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ABSTRACT

Calculations of enstrophy and potential enstrophy changes are
carried out in wave number space. The processes of interest are the
interactions among waves, the intersactions between each of the waves
and the zonal flow, and the boundary fluxes. The framework usec in the
calculations is supplied by the quasi-~geostrophic approximstiorn to the
equations of motion and the first law of thermodynamics.

It is found that the enstrophy is cascaded from small wave
numbers [1-7] toward large wave numbers [12-15], with relatively lit*le
gain or loss in the middle range of wave numbers [8-11]. Verification
of the existence of an inertial subrange is inconclusive from the
calculations based on the atmoshperic data.

Power spectrum aralyses of the enstrophy and potentidl enstrophy
yvield slopes very cleose to -1, thus indicating a -3 slope for the
associated kinetic energy spectrum.

A value of v ~ 3 x 1O8 cm2 sec_l is obtained using Leith's
formulation for the coefficient of eddy viscosity. The cut-off
wavelength for the -3 range as formulated by Kraichnan is found to be
~ 70 km.

A two-level quasi-geostrophic model (similar to Phillips, 1956)
is integrated for two values of the amplitude of the heating function
and two values of the eddy viscosity coefficient. Quasi-stationary

spectral distributions are obtained in each case. The 'power law'

xi



characterizing the spectra, varies somewhat from case to case.

The nonlinear cascade of available potential energy results in
gains at large wave numbers; thus corresponding to atmospheric observa-
tions. The nonlinear cascade of kinetic energy results in gains for
the small wave number [1-7], and losses for 8 < m < 14 and relatively
small gains for m > 1L,

Gains of enstrophy are observed to be fairly constant for
14 <m < 28. Relatively small gains are recorded for m < 7 while the
spectral region 8 < m < 14 acts as the source. In view of this re-
sult it is concluded that studies involving enstrophy should extend
well past m = 15 and the transition zone noted in the section on the
observational results would most likely not be extended even if more
components were accounted for in the calculations.

It is concluded that the two-dimensional turbulence theories
(Fjdrtoft, 1953; Kraichnan, 1967; and Leith, 1968a) pertain to the
atmosphere inasmuch as they predict the dominant direction of the
nonlinear cascades of kinetic energy and enstrophy. Inertial sub-
ranges in which the cascade takes place resulting in zero gains or
losses is not observed in either of the results of the observational
or numerical studies.

In view of these results it is concluded that the closeness with
which atmospheric kinetic energy spectra follow a 'minus three power
law' should not be explained by arguments postulating inertial sub-

ranges. The quasi-stationary kinetic energy spectral slope seems to

xii



be affected mainly by the relative intensity of energy sinks and
sources at each wave number, and, to a lesser degree, by the non-

linear affects.
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CHAPTER I

INTRODUCTION

In recent years much effort has been put into the investigation of
the nonlinear effects in the oceans and the atmosphere.* These pro-
cesses are important in the redistribution, both spatially and in wave

number space, of transport processes and various forms of energy.

(Wave number may alternately be defined as the number of wave cycles
per unit distance or wave cycles in the interval O <\ < 2%, where A

is longitude. These quantities will be denoted by k and m, respective-
ly.) Some partizular phenomena in which these processes are intimately
involved are the maintenance of the Jet Streams in the atmosphere and
the Gulf Stream in the ocean, frontogenesis, poleward heat transport

in the troposphere and the limiting of the growth of the baroclini-

cally unstable waves.

1.1 PREVIOUS THEORETICAL STUDIES

The theory of three-dimensional turbulence predicts a universal
shape for the spectrum of kinetic energy over those scales where there
is statistical equilibrium, that is, there is no change in the kinetic
energy of a particular scale relative to adjacent scales. A spectrum

may be thought of as & series of Fourier ampiitudes distributed among

*A summary and extensive bibliography of work in this field is given
by Reiter (1969a).



wave numbers, The shape of the turbulence spectrum is deduced from
the assumption that the nonlinear energy transfer toward larger wave
numbers is large as compared with the rate of change of energy in each
wave number. The unlversal range lies between the scales at which
turbulence is generated and those at which the viscous dissipation is
dominant.

The spectrum's universality implies that the form of the spectrum
will be independent of external conditions. The spectrum is assumed
to be a function of €, the assumed constant energy cascade rate, and
independent of v, the viscosity. From dimensional arguments the form
of the kinetic energy spectrum, K(k,e), the kinetic energy per unit

mass and wave number, is deduced to be given by

o 23 k-5/5

K(k,e) = 1

where Cl is a constant. This is the Kolmogorov inertial subrange.

In atmospheric flows the horizontal scales of the planetary and
synoptic waves are about two to three orders of magnitude larger than
the vertical scale. Away from the boundary layer the vertical compo-
nent of the wind and its variations may in general be neglected when
compared with the horizontal components. This idea is reflected by
the use of the hydrostatic equation, Large-scale atmospheric flow
may, therefore, to a first approximation be thought of as being quasi-

two-dimensional.



In a two-dimensional flow of a nondivergent homogeneous fluid two
conservative properties may be identified in the absence of frictional
and generating effects. These quantities are the kinetic energy and

any power of the vorticity. The kinetic energy is given by

-

-*
V-V

K = f dm (l'l)
M

>
where V is the horizontal velocity vector
and dm is an elemental mass.
The enstrophy is one half the mean square vorticity and has a conve-

nient spectral form. It is given by

=i+

2
J %; dm (1.2)
M

where M is total mass,
and the vorticity is { = ng, where V¥ is the stream function. The
second power of the vorticity is used in the theories and observational
calculations.

In a relatively early study, Fjgrtoft (1953) deduced that in two-
dimensional turbulent flow, the kinetic energy flow in wave number

space must be in one of two ways

(1) kl-+ k2 - k5

or

(2) k) > k2 « kB



where kl < KE < k3’ in order for it to be conserved.

More recent and complete theoretical considerations (Kraichnan,
1967; Leith, 1968a,b) predict the power laws which should govern the
kinetic energy spectrum in the regions of inertial subranges for
two-dimensional turbulence. A "minus three" law governs the spectral
region for which k > ki, where ki is the wave number at which energy is
being fed into the system. This spectral region is characterized in
the theories by a constant enstrophy cascade, 1, toward large k and
zero kinetic energy cascade.

The part of the spectrum for which k < ki is characterized by a
constant kinetic energy flow toward small wave numbers and zero
enstrophy flow. A "minus 5/3" law is predicted to govern this spectral
region. The following paragraphs contain some of the assumptions and
deductions of the theories as presented by Kraichnan and Leith.

If the turbulent fluid flow is quasi-two-dimensional and is to
have a gpectral region whose shape is preserved in all realizations,
then the energy-producing mechanism and the dissipation must be on
scaleg relatively remote from this region. Let Ld and Li represent the
wavelengths at which the dissipation and energy input, respectively,
are taking place. Then, if LS is some characteristic wavelength in the
shape-preserving spectral region, a condition for the existence of this
region 1is Ld << LS << Li'

The remaining effect is the nonlinear inertial transfer of kinetic

energy or of enstrophy in wave number space. This transfer must be



constant with respect to wave number so that the various scales may
retain their relative magnitudes.

Suppose there exists a spectral range in which the nonlinear
enstrophy cascade, 71, is the dominant process. Then the kinetic energy
per wave number would depend on mn and wave number, K.

The kinetic energy per unit mass and wave number may then be

written in the form
(1.3a)

where 02 is a nondimensional constant.
. . 3 . -2 . -3
The dimensions of K(k), 71, and k are (length)” (time) =, (time) 7,
and (length)—l, respectively. The dimensional equation may be written

as
(1ength)5 (time)'2 = (time)'5a (J.engua)"B

In order for (1.3a) to be dimensionally consistent, a = 2/3 and B = -3.

Therefore the kinetic energy must be represented by

K(k) = C, n2/5 K (1.3b)

and the energy cascade, £, would have the form

-2
e = C k
3 M

where C3 is a constant.

However, since the energy cascade cannot be a function of wave



number, 05 = 0. Hence, a spectral range dominated by a constant
enstrophy cascade should have the kinetic energy proportional to the
-5 power of wave number and should exhibit zero kinetic energy cascade
in wave number space.

Analogously, a spectral range which is characterized by constant

energy flux, €, will have kinetic energy dependent on the —5/5 power of

wave number and zero enstrophy cascade.

1.2 PREVIOUS OBSERVATIONAIL STUDIES

Varioug observational studies have been carried out in order to
ascertain the validity of the assumptions and conclusions of the the-
ories.

Ogura (1958), Horn and Bryson (1963), and Wiin-Nielsen (1967) have
calculated the power law relating kinetic energy to wave number for
various latitudes, pressure levels and times. It was generally found
that the spectrum between wave numbers 7 and 15 tended towards a power
law with exponent varying between -2 and -3, with mean values closer to
-3 than to -2. At some latitudes and pressure levels the exponent is
-3.

Yang (1967) has made calculations of the nonlinear terms in the
kinetic energy equation. He verified, in part, the conclusions of
Fjprtoft. It was observed that the kinetic energy, for the most part,
flowed out of the middle waves (5 < m < 10) and into both the long and

short waves. An indication from Kraichnan's theory that energy should



not pass through to larger wave numbers was also given support by
Yang's (loc. cit.) result. Although some kinetic energy was trans-
ferred toward large wave numbers, part of this energy was, in turn,
being given up to the zonal mode. Further, the gain in waves, m = 13,
14, and 15, is forced in part by the closure condition on the system of
equations which was truncated at wave number 15.

Julian et al. (1970), have studied kinetic energy spectra from a
variety of sources and have concluded that "...for wavelengths <
L4000 km a power-law representation would require a constant coefficient
of between -2.7 and -3.0, ... . This coefficient apparently does not
depend upon whether the spectrum is computed from geostrophic or bal-

anced winds, or from observed winds."

1.3 PREVIOUS NUMERICAL STUDIES

Lilly (19€9) conducted a numerical experiment simulating two-
dimensional turbulence. He used a 64 x 64 point grid with cyclic
boundary conditions in both the x- and y-directions. His forcing
function was made up of all the two-dimensional components whose larger
wave number equaled m, . The total amplitude was kept constant, but the
contributions from the individual components were randomly chosen from
a Gaussian distribution.

He found good agreement with the power laws predicted by the the-
ories. After a time energy began piling up in wave number one, since

that is the largest mode allowed in the system. This resulted in



deviations from the -5/5 law for m < mi. Aliasing served to distort
the short wave end of the spectrum.

Manabe et al. (1970), have calculated the kinetic energy spectrum
from their general circulation model and obtained a "slope (of)...
approximately -3 power.'" Of the nonlinear effects on kinetic energy
they conclude that "...most of the energy, which is converted by baro-
clinic instability in the medium wave number range is transferred to

the low wave number range.'

1.4 OUTLINE OF THE STUDY

The major contribution of this study 1s the evaluation of the non-
linear cascade of (potential) enstrophy in wave number space, both from
atmospheric observations and a numerical simulation of quasi-two-
dimensional turbulence. The enstrophy is defined by (1.2), while po-
tential enstrophy is defined through the quasi-geostrophic equations

(Phillips, 1963) to be

/
M

n |-

e )
{V ¥+ O '5—(; ap> am (1.4)

where fo is the Coriolis parameter (= 20 sin ¢O) at ¢o = 45°, ¢ is the

o]
=l

static stability taken as a function of pressure only and p is pres-
sure, the vertical coordinate.

Taking ¢ = o(p) and f = fo, a constant, is consistent with the
quasi-geostrophic equations and their integral constraints (Wiin-

Nielsen, 1959).



The nonlinear effects are, in the open system in which the obser-
vations are available, separated into the interactions taking place
within the region and the boundary effects. Both processes are evalu-
ated by the summation over allowable triads and are denoted by I(min,l)
(gain rate by wave number m due to interaction of triads composed of
the allowed values of wave numbers n and £) and F(m|n,?) (gain rate by
wave number m by boundary flux due to the permitted triads containing
wave number m), respectively. A triad is a group of three wave numbers
in which the sum of two must equal the third. The corresponding terms
for the potential enstrophy are denoted by Ip(m]n,z) and Fp(m|n,z).

The theories already mentioned indicate that enstrophy transfer
should be toward large wave numbers and through a spectral region in
which the transfer is not a function of wave number, i.e., it is con-
stant.

Other processes involved in changing the (potential) enstrophy
were calculated from the atmospheric data. They are I(mIO) and F(m|O)
the gain rates of wave number m due to interaction with the zonal mode
within the region and at the boundary, respectively. The B-effect
(which reduced to a boundary flux effect in the case of enstrophy) is
denoted by B(m). The corresponding quantities for the potential
enstrophy are denoted by Ip(mIO), Fp(m|0) and Bp(m).

Chapter II contains the formulation of the calculations involving
the atmospheric data as well as some discussion of their physical

meaning. The derivations used for the decomposition of the results in
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the time domain is also contained in this chapter.

The results of the computations using the atmospheric data are
presented in Chapter III. The spectral shape of the (potential)
enstrophy 1s discussed in terms of the power law, with respect to wave
number, which best fits the data. If the kinetic energy is governed by
a -3 power-law, then the enstrophy should obey a -1 power-law, as shown
later.

Since the potential vorticity is calculated for the computations
mentioned above we have the opportunity to evaluate Green's (1970) sug-
gestion concerning the transfer coefficient for this quantity. From
these calculations we may deduce whether or not the action of the
eddies may be represented in the following manner

3 ¢ (0)+f)

-KCP 50 (1.5)

[Vgp]x =

where CP(O) is the zonal potential vorticity
ch is the appropriate transfer coefficient

v 1s the south-north velocity component

a is the earth's radius

¢ is latitude
[[)%\indicates (1/2n) fiﬂ {}Jan and ([})x indicates the deviation of {)
from [{]]x. (Square brackets with subscripts indicate a mean with
respect to the subscripts while parentheses with the subscripts indi-

cate deviations from the mean. This is a modified form of Reiter's

(1969b) notation.) For example any variable X may be written as follows
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X(o,n) =[x, + L)) + 1), 1, + (X) (1.6)

o\ A, 0

It is known that the transport of momentum does not obey a clas-
sical diffusion law of this kind and for the most part the flux is
counter gradient. However, the momentum transport may be written as a
combination of the heat and potential vorticity transports. The former
transport has been shown to be generally of a classical nature (Wiin-
Nielsen et al. (1963, 1964)) in the troposphere i.e., heat is trans-
ported from a warmer region to a cooler region. If it can be shown
that the potential vorticity also obeys this law then the action of the
eddies in the momentum equation may be modelled without going into the
complete calculations. Green (1970) gives reason to believe that this
procedure will be successful. Wiin-Nielsen and Sela (1971) show that
when monthly mean momentum and heat transports are used the transfer
equation can be applied to the potential vorticity transport witn
ch(¢,t) positive almost everywhere. We can compare the results
obtained here which are based on daily calculations with those of Wiin-
Nielsen and Sela (1971) which are based on monthly and annual mean
data.

Further, in Chapter III we report on evaluations of various quan-
tities such as the coefficient of eddy viscosity, v, the viscous dissi-
pation scale, kd, the energy input and dissipation which correspond to
the calculated value of 7, the enstrophy cascade rate.

Chapter IV contains the formulation of the numerical simulation
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model, the equations, approximations and finite-difference methods.
The numerical model, using essentially the framework described by
Phillips (1956) and incorporating a heating field akin to the forcing
function used by Lilly (i969),w111_be used to simulate disturbances by
a quasi-monochromatic heating field.

The disturbances will be confined to one of an infinite number of
identical square regions. The lateral boundary conditions are, there-
fore, cyclic in both directions.

There will be no zonal mode and so the generation will be that of
eddy available potential energy. Kinetic energy will simultaneously be
present since the existence of amplitude in the thermal field implies
amplitude in the stream function field of at least one of the levels
and most likely both.

Charney (1966) discusses the energy cascade in three-dimensional
flow under adiabatic, inviscid, and quasi-geostrophic conditions. He
points out that if the potential temperature at the surface is a con-
stant then an analogy may be made between the flow mentioned above and
two-dimensional incompressible inviscid flow. The two conservative
properties in the three-dimensional flow are the potential + kinetic
energies and the potential enstrophy. These quantities are present in
the model used in this study. Results for runs with different values
of the amplitude of the heating function as well as the coefficient of
viscosity are presented. It is hoped that such an investigation will

help to bridge the gap between the two-dimensional turbulence
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simulated by Lilly's model and the atmospheric turbulence.
In Chapter V the major results are summarized and suggestions for

future work are made.



CHAPTER IT

FORMULATIONS AND DERIVATIONS

2.1 FORMULATION OF THE COMPUTATIONS
The purpose of these calculations is to determine the nonlinear
transfer of vorticity and potential vorticity in quasi-nondivergent
flows. The equations are formulated in a spherical geometry using
Fourier series along lines of constant latitude and finite differences
in the north-south direction.
The stream function is specified by
M .
V0,0,2,8) = L A(mig,p,6) € (2.1)
m=-M
where A is the longitude
¢ is the latitude
p is the pressure
t is the time
m is the wave number (the number of cycles in the interval
0 <A< 2n)
M is a cutoff wave number = 15
i o= -1
A(m;p,p,t) is a complex number. (We shall omit ¢, p and t from

the parentheses for brevity.)

1k
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Let
1 .
A(m) = % (B(m) - i C(m)) (2.2)
and
1 .
A(-m) = Z (B(m) + i C(m)) (2.3)
Considering the contributions in (2.1) from m = ml and m = -m, we
get

imlk —imlk
A(my) e + A(-ml) e

= B(my) cos(m\) + C(ml) sin(mq\) (2.4)

which assures that ¥ is always real.

The relative vorticity may be written as

where

<
I
ol

L 9 + L 9 cos¢ —E%}}
N cos2¢ a}\2 cosd o o

and a is the earth's radius.

Using p = sin ¢ and 3/dp = cos @ d/du we get

2 ‘1
1 1
¢ == 2 . g ¥ aa (2-4%) gw (2.6)
a |l-p oM H H

Substituting from (2.1) we get
3 1| 9

=12 J(1-2) - A(m)| & (2.7)
m=-M a? au a“ L=
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or
M .
t = 2 F(m) e TN (2
m=-M
where
fw) = 2|2 ane B@ W (2
me= a2 ou H ou B l—pg m
and
P(n) = 2 [6(n) - i(m)]; F(-n) = Z [G(n) + iB(m)] (2.
Thus:
s = 2 [21042) 2w - 2 5m) :
m) = 2 S ~He) 5, Blm)p - l-pg m (2.
and
B = (21002 2em ] - 2 cm)
" a | ou H . . l-u2

¥ is given in a latitude-longitude grid with grid distance M\

= 2.5° = II/72 radians. Therefore,

o

=4

S
i

C(m)

To calculate

finite difference

ol
M=

G(m) and H(m) at latitude ¢

form as follows.

= ¢j we use (2.11) in

.8)

10)

It

Ad
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- tan ¢ — - J (2.12)

H(m) may be calculated from (2.12) when C(m)'s replace the B(m)'s.

The lowest latitude for which G(m) and H(m) can be computed is ¢ =
22.5°N and the highest latitude is ¢ = 85°N, since B(m) and C(m) are
available for 20°N < ¢ < 87.5°N.

Consider the nondivergent vorticity equation:
-> -> -> ->
= = V.Vt - V.Vf, V = k xWV (2.13)

=
where V is the horizontal nondivergent wind
f is the Coriolis parameter (= 20 cos ¢, where Q is the earth
angular velocity) and
>
k is a vertical unit vector.

This may then be written as

3 _ LSt 1 3w 3t
ot a dp acos ® A acos ® AN adop
_ ol d(20 sin o)
a cos ¢ O\ adQ
or
9 _ Loty Loy 1ot
% T 2@ wa] T2 % (2.14)

Substituting for ¥ and ¢ from (2.1) and (2.8), respectively, into

~im\
(2.14), mltiplying by e * , and integrating with respect to A from O
g
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to 2n it may be seen that only those terms for which n + £ = m on the
right-hand side will give a non-zero contribution. n and { are the
wave numbers corresponding to ¥ and £, respectively.

Carrying these operations out we get:

OF(m)
ot
M
ISR M(n)  3F(nn) 20 m Al)
= agnsz 1{Em-n) F(m-n) YR A(ni} _i & >
Loy #(n) 3 ;
= ;Q-H___Z__M [mF(m-n) N -n —éﬂ (F(m-n) A(n)El - a—é 20 m A(m)
(2.15)
Substituting (2.8) into (1.2) we get
M ‘ M 5
£ = 3 F(m) F(-m) = Y, F(m) F(-m) + F(Z)
m=-M (P m=3 cp

The rate of change of enstrophy may be derived as follows. Ne-

glecting the zonal component in the left-hand side.

—

% _ |y 3En) F(-n)
® | S, o
L #0 do
M
= | & JF(-m) -a—%%nl + F(m) —a%;;m—)
m=-M
L #0 P
Now,
OF(-m)
ot
M
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Thus

N aAa(:l) (F(-n) F(u-n) - F(m) F(-m-n))
n=-M
g I\Zd‘, F(-m) 9 {F(m-n) A(n)}
a2 n=-M a“

+ F(m) 55 {F(-m-n) A(n)}

- ——;— om (F(~m) A(m) - F(m) A(-m)) (2.17)

In order to bring (2.17) into the real domain we note that

F(m) F(-m) = 1/k {G(m)2 + H(m)g}

Substituting from (2.2), (2.3), and (2.10) into (2.17) we end up

with
L2 162m) + K2(m)] = (2.18)
L 2 (B(n)[6(n) H(men) - G(m-n) H(mes)]) - B(n) <[ 7
-_ my<" n m m-n - m-n m-n - n -
haz n=1 O N
d 2 d 2
i (¢(n)[G(m) G(m-n) + H(m) H(m-n)]) - C(n) 50 [ ]
3% M
d ) d 3
+ 5, (B(n)[G(m) H(min) - H(w) ¢(mtn)]) - B(n) <= [ ]
K p
d L d L
-3 (¢(n)[G(m) G(mtn) + H(m) H(mtm)]) + C(n) 50 ]
|38 M
M

4——25 2 mf- 9 (B(n)[G(m) H(n-m) + H(m) G(n-m)?) + B(n) 2 [ ?

ha” n=m+l O o

*The numbers 1 to 22 in (2.18) and (2.19) refer to the term enclosed by
the square brackets. This saves rewriting each term.
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6 6
+ B_S (c(n)[G(m) G(n-m) - H(m) H(n-m)]) - C(n) _a._i [
+ ga- (B(n)[G(m) H(n+m) - H(m) G(n-l-[n)?> - B(n) _a__a_ [ 'g
" H
8 8
- g‘a' (¢(n)[G(m) G(n+m) + H(m) H(n*m)]) + C(n) _a_é oS
" i
m-1
+1?nﬂ““£<““mmm>ﬂw+HMm>mm%+§§g[ f
+ <2 (8(m) 103 10
o (H(m)[G(m=n) B(n) - H(m-n) C(n)]) -&I H(m) [ ]
1L 11
'S§<“m”“mm>cﬁo-IKWn>mnn>+a§f)[ ]
12
- 2 (a(w)e(am) B(n) + Hwm) c(a)]) + E@ [ S
" e
M
P 9 (G(m)[G(n-m) C(n) - H(n-m) B(n 115) , 9G(m) [ 1%
Ltag n=m+1 O ) ) n ]
L SH(m 1h
52 (atatooen) Bt +5tom) oialh - S8l
1o m 15
- 52 (6w a(m) c(a) - Blavm) B(n)1) + 5% Lo
. b

& 16
-2 () o(em) 3(e) + H(wem) ofa))) + R L)
; ;f; 2 (3(w)[E(2n) o(m) - G(en) Ba)]) - Bn) 20
3 18 ) 18
"3 (c(m)[G(m) G(2m) + H(m) H(2m)]) + C(m))} > I <
mo 19 >, 19
- ;—;5 {5; (G(2m)[G(m) C(m) + H(m) B(m)]) - G(2m) N [ ]
5 20 5 . 20
S (H(2m)[G(m) B(m) - H(m) C(m)]) - H(2m) = [ 11, <u
21
e (2 (6(0)[B(m) H(m) - o(m) C(mfT) - 6(0) 2 [ ]
o= Ou O



+ _2 [B(m) H(m) - C(m) G(m)]

In (2.18) the first 40 terms on the r.h.s. represent the changes,
due to nonlinear processes, of enstrophy in wave number m. Terms 41
and 42 contain the effect of wave-zonal mode interaction while the last
term is due to the B-effect. When (2.18) is integrated with respect to
w the odd terms result in boundary fluxes while the even terms repre-
sent the interactions taking place within the region.

The first 20 odd terms are denoted by F(m]n,f) while the associl-
ated even terms are contained in I(m|n,f). Terms L1 and L2 are denoted
by F(m|O) and I(m|O), respectively, while the B effect is signified by
B(m).

The rate of change of zonal enstrophy is expressed by

d 1109 2
> e(0) = 3 [’aﬂ G(O)}

®
1 M 3 22
= = 2 m S; G(0)[H(m) B(m) - G(m) C(m)]
2a, m=1
22
S -5%(92] (2.19)
Mo

In the calculations M = 15 is taken as the cutoff wave number.
This value has been used in the past for reasons of (1) economy, (2)
lack of data allowing greater field specification, and (3) perhaps most
importantly because many studies have shown that energy falls off
quickly with wave number. This can be clearly seen in that kinetic

energy seems to obey a power law in the region of -3. Enstrophy,
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however, obeys something like a -1 power law. This indicates that in
future studies of vorticity and its exchanges attempts should be made
to attain greater resolution.

The integration of (2.18) with respect to latitude from ¢ = ¢S to
P = Py is performed by the trapezoidal rule.* For example, if T de-

notes the right-hand side of (2.18) except for the B-term then the

areal mean contribution may be written as

N
ot(m) on T 82 cosp do (2.20)
o 2na2(sin¢ -sing_) Y %s
N S
The B-term may be written as
. fCPN 20
B(m) = w CPS ‘a—g‘ m[B(m) H(m) - C(m) G(m)]coscp dep

(2.21)
and by substituting for H(m) and G(m) from (2.11) becomes

_ 2mQ OB (m) oC(m)
Pln) = au(sin@ -sing ) [E(m) %P "B 651 COS%J
N ll’lCPS

Py
¢

S

(2.22)
and so contributes only to the boundary flux.

Analogous calculations were made for the geostrophic potential
vorticity, given by

2
M . £
€ =u0) + T Um) ™ = Py o+ 2| 2N

P el op \ a(p) dp

#0

The finite difference scheme for the vertical derivative in (2.23)

(2.23)

is shown in Appendix A.

*Higher order integration schemes were attempted but the fields proved
to be quite smooth and little difference was observed.



25

I(m|n,1) (Ip(mln,l))represents'Umacorrelation between the gradient
of the (potential) vorticity field of wave number mwith the transport of

the vorticity field of wave number n by the velocity field of wave num-

ber £, where O < m,{,n < 15 and the sum of two equals the third.

F(m|n, 1) (Fp(mln,l» consists of the differences of the correlation
of (potential) vorticity fields of wave numbers m, and n with the
northward velocity component of wave number £ evaluated at ¢ = 25°N and
o = 82.5°N.

I(m|o) (Ip(mfo)) denotes the product of (potential) vorticity
transport at wave number m and the meridional gradient of the zonal
(potential) vorticity. F(m|o) (Fp(m]o)) is the boundary flux due to
the correlation of the (potential) vorticity transport at wave number

m with the zonal (potential)vorticity.

2.2 DECOMPOSITION OF EXCHANGES AND FLUXES INTO TEMPORAL MODES

Many studies (e.g., Bradley and Wiin-Nielsen 1968; Wiin-Nielsen,
1961a, 1961b; and many others) have dealt with some temporal modes of
the atmosphere. Without making a detailed frequency breakdown, as
done by some (Kao 1968, 1970), three time scales may be identified
(Bradley, 1967). These are the stationary or time mean mode, the slow
moving or forced mode, and the faster moving, transient or free mode,
Any spatial mode is composed of a combination of these temporal modes
to varying degrees.

Julian et al. (1970) point out that such a separation must be



2k

made if comparison of the diagnostic results with the theories are to
be made. The turbulence to be described by the power laws must be dom-
inantly of the transient mode since the inertial subrange is defined,
in effect, so as not to contain the forced modes.

Denoting a mean with respect to a time interval by [ ]t’ and the
deviation from that mean by ( )t (Reiter, 1969b) wemay write the prod-

uct of any three quantities F, G, and H in the following manner;

[F-G-HLG = [F]t-[GJt-[H]t
— —
(1) (2)

+[F] - (6) (1) 1, + [GD - [(H), - (F) ],
(3)

+[H] - D(F) - (6) 1+ [(F) - (G) - (H) Iy (3.4)

The first term on the right-hand side of (3.4) represents the sta-
tionary part of the product while the remaining four terms represent

the transient part.

We can also write [ ]t = [ ]S + ([ ]t)s where s > t and so from
(3.4) we get
Term (2) = [F] -[G] -[H]

NI
()

+ [F3s'([G]t)s‘([H]t)s+[G]s'<[H1t)s'([F]t)s

+ [HJS-([FJt)S~([GJt)S + ([FJt)S~([GJt)S'([HJt)



25

Term (4) now represents the stationary mode of the triple product
in the time interval s. The remaining four terms on the right-hand
side of (3.5) represent the slow transient mode and term (3) in (3.4)
is the fast transient mode.

Substituting for term (2) from (3.5) into (3.4) and averaging with

respect to s ylelds
[Fe-G-H], = [F]-[G]-[H] + [term 5]  + [term 3] (3.6)

In this study s = 3 months and t = 5.5 days. The value of 3
months for s was arbitrarily chosen as a compromise between economics
and the desire to have a record length which would yield characteristic
results and hopefully useful information.

Bradley (1967) suggests the value of 5.5 days for t, the aver-
aging time for the running mean filter. This filter reduces all waves
with periods of less than 5.5 days to about 159, or less of their orig-
inal amplitude. Griffith et al. (1956) shows, from power-spectrum
analyses of temperatures at University Park, Pa., that maxima exist at
periods of 4 and 12 days. The 5.5 day running mean filter, therefore,
separates the fluctuations due to cyclonic activity from those of
longer time scale. A value of 5 < t < 10 days probably would not
alter, qualitatively, the results of this study.

The quantities I(m|n,Z), I(m|o), F(m|n,t), F(m/o) and B(m), and
the corresponding quantities for potential enstrophy, were subjected to

time partition as described above. The results are discussed in the
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next chapter.

2.3 COMPUTATIONAL PROCEDURES
The nondivergent flow is obtained from the geostrophic stream

function which is defined as the solution of the differential equation

2

vy = (g/f) v2z - gV - Vz (2.28)

£
where z 1s the geopotential height, subject to the boundary condition
that the wind is geostrophic and the normal component vanishes at the
boundary of the octagonal region covered by the National Meteorological
Center 1977 point grid. The values of the Fourier coefficients up to
M = 15 of this stream function evaluated at latitudes between 20°N and
87.5°N with a 2.5° interval on each of eight isobaric surfaces, namely,
100-, 85-, 70-, 50-, 30-, 20-, 15-, and 10-cb have been provided by the
National Center for Atmospheric Research as the input to the subse-
quent computations.

Differentiations and integrations with respect to both latitude
and pressure are replaced by centered finite differences and sums,
respectively. Thus, a set of the Fourler components of each of the
stream function and vorticity are defined at every latitude from 25°N
to 82.5°N with a 2.5° interval, with the set at latitude @ representing
the mean in the belt between ¢ + 1.25° and $ - 1.25° on each of the
eight isobaric surfaces. The interactions are defined on latitudes

25.0°N to 82.5°N inclusive and the fluxes are evaluated at these



limiting latitudes.

In the calculations of the interactions and fluxes the values on
each isobaric surface are assumed tc represent the mean values of the
layer which extends halfway to both of the adjacent levels where obser-
vations are available, and are weighted accordingly by the thickness of
the layer to give the contribution in that layer.

Figure 1 shows the vertical resolution of the calculations.

Values of static stability are required in the potential enstrophy
calculations. The values used are the same as those used by Yang
(1967) and given by Gates (1960). The winter values were used for
February while the spring values were used for March and April. Table

d1nd
1 lists the values used. Tne static stability is given by o =& és s

where @ is specific volume, 6 is potential temperature and p is pressure.

TABLE 1

-2 2
STATIC STABILITY,o(p) (T " m sec”)

L?Z§§ Winter Spring
10~15 91.4 95.7
15~20 54.5 L2.8
20~30 17.9 13.3
30~50 3.73 3.70
50~70 2.26 2.23%

- 70~85 1.68 1.77

85~1.00 1.88 1.75
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Figure 1. Vertical resolution of the observational calculations.



CHAPTER III

DISCUSSION OF RESULTS

3.1 INTRODUCTION

The interactions and boundary fluxes derived in section 2.1 are
evaluated twice daily, at 00Z and 12Z, for a three-month period ex-
tending from February 1, 1963 to April 30, 1963, for each of the 15
components in each layer. These quantities were partitioned into three
time modes-—stationary, and slow and fast transient modes. Only the
velues of the three-monthly means of the effects of the varicus time
modes are discussed since the quantities have large daily variations as
seen by thelr standard deviations tabulated in Appendix B.

From a preliminary study of the values of I(mln,z) it was decided
to form three wave number groups, the large-scale components with O < m
< 7, the medium scale components with 8 < m < 11 and the small scales

with 12 <m < 15.

3.2 THREE-MONTHLY MEANS OF EXCHANGES AND FLUXES
The net effect of the various processes discussed below when sum-

med over wave number is a three-monthly mean gain rate for enstrophy

18 -3 (

(potential enstrophy) of -11k x 10 ~ sec 27 x 10 sec

18 —5). Fig-

vres 3a and 3b contain these values as a function of wave number in
18

units of 10~ sec—E. Figure 2 illustrates the plotting model for

Figures 3a and 3b.

29



20

Gain by wave

I(mln,l) number m I(mlo)
F(m|n, {)—> Net
B (m) F(m|0)
Gain by
zonal mode
I(0|m) =0
Net
F(m]0)

Figure 2. Plotting model for Figures 3%a and 3b.
Arrows indicate direction of positive change.

(1) I(m|n,2). This term represents the gain of enstrophy by wave
number m due to the interactions of the triads composed of wave num-
bers m, n, and / where n and { attain all possible combinations subject
to the restrictions that the sum of any two of £, m, and n equals the
third and 1 < m,n,f < 15.

The sum of I(m]n,l) over m equals zero since every term appears
twice, with opposite signs. This conservative property serves as a
check on the computations and was observed to hold true to the number
of digits used. In a closed system with zero mean flow this nonlinear
exchange among waves 1is the only process capable of redistributing
enstrophy in wave number space.

The results indicate the existence of three wave groups; 1 <m <
7, 6 <m <11, and 12 < m < 15 which behave differently. With the ex-

ception of m = 4 all of the constituents of the first group lose
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enstrophy due to the wave-wave interactions. The loss rate of 51 x

-18 -
10 . sec 5 by m = 2 represents the largest contribution of any single

wave. The enstrophy loss rate by the group is n = 172 x 10—18 sec_j.

The intermediate group is transitional between the other two
groups and may indicate the existence of an inertial subrange.
Enstrophy cascades through this wave group with only lO_17 sec—5 units
being absorbed. This represents just under 6% of the rate of enstrophy
loss by the group with m < 7. Because of the limited number of waves
included in our calculations this transitional group of waves can not
be identified as an inertial subrange.

The group composed of the smaller scales gains enstrophy at the
rate of 161 x 10-18 sec—E. The gain 1s spread fairly evenly among the
components of this group. Due to the closure condition the waves are
not linearly independent.

In order to examine how local the exchanges are in wave number
space the individual terms containing the wave triads would have to be
inspected. Although it would not be possible to identify the contrib-
utor in any given triad, it would be of interest to calculate, for
example, the relative action of waves 3 and 4 vs. waves 20 and 27 on
wave number 7. Such a calculation may yield information about the
importance of determining the presence of a gap in the wave spectrum.
If waves with m = 20, 27 have a significant effect on wave 7 then

errors such as those discussed by Lorenz (1969) may affect the large

scales even in the absence of an intermediate band of waves.
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The present results show that the enstrophy cascade is in the pre-
dicted sense, that is, from small wave numbers (m < 7) toward the
larger wave numbers (m > 7). The existence of the inertial subrange
is not verified and more extensive calculations will be required in
order to decide the issue.

(ii) Ip(m|n,£). The sense of the potential enstrophy cascade is
the same as that of the enstrophy (see Figures 3a and 3b). The magni-
tudes are larger. Potential enstrophy leaves the first group at the

18 -3

rate of np = 252 x 10~ sec ©. The major source of potential

enstrophy for the smaller waves is m = 2, losing at the rate of 65 x

The intermediate group has a gain rate of 23 x 10 sec-B, which
is somewhat over 9% of np. The gain rate of the third group is fairly
even with respect to wave number and is 229 x 10—18 sec-ﬁ. Conclusions
arrived at in the light of the above results are: (1) both enstrophy
and potential enstrophy cascade from small m toward large m as pre-
dicted by Kraichnan (1967), however, (2) there is little verification
for the existence of an inertial subrange through which the cascade
takes place resulting in little or no gains.

(iii) I(mlo). This term represents the gain rate of enstrophy by
the waves through their interaction with the zonal flow. It is the
correlation of the vorticity advection on a given scale with the zonal
vorticity. Comparing (2.18) and (2.19) it is noted that the gain by

the waves due to their interactions with the zonal flow is not equal to
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the loss of the zonal mode due to its interaction with the waves. This
is so because the system is not closed, but has boundaries through

which there may be advection. This may be written as

M
dL(n/0) , 3 I(0/m)
L5 T

m=1

# 0 but = F(m|0) (3.2)

In a closed system, e.g., fluid flow on a sphere, the boundary flux
term would disappear and the gain of the waves would be the negative of
the gain of the zonal mode due to their mutual interactions.

A similar problem concerning energy conversions in an open domain
is discussed by Smith (1970).

18

The net effect of this interaction is a gain rate of 40 x 10~

-3 . -18 - -3
sec 7. Waves with m = 1,2 lose 8 x 10 and 22 x 10 sec 7,

respectively, while all other waves in group 1 show gains. The middle

18 -3

wave group shows a loss rate of 5 x 10 sec ” and the short wave
group a loss rate of L4 x 10-18 secnj.

It will be seen in & later section the waves interact with the
zonal flow mainly through their slow transient modes. For waves on the
scale of the earth's circumference the slow transient and stationary
modes are greater than the fast transient mode. For scales with m > 7
the fast transient mode usually dominates. These reasons, in large
part, explain the lack of interaction between the zonal flow and waves
with m > 6.

(iv) Ip(m|0). The long wave group show a potential enstrophy

18 -3

loss rate of 182 x 10~ sec © while the middle and short wave groups
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18 18

show gain rates of 15 x 10 sec-5 and -4 x 10 sec-B. Thus the

=5

waves have a net loss rate of 171 x lO—l sec ©. The largest loss rate
-18 -
of 101 x 10 L sec 5 was by m = 2.
(v) F(m|n,t) and Fp(m|n,£). The flux terms were evaluated at

both northern and southern boundaries separately. The major contribu-

tion comes from the southern boundary.

Il

Waves with m = L4, 6 and 8 to 12 show losses due to F(m|n,f) with
the remaining waves experilencing small gains. There is no distinct
spectral pattern to this effect. F(m|n,Z) and Fp(m|n,l) result in loss
rates of 25 x 10—18 sec_5 and 24 x 10_18 sec-B, respectively, although
their spectral distributions are somewhat different.

(vi) F(m|O) and Fp(mlO). The flux due to the interaction be-

-18
tween the waves and the zonal mode result in gain rates of 45 x 10

sec_5 and 290 x 10-18 sec_3 for the enstrophy and potential enstrophy,
respectively. The spectral distribution of the gain rates are similar
in the two cases with waves 1 <m < 4 accounting for almost all of the
change.

(vii) B(m) and Bp(m). The rate of change of (potential) en-
strophy due to the B-term is (-68 x 10_18 sec—5) 174 x 10_18 sec-B.

In both the case of the potential enstrophy and enstrophy the

losses are confined mainly to the waves with 1 <m <.
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5.3 RESULTS IN THE TIME DOMAIN

In section 2.2 the equations used to decompose the interactions
and boundary fluxes in the time domain were derived.

The three-monthly means of the temporal modes of the exchanges and
fluxes are shown as a function of wave number in Figures 4 through 13.
In each of these figures the clear portion of the column represents the
contribution of the fast transient mode and the lightly and heavily
hashed portions represent the slow-transient and stationary modes,
respectively. The solid line indicates the net effect of the three
temporal modes on each component. Tables 2A and 2B contain the results
in terms of wave groups and we shall for the most part confine our dis-
cussion to these two figures. Since, for some exchanges and fluxes the
relative effects of the various temporal modes are similar for both
enstrophy and potential enstrophy, we shall discuss them in pairs.

Figures 4 and 5 contain the temporal decomposition of I(mln,l) and
Ip(m}n,l), respectively. For both quantities and m > 12 the fast
transient mode accomplishes the major portion of the exchange. The
stationary mode is of least importance in the large wave numbers.

Wave numbers 2 and 6 experience the largest loss rates in the
large scale wave group. In wave number 2 the slow transient mode is
the dominant temporal mode while for wave number 6 the fast transient
mode dominates.

From Tables 2A and 2B it can be seen that, with the exception

noted above for m = 2, the exchanges among wave groups take place
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almost wholly within the fast transient mode. This stems from the fact
that the conservation property is applied to each temporal mode
alone and the short waves are most active in the fast transient mode.

The (potential) enstrophy boundary flux due to the interactions
among waves, F(m|n,2) (Fp(m]n,l)), is depicted in Figures 6 (7).

The loss takes place for the most part through the fast transient mode
of the middle wave group. The action of short wave group results in
gains for all the temporal modes while the long wave loss through the
slow transient and stationary modes is partly offset by the gain of the
fast transient mode.

In the exchanges I(m|0) (Figure 8), and IP(mIO) (Figure 9), and
flux Fp(mlo) (Figure 11), due to wave-zonal mode interactions the slow
transient mode of the long wave group dominates the action. For the
flux, F(m|0) (Figure 10), the fast transient mode of the long wave
group is dominant.

It is noteworthy that, in the main, the slow transient mode is of
greatest importance in the interactions between waves and the zonal
flow while the fast transient temporal mode dominates in the inter-
actions among waves. The stationary mode is of little or no importance
in virtually all the processes evaluated here. However, it is of im-
portance in some processes for specific wave numbers, e.g., m = 3, k4
for Fp(mlO).

The losses both to the enstrophy and potential enstrophy due to

the B-effect, B(m) (Figure 12), and Bp(m) (Figure 13), is the result
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for the most part of the action of the slow transient mode of the long
wave group. The medium and short wave groups have little effect in any

of the temporal modes.

3.4 EXCHANGES AND FLUXES AS A FUNCTION OF PRESSURE

The processes, excluding I(m|n,Z) and Ip(mln,l) (which are iden-
tically zeros when summed over m) are summed over m and depicted in
Figures 1Lk and 15 as a function of pressure. Figures 1l6a and 16b show
the effect of all the calculated processes as a function of pressure.
The vertical dashed lines indicate the pressure-welghted mean values.

It is seen in Figures 14 and 15 that the intensity maxima for the
exchanges and fluxes for both the enstrophy and potential enstrophy
occur in the upper troposphere. Yang (1967) shows similar results in
the exchanges of kinetic and potential energies due to interactions
among waves.

These results reflect the presence of maximum amplitudes for the
eddy velocity at the level of the Jet Stream. Both enstrophy and po-
tential enstrophy have maxima in the 20 cb to 4O cb layers as shown in

Figure l6c.

The evaluated processes result in a negative rate of change of
enstrophy in all layers of the atmosphere except for 92.5 < p < 100 cb

which experiences a small gain. The maximum rate of change of -261

-18 -
x 10 . sec > occurs 1in the layer centered at 20 cb, The pressure-

-3

-18
weighted mean loss rate is -1h4 x 10 1 sec
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Figure 14. (a) Vertical variation of F(m|n,f) [x 10-18 gec-37. (b)
Vertical variation of I(m|o) [x 10-18 sec2]. (c) Vertical variation
of F(m|o) [x 10-18 sec™®]. (d) Vertical variation of B(m) [x 10-18
sec™?].



20 I

Lo

P(cb)

80

52

100 "=

Lo =

P(cb)

80 p-

—
-400 -200

O ——==—F  ——

+200

100 &

20 I~

P(cb)

60 I~

)
-L00 =200

—
0 +200

100 b

1
n
(@]
O

P(cb)

+L00

100 &

Figure 15.

Vertical variation of I (m|o) [x 1018 sec-37.

-400 -200

1
0 +200

(a) Vertical variation of F,(m|n,f) [x 10718 sec=2]. (b)

(c) Vertical variation

of Fp(m|o) [x 10-18 gec=3]. (a) Vertical variation of Bp(m) [x 10-18

sec™d].



P(cb)

P(cb)

53

60 = I

100 - | T T
=200 0 +200

20}= [J
-

Lo

60

— ] —— —— — —t— — —— -

80 '

lOO T ] |
-200 o) +200

Figure 16. (a) Vertlgal variation of sum of all processes affecting
the enstrophy [x 10 0"5]. (b) Vertical varlaf on of sum of all
processes affecting the potential enstropny [x 1071° see” 1.



5k

20F

Lo

80

100

Figure 16. (c) Vertical variation of the three monthly means of
enstrophy and potential enstrophy [x 10'18 sec’B].



The potential enstrophy on the other hand experiences losses in
the upper and lower troposphere but gains in the middle troposphere.
The gains are effected by the action of Fp(mlo) and Bp(m). The

-18 -
pressure-weighted mean effect is a gain rate of 29 x 10 1 sec 3.

3.5 ENSTROPHY AND POTENTTAL ENSTROPHY BUDGETS

Our calculations in no way account for the gain or loss of (poten-
tial) enstrophy due to production, dissipation, or exchanges involving
waves with m > 15. We may, however, make some comments on these
effects by calculating the residual changes in (potential) enstrophy
allowing for the processes evéluated in this study.

We write the equation for (potential) enstrophy change as follows

g% t(m) = I(m|n, 1) +I(o|m) +F(m|n,L) + F(m|o) +B(m) +residue
(3.7)
The 1l.h.s. of (3.7) was evaluated as follows

[e(m)] - [E(m)]
q r

(n) = - (3-8)

¥lo

where r and q represent the first and last ten time periods in the
three months.

The residues thus calculated are listed as a function of wave
number in Tables 3A and 3B. A possible explanation for the residues
obtained is as follows. Positive values for m = 1, 2 may be due to
vorticity production at the scale of continents and oceans due to dif-

ferential heating at coast lines. For 6 < m < 9 production of
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vorticity associated with cyclonic generation due to differential tem~
perature advection near frontal zones may account for the residue.
Negative residues for 12 < m < 15 may represent dissipation and cascade

to waves with m > 15.

3.6 SPECTRAL SHAPE
It has been shown (Horn and Bryson, 1963; Wiin-Nielsen, 1967;
Julian et al., 1970) that the atmospheric kinetic energy may be written

in the form
K(m) = bm T<m< 15 (3.9)

where b and c are constants. b is a measure of intensity while c
determines the spectral shape.

The value of ¢ has been found to vary between 2.5 and 3 with a
tendency toward the latter value, for the spectral region given by
8 <m < 16. The variation with latitude was found to be small while a
systematic increase with decreasing pressure, up to about 20 cb was
alsc observed.

In Appendix C we show that g(me) o m2 K(me) and therefore ¢ ~ 1
should result from a calculation using (3.9) in which &(m) replaces
K(m).

The spectra of enstrophy and potential enstrophy were calculated.
Their three-monthly mean values were evaluated as a function of wave

number and pressure and a least-square regression was used to calculate
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the values of c¢. For these calculations the spectrum was divided into
two spectral groups. The first contained wave numbers 1 to 7 and the
other wave numbers 8 to 15. The results are tabulated as a function of
pressure in Tables 4A and 4B. The pressure-weighted mean spectra are
contained in Figures 1l7a and 17b.

Also included in Tables 4A and 4B are the values of ¢ after a cor-
rection is made to the enstrophy (potential enstrophy) in order to
counter the effect of smoothing on the short waves. Using Wiin-

Nielsen's (1967) argument, it is found that

£(m) (3.10)

where gc(m) is the corrected or "true' enstrophy,
m, is an arbitrary cut-off wave number taken equal to 36 and
E(m) is the calculated enstrophy per unit wave number.

For spectra of gc and gpc’ .Th < e < 1.20 and .69 < ¢ < 1.29,
respectively. The slope is maximum at 30 cb for both quantities, indi-
cating relatively greater amounts of enstrophy and potential enstrophy
inm =8, 9 than in m = 14, 15 at this level. However, mexima in all
scales are found at this level.

The values of ¢ imply kinetic energy spectrum governed by a =-d
power law where 2.7 < d < 3.2. These results are similar to those of
Wiin-Nielsen (1967). The pressure-weighted mean values of c¢ are 1.085
for enstrophy and 1.145 for potential enstrophy. A slope of -3.085

would, therefore, govern the corresponding kinetic energy spectrum.
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TABLE LA

ey FOR [g]s, [Eé]scor., [gp]S AND [gpc]scor.

(Wave numbers 1 to T7)

P-Weighted
P(cb) 100 85 70 50 30 20 15 10 Vean
£ .0 i .1 .1L .1 .0 .1 .1 .1
E cor .0 o .1 .1 .0 .0 .0 .1l 1
€p -— 1 .2 .2 .1 .0 .1 -- .1
Epcor. - 1 1 .2 .1 .0 .0 == .1
Note: s = 3 months.
TABLE 4B

05 FOR [g]s, &c]scor., [gp]s AND [%?Jscor.

(Wave numbers 8 to 15)

P-Weighted
P(ecb) 100 85 70 50 30 20 15 10 Mean
3 1.2 1.3 1.6 1.6 1.6 1.6 1.h 1.3 1.5
¢ cor. T .9 l.2 1.1 1.2 1.1 1.0 .8 1.1
§p -——- 1.2 1.5 1.6 1.7 1.6 1.4 --- 1.6
gpcor. === .7 1.1 l.2 1.3 1.2 9  ~-- 1.1
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The slopes for 1L < m < 7T for both the enstrophy and potential
enstrophy are about -.1 (Table 3A) indicating that these quantities
have no trend in this wave number range. The maximum for both & and
§p occur at m = 2, 3. This is due to the influence of the stationary
mode since these maxima shift toward larger wave numbers when the sta-
tionary mode is excluded.

Julian et al. (1970) suggest that only the transient modes should
be subjected to the power law analysis. This was also done. From
Tables 2A and 2B we can see that the stationary mode contributes
little to the cascade of £ and gp in wave number space. The theories,
if valid at all, should be expected to apply only to the transient

modes. The transient enstrophy is given by

(¢) = 1 {G)Z + (H)g} s = 3 months (3.11)

S S

The slope was calculated using the three-monthly mean values after
they were subjected to the correction indicated by (3.10). We will
here confine our discussion to the results as a function of pressure.

The enstrophy of the transient mode for waves with 8 <m<15 ex-
hibits slopes ranging from -.8 at the 100 cb and 10 cb surfaces to
-1.2 at the 30 c¢cb surface. Tables 5A and 5B contain the slopes for
the corrected enstrophy and potential enstrophy. Figures 18a and 18b
show the mean values of these quantitieg asg a function of wave number.

In the wave group with 1 <m < 7 the slopes at 30 cb, 20 cb, and

15 cb are positive showing that a maximum of the quantity is obtained
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TABLE 5A

c FOR THE TRANSIENT ENSTROPHY AND POTENTIAI, ENSTROPHY
FOR THE SPECTRAL REGION 1 <m < 7 (x 1071)

P-Weighted
P(ecb) 100 85 70 50 30 20 15 10 Voan

E -6 -2 .2 .2 =5 =7 =3 .4 -.2

g --- 2 .6 .6 - -8 -k - .0

TABLE 5B

¢ FOR WAVE NUMBERS 8 TO 15 FOR TRANSIENT ENSTROPHY
AND POTENTIAL ENSTROPHY (CORRECTED)

P-Weighted
P(cb) 100 85 70 50 30 20 15 10 Vean

£ 8 .9 1.1 1.1 1.2 1.1 1.0 .8 1.1

3 -- .6 1.0 1.0 1.1 1.1 NS R 1.0
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for m ~ 7 when the stationary component is omitted. In mid-latitudes
on the 20 c¢cb surface, siopes of about .25 are obtained. A value
of .33 would correspond to a "-5/3 law" for the kinetic energy

spectrum.

3.7 COEFFICIENT OF EDDY VISCOSITY AND RELATED QUANTITIES

Leith (1968) deduced the local enstrophy dissipation n to be given
by
2
n o= v|vt] (3.12)
where v is the coefficient of eddy viscosity.

From this equation we may evaluate v, the eddy viscosity coeffi-

cient. Using

¢t = 2 F(m) o T
-M
#0
we find that
~1 93 ., > 1 o M im\
Ve = @;53”—“—acos¢?ax _ZMF(“‘)E
#0
M M
_ 1|z ¢ oF(m) imn | > im\
= = ¢_ZM S © +>\_ZMC ¢F(m)e (3.13)
#0 70
and so
. = 2
[(ve-vO)], = [vE=],
M M 2
2 OF(m) OF(-m) m
=12z + 2 F(m) F(-m)
a2 1 o¢ ot 1l cos ¢

(3.14)
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- -
where ¢ and A are unit vectors in the ¢ and N\ directions, respectively.

Using the definitions of G(m) and H(m), we find

M 2 2 2
o« 4 [ G = )
1 co

a s ¢

(3.15)

Here, 1 is defined as &él I(m|n,t) and is shown in Table 6C as & func-
tion of pressure. For the 100, 85, and 10 cb surfaces 7 is either very
small or slightly negative and so these surfaces were omitted from this
calculation. This indicates that any similarity theory dependent upon
n which may be found to hold in the middle and upper troposphere should
not be expected to pertain to lower layers where ground effects may be
present nor in the stratosphere.

First (V§)2 and (VCP)2 were calculated as a function of latitude

and pressure for 15 cb < p < 70 cb and their time means obtained.

These values are contained in Tables 6A and 6B. It is seen that the

values increase to a maximum at the 30 cb surface.

Values of [v]S were obtained from

[n] (p)
[v] (p) = SAEA (3.16)

e [0, (0,2)

A

It must be pointed out that in our truncated system the values of

2
both (V{)~ and n are underestimated. The net effect on v due to these

shortcomings cannot be evaluated a priori. Kraichnan (1967) states

"...-3 power law can be expected to extend up to the wave number of the
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TABLE 6A

(Vg)g——THE SQUARE OF THE VORTICITY GRADIENT [x 10727 cm™2 sec™2]

g%%ﬁ% 70 50 30 20 15 F w;zizted
25 2.6 4.6 8.0 8.6 7.8 5.6
27.5 2.9 5.2 9.7 10.8 9.3 6.6
30 3.1 6.2 11.6 13.5 11.1 7.8
32.5 3.3 6.8 1l2.4 15.0 11.8 8.5
35 3.6 7.6 1h.1  15.4  11.7 9.2
37.5 3.9 8.6 16.0 15.3 1l.k4 10.0
40 L.k 9.1 17.5 15.8 11l.5 10.8
k2.5 4.9 10.3 18.6 15.7 10.6 1.4
45 5.2 10.9 18.9 14.0 9.0 11.4
47.5 5.4 10.9 18.2 12.8 7.9 11.1
50 5.7  11.4  18.1 11.8 7.0 11.1
52.5 6.0 12.0 18.8 10.9 6.1 11.4
55 6.0 12.2 18.6 10.4 5.7 11.3
57.5 5.9 12.5 18.9 9.8 5.3 11.3
60 5.7 1l2.3 18.8 9.3 5.0 11.1
62.5 5.7 1l2.2 18.1 9.2 5.2 10.9
65 5.7 1l2.2 17.5 9.2 5.3 10.8
67.5 5.6 11.8 16.1 9.2 5.k 10.3
70 5.6 11.5 1L4.5 8.9 5.2 9.8
72.5 5.5 1ll.2 12.6 8.2 5.0 9.2
75 5.4 11.1  11.3 7.9 5.2 8.8
7.5 5.4 11.0 11.0 7.8 5.3 8.7
80 5.8 11.6 11.6 8.5 5.9 9.2
82.5 9.2 19.5 17.9 1hk.9 10.5 15.1
Area h.7 9.6 15.3 12.0 8.4 9.6

Mean
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TABLE 6B
—THE SQUARE OF THE POTENTIAL VORTICITY GRADIENT [><10'25cm'2
P(cb) P-Weighted
5?§ﬁ7 70 50 30 20 15 Mean
25 3.2 5.3 8.8 9.2 8.2 6.2
27.5 3.5 6.0 10.7 11.6 9.8 7.4
30 3.7 7.2 12.8  14k.6  11.7 8.7
32.5 3.9 7.8 13.8 16.2 12.4 9.4
35 h.2 8.7 15.6 16.5 12.3 10.3
37.5  hL.h 9.8 17.6 16.3 11.8 11.1
40 4.9 10.4 19.3 16.8 11.8 11.8
Lke.5 5.2 11.6 20.7 16.7 10.8 12.5
L5 5.6 12.3 21.1 1hk.9 9.1 12.6
Lk7.5 5.9 12.2 20.3 13.6 8.0 12.2
50 6.2 12.8 20.2 12.5 7.1 12.2
52.5 6.5 13.3 20.9 11.6 6.1 12.5
55 6.5 13.6 20.7 11.0 5.8 12.4
57.5 6.4  14.0 21.0 10.2 5.3 12.4
60 6.2 13.8 20.9 9.6 5.1 12.3
62.5 6.1 13.7 20.0 9.5 5.3 12.0
65 6.2 13.8 19.3 9.6 5.5 11.9
67.5 6.1  13.4L  17.7 9.6 5.6 11.4
70 6.1 13.1 15.9 9.3 5.4 10.8
2.5 6.0 1l2.7 13.8 8.6 5.1 10.1
75 6.0 1l2.7 12.3 8.2 5.4 9.7
7.5 5.9 1l2.6 11.8 8.2 5.5 9.6
80 6.3 13.1 1l2.h4 8.8 6.1 10.1
82.5 9.7 21.0 18.6 15.4 10.7 16.0
Area
Mean 5.2 10.8 16.9 12.8 8.7 10.8
TABLE 6C
-18 -3
(POTENTIAL) ENSTROPHY CASCADE [x 10 sec 7]
P-Weighted
P(cb) 70 50 30 20 15 Mean
n(sec™?) 49 227 540 310 148 172
qp(sec‘5) 88 298 579 460 136 252

sec

-2

]
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TABLE 7

COEFFICIENT OF EDDY VISCOSITY [x 108 cm® sec_l]

P(cb) 70 S0 30 20 15 P'wﬁziited
y 1.1 2.6 3.8 3.6 1.9 2.5
v 2.2 3.8 L4L.0 4.1 1.7 3.3

6
order of k ~ k, = (n/v5)l/ ." Using the values of n and v calculated

-2 =1
herein it is found that kd ~1.5x 10  km . The corresponding wave-

length is xd ~ 70 km.

This result is dependent on the assumption that the inertial cas-
cade process is dominant over other effects for m >> mi where mi is the
wave number of the energy source. It is most probable that there are
other scales between wave numbers m = 8 and m = 400 at which kinetic
energy is produced in the atmosphere (Pinus et al., 1967). Therefore,
it should not be expected that the real atmosphere will exhibit a "-3"
kinetic energy spectrum down to wave lengths of about 100 km. It is of
interest to note, however, that Kd is of the order of the largest con-
vective systems in which the vertical dimension can certainly no longer
be ignored.

The corresponding viscous dissipation of kinetic energy is given,

by Kraichnan, to be Kd ~ n(ki)-l which is calculated to be of the

- - -2 -
order of 10 2cm2 sec 5 or 10 erg cm  sec . This is negligible when

compared with the observational estimates of dissipation made by

various authors and reported on by Oort (1964). They estimate the
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- . 5 -2 -
dissipation to be of the order of 107 erg cm ~ sec . Kung (1967),
using data covering a five-year period, obtains a time mean dissipation

. . 5 -2 -1 s e s .
of kinetic energy of about 4 x 107 ergem ~ sec . The dissipation of ki-
netic energy, therefore, does not take place at relatively small scales
in large scale atmospheric flow as it does in microscale three-
dimensional turbulence.

Manabe et al. (1970) show that in a numerical simulation of the
large scale atmospheric flow maximum dissipation occurs at m = 2, 3 and
is negligible for m > 1kh.

. . . . 2,~1 .
The entire energy input is given by Ki ~ n(2ki) . With mi taken
. L -2 o .
to be 8, Ki is calculated to be ~ 10 erg cm sec = which is
larger than estimates of C(Ae,Ke) (Wiin-Nielsen, 1965; Oort, 1964) by a
factor of about L. C(Ae,Ke) is the transformation of eddy available
potential energy to eddy kinetic energy. Using the formulation of
Leith and Kraichnan for the quantities evaluated in this section we
find

(a) that the dissipation to be maximum at 30 cb and in mid-
latitudes. The variation with respect to pressure is in agreement with
the calculations of Kung (1967). The eddy viscosity coefficient is

8 2 -1, . .
evaluated to be about 3.7 x 10 cm sec in the layer of maximum dis-
sipation;

(b) that in the absence of intermediate scales of energy produc-

tion the -3 power-law can be expected ideally to extend to scales on
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the order of 70 km, which, although reasonable as a limit should not be
expected to hold in the real atmosphere;

(c) that the energy dissipation at k. corresponding to n is on the

d

order of 10 erg cm-e sec and is negligible when compared to dissipa-
tion at the synoptic scales; and

(d) that the equivalent energy input Ki’ if assumed to be acting
at m, = 8 is about a factor of 4 larger than the various estimates of

C(Ae,Ke) reported on by Wiin-Nielsen (1965) and Oort (196k).

3.8 TRANSFER COEFFICIENT AND POTENTIAL VORTICITY TRANSPORT
It is well known that momentum transfer does not obey a diffusion

law of the form

B[u]x
add

[uv], = -K(¢) (5.17)

In the region of large transports such a formulation would result
in negative values of K.

It was suggested by Green (1970) that only conservative properties
of the fluid should be expected to obey this classical diffusion law.
In the atmosphere there are no truly conservative quantities. However,
quantities such ag potential vorticity and potential temperature are
considered to be quasi-conservative. It is already known that the
meridional transfer of sensible heat can be approximated in a qualita-
tively correct manner by a large scale diffusion coefficient in most

regions.
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It can be shown that the momentum transport may be written in

terms of the potential vorticity and potential temperature transport as

follows

2
_ 1 Mcos"® J/fR ">
[Vgp]x -7 2 o T dp <p P N (5.18)
(b)

a cos ¢
(a)

where N = [VTJX and M = [uv]x.

Therefore, if it can be shown that the potential vorticity trans-
port obeys a diffusion equation then the effects of the eddies in trans-
porting momentum across lines of latitudes may be parameterized through
the transfer coefficients for sensible heat and potential vorticity.

The potential vorticity transport was calculated using (2.1) and

(2.7) as follows

M
1
[ch]x = e mzi m{C(m) V(m) - B(m) W(m)] (3.19)

The corresponding transfer coefficient may then be evaluated by

gp 1 a(cp<o) + )
a J

where QP(O) = U(0), as defined by Eq. (2.23)

Daily wvalues of the meridional potential vorticity transport and
Kg the transfer coefficient, were calculated as a function of ¢ and p.
5P

Calculations of the potential vorticity transport using the

monthly and annual means of N and M in (3.18) were carried out by
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Wiin-Nielsen and Sela (1971). The transport was found to be negative
everywhere except for the 850 mb surface and a small area around L4O°N

at 20 cb. The magnitude of the transport was found to be ~ .8 x lO-2

cm s,ec:-2 for the annual mean.

In our calculations we find a band extending from 35°N to 55°N in
which positive values of the potential vorticity transport are found at
all pressure surfaces. Outside of this band negative values are
obtained everywhere.

Figure 19 shows the distribution of [VCP]X;S as a function of ¢
and p. Maximum values, both positive and negative, are found at the
upper layers of the troposphere (L40-17.5 cb) a typical value in the
mid-latitude land ~ .4 x lO-2 cm sec"2 while values around -.25 x lO"2
cm sec-2 occur in the northern and subtropical regions.

KCp was calculated using (3.20). The denominator, the latitudinal
gradient of absolute potential vorticity, is generally expected to be
positive everywhere due to the dominance of the p-term. This is so in
the time average, However, there are a sufficient number of daily oc-

currences of negative values to yield values of K, the same sign as

¢p

[v@p]x. The influence of these cases with negative values are exagger-

ated in their effect on [K ]S because they are usually small. This

tp
observation was made by a cursory examination of some LO time periods.
. 11 2 -1
Values of KC are of the order of magnitude of 10 cm  sec .
Y
These values may be compared with those obtained by Wiin-Nielsen and

Sela (1971) using the annual mean values of [VCP]A.and.BQP(O)/aa¢. In
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his study K is positive everywhere and of the order of 10 cm

CP
-1
sec .

It is to be expected that calculations based on daily values would
result in larger variations with respect to latitude and pressure than
calculations based on annual mean values. The calculations herein

result in a mean value of K, , while that in Wiin-Nielsen and Sela

CP
result in a value of ch for the time mean of Cp' Oort (196k4) dis-
cusses the differences encountered upon comparing results from the
mixed time-space domain. Terms a and b in (3.18) were calculated sepa-
rately to evaluate the relative contributions to the transport. Term b
was negative almost everywhere except on the 85 cb surface and between
42.5°N and 62.5°N on the 20 cb surfaces. Term a dominated the result,
However, it has been noted (Holopainen, 1967) that this data yields
momentum transports too large by about a factor of 2. A correction of
this magnitude might result in term b dominating the result and yield-
ing potential vorticity transports of negative sign in a greater number
of locations.

Whereas Wiin-Nielsen and Sela (1971) have shown that over a long
time period the potential vorticity transport can be approximated by

(3.20) with positive K, the present results indicate this not to be

CP
the case in the short term. Use of Green's (1970) suggestion and

(3.18) to parameterize the eddy momentum transfer should be limited to

the flow on an annuval or at best monthly time scale.



CHAPTER IV

THE NUMERICAL MODEL

4.1 INTRODUCTION

Since the attempt by Phillips (1956) to simulate the atmospheric
circulation by integration of a simplified set of the Navier-Stokes
equations there have been a host of general circulation models of vary-
ing complexity constructed (Kasahara and Washington, 1967; Smagorinsky,
1963; Manabe et al., 1970 and others). Some studies are limited to
particular kinds of fluid flow; specifically, Ogura (1962a, 1962b,
Lilly (1969), and Orzag, (1969) have investigated the evolution of tur-
bulent large scale flows. Ogurs performed his computations in wave
number space while Lilly's are in the real domain. Orzag discusses the
benefits and drawbacks of the two methods.

Lilly constructed a two-dimensional model of turbulent flow and
was able to approximately verify the "minus five-thirds" and "minus
three' spectral ranges. His model was described on one of an infinite
number of contiguous identical squares. Thus, the lateral boundary
conditions are that the flow is cyclic in both directions. Lilly's
initial condition is a spike in the kinetic energy spectrum at w, = 8

(in one run mi==h) with noise several orders of magnitude below the

spike for the other spectral components.

76
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In a study by Bray, reported on by Batchelor (1969) the integra-
tion commenced from a variety of spectral distributions. An interme-
diate spectral region between the wave numbers which initially contained
the enstrophy and those at which dissipation was important was found
to adhere fairly closely to a "minus one" power law.

This study attempts to extend the previous studies by using a
combination of Lilly's forcing functions and boundary conditions in the
framework of Phillips' (1956) quasi-geostrophic model. The disturban-
ces will be isotropic and homogeneous, and cyclic in the x- and y-
directions with zero mean. In the absence of generation and dissipa-
tion of energy and enstrophy there exist two comservative quantities,
namely, the potential enstrophy and the sum of the kinetic and avail-
able potential energies. (These quantities will be defined below.)

Phillips (1956) has shown that the two-level quasi-geostrophic
model exhibits many of the characteristics of the atmosphere. The

conversion of energy from zonal available potential energy, A_, to

7
A the eddy mode, C(AZ,Ae) the conversion from Ae to Ke’ C(Ae’Ke)
and C(Ke’KZ)’ the conversion from the eddy to zonal kinetic energy are
all qualitatively well represented. Ke and KZ denote the eddy and
zonal forms of kinetic energy. The model used in this study is a
simplification of Phillips' in that we omit the zonal modes of energy.

The primary concern here is the interactions among waves.

It is known that many of the assumptions (isotropy, homogeneity)
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entering into two-dimensional turbulence theory (Kraichnan, 1967) are
not applicable to the atmosphere. The necessary condition for the ex-
istance of an inertial subrange, that the wave numbers at which energy
is put into the spectrum is well removed from the range in which dis-
sipation becomes important, is not observed in general clirculation
models (Manabe et al.,1970). Yet, in the atmosphere (Wiin-Nielsen,
1967; Julian, et al., 1970) as well as in general circulation studies
(Manabe, et al., 1970) the spectral slope of the kinetic energy is very
close to -3 on a log-log scale.

With the aid of a simple numerical model we shall show that a -3
slope is not unique to the set of equations representing the atmosphere
but that other quasi-stationary slopes may be obtained by the manipu-
lation of the intensity of the circulation through the amplitude of the

heating field and the eddy viscosity coefficient.

4.2 FORMULATION OF THE MODEL
The equations to be used for the model are taken, except for the

omission of the surface friction effect, from Phillips (1956) and are

%t.m_g.xa_h%-fovhng% (k1)
%’+%§’+{£X +fou=—-§—$+vvzu (h.2)
%+§_yv g_:: _ 0 (1.3)
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P = ORT (L4.5a)

and = -pg (L.5b)

where
Vv is the geopotentlial height

w 1s the vertical motion when pressures is used as vertical co-

: _dp
ordinate (= dt)
dQ . . : . .
It 1s the nonadiabatic heating rate per unit mass.

© is the potential temperature ( °K)
p i1s the density
T is the temperature ( °K)
c_ 1s the specific heat of air at constant pressure, and
b
- -1
£ =20 sin (L45°) (=10 'sec ) and is the earth angular velocity.
Equations (L4.1) and (4.2) are to be used at levels 1 and 3 (see

Figure 20). The subscripts will indicate the level at which the quan-

tity is evaluated.

0O P = ocb u% =0
) >
1 25 '55 ql = -Vl vql + szql + H
2 50 fop =2 (—5-+§2-V)T+H/g-vv2T
P ot A
2
2 ™, e
X 9 T V3 Va3t wWhag - H
4 100 w, = 0

Figure 20. Schematic of model's vertical resolution, equations,
and vertical boundary conditions,
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The vorticity equations on surfaces 1 and 3 are obtained by cross
differentiation of (L4.1) and (L4.2) and then forming the difference
(4,2) = (4,1). The geostrophic assumption is introduced for all the
velocities in the resulting equations except in terms containing V - %,
the horizontal divergence. For this term we substitute from (L.3), the
continuity equation. Using the boundary conditions of w= 0 at p =0

. oW
and 100 cb, and evaluating E@ at p =25 cb and p = 75 cb by centered

finite differences we get

VeV, o= -V Vs = —we/Pz (4.6)
The vorticity equations are
d = £ ot
FARER TS R (4.72)
3 > -fotp
- AV -
(X% Vs )C5 P vv2§5 (4. 7o)

The Coriolls parameter, f, is taken to be a constant even when
differentiated for two reasons. Firstly, we do not wish to disturb the
isotropy of the model and so we must treat the two lateral directions
alike. Secondly, if (4.7a) and (L4.7b) are integrated over the domain
of our model and the approximation of %§ = B, a constant, is made then
the B-effect in the integral sense is zero in the light of our boundary
conditions and the nondivergent nature of the flow. Since we are inter-

ested in integral quantities the retention of the p-terms in (L.7a) and

(4.7b) are unnecessary.
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The thermodynamic equation (4.4) with the use of the equation of

state, the hydrostatic equation and a geostrophic stream function

defined by

fv = ¢ (4.8)
becomes

fw

02 20, > R 49 (4.9)

= AN (= . - ==
5 [(Bt + v, V)T T F  dat
2 p o

where T = Wl - V,, a measure of the thermal field. (Note change in

3
definition of T)

> 1i,-> ->

and v, = E(Vl + V3)

Finite differences have replaced the vertical derivatives in (4.9)

and

KQ = fi @2 [¢5 - 5251)(@5 - @l)]-l, a constant

Only two of the nonadiabatic heating effects are included in the
last term in (L4.9). These are a heating term, which provides a means
of putting energy into the system, and a representation of lateral eddy

diffusion. We may then wrlte

s _ %9 M4
at  dt = at

where
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dq, fcH
h ___Oop
d 2
K AR
dq c
4 - 2o Fp
dt R

and R is the universal gas constant.

Both of these effects, while being defined at P, = 50 c¢b may be
thought of as being the average value for an entire column of the at-
mosphere.

Phillips (1956) formulated the dissipative mechanism to include
the effects of horizontal diffusion and surface drag. Charney (1959)
contends that the vertical diffusive effect should be included while
the effects of the horizontal diffusion may be neglected.

Smagorinsky (1963) includes all three effects in his atmospheric
simulation and finds that the horizontal diffusive effects on the eddy
kinetic energy are of the same order of magnitude as the effect of
vertical diffusion combined with the surface friction.

Manabe et al. (1970) confirm this finding and also show the ver-
tical and horizontal effects to have similar spectral distributlons
especially for m 2v8. Furthermore, the vertical diffusion effects are
shown to be limited to the atmospheric layer beneath 85 cb. In this
study we do not wish to include surface effects since we certainly
cannot expect the two-dimensional turbulence theory to be applicable

in that region.
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We shall also omit the vertical diffusion effect. It may be
thought of as belng included in the horizontal diffusive effect by an
adjustment of the eddy viscosity coefficient; The characteristic of
the dissipative mechanism which must be retained is 1ts spectral dis-
tribution and this is done. The magnitude of the eddy viscosity co-
efficlent is a parameter in this study which will be varied.

Eliminating a, between (4.6) and (4.9), and between (L.7) and (4. 9)

yilelds the prognostic equations of the model which are

o
1 >
EIRIE R LN
o
3 >
_— = -V . - .
% 3 vq5 + VV2q3 H (k4.10)
where ql = V2W1 - XQT
2 2
= .11
A v WB + AT (4.11)

H, the heating term in Equation (4.10), acts as the energy input
to the system. If the dominant wave number of H is taken to be mi

then all the two-dimensional Fourier components having max(mx,my) = m:_L
will be included, The heating, therefore, will not be truly monochro-
matic,

The heating field at time t + 1-1s related to the previous heating

field by the following equation

t+1 t 1/2 ~t+1
H - RE +[1- R /2%
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R is a correlation coefficient such that 0 < R < 1 and is a
measure of the continuity of the heating field with time. E is the
varying part of H and the amplitudes of its spectral components are
chosen randomly from a Gaussian distribution. The total amplitude of
ﬁ is kept constant by normalization and so only the phase relationships
change.

Since the thermal field at any time is a function of the heating
field (as well as other variables) a value of R close to zero implies
little correlation between the temperature field and the newly composed
heating field. Inhibition of the generation of available potential
energy results,

In the experiments conducted in this study m.:,L = 8, This corres-
ponds to the spectral region of maximum baroclinic instability as given
by theoretical considerations (Derome and Wiin-Nielsen, 1966). The
observation studies (Saltzman and Fleisher, 1960, 1961; Wiin-Nielsen,
1959) of the conversion of eddy available potential energy to eddy
kinetic energy indicate a maximum at m ~ 6,7. By using mi = 8 the con-
version process is forced to have its maximum at m = 8, thereby main-
taining correspondence with the atmosphere.

As already mentloned the region of concern will be one of an infi-
nite number of identical contiguous volumes contalning five pressure
surfaces. Filgure 20 contains a schematic of the model's vertical reso-

lution.
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The lateral boundary conditions are that the flow is cyclic in
both the x and y directions. Figure 21 illustrates these conditions

on a5 x 5 grid.

(535) (5;51) (5;2) (533) (5;4) (535) (5;1)

= = = o mm —m e —

(L1) (132) (L3) (LB (15) |

(135) | P (131)
(255) E (251) (235) | (23)
(3;5) ! (3;1) (355) : (351)
(&35) 1 (k1) (L35) 1 (b;1)
(5;5) ;_ (551) (532) (5;3) (55 4) (535) : (531)

(135) (131) (132)  (133) (1;L) (1;5) (1;1)

Figure 21, Illustration of cyclic boundary conditions
on a5 x5 grid.
4,3 NUMERICAL METHODS
From the initial conditions a forward difference time step was used
to forecast ql and q5 at t=1. This is an unstable differencing scheme
and was only used for the first step since the Adams-Bashfort scheme
requires that the fields of ql and q3 be known for two consecutive time

steps. For this first step friction and nonlinear terms are neglected.

The forward difference time scheme may be written as

1 o) o)
= +
dq ql H At
1 o) o)
q3 = q3 - H At (h.lB)
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where the superscript denotes time step and At is the time increment.
The integration proceeds using the Adams-Bashfort time differencing

scheme as follows:

o = gt 32 F0 - 12 PRt (h.1k)

where F denotes the r.h.s. of (4.10).
This scheme is slightly unstable (Lilly, 1965) and the amplifica-

tion factor in the case of a periodic solution is given by

1/2

A = (1+ Ph/h +oues ) (4.15)

where P = cAt and ¢ is a characteristic wave speed.

If we take 30 m/sec to be an upper bound to the wave speed and Ax
to be U475 km, then to insure that a wave will move through Ax in t >
Uat we must have At < 3900 sec. We have taken At = 3600 sec. This
results in ¢ = 30m/sec'2n/L and P = 2.2 x lO'-2 which yields A ~ (1 +
10'7).

This time differencing scheme has been used by Lilly (1969) and
Orzag (1969) with satisfactory results.

The Jacobilans, -% « VT and —% - Vq, are evaluated using the Arakawa
(1966) second-order scheme. It conserves kinetic energy and vorticity.
Lilly (1969) noted that usage of a fourth-order scheme also having these

conservative properties increased the aliasing in the short wavelength

portion of the spectrum and otherwise little affected the results.
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The Jacobian is written as follows.

(-g'vq)i R [,

N A v a, .)

v ip,jp)(qip,j_ 1,3

i,Jp

+( ¥, +y ¥ -V )(qi ~q )

im, jm i,jm_ im,jp 'i,Jp ,J Tim,

¥, LtV -V !

Y, =V v (e Lomay L)
ip,Jd 'ip,Jp 1im,J 1m,Jp 1,JPp 1,d

g, g Vip, 577

)(qi e )

N -
im,jm “im,J 5d i,jm

ip,jp_(vi,jm Vim, 3/ %m, jm

HY, v )
(Yip, 57, 59¢

+( - da. . -(v, o~V L )a, .
(Wi,jp 11fim,:J)qlm,ap (Wlp:J i,jm" "ip,Jm

= | J(q,V)] (4.16)

where ip = i+l, im = i-1, jp = j+1 and jm = j-1.

The linear spectrum is formed by summing the contributions of com-
ponents whose two-dimensional wave number vector (m,n) describes a
square about the origin with sides equal to 24, where m,n and £ are
integers. Therefore, we may write

Y/ 2-1

Ke(z) = Ke(m,z) + Ke(z,n) (L.17)

m=1 n=1
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4.4 ENERGETICS OF THE MODEL

4.,4.1 Formulation

The formulation for the calculation of the energies and energy
transformations for the model is very similar to that of Phillips (1956).
The absence of a zonal flow and area means of the stream functions, Wl
and WB, result in the existence of only the eddy form of available po-
tential energy and kinetic energy. The energy diagram pertinent to our

model is depicted in Figure 22.

0]

G( Ae)_ﬁ A C(Ae,Ke) K,

N

D(A,) D(K_)
Figure 22. Energy flow diagram for the model.

The equation for the time rate of change of available potential
energy per unit mass is derived by multiplying (4.9) by (wl - WB) which

results in

2
3 1A 0 L L 2
Al = - L= T)“axd
ot Ae 2 L2 ot fo fo (T) dxdy
2 f
\° L L L L
== Y (Ve VD)dxdy + ——— [ [ @, Tdxdy
2 o) e} 2 2
L L°P
2
2y L ,L 2 1 L ,L
) v = a
A 2 fo fo (vr) dxdy+L2 fo fo(HT) xdy

(14.18)

The first term an the r.h.s. of (4.18) represents the nonlinear
cascade of available potential energy in wave number space. This term

vanishes when summed over the domain if the boundary conditions restrict
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the net transport of any quantity out of the domain to be zero. There-

fore, the integral value of this quantity is not of importance, but its
decomposition in wave number space is.

The second term on the r.h.s. of (4.18) represents the conversion
of energy between the available potentlal energy and the kinetic energy,
and appears with opposite sign in (4.19).

The last two terms in (4.18) may be thought of as contributing to
the generation of the available potential energy. The diffusion term
tends to smooth out the temperature gradients and always ylelds a nega-
tive contribution. The last term contains the product of the heating
and the temperature fields. When heating occurs at relatively higher
temperatures than the cooling a positive contribution to the time rate
of change of available potential energy will result.

The equation for the time rate of change of the kinetic energy per
unit mass is obtained by multiplying (4.7a) by -vl, (4.70) by —W5’

adding and integrating. These manipulations yield*

L

9 = 91 L1 2 2
3t e © ot L2 fo fo 2 [(le) + (VWB) dxdy ]

1 L ,L >
—'éfofo v (V) - VE) + ¥

A (V3 - Vt)] dxdy

3

f
0

s [2 12 (a,1) axy - % JE T (6] + 65) axay
2 (4.19)

*(4,18) and (4,19) may be multiplied by Po/g ~ 103 gm cm™2 to obtain
units of erg cm~2 for energies and erg cm2 sec-1 for energy transfers
and conversions,
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The first term on the r.h.s. of (4.19) represents the nonlinear
cascade of kinetlc energy in wave number space and has zero contribution
to the time rate of change of total kinetic energy when summed over
wave number.

The second term on the r.h.s. of (4.19) has already been noted as
being identical except for sign as a term in the equation for the time
rate of change of available potential energy and represents the conver-
sion between the two energy forms.

The last term in (4.19) denotes the dissipation of kinetic energy
due to lateral eddy viscosity and i1s always a loss.

We also evaluate the enstrophy and the nonlinear cascade of this
quantity in wave number space.

The enstrophy is given by

= S5 Jo 3 UT )T+ (T axy (4.20)

L

The rate of enstrophy gain due to the nonlinear cascade is given

by
%2 L L.L, 3 o

I(m|n,2) is zero when integrated over the domain and only its de-
composition in wave number space is of interest.

- -
If ¥, T, H, V'VT, V¥, w, and { are written as follows*

*A11 double summations in (L4.22), (4.23), and (L4.24) have identical
limits to V.
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M M .

v = % T Amn) Smxrw)
m=-M n=-M

#0 #0
T = 2 X B(m,n) eiJ(mx + ny)
H = z 2, ¢(m,n) ej'J(mX + ny)

V-vr = 2 %, D(m,n) ej'J(mX + ny)

v - vt = % Y. E(m,n) eiJ(mx + ny)
w = ¥ ¥ (m,n) eiJ(mx + ny)
£ = % % F(mun) &R T ) (4.22)

then the areal mean of the quantities involved in the energy budget

may be written as (* indicates complex conjugate)

KE
AL = Y, 2 B(m,n) B*(wm,n)
J2 2 2
Ke = = Y 2 (m” +n°) Ai(m,n) A;(m,n) (1 =1,3)
e
c(aK) = - ¥ ¥ B(mn) o*(m,n)
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D(a) = % T (n +n) Bmn) B(mn)

D) = wi' T T (uf +0°) Amn) Ax(mm) (i = 1,3)
Cmfn,2) = I T A (mn) B(mn) (i =1,5)

CA(mln,z) D) B(m,n) D*(m,n)

G(Ae) = 2 2 c(m,n) B¥(m,n) (4.23)

Subscript i indicates summation over pressure surfaces 1 and 3.

The enstrophy is

t = 3 LIr(mn) m(mm)  (1=13) (1.24)
while

M

2 I(mln,z) = -2 L Ei(m)n) Fi(m)n) (i = 1;3)

m=1

L4, L, 2 The Diagnostic Calculations

The time step used in (L4.14) for the time integration was taken
equal to 1 hour. The diagnostic calculations of the various terms of
(4.18)-{4.23), inclusive, were performed every 12 time periods or 12
hours in real time.

Integration of the model was attempted for various values of IH,
and v. A value of .7 for R equally weights the past heating field and
the newly formed component. This value was used in all the experiments

discussed in the next section.
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The value of ’Hl is particularly influential in the growth rates
of the other waves during the early quasi-linear period. For example,
a factor of two in lHi results in a factor of about 16 in the growth
rate of wave number 32. Phillips (1963) gives the limitation on the
heating rate consistent with the quasi-geostrophic approximation to be
about lO_l m2 sec-i. The values of the heating rate associated with the
values of lHl used in this study are listed in Table 8 and are within
the limit given by Phillips.

TABLE 8

HEATING AMPLITUDE AND COEFFICIENT OF EDDY VISCOSITY

Case A Case B Case C
th/dt0<lOcmesec_5) 0 70 21
v (x 109 em? see™?) .85 1.7 .85

From our observational calculations, values of the coefficient of
eddy viscosity near 109 cm2 sec-l seem reasonable., The values of v
used in the three cases to be discussed are contained in Table 8.

Although the continuous equations ( 4.18) and (4.19) have exact
energy integrals the finite difference forms do not because of the
spatial and temporal finite difference approximations used in both the
prognostic and diagnostic equations.

Further, since the diagnostic calculations are performed once for

every 12 steps of the prognostic calculations we cannot expect precise

correspondence between the energy changes evaluated by the l.h.s. of
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(4,18) and (4.19) and their r.h.s.

A measure of the representativeness of the diagnostic calculations
combined with truncation and aliasing errors may be obtained by com-
paring the energy change as calculated directly from the stream function
fields with the budget obtained from the energy generation and dissipa-
tion.

Table 9 contalns these values for the cases under discussion. E

denotes total energy.

TABLE 9

CHANGES IN TOTAL ENERGY COMPARED WITH RESIDUE OF
ENERGY BUDGET CALCULATIONS (x 109 cm?2 sec™2)

t (hours)
2L 300 600 900 1200 1500
Case A
E 2.1 20.3 31.1 L3.1 56.6
AB 18.1 10.8 12.0 13.5
AE(budget) 14.8 15.9 13.9 14.8
Case B
E 2.1 15.3 22.4 30.2 39.2 5.1
AE 13.2 7.2 7.8 8.9 6.0
AE(budget) 12.5 11.8 8.8 11.6 10.0
Case C
E .2 1.6 2.6 3.3 3.9 Lok
AE 1.4 1.1 7 .6 .6
AE (budget) 1.3 .5 5 1.2 1.1

The comparisons indicate that the diagnostics are representative.

Case C has the best agreement with only a 2.%) difference between AE
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and AE(budget) after 1200 time steps and a 9% difference after 1500
hours. Case B yields the poorest agreement with a 2% difference after
1200 hours and a 27% discrepancy after 1500 hours. Case A shows 9%
difference after 1200 hours. There seems to be no particular reason
for the variation in the difference between the energy calculated using
the r.h.s. of (4.18) and (4.19) and that calculated by the 1l.h.s. of
these two equations. These results may be compared with those of
Phillips (1956) (realizing, however, the additional problems which
existed at that time) in which the discrepancies reached 100% by about
600 hours and continued to increase thereafter.

Smagorinsky (1963) also compares the change in energy with the
energy budget for a 22-day period. It seems, however, that he is cal-
culating the diagnostics at every time step and so he avoids the problem
of representativeness.

He obtains a 3.97% difference per day for the eddy energy and a
.18% difference per day for the total energy between the energy change
and the budget. Similar quantities for total energy are .3% day-l,
.11% day—land .15% day-l for Cases A, B, and C, respectively. These
figures are the averages taken over the entire duration of the runs.

If a similar analysis is done on the energy budget as a function
of wave number the correspondence is less good. The specific values of

w and therefore the conversion of available potential energy to kinetic

energy are relatively less reliable than any other process. This is
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aside from the question of representativeness. The time derivative of
the temperature field is evaluated over a 2L4-hour period while all
other factors involved in the calculation of w are evaluated from their
instantaneous values. Although the individual wave number values of
C(Ae,Ke) are, therefore, less reliable than the other processes, never-
theless, the shape of the curve is considered to be representative and
meaningful.

It can also be shown that the changes in kinetic and available
potential energy due to the nonlinear transfer processes do not exactly
balance the dissipation and energy changes with respect to wave number.
Here again, there exists a factor aside from the question of represen-
tativeness and that is the response of the finite difference representa-
tion of the Jacobian. As mentioned previously and observed in the cal-
culation, the Arakawa second-order Jacoblan is conservative if the
boundary conditions allow zero net flux into the domain. However, the
finite difference Jacobian undoubtably distorts the transfer in wave
number space. Evidently this distortion does not obscure the main
features of the nonlinear transfers.

It would be of interest to compare the nonlinear energy gains as
determined by finite differences using the Arakawa Jacobian to that
evaluated by the summation of triple products, as done in a previous
chapter on the observational calculations.

The general distribution of nonlinear energy gain, both for kine-

tic and available potential energy, resembles observational calcula-
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tions (Yang, 1967) and leads to a reasonable qualitative picture of

the energy cycle if not an exact quantitative distribution.

4, 4,3 The Energy Cycle and Nonlinear Transfers

We shall use the results of Case A to illustrate the following
discussion. Figures depicting the results of Cases B and C are con-
tained in Appendix E. Figure 22 contains the generalized energy flow
diagram for the model.

There is an initial start up period which lasts for 200 to 300 time
steps, depending upon the particular case, during which both forms of
energy increase rapidly (see Figure 23). Thereafter the available po-
tential energy decreases somewhat and then is quasi-stationary or very
slowly decreasing with time. The eddy kinetic energy, on the o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>