.

6.5 Analysis

An example of spectral data acquired during this experiment is shown in Fig. 6.4.

Harmonics up to the 18th are detectable. Wavelengths below the 11th harmonic

are blocked by an aluminum filter. The grating efficiency, described earlier, limits

detection above the 18th harmonic. A small amount of emission with no observable

harmonic structure is visible in the image and lineout from approximately 28 nm to

35 nm.

Lower order spectra were also taken (Fig. 6.5) by using the grating at a 5◦ incidence

angle rather than 6◦ and removing the aluminum filter. The divergence of these

harmonics is much larger than those of the higher orders in Fig. 6.4. The reason

for this is that the lower order harmonic data was acquired first, before an optimum
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Figure 6.4: Raw phosphor image (a) and lineout (b) showing harmonics 11 through
18.

target alignment procedure was determined. The relationship between target position

and divergence angle is discussed later in this chapter.

6.5.1 Conversion efficiency

The MCP response values from Table 6.3 were used to determine the number of

photoelectrons produced by each harmonic from the experimental images. Table 6.5

shows the number of counts for each harmonic based on the image in Fig. 6.4. Ta-

Wavelength [nm]
60 80 100 120

1514 13 12 11 10 9 8 7

Harmonic Order

Figure 6.5: Lower order harmonics measured with no aluminum filter.
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ble 6.5 also lists the quantum efficiency (QE) of the MCP, the reflectivity of iridium,

the diffraction efficiency of the grating, and the transmission of the aluminum filter.

Dividing by all of these values yields a total number of photons produced by the

source for each harmonic (6.6). The wavelengths, photon energies, total energy, and

efficiency for each harmonic (based on an input energy of 2 mJ) are also shown in

Table 6.6.

Harmonic Photoelectron MCP Iridium Diffraction 650 nm Al
Order Count QE Reflectivity Efficiency Transmission

13 2.9× 104 0.1 0.20 0.048 0.22
14 5.9× 104 0.1 0.21 0.094 0.23
15 5.2× 104 0.1 0.21 0.12 0.24
16 3.4× 104 0.1 0.20 0.12 0.22
17 1.4× 104 0.1 0.17 0.089 0.21
18 4.3× 103 0.1 0.15 0.045 0.21

Table 6.5: Photoelectron count detection parameters for harmonics 14–18.

Harmonic Wavelength Photon Total
Order [nm] Energy [eV] Photons Energy [pJ] Efficiency

13 61 20 1.4× 108 440 2.2× 10−7

14 57 22 1.3× 108 450 2.2× 10−7

15 53 23 8.5× 107 320 1.6× 10−7

16 50 25 6.4× 107 250 1.2× 10−7

17 47 26 4.3× 107 180 9.1× 10−8

18 44 28 3.0× 107 130 6.8× 10−8

Table 6.6: Calculations for the efficiency of each harmonic. An input energy of 2 mJ
was used to calculate the efficiencies.

The conversion efficiencies were fit to a power law (Fig. 6.6). This scaling is

consistent with that reported by Norreys [56] using high-energy picoseconds pulses,

where the exponent of the fit ranged from −5.5 at Iλ2 = 5 × 1017 Wµm2 cm−2 to

−3.4 at Iλ2 = 1.0 × 1019 Wµm2 cm−2. The absolute conversion efficiency is also

comparable, with Norreys reporting efficiencies between 10−6 and 10−7 above the

14th harmonic. It should be noted that those results assumed isotropic emission,

whereas the harmonics described in this thesis are emitted as beams.
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Figure 6.6: Conversion efficiencies for harmonics 14 through 18 (circles) and power
law fit (solid line).

Solid target harmonic PIC simulations performed by Gibbon [57] predicted an

efficiency scaling of

η = 9× 10−5

(

Iλ2

1018 Wµm2 cm−2

)2
(m

10

)−5

(6.21)

The dependence on harmonic order (m−5) is similar to that in Fig. 6.6, however,

the efficiencies reported by Gibbon are approximately an order of magnitude higher.

Simulations using the 2D PIC code OSIRIS [58] were performed for the λ3 experimen-

tal parameters with a scale-length of λ/4. The harmonic power is shown in Fig. 6.7.

The efficiency of harmonics 13 through 19 scale as n−5.3, simliar to the experiment,

though the absolute efficiency is approximately 40 times higher.

Absolute efficiency can be affected by a number of factors. Target surface rough-

ness and wavefront distortion of the driving beam can cause harmonic energy to be

scattered outside the collection angle. Fundamental energy can also be scattered out-

side of the main focus by wavefront errors and roughness of the paraboloid. Finally,

the calibration of the MCP is imprecise and its gain could be lower than specified,

especially due to age.

The total conversion efficiency into all measurable harmonics passed by the alu-
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Figure 6.7: Harmonic power from 2D PIC simulations for the λ3 parameters with a
scale-length of λ/4.
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minum filter was 8.9× 10−7. This value is comparable to those reported from recent

gas harmonic experiments [59,60]. However, solid target experiments should be scal-

able to much higher intensities. State-of-the-art CPA systems operating at kilohertz

repetition rates can now produce sub-30 fs pulses with 10 mJ - 20 mJ of energy.

Focusing such pulses to the diffraction limit would yield intensities of > 1019 W/cm2.

At such intensities, the harmonic conversion efficiency should be significantly higher.

At 1020 W/cm2, conversion efficiencies above 10−5 per harmonic have been estimated

around 17 nm [61].

6.5.2 Intensity scaling

Harmonic spectra were recorded with different driving pulse energies to determine

the scaling of efficiency with intensity. Fig. 6.8 shows the integrated harmonic energy

of harmonics 12 through 18 at laser intensities from 5×1017 W/cm2 to 1×1018 W/cm2.

Also plotted are the experimentally observed I0.4 scaling law of CWE harmonics from

Quere et al. at Iλ2 ≈ 1016 Wµm2 cm−2 [34] and the I2 scaling law observed in PIC

simulations by Gibbon for Iλ2 ≈ 1018 Wµm2 cm2 [57]. Shot-to-shot variations in

harmonic energy were substantial, most likely due to timing jitter that occurs when

the Pockels cell voltage is changed, but the data suggests a slightly sublinear intensity

scaling, closer to that of the experimental CWE harmonics.

The best fit power law scaling to the data is I0.64. By increasing the intensity of a

λ3 style system to 1019 W/cm2, this scaling predicts a combined conversion efficiency

of 4× 10−6. In fact, above 1018 W/cm2, as relativistic effects begin to play a greater

role than CWE, the scaling law should move toward that of I2. Further increasing the

intensity to 1020 W/cm2, not inconceivable in a λ3 system, could potentially provide

another 100-fold increase in conversion efficiency.
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Figure 6.8: Harmonic intensity scaling. Blue dots: integrated energy of harmonics 12
through 18 at laser intensities from 5× 1017 W/cm2 to 1× 1018 W/cm2.
Green line: I0.4 scaling experimentally observed by Quere for Iλ2 ≈
1016 Wµm2cm−2 [34]. Red line: I2 scaling predicted in PIC simulations
by Gibbon for Iλ2 ≈ 1018 Wµm2 cm−1 [57]. Blue line: I0.64 best fit.

6.5.3 Divergence

Because the diffraction grating was used off-normal, astigmatism separated the

vertical and horizontal foci. To achieve the highest spectral resolution, the MCP was

positioned at the horizontal focus. This left the MCP sufficiently far from the vertical

focus to be in the realm of geometric optics for that dimension. That is, the vertical

dimension on the MCP maps directly to angles from the source.

When poor focusing conditions generated highly divergent harmonics, the bound-

aries of the diffraction grating became visible in the acquired images. This provided

a simple method of calibrating the spatial to angular mapping. The boundaries are

somewhat visible in the spectrum of Fig. 6.5 and more pronounced in a later figure

(Fig. 6.13). The height of the grating was 40 mm, so that at a distance of 14.6 cm

the full vertical collection angle of the grating was 15.3◦.

Table 6.12 lists the divergence data for harmonics 13 through 16, those with

sufficient signal to accurately measure their divergence. Taking the anomalously

small divergence of the 13th harmonic to be a result of measurement uncertainty, all

of the measurable orders had similar divergence angles, with a slight trend toward
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higher divergence for higher harmonics.

Harmonic Divergence Full grating
order [pixels] divergence [pixels] Divergence [deg]

12 9± 1 43± 2 3.3± 0.5
13 8± 1 45± 2 2.8± 0.5
14 9± 1 39± 2 3.6± 0.4
15 8± 1 35± 2 3.6± 0.6
16 8± 1 28± 2 4.5± 0.7

Table 6.7: Harmonic Divergence

The increasing divergence angles are inconsistent with the simple argument made

in the introduction that the harmonics would diverge with angles θn = θ/n. Denting

of the target could be responsible for modifying the divergence angles, especially with

the strong spatial gradients in the λ3 regime. But, a simpler explanation is that the

shorter wavelength, higher order harmonics are more sensitive to surface roughness

and imhomogeneities of the plasma, leading to poorer wavefront quality and higher

divergence. Higher resolution data from a larger number of harmonics is necessary to

further understand this phenomenon.

2D PIC simulations of the interaction reproduce the measured divergence angle.

A 2D spatial Fourier transform of the reflected field is shown in Fig. 6.9. The angular

profile of the 15th harmonic is shown in Fig. 6.10. The FWHM divergence angle is

3.6◦, which agrees very well with the measured divergence.

6.5.4 Polarization dependence

The effect of driving polarization was also measured. Zero-order mica waveplates

were used to generate S- and circular polarization. Mica is used because single sheets

of acceptable quality can be obtained by peeling from large crystals. When dealing

with high-power and ultrashort pulses, thin mica sheets are preferable to traditional

zero-order waveplates of much greater thickness.

The harmonic behavior of S-polarized driving light was tested by using a half-
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Figure 6.9: 2D spatial Fourier transform of the reflected beam from 2D PIC simula-
tion.
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Figure 6.10: Angular profile of the 15th harmonic from 2D PIC simulation.
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wave mica waveplate. The waveplate was placed after the deformable mirror before

the beam entered the vacuum chamber. A reference shot was taken by rotating the

waveplate such that one of the axes was aligned with the horizontal polarization of

the beam, leaving the polarization unaffected. The waveplate was then rotated 45◦

to produce vertical polarization (S-polarization on target). The data from both shots

is shown in Fig. 6.11. The reference shot (upper figures) shows the same harmonic

structure as shots taken with no waveplate (see Fig. 6.4). The UV emission of the S-

polarized shot (lower figures) is approximately 30 times weaker and shows no harmonic

structure.

As described in the introduction, in the oscillating mirror model, S-polarization is

capable of generating odd-harmonic orders via the relativistic v×B force. In principle

the v×B force should also be capable of driving electron bunches into the target and

generating harmonics via coherent wake emission. However, at intensities where the

v ×B force is sufficient to generate significant harmonics, relativistic harmonics are

expected to dominate those generated by CWE. The intensity scaling data presented

above suggests that the intensity is below this level, so the lack of harmonics from

S-polarized driving is not unexpected.

In the event that S-polarized driving produces differently polarized harmonics

(which it does in the oscillating mirror model), the loss of signal cannot be attributed

to the detection system. As discussed earlier, the efficiency of the grating is well

approximated by scalar diffraction, and the near normal incidence eliminates any

other polarization effects that might occur on the grating. The only other detection

components, the aluminum filter and MCP, are used at normal incidence and therefore

are polarization independent.

The behavior of circular polarization was also investigated, again using a mica

waveplate. The waveplate was placed after the deformable mirror, before the beam

entered the vacuum chamber. As before, a reference shot was taken (Fig. 6.12b) with
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Figure 6.11: Comparison of P- and S-polarization driving. S-polarization (lower fig-
ures) produces weak UV emission with no resolvable harmonic structure
compared to P-polarization (upper figures).
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Figure 6.12: Harmonic spectra for left and right circular polarization (a and c, hand-
edness unknown) compared to P-polarization (b).

one of the axes aligned with the horizontal beam polarization. The waveplate was

then rotated 45◦ one direction (Fig. 6.12a) and 45◦ the other direction (Fig. 6.12c).

The exact handedness of the circular polarizations was unknown.

The behavior of circular polarization is quite distinct from that of both linear

polarizations. Rather than eliminating the harmonic signal, circular polarization

changed the angular distribution of the spectrum. The central ∼ 5◦ of the emis-

sion was eliminated for either handedness. However, for one circular orientation the

spectrum below 2.5◦ was retained, while for the other the spectrum above 2.5◦ was re-

tained. The loss of the central spectrum greatly reduced the signal, but there was no

change in the nature of the orders present. As mentioned above for S-polarization, the

difference in signal cannot be attributed to polarization dependence of the detection

system.

The reason for this behavior is unknown. The selection rules of the oscillating

mirror model predict both S- and P-polarized harmonics of all orders for circularly

polarized driving. The polarization of the harmonics generated here is unknown, but

the spectra in Figs. 6.12a, and 6.12c clearly show all orders. The peculiar angular

emission is likely due to the high-NA focusing. As discussed earlier, the polarization

at focus, even for linear polarization prior to the paraboloid, is complex. When

circular polarization is incident on the paraboloid, the asymmetry of reflections and

the differing phase shift for S- and P-polarization from the metallic surface may lead
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to a very complicated polarization at focus.

6.5.5 Target position

The most significant experimental difficulty in working with high-NA optics is the

extremely short depth of field. The Rayleigh range of a Gaussian beam is given by

the formula

zR =
πw2

0

λ
(6.22)

For f /1.4 focusing the Gaussian beam formulation is still approximately correct.

The Rayleigh range for the f /1.4 focus in these experiments is approximately 2 µm.

This places a significant demand on the mechanics involved in finding and maintaining

the proper position of the target, especially when operating at the speeds necessary

for high repetition rates. The best method of finding the proper target position has

proven to be optimization of some relevant signal (e.g. x-rays or 2nd harmonic) or

direct optimization of the signal of interest, in this case harmonics. Fig. 6.13 shows

several high-harmonic spectra taken at various positions of the target.

While the harmonics remain detectable as much as 10 µm from the optimum

position, a shift of only 2 µm leads to a noticeable drop in intensity. In addition, as

the target is moved, the shape and divergence of the harmonics gradually changes.

The harmonics at positions 6 and 10 µm in the figure completely fill the acceptance

angle of the grating.

In many laser experiments the intensity of an interaction can be changed by work-

ing at a different point along the beam focus. In these experiments, the intensity

certainly drops as the target is moved off of focus. However, the near field profile of

a high-NA beam does not behave smoothly off of focus. The drop in signal must be
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Figure 6.13: High-harmonic spectra taken as the target is moved through focus. The
zero position was chosen post-acquisition to correspond to the best spec-
trum.

due in large part to the drop in intensity, but the distortion of the harmonic shape

probably has more to do with the shape of the driving beam off of focus.

6.5.6 Harmonic generation from metallic targets

The use of glass targets is motivated primarily by their higher damage thresholds

(several tens of J/cm2 for ns pulses). Higher damage thresholds reduce the formation

of a pre-plasma by the nanosecond ASE and picosecond pedestal prior to the arrival

of the main pulse. However, the desire to perform experiments on targets of varying

density leads to the consideration of metals and lower density dielectrics as targets.

Hydrocarbon targets have been used to demonstrate the effect of electron density

on the harmonic order of coherent wake emission [37]. It has been proposed that

lower density targets can provide better conditions for harmonic generation via the

relativistic oscillating mirror effect [41]. Little attention however has been paid to

metallic targets, owing to their high absorption (relative to dielectrics) and weakly

bound electrons, leading to lower damage thresholds and higher pulse contrast re-
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Figure 6.14: UV spectrum using a bulk aluminum target. The dark band is due to a
null in diffraction efficiency at 72 nm.

quirements.

The success of harmonic generation in the work here from glass targets with

no contrast enhancement mechanisms prompted further experiments employing alu-

minum targets. Aluminum was chosen for its ready availability, flatness, similar

atomic number to silicon, and similar density to glass.

Two experiments using aluminum were conducted. In the first, a bulk, unpro-

tected aluminum target was used. A typical spectrum is shown in Fig. 6.14. No

harmonic lines are distinguishable (compare to Fig. 6.5). The single narrow feature

is a strong atomic emission line at 106 nm.

The divergence of the emission from the bulk aluminum target cannot be compared

to that of the harmonics shown in Fig. 6.4. The experimental run that produced

Fig. 6.14 was performed before the sensitivity of the divergence to target position was

understood. A second experiment was performed to correct this problem. By coating

half of a fused silica wedge with approximately 1 µm of aluminum, the harmonics

from glass and aluminum could be directly compared without adjusting the target

position or even breaking vacuum.

An identical experimental arrangement was employed to that used for glass. Align-

ment and optimization were first performed on the uncoated half of the target. Har-

monics in the aluminum filter transmission window (> 11th order) were generated

(Fig. 6.15a). The target was then translated only a few hundred microns to expose
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Figure 6.15: Harmonic spectra from glass (a) and aluminum (b).

the aluminum half (Fig. 6.15b).

The strength of the harmonics from the glass half of the target was not as great

as it was from the bulk SiO2 target. This may have been due to the poorer surface

quality of the wedge compared to that of the bulk glass target used during the other

runs. In any case, the 17th harmonic is still detectable and all of the harmonics still

have a divergence of ∼ 3◦. In contrast, the UV emission from the aluminum coated

half of the target is much weaker and not in the form of harmonics. Nor is it emitted as

a low-divergence beam. The simplest explanation is that the lower damage threshold

of aluminum leads to a longer scale length, and perhaps a more turbulent plasma.

The UV emission in Fig. 22b is simply continuum emission from a hot plasma. The

difference between glass and aluminum results is consistent with earlier experiments

comparing the 2nd harmonic and fast electrons emitted from glass and aluminum

under similar conditions [62].

6.5.7 Scale-length

No tools were available at the time of this experiment to quantitatively determine

the role of scale-length in high-harmonic generation. As a simple test, the final

Pockels cell of the λ3 system was defeated, allowing additional ASE and prepulses

from prior roundtrips in the regenerative amplifier to arrive on target. The nearest

prepulse occurs at 34 ns (the others occur at integer multiples of this interval, the

round trip time of the amplifier) and contains approximately 10−4 times the energy
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of the main pulse when not attenuated by the Pockels cell. Despite this significant

addition of ASE and prepulse energy, no change was observed in the generation of

high-harmonics.

In previous experiments, the scale-length was shown to have a significant effect on

the production of the 2nd and 3rd harmonic as well as the flux and spectrum of fast

electron beams [62]. In those experiments, an intentional prepulse was introduced

along a second beam line. The pulse was focused to a spot size of approximately

30 µm to generate a smooth plasma compared to the 1 µm focus of the main beam.

The prepulse intensity was approximately 1014 W/cm2 and its arrival prior to the

main pulse was adjustable from 0 ps to > 160 ps. Fig. 6.16 shows images of the 2nd

harmonic for various prepulse delays.

One-dimensional HYADES simulations predicted a temperature of ∼20 eV and

effective charge state of Z∗ ≈ 3. Assuming that the ionized plasma travels out from

the target at the ion sound velocity:

cs =

√

Z∗kTe

mi

(6.23)

= 9.79× 105

√

Z∗Te

µ
(6.24)

The plasma scale length can be estimated as

L = csτ (6.25)

where τ is the prepulse delay. For the prepulse parameters listed above, the ion

sound speed is 1.4× 106 cm/s = 1.4× 102 µm/ps.

The optimum prepulse delay of 16 ps produces a second harmonic beam with a
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3 ps, L = 0.05λ 9 ps, L = 0.16λ

16 ps, L = 0.28λ 23 ps, L = 0.40λ

Figure 6.16: Second harmonic beam profile for six different prepulse delays and pre-
dicted scale lengths. All images are displayed on the same scale.
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peak intensity approximately 10 times stronger than that for the case of no prepulse.

The increase in 2nd and 3rd harmonic suggests that the intrinsic scale-length produced

by the main beam contrast is shorter than optimum for the production of harmonics.

This is encouraging, and suggests an approach for increasing the conversion efficiency

of high-order harmonics.

6.5.8 Harmonic origin

The exact origin of the harmonics (CWE or relativistic) is unclear. The primary

means of distinguishing between the two is by observation of a CWE harmonic cutoff

at the maximum plasma frequency [37]. Fully ionized fused silica has an electron

density of ne = 6.6 × 1023 cm−3. This corresponds to a plasma frequency of ωpe =

(4πe2ne/me)
(1/2) = 4.6 × 1016 rad/fs or λpe = 2πcωpe = 41 nm, approximately the

20th harmonic of 800 nm. Unfortunately, this occurs very near a null in the efficiency

of the diffraction grating (see Fig. 13), making it difficult to determine if the loss of

harmonics at that wavelength is gradual or abrupt.

The scaling of conversion efficiency with intensity (Fig 6.6) suggests that the

dominant mechanism is CWE. However, the scaling matched a higher power law

exponent than that observed at lower intensities where CWE is expected to dom-

inate. This is evidence that the dominant mechanism is beginning to transition

from CWE to relativistic at the highest intensities employed in these experiments

(1018 W/cm2). Finally, the spectra acquired using different driving polarizations, es-

pecially S-polarization, suggest that relativistic mirror effects are not dominant. At

truly relativistic intensities the v × B force should generate measurable odd-order

harmonics.
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6.5.9 Isolated attosecond pulse generation

The polarization dependence leads one to consider the possibility of generating iso-

lated attosecond pulses using long (∼20–30 fs) driving pulses using polarization tech-

niques demonstrated in gas harmonics. By combining two delayed, counter-rotating

circular polarizations a long pulse with only a few—even a single—linearly polar-

ized cycle can be created [63]. Because circular polarization does not generate gas

harmonics, the few cycles of linear polarization are the only sources.

The same type of experiment may be possible with solid target harmonics and

has been studied numerically [64]. While circular polarization did not eliminate the

harmonic signal in the experiments presented here, it did change its angular emission.

By collecting only the central 5◦ of the emission, the signal generated by one cycle

of linear polarization (hopefully in the form of a sub-femtosecond pulse) could be

separated from the signal generated by the other cycles of circular polarization.

It must be noted that in theory all driving polarizations generate harmonics by

the relativistic moving mirror at sufficiently high intensity. Whether the behavior of

circular polarization in these experiments is a result of the tight focusing and whether

it continues to hold at higher intensities remains to be seen.

6.6 Conclusions and future work

In conclusion, harmonics of the 800 nm λ3 system up to the 18th order have

been observed from solid targets using millijoule pulses for the first time. An energy

conversion efficiency of 2 × 10−7 per harmonic was measured. This is comparable

to current efficiencies achieved in gas harmonic experiments, but has the advantage

of being scalable to much higher intensities, where the conversion efficiency should

also increase. Despite using a high-NA focus to achieve the necessary intensity, the

harmonics were emitted with much lower divergences of approximately 3◦ (full angle),
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making the capture and manipulation of the harmonic beam considerably easier. The

low energy of the λ3 system and the lack of contrast enhancement mechanisms make

this harmonic source very accessible and operable at high repetition rates. Similar

systems operating at multi-kilohertz repetition rates should be capable of producing

comparable harmonics with higher brightness.

Energy scaling data was presented and the effect of polarization was described.

Modification of the angular emission for circular polarization suggests that a polar-

ization gating technique like that used in gas harmonics may also be used on solid

targets to generate single sub-femtosecond pulses using long ( > 20 fs) driving pulses.

Further investigation, possibly in conjunction with 3D PIC simulations, may yield an

explanation for the unique angular character of the emission generated by circularly

polarized driving pulses.

Multiple approaches are available for attempting to increase the conversion ef-

ficiency. Related experiments on lower order harmonics and fast electrons provide

evidence that the intrinsic scale length in these experiments was shorter than op-

timal. By introducing an intentional prepulse to control the scale length, better

conditions for harmonic generation may be found. In addition, relatively straightfor-

ward improvements to the laser system should be capable of decreasing the focus size

and pulse duration, leading to a higher intensity and higher conversion efficiency.

Additional work remains to be done in investigating the role of target material

in the high-harmonic generation process. Experiments on aluminum have shown a

significant decrease in the strength and spatial quality of harmonics compared to those

from glass. Whether this is due simply to the lower damage threshold of metals or to

important differences in the ionization process is not yet certain. A wealth of other

data stands to be collected now that such easy access to solid target harmonics is

available. This includes polarization and temporal characterization of the harmonics,

experiments on lower density targets, correlation to fast electrons, and experiments
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and simulations involving different numerical aperture focusing geometries.
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CHAPTER VII

Conclusion

The use of high-NA focusing optics and adaptive optics has opened up the regime

of relativistic laser-plasma interactions to a much broader class of systems. The work

described here has helped to advance this technology through a consistent set of

experiments. First, a high contrast amplifier was designed and built to reduce the

problem of amplified spontaneous emission. Second, a method of extending filamen-

tation compression to higher energies through the use of differential pumping was

investigated. This method may allow the generation of few-cycle TW pulses, increas-

ing the achievable intensity with high-repetition rate systems. Third, an adaptation of

the MIIPS ultrashort pulse measurement technique was proposed and demonstrated.

By using the compressor gratings already found in most CPA systems the complexity

and cost of implementing ultrashort pulse measurements were reduced. Fourth, a new

technique of optimizing the configuration of a deformable mirror for high-intensity

focusing was implemented. By operating at full power and employing no additional

optics, this technique provides a simpler, more accurate method of correcting wave-

front aberrations to achieve the highest possible intensities. Finally, the previously

mentioned work led to the first demonstration of high repetition rate, high-harmonic

generation from solid targets. Harmonics up to the 18th order were generated with

conversion efficiencies similar to gas harmonics.
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Several approaches to increasing the harmonic yield are available and should lead

to construction of a high brightness source of coherent EUV/XUV harmonics and

sub-femtosecond pulses.

First among these is improving the temporal duration of the driving pulse. The

grating based MIIPS technique revealed significant errors in the spectral phase of the

λ3 system. As much correction as possible was made using the degrees of freedom

available in the compressor (separation and rotation), however, higher-order correc-

tions are necessary to achieve a transform-limited pulse duration. The system now

employs an acousto-optic programmable dispersive device (Fastlite Dazzler). In the

near future the remaining spectral phase errors should be corrected, producing sub-

30 fs compressed pulses. This should increase the focused intensity by approximately

a factor of two, leading to improved harmonic conversion efficiency.

Secondly, a smaller focus should be achievable by modification of the post-compression

telescope and the use of a faster paraboloid. The system currently uses an underfilled

f /1.4 paraboloid. By further expanding the beam the focal size can be reduced, in-

creasing the intensity. Also, a faster paraboloid will in principle produce a smaller

focus. Off-axis paraboloids at least as fast as f /0.8 are available. These paraboloids

have been tested on the system in the past with limited success. However, the new,

simpler method of focus optimization may help in implementing higher-NA optics.

Finally, state-of-the-art amplifiers are capable of delivering much higher pulse

energies at kilohertz repetition rates. The λ3 system is currently being upgraded to

produce as much as 15 mJ per pulse at 500 Hz. All else being equal, the focused

intensity should exceed 1019 W/cm2, a significant increase beyond what was used in

the experiments discussed here. With these developments it is expected that high

repetition rate solid target harmonics will soon supplant gas harmonic sources for

many applications.
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APPENDIX A

Wavelet Analysis of SPIDER Traces

The following is work that was presented at the 2009 Conference on Lasers and

Electro-optics (CLEO). It has not been given a full chapter for two reasons: it is not

closely tied to the rest of the work and its impact on the field is less significant.

Fringe analysis is an important tool in many optical techniques including linear

spectral dispersion measurements, spectral interferometry for direct electric field re-

construction (SPIDER) [65], and other techniques involving spectral interferometry.

In general, fringe analysis involves extracting high frequency fringe data from a low

frequency spectral envelope, where the fringe frequency must be sufficiently high to

prevent overlap between the high and low frequencies. However, spectral interfero-

grams are often interpolated from a semi-evenly-spaced wavelength domain (e.g. from

a spectrometer) to an evenly-spaced frequency domain before analysis to match func-

tional forms best represented in an evenly-spaced frequency domain and to allow the

use of fast Fourier transforms. When the fringe density is near the Nyquist sampling

criteria this interpolation introduces significant errors.

One method of analyzing the fringe data of a SPIDER trace is by wavelet analysis

[66]. A set of pulses with varying carrier frequencies is compared against the fringes.

The instantaneous frequency at each point in the interferogram is taken to be the
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Figure A.1: Left: subset of a high fringe density spectral interferogram in the evenly-
spaced wavelength domain of a spectrometer. Middle: fringe density
from non-interpolated interferogram. Right: fringe density from inter-
ferogram interpolated to an evenly-spaced frequency domain via cubic
spline interpolation.

carrier frequency of that wavelet which best matched the fringes at that point.

Fig. A.1 shows the difference between extracting fringe density in the native do-

main of the interferogram and in an evenly-spaced frequency domain. The interfero-

gram (left) contains high density fringes, pushing the limits of the Nyquist sampling

critera as evidenced by the loss of fringe contrast. Wavelet based analysis of the

interferogram in its native pixel domain (middle) yields an accurate fringe density.

However, if the interferogram is interpolated to an evenly-spaced frequency domain

a significant amount of noise occurs in the fringe density analysis (right).

This noise is due to the fact that the interpolation cannot accurately reproduce

the high density fringes. The errors can be reduced by interpolating to a denser set

of points, however the necessary increase in density (typically greater than 4 times)

leads to slower algorithm performance. In addition, even if the interpolation density

is very high, direct analysis of the fringes is less susceptible to reduced fringe contrast

than interpolation.

The phase of the fringes can be extracted from the fringe density via integration or
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by unwrapping of the wavelet phase. Wavelet based analysis was chosen here because

the interpolation errors are easier to show on a wavelet projection map. Fourier

transform fringe analysis could also be performed in the non-interpolated domain. In

either case, the resulting fringe density or phase is a much smoother function than

the interferogram and can be interpolated to the desired domain with much higher

accuracy.

In the case of SPIDER, the uninterpolated fringe phase can be integrated to obtain

the spectral phase by recognizing that the differential element in the integral depends

on the domain in which the fringe phase is represented. In the frequency domain this

integral takes the form

φ(ω) =

ω
∫

ω0

[θ(Ω)− Ωτ ]dΩ (A.1)

where φ is the spectral phase, θ is the interferogram fringe phase, and τ is the delay in

the double pulse arm of the SPIDER. If the fringe phase is evaluated in evenly-spaced

wavelength for example, the integral would be

φ(ω) =

2πc/ω
∫

2πc/ω0

[

θ

(

2πc

λ

)

− 2πc

λ

]

dΩ

dλ
dλ (A.2)

where dΩ/dλ = −2πc/λ2. The interpolation can then be performed on the spectral

phase, an even smoother function. In fact, the integration can be performed in an

arbitrary domain, x, by replacing dΩ with (dΩ/dx)dx.

Interpolation of high density fringes in a spectral interferogram leads to errors

which can be avoided by performing fringe analysis in the original domain of the

data. The interpolation can then be performed later in the analysis on smoother
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data. In the case of SPIDER, a slight integral modification allows the calculation of

the spectral phase with no interpolation at all. Applications requiring high accuracy

fringe retrieval will benefit from the lack of errors introduced by interpolation.
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APPENDIX B

Grating-based MIIPS Algorithm

The following MATLAB code implements the grating-based MIIPS algorithm.

The algorithm accepts a set of spectra and vectors specifying the grating separation

and incidence angle for each spectra. The inherent group delay dispersion (GDD),

φ′′(ω), is calculated as described in Chapter III:

φ′′(ω) = −θ′′(ω) (B.1)

where θ′′(ω) is the applied GDD that produced the strongest signal at 2ω given by [12]

θ′′ = −G
N2λ3

πc2 cos3 β
(B.2)

sin γ − sin β = mλN (B.3)

Numerical integration of the GDD to obtain the group delay and of the group

delay to obtain the phase is performed as

94



φ′[n] =















φ′′, n = 0

φ′[n− 1]φ′′[n]dω[n]
dn

, n 6= 0

(B.4)

φ[n] =















φ′, n = 0

φ[n− 1] + φ′[n]dω[n]
dn

, n 6= 0

(B.5)

The factor dω[n]/dn in Eqs. (B.4) and (B.5) accounts for the uneven frequency

spacing of the spectral data. The code here assumes that the wavelengths of the

spectral data can be described by a polynomial:

λ[n] =
M
∑

m=0

amn
m (B.6)

where am is the set of polynomial coefficients. The wavelengths of most spectrometers

can be described by Eq. (B.6). The frequency step can then be calculated:

dω[n]

dn
=

dω

dλ

dλ[n]

dn
(B.7)

= − 2πc

λ[n]

M
∑

m=0

ammnm−1 (B.8)

% Inputs

% D.files : names of the files

% D.G : grating separations [um]

% D.gamma : incidence angles [deg]

% D.G0 : grating separation [um] at which to evaluate the phase

% D.gamma0 : incidence angle [deg] at which to evaluate the phase
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% D.a : wavelength coefficients

% Outputs

% D.M : spectra array

% D.lambda : wavelengths [um]

% D.phipp : group delay dispersion [fs]

% D.phip : group delay [fs]

% D.Y : ridge

% D.p : index of maximum ridge pixel

function D = MIIPS(D)

for m = 0:(numel(D.files) - 1)

[A, F, H] = importdata(D.files(m));

D.M(m + 1, :) = A.data(:, 2);

end

[D.Y, I] = max(D.M);

% The factor of two in front of the following wavelength

% coefficients is to move the calculation back up to the

% fundamental.

a = 2 * D.a;

lambda = polyval(a, 0:(size(D.M, 2) - 1)) / 1000;

dwdn = -2 * pi * 0.3 ./ lambda .^ 2 .* ...

polyval(((length(a) - 1):-1:1) .* a(1:(end - 1)), ...

0:(size(D.M, 2) - 1)) / 1000;
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% diffracted angle [deg]

theta = asind(sind(D.gamma) - lambda * D.N);

theta0 = asind(sind(D.gamma0) - lambda * D.N);

D.phipp = D.G(I) * D.N ^ 2 .* lambda .^ 3 ./ ...

(pi * 0.3 ^ 2 * cosd(theta(I)) .^ 3) - ...

D.G0 * D.N ^ 2 .* lambda .^ 3 ./ ...

(pi * 0.3 ^ 2 * cosd(theta0) .^ 3); % GDD [fs]

% Integrate to obtain the group delay.

D.phip = cumsum(D.phipp .* dwdn); % group delay [fs]

% Integrate to obtain the phase.

D.phi = cumsum(D.phip .* dwdn); % phase [rad]

D.lambda = lambda;

end
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