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CHAPTER I

Introduction

This dissertation consists of three distinct essays spanning the fields of trade and

labor economics. The first essay integrates these two fields, examining the effects of

trade liberalization on local labor market outcomes and workers’ migration patterns.

I develop a model of local labor markets that describes how tariff changes across

industries affect wages in local labor markets within the liberalizing country. I then

use these theoretical results to measure how Brazil’s 1987-1995 trade liberalization

affected wages and interstate migration within the country. I find that wages fell most

in regions facing larger liberalization-induced price declines and that liberalization

resulted in a substantial shift in migration patterns. These results demonstrate

the empirical value of the theoretical framework and represent the first systematic

evaluation of the effects of liberalization on internal migration.

The second essay focuses on capital-skill complementarity, a potentially important

driver of increased income inequality. I argue that standard cost function estimates

assuming quasi-fixed capital systematically overestimate the effect of capital-skill

complementarity when subject to skill-biased technological change. I show that the

bias results directly from cost minimizing behavior. I also develop a novel instrumen-

tal variables strategy based on the tax treatment of capital to accurately measure

1
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the effect of complementarity, confirming the model’s prediction that the standard

approach overestimates the effect of complementarity.

The third essay, written with David Byrne and Ryan Michaels, examines the im-

plications of global production sharing for measuring the price of semiconductors,

a critical input to high-end domestic manufacturing and U.S. productivity growth.

Our primary finding is that international shifts in the location of semiconductor

wafer production toward lower-cost countries can result in unmeasured price de-

clines of up to 0.8 percent per year. This finding has important implications for

productivity measurement, since unmeasured price declines are likely to result in

overstated productivity measurements in industries using semiconductor wafers as

inputs to production.



CHAPTER II

Regional Labor Market Effects of Trade Policy:
Evidence from Brazilian Liberalization

2.1 Introduction

Between 1988 and 1995, the Brazilian government abandoned a policy of import

substitution in favor of drastic reductions in overall trade restrictions and a decrease

in the variation of trade restrictions across industries. Along with the removal of

non-tariff barriers, between 1987 and 1995 average tariffs fell from 54.9% to 10.8%,

and the standard deviation of tariffs across industries fell from 21.3 to 7.4. Since

the industrial composition of the labor force is quite varied across Brazilian states,

the effects of trade liberalization were likely to have varying effects across different

local labor markets in the country. In this paper, I develop a specific-factors model

of regional economies to examine the relationships between trade liberalization and

regional labor market outcomes. I then use the model’s predictions to measure the

liberalization’s effect on wages in local labor markets and the effect on interstate

migration patterns in Brazil.

I find that local labor markets whose workers are concentrated in industries facing

the largest tariff cuts were negatively impacted by liberalization, relative to markets

facing smaller cuts. Regions whose output faced a 10% larger liberalization-induced

price decline experienced a 7% larger wage decline, relative to other regions. More-

3
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over, I find that workers responded to this change in the geographic returns to work

by shifting inter-state migration patterns, with increased migration flows out of states

whose labor force faced the largest tariff cuts and into states facing smaller cuts. The

most affected Brazilian states gained or lost approximately 2% of their populations as

a result of liberalization-induced shifts in migration patterns. Both of these findings

support the theoretical predictions of the specific-factors model of regional economies

and confirm its value in guiding empirical specifications.

This is, to my knowledge, the first study to systematically evaluate the effects

of national trade policy on internal migration.1 The findings contribute to the em-

pirical trade and local labor markets literatures in a number of ways. First, the

results demonstrate a fundamental link between national trade policy and regional

employment, housing, transportation, and poverty policy. The theoretical and em-

pirical results imply that trade policy makers can use their knowledge of the pre-

liberalization industrial mix of different regions to predict what regions are likely to

see the largest wage changes and subsequent migration due to a proposed change in

tariff structure. This will allow national governments pursuing large trade reforms

to anticipate which regions will experience increased demand for infrastructure and

public services, facilitating coordination of regional policies with changes in national

trade policy.

Second, the model presented here provides a clear theoretical foundation in which

to understand the circumstances under which national trade policies have disparate

effects across different regions of a country. Previous empirical studies examin-

ing India’s trade liberalization utilize the pre-liberalization industry mix of a re-

1Although Aguayo-Tellez, Muendler and Poole (2009) do not measure the effect of trade liberalization on internal
migration, they demonstrate that globalization in general may influence workers’ location choices, finding that
Brazilian workers at exporting firms are less likely to migrate and that migrants tend to choose destinations with a
high concentration of foreign-owned firms.
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gion’s workforce to determine how the region will be affected by a set of tariff

changes (Topalova 2005, Edmonds, Pavcnik and Topalova 2007, Hasan, Mitra and

Ural 2007, Hasan, Mitra and Ranjan 2009).2 The model developed here provides

a theoretical foundation for the use of pre-liberalization industry mix to infer the

effects of subsequent tariff changes. In particular, the model provides guidance on

how to treat the nontraded sector and yields predictions both for the sign of lib-

eralization’s effects, but also for their magnitudes. This allows for sharper tests of

the mechanisms through which liberalization effects local labor markets, and the

empirical results support the model’s predictions quite closely.

Third, this paper contributes to a growing empirical literature evaluating the

effects of Brazilian trade liberalization on labor market outcomes. Since Brazil’s

liberalization was large, quickly implemented, and well documented, it has been a

fruitful ground for research on the relationship between trade policy and inequality.3

This paper broadens the scope of this previous literature by examining the differ-

ential effects of liberalization across geographic regions of Brazil, rather than only

considering country-wide impacts of liberalization.

Finally, the results complement the conclusions of previous work examining the

effects of national shocks on local labor markets in the U.S. (Bartik 1991, Blanchard

and Katz 1992, Bound and Holzer 2000). These studies examine the effects of changes

in national industry mix on local labor markets, assuming that industry employment

changes at the national level are exogenous to regional performance. This paper

similarly maps national shocks into their regional effects, but contributes an explicit

economic mechanism explaining the variation in national industry mix, showing that

2McCaig (2009) examines the effect of U.S. liberalization on labor market outcomes across Vietnamese regions,
using a very similar empirical approach. To the extent that U.S. liberalization caused price changes faced by
Vietnamese producers to vary across industries, the model developed here can be applied to that context as well.

3Goldberg and Pavcnik (2007) provide a summary, and more recent work includes Ferreira, Leite and Wai-Poi
(2007) and Gonzaga, Filho and Terra (2006).
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changes in national industry employment are driven by plausibly exogenous trade

policy variation.4 Since the specific-factors model of regional economies is based

upon price changes across industries, it is not limited to examining liberalization.

It can be applied to any situation in which national price changes drive changes in

local labor demand.

The remainder of the paper is organized as follows. Section 2.2 develops a specific-

factors model of regional economies in which industry price changes at the national

level have disparate effects on wages in the country’s different regional labor markets.

Section 2.3 applies the specific-factors model in the context of trade liberalization

and compares the resulting empirical specifications motivated by the model to those

in previous work. Section 2.4 describes the data sets used, and Section 2.5 describes

the specific trade policy changes implemented in Brazil’s liberalization along with

evidence in favor of the exogeneity of the tariff changes to industry performance. Sec-

tion 2.6 presents an empirical analysis of the effects of trade liberalization on wages

across local labor markets, and Section 2.7 demonstrates liberalization’s impact on

changes in interstate migration patterns in Brazil, both supporting the predictions of

the model and finding economically significant effects of liberalization across regions.

Section 2.8 concludes.

2.2 Specific-Factors Model of Regional Economies

This section develops a specific-factors model of regional economies in which indus-

try price changes at the national level have disparate effects on wages in the country’s

different regional labor markets. Each region’s endowment of industry-specific fac-

tors drives the equilibrium allocation of labor across industries and determines the

effect of goods price changes on regional wages. In the baseline model, price changes

4See Figure 2.4 and the discussion in Section 2.5.
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in industries that use a large amount of regional labor and have highly elastic labor

demand will have the greatest impact on regional wages. Adding a nontraded sector

to the model shows that local nontradables prices move with tradable prices, inform-

ing their empirical treatment. The section concludes by discussing the role of labor

migration across regions in smoothing regional wage variation.

2.2.1 Baseline model

The baseline model treats each region within a country as a Jones (1975) specific-

factors economy.5 Consider a country with many regions, indexed by r. The economy

consists of many industries, indexed by i. Production uses two inputs. Labor, L,

is assumed to be mobile between industries, is supplied inelastically, and is fully

employed. Labor is immobile between regions in the short run, but may migrate

between regions in the long run (considered below). The second input, T , is specific

to each industry in each region, i.e. it is not mobile between industries or regions.

This input represents fixed characteristics of a region that increase the productivity

of labor in the relevant industry. Examples include natural resource inputs such

as mineral deposits, fertile land for agriculture, regional industry agglomerations

that increase productivity (Rodriguez-Clare 2005), or fixed industry-specific capital.6

All regions have access to the same technology, so production functions may differ

across industries, but not across regions within each industry. Further, assume that

production exhibits constant returns to scale. Goods and factor markets are perfectly

competitive. All regions face the same goods prices, Pi, which are taken as given

(endogenous nontradables prices are considered below).

5The specific-factors model is generally used to model a country rather than a region. In such a framework, the
current model could be applied to a customs union in which all member countries impose identical trade barriers
and face identical prices.

6An alternative interpretation of T is as a multiplicative productivity term on a concave production function
taking L as an input. If production is assumed to be Cobb-Douglas, i.e. Y = ATαL1−α, one can see that variation
in Tα is isomorphic to variation in the productivity term A.
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When labor is immobile across regions, this setup yields the following relationship

between regional wages and goods prices. Note that all theoretical results are derived

in Appendix A (the following expression is (2.37) with labor held constant).

ŵr =
∑
i

βriP̂i ∀r, (2.1)

where βri =
Lri

σri
θri∑

i′ Lri′
σri′
θri′

. (2.2)

Hats represent proportional changes, σri is the elasticity of substitution between T

and L, and θri is the cost share of the industry-specific factor T in the production of

good i in region r. Note that each βri > 0 and that
∑

i βri = 1 ∀r, so the proportional

change in the wage is a weighted average of the proportional price changes.

Equation (2.1) describes how a particular region’s wage will be impacted by

changes in goods prices. If a particular price Pi increases, the marginal product

of labor will increase in industry i, thus attracting labor from other industries until

the marginal product of labor in other industries equals that of industry i. This

will cause an increase in the marginal product of labor throughout the region and

will raise the wage. In order to understand what drives the magnitude of the wage

change, note that for a constant returns production function, the labor demand elas-

ticity equals σ
θ
.7 The magnitude of the wage increase resulting from an increase in Pi

will be greater if industry i is larger or if its labor demand is more elastic. Large in-

dustries and those with very elastic labor demand will need to absorb a large amount

of labor from other industries in order to effect the decrease in the marginal product

of labor necessary to restore equilibrium. Thus, price changes in these industries

result in larger wage changes after the industrial reallocation of labor.
7Denoting the production function F (T, L), and noting that T is fixed by definition, the labor demand elasticity

is −FL
FLLL

. Constant returns and Euler’s theorem imply that −FLLL = FLTT . The elasticity of substitution for a

constant returns production function can be expressed as σ = FTFL
FLTF

. Substituting the last two expressions into the

first yields the desired result.
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The relationship described in (2.1) captures the essential intuition behind this

paper’s analysis. Although all regions face the same set of price changes across

industries, the effect of those price changes on a particular region’s labor market

outcomes will vary based on each industry’s regional importance. If a region’s workers

are relatively highly concentrated in a given industry, then the region’s wages will

be heavily influenced by price changes in that regionally important industry.

2.2.2 Nontraded Sector

This subsection introduces a nontraded sector in each region, demonstrating that

nontraded prices move with traded prices. This finding guides the empirical treat-

ment of nontradables, which generally represent a large fraction of the economy under

study. As in the baseline model, industries are indexed by i = 1...N . The final indus-

try, indexed N , is nontraded, while other industries (i 6= N) are traded. The addition

of the nontraded industry does not alter the results of the baseline model, but makes

it necessary to describe regional consumers’ preferences to determine the nontraded

good’s equilibrium price. I assume throughout that all individuals have identical

homothetic preferences, permitting the use of a representative regional consumer. In

particular, assume that each region’s representative consumer has CES preferences

over all goods and receives as income all wages and specific factor payments earned

in the region.

When labor is immobile across regions, this setup yields the following relationship

between the regional price of nontradables and tradable goods prices (the following

expression is (2.63) with labor held constant).

P̂rN =
∑
i 6=N

ξriP̂i, (2.3)
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where ξri =

(1−θrN )
θrN

σrNβri + ϕri + (σ − 1)µri∑
i′ 6=N

(1−θrN )
θrN

σrNβri′ + ϕri′ + (σ − 1)µri′
. (2.4)

ϕri is the share of regional production value accounted for by industry i, σ is the elas-

ticity of substitution across goods in consumption (not to be confused with σri, the

elasticity of substitution in production), and µri is the share of regional consumers’

expenditure allocated to good i. Note that each ξri > 0 and that
∑

i 6=N ξri = 1 ∀r,

so the proportional change in the nontraded price is a weighted average of the pro-

portional price changes for traded goods.

This finding is important in guiding the empirical treatment of the nontraded

sector. Previous empirical studies of trade liberalizations’ effects on regional labor

markets pursue two different strategies. The first approach assumes no price change

for nontraded goods, since trade liberalization has no direct impact on the nontraded

sector. This approach is not supported by the theory, which predicts that nontraded

prices move with traded prices. Artificially setting the price change to zero in the

large nontraded sector would greatly understate the scale of liberalization’s impact

on regional wages. The second approach removes the nontraded sector from the

weighted average in (2.1). This approach is more consistent with the theoretical

findings. If the nontraded price changes by approximately the same amount as the

average traded price, then dropping the nontraded price from (2.1) will have very

little effect upon the overall average. Appendix A describes the conditions under

which the nontraded sector will have exactly no affect on the overall average and can

be omitted.8 Ideally, one would simply calculate the terms in (2.4) using detailed

data on production values and consumption shares across industries at the regional

level. However, when data on regional production and consumption patterns are
8Omitting the nontraded sector will have no effect on the overall average when ξri = βri

1−βrN . Appendix A

demonstrates this fact and describes the restrictions under which the condition will hold exactly, though ξri and βri
are likely to be closely related in general, since part of the cross-industry variation in ξri comes directly from βri,
and ϕri is also likely to be highly correlated with βri.
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limited, the model implies that dropping the nontraded sector is likely to provide a

close approximation to the ideal calculation.

2.2.3 Interregional Migration

Following a change in goods prices, the disparate wage effects across regions will

change workers’ incentives to locate in different regions. Workers can benefit by

moving from regions whose wages were relatively negatively impacted and toward

regions that were relatively positively impacted. This interregional migration will

tend to equalize the impact of the price change across regions.

The mechanisms behind this equalization are demonstrated graphically in Figure

2.1, which represents a two-region (r = 1, 2) and two-industry (i = A,B) version

of the baseline model.9 Region 1 is relatively well endowed with the industry A

specific factor. In each panel, the x-axis represents the total amount of labor in the

country to be allocated across the two industries in the two regions, and the y-axis

measures the wage in each region. Focusing on the left portion of panel (a), the

curve labeled PAF
A
L is the marginal value product of labor in industry A, and the

curve labeled PBF
B
L is the marginal value product of labor in industry B, measuring

the amount of labor in industry B from right to left. Given labor mobility across

sectors, the intersection of the two marginal value product curves determines the

equilibrium wage, and the allocation of labor in region 1 between industries A and

B, as indicated on the x-axis. The right portion of panel (a) is interpreted similarly

for region 2. Although not necessary for any of the more general results, the figures

are generated under the assumption of costless interregional migration for ease of

exposition.

9Figure 2.1 was generated under the following conditions. Production is Cobb-Douglas with specific-factor cost
share equal to 0.5 in both industries. L̄ = 10, T1A = 1, T1B = 0.4, T2A = 0.4, and T2B = 1. Initially, PA = PB = 1,
and after the price change, PA = 0.5.
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Panel (a) of Figure 2.1 shows an equilibrium in which wages are equalized across

regions. Since region 1 is relatively well endowed with industry A specific factor, it

allocates a greater share of its labor to industry A when wages are equalized. Panel

(b) shows the effect of a 50% decrease in the price of good A, so the marginal value

product curve in both regions moves down halfway toward the x-axis. As described

in (2.1), the impact of this price decline is greater in region 1, which allocated a

larger fraction of labor to industry A than did region 2. Thus, region 1’s wage falls

more than region 2’s wage. Now workers in region 1 have an incentive to migrate to

region 2. For each worker that migrates, the central vertical axis moves one unit to

the left, indicating that there are fewer laborers to be allocated in region 1 and more

in region 2. As the central axis shifts left, so do the two marginal value product

curves that are measured with respect to that axis. This shift raises the wage in

region 1 and lowers the wage in region 2. Migration continues until regional wages

are equalized.

The same equalizing effect of regional migration will occur in the more general

model. The baseline model with variable labor demonstrates this effect (the following

equation is (2.37) with prices held fixed).

ŵr =
−1∑
i λri

σri
θri

L̂r, (2.5)

where λri = Lri
Lr

is the fraction of regional labor allocated to industry i. This ex-

pression indicates that the aggregate regional labor demand elasticity is a weighted

average of industry labor demand elasticities, with weights based on the allocation

of labor across industries. As individuals migrate away from regions that were im-

pacted relatively negatively by price changes and toward regions affected relatively

positively, the wage difference between locations will shrink. In practice migration

costs and other frictions make it unlikely that the cross-region wage variation gen-
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erated by price changes will be entirely equalized. This expectation is supported

by the wage analysis presented in Section 2.6, which finds evidence of some equaliz-

ing migration, but not enough to completely equalize cross-region wage impacts of

liberalization.

Migration in the presence of nontraded goods poses two potential complications.

First, when nontraded goods are present, each region’s consumers face a unique price

level and workers’ migration decisions depend on the real wage change in a given

location rather than the nominal change. Under the restrictions necessary to drop

the nontraded sector from the weighted average in (2.1) described in Appendix A,

when a given region experiences a nominal wage decline relative to another region,

it will also experience a real wage decline relative to the comparison region.10 In

this situation nominal wage comparisons are sufficient to reveal real wage differences

across regions, and the migration analysis can proceed using expressions for nominal

wage changes as in (2.1). Second, the change in total income to residents of a given

location determines the price change for regional nontradables. If specific factor

owners migrate, it becomes very difficult to keep track of specific factor income

transfers across regions. For simplicity, the analysis presented here assumes that

migrants do not own specific factors, earning only wage income.

This section has described a specific-factors model of regional economies including

many regions and many industries. The model yields predictions for the effects

of goods price changes on regional wages, the prices of nontraded goods, and the

incentives to migrate between regions. The framework developed here can be used

10In particular, the proportional change in a region’s real wage, ωr, can be expressed as follows:

ω̂r = (1− µN )ŵr −
∑
1 6=N

µiP̂i

where µi is industry i’s share of consumption. The second term on the right hand side does not vary across regions
and is irrelevant to interregional comparisons, while the first term is the nominal wage change scaled by the traded
goods’ share of consumption.
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to measure the local impacts of any event in which a country faces price changes

that vary exogenously across industries. I apply the model to the analysis of trade

policy and devote the next section to operationalizing the model in the context of

trade liberalization.

2.3 Applying the Model to Trade Liberalization

The previous section described a general framework linking national price changes

to wage changes in regional labor markets. Here, I apply the model’s insights to the

question of how trade liberalization impacts local labor markets within the liberal-

izing country. I first link the model’s price-based predictions to trade liberalization

by describing the relationship between tariff changes and price changes when using

industry-level data. Then I compare the resulting empirical framework to the previ-

ous literature on the local effects of liberalization. The model’s predictions motivate

empirical specifications that are similar to those in previous work, but exhibit some

important differences regarding functional forms, the treatment of nontradables, and

the interpretation of the magnitude of local effects.

2.3.1 Relating Tariff Changes to Price Changes

In order to use the specific-factors model in Section 2.2 to measure the effects of

trade liberalization on local labor markets within the liberalizing country, I first need

to determine how tariff cuts affected the prices faced by producers. For simplicity

I make the small country assumption that tariff changes do not affect world prices

(i.e. no terms of trade effects). In the Brazilian context, the researcher must use

industry-level tariff and price data rather than information on tariffs and prices for

individual goods (see Section 2.4 for more details). I address the issue of industry

tariff pass-through by modeling industries as aggregations over a number of goods,
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some of which face import competition while others do not. This simple aggregation

strategy yields an estimation framework for measuring the effect of tariff changes on

price changes at the industry level.

Starting with the result from the baseline model described in (2.1), make a slight

change of notation. Industries i now consist of many goods g. Define 1(ipcig) as

an indicator function for whether or not good g in industry i faces import price

competition and PW
ig as the world price. The price faced by producers is then,

Pig = (1 + τi)
1(ipcig)PW

ig (2.6)

For particular goods that are exported and thus do not face import price compe-

tition, 1(ipcig) = 0, and the price faced by producers equals the world price. For

imported goods, 1(ipcig) = 1 and producers face the world price plus the tariff.

Taking proportional changes,

P̂ig = 1(ipcig) ˆ(1 + τi) + P̂W
ig . (2.7)

Appendix B plugs this expression into (2.1) and aggregates from individual goods up

to the industry level. The aggregation requires the additional restriction of Cobb-

Douglas production (which was necessary for the empirical analysis in any case, since

it is not feasible to calculate elasticities of factor substitution by industry and region).

The result of the aggregation is

ŵr =
∑
i

βri(φri ˆ(1 + τi) + P̂W
i ), (2.8)

where φri is the fraction of industry i workers in region r producing goods that

face import competition. As described below, the empirical analysis uses industry

import penetration as a proxy for cross-industry variation in φri. Import penetration

measures are only available at the national level, and hence do not vary by region.
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Accordingly, I assume constant import competition exposure across regions for a

given industry, so φri = φi. Imposing this restriction in (2.8), and comparing the

result to (2.1), we have

P̂i = φi ˆ(1 + τi) + P̂W
i . (2.9)

Thus, tariff changes will have the largest effect on prices in industries facing large

amounts of import competition (φi close to 1), and small effects on prices in export

industries (φi close to 0).

2.3.2 Summary and Comparison to Previous Work

The specific-factors model of regional economies in Section 2.2 describes the rela-

tionship between the prices of tradable goods and regional wages. To understand the

model’s predictions for the local effects of trade liberalization, plug the price-tariff

relationship from (2.9) into (2.1) (setting world price changes to zero), and drop the

nontraded sector as discussed in Section 2.2.2. This yields the following expression

describing the effect of tariff changes on regional wages.

ŵr =
∑
i 6=N

βriφi ˆ(1 + τi) ∀r, (2.10)

where βri =
Lri

σri
θri∑

i′ 6=N Lri′
σri′
θri′

. (2.11)

The empirical analysis below uses this relationship to measure the effects of trade

liberalization on regional wages and subsequent interregional migration.

The expression in (2.10) is quite similar to the empirical specifications employed

in previous studies of the effect of liberalization on local market outcomes such

as poverty, child labor, and unemployment in India (Topalova 2005, Edmonds et

al. 2007, Hasan et al. 2007, Hasan et al. 2009), with some important differences. In

these papers, changes in “district-level tariffs,” τDr , are computed as follows (using
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present notation).11

τDr =
∑
i

δri∆τi ∀r (2.12)

where δri =
Lri∑I
i′=1 Lri′

Expressions (2.10) and (2.12) are both weighted averages of tariff changes with

weights based (at least partly) on the region’s industrial allocation of labor. However,

a number of differences are present as well.

First, in (2.12) tariff changes are expressed as simple differences rather than pro-

portional changes in (1+τi). For small τi, ln(1+τi) ≈ τi, so proportional changes may

approximate changes in tariff levels.12 Second, the tariff pass-through adjustment,

φi, is omitted. Although this adjustment is essential when analyzing aggregate in-

dustry data in the Brazilian case, disaggregate data were used in the studies of India,

so the pass-through adjustment may be less important in that context. Third, the

weights omit the labor demand elasticity terms, σri
θri

, essentially assuming that these

terms are equal across all industries and regions. It is well beyond the scope of this

paper to estimate elasticities of substitution between labor and other factors that

vary across all industries and regions of Brazil, so I assume Cobb-Douglas produc-

tion with factor shares free to vary across industries. This restriction implies that

σri = 1 and θri = θi. I can calculate rough estimates of θi from Brazilian national

accounts data and find that including them in the calculation of βri or omitting

them does not substantially change the empirical results. Thus, although these dif-

ferences should be accounted for in future work, none appears to cause economically

significant deviations from the model’s predictions.

The model also provides guidance on treatment of the nontraded sector. Topalova
11Note that Hasan et al. (2007) and Hasan et al. (2009) also use measures of non-tariff barriers.
12Although Brazil’s liberalization involved large tariff cuts, making the approximation quite inaccurate, tariff

changes based on tariff levels yield roughly the same ranking of industries as proportional changes in (1 + τi), so the
choice does not affect the sign of the results.
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(2005) and Edmonds et al. (2007) estimate two versions of the weighted average

in (2.12), one with the nontraded price change set to zero, and one dropping the

nontraded sector, as in (2.10). The latter version is then used as an instrument for

the former. Hasan et al. (2007) and Hasan et al. (2009) simply drop the nontraded

sector and use that measure directly. As discussed in Section 2.2.2, the analysis

presented here strongly favors dropping the nontraded sector. This measure should

be used directly, omitting the version with zero nontraded price change entirely. Keep

in mind that in cases where detailed production and expenditure data are available

by region, the researcher can simply calculate the predicted tariff-induced nontraded

price change in each region based on (2.3).

The theory-motivated approach clarifies the labor demand channel through which

liberalization impacts regional labor markets and allows the researcher to carefully

evaluate the magnitude of the effects of liberalization in testing the model’s predic-

tions. The model relates wage changes with tariff changes, and predicts a one-to-one

relationship between proportional regional wage changes and the weighted average of

tariff changes in (2.10). In the empirical analysis of Section 2.6, I examine this rela-

tionship directly, and find slightly smaller effects than the one-to-one relationship, as

expected given some regional migration. Without the theoretical predictions, such

a test of the sign and magnitude of local effects would not be possible. Thus, the

theory allows the analysis to move beyond examining only the sign of estimates and

provides a sharper test of the empirical model.

Given the many similarities, the model developed here provides a theoretical foun-

dation for the general approach employed by previous empirical work on the local

effects of liberalization. However, the differences just discussed provide important

guidance on the appropriate implementation of empirical analyses. The remainder of



19

this paper tests the model’s predictions regarding the impact of trade policy changes

on regional wages and interregional migration patterns in the context of Brazil’s

1987-1995 trade liberalization, and finds strong evidence supporting the model.

2.4 Data

Trade policy data at the Nı́vel 50 industrial classification level (similar to 2-digit

SIC) come from researchers at the Brazilian Applied Economics Research Institute

(IPEA) (Kume, Piani and de Souza 2003), who aggregated tariffs on 8,750 - 13,767

individual goods, depending on the time period. Kume et al. (2003) also calculated

effective rates of protection (ERP) from nominal tariffs and the Brazilian input-

output tables, accounting for the effect of tariffs on final goods as well as tariffs on

imported intermediate inputs. Given that ERP’s account for intermediate inputs,

the results use the ERP as the preferred measure of protection. All results were

also generated using nominal tariffs without any substantive differences from those

presented here.

Import penetration data, used to proxy for tariff pass-through adjustment in (2.9),

were calculated from Brazilian National Accounts data available from the Brazilian

Census Bureau (Instituto Brasileiro de Geografia e Estatistica - IBGE). Following

Gonzaga et al. (2006), I measure import penetration as imports divided by the sum

of imports and domestic production. Ferreira et al. (2007) implement a similar pass-

through adjustment using import penetration data from Muendler (2003b), which

is calculated using a slightly different formula. The results presented here have

also been generated using these alternative import penetration adjustments without

any substantive differences. Since Brazil does not calculate a producer price index

(Muendler 2003a), I use the wholesale price index, IPA-OG maintained by Fundação
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Getulio Vargas and distributed by IPEA. As a proxy for world prices, U.S. prices for

manufactures come from the BLS Producer Price Index and agriculture prices from

the USDA-NASS All Farm Index.

Wage data come from the long form Brazilian Demographic Censuses (Censo De-

mográfico) for 1991 and 2000 from IBGE. In both 1991 and 2000, the long form

was applied to a 10% sample of households in municipalities whose estimated pop-

ulation exceeded 15,000 and a 20% sample in smaller municipalities (IBGE 2002).

The survey is nationally representative and yielded sample sizes of approximately 4

million households consisting of 17 million individuals in 1991 and 5.3 million house-

holds consisting of 20.3 million individuals in 2000. The wage analysis presented

in Section 2.6 uses the microregion as the geographic unit of observation. Each of

558 microregions is a grouping of economically integrated municipalities with simi-

lar geographic and productive characteristics (IBGE 2002). Wages are calculated as

monthly earnings at the individual’s main job divided by 4.33 times weekly hours at

that job. The Census also reports employment status and industry of employment,

which permits the calculation of the industrial distribution of labor in each microre-

gion. While it would be ideal to have wage and employment information in 1987,

just prior to liberalization, the wage analysis uses the 1991 Census as the baseline

period under the assumption that wages and employment shares adjusted slowly to

the trade liberalization.

Migration data come from the Pesquisa Nacional por Amostra de Domićılios

(PNAD), a survey of Brazilian households conducted by IBGE. The survey has been

conducted yearly since 1976 except census years (1980, 1991, 2000) and 1994. The

survey is nationally representative, with the exception of the rural Northern region,

corresponding to the Amazon rainforest. Since the survey is not representative of the
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entire Northern region, which accounted for only 6.8% of the national population in

1991, I omit it from the empirical analysis. Figure 2.10 shows the states included in

the migration analysis. Note that I combine Tocantins and the Distrito Federal into

the state of Goiás in order to maintain consistent state classifications over time.13 The

PNAD sample size is approximately 100,000 households including roughly 300,000

individuals, covering about 0.2% of the population. The survey includes information

on employment status and industry of employment, which permits the calculation of

the industrial distribution of labor in each state. Migration data are available in the

core survey from 1992 to the present. Questions include the current and previous

state of residence and the years since the last interstate migration, topcoded at 10

years. Given that migration questions in the PNAD describe geography at the state

level, I define “migration” as moving from one state to another.

In both the wage and migration analyses, I restrict the sample to individuals

aged 18-55 in order to focus on people who are most likely to be tied to the labor

force. In the migration analysis presented in Section 2.7, I also generate results

that further restrict the sample based on employment and family status in an effort

to abstract from issues of tied movers and family size. In order to utilize these

disparate data sets in the analysis, it was necessary to construct a common industry

classification that was consistent across data sources. The classification is based upon

a crosswalk between the national accounts and PNAD industrial codes published by

the IBGE (2004). The final industry classification consists of 21 industries, including

agricultural and nontraded goods, shown in Table 2.1.

13Tocantins split from Goiás in 1988.
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2.5 Trade Liberalization in Brazil

Brazil’s large, quickly implemented, and well-documented trade liberalization in

the early 1990’s provides an excellent context in which to study the effects of trade

policy changes on other economic outcomes. Brazil’s liberalization generated sub-

stantial variation in tariff changes across industries by moving from a tariff regime

with high tariff levels and high cross-industry tariff dispersion to a low level, low dis-

persion tariff regime. Qualitative and quantitative evidence supports the exogeneity

of cross-industry variation in tariff changes to counterfactual industry performance,

allowing causal interpretations of the subsequent empirical results using this varia-

tion.

2.5.1 Context and Details of Brazil’s Trade Liberalization

From the 1890’s to the mid 1980’s Brazil pursued a strategy of import substituting

industrialization (ISI). Brazilian firms were protected from foreign competition by a

wide variety of trade impediments including very high tariffs, quotas, import bans on

certain products, yearly maximum import levels per firm, assorted surcharges, prior

authorization for imports of certain goods, and restricted credit for the purchase of

imports (Abreu 2004a, Kume et al. 2003). Although systematic data on non-tariff

barriers are not available, tariffs alone provide a clear picture of the high level of

protection in 1987, just before liberalization. The average tariff level in 1987 was

54.9%, with values ranging from 15.6% on oil, natural gas, and coal to 102.7% on

apparel. This tariff structure, characterized by high average tariffs and large cross-

industry variation in protection, reflected a tariff system first implemented in 1957,

with small modifications (Kume et al. 2003).

While Brazil’s ISI policy had historically been coincident with long periods of
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strong economic growth, particularly between 1930 and 1970, it became clear by the

early 1980’s that the policy was no longer sustainable (Abreu 2004a). Large amounts

of international borrowing in response to the oil shocks of the 1970’s followed by slow

economic growth in the early 1980’s led to a balance of payments crisis and growing

consensus in government that ISI was no longer a viable means of generating sufficient

economic growth. Between 1986 and 1987, Brazil ended a posture of obstruction in

trade negotiations and began to seek concessions from trading partners in return for

reductions in its own trade barriers (Abreu 2004b). It appears that this shift in trade

policy came from within government rather than from the private sector. There is

no evidence of political support from consumers of imported goods or of resistance

from producers of goods losing protection (Abreu 2004b).

Tariff reforms began in late 1987 with a governmental Customs Policy Commission

(Comissão de Politica Aduaneira) proposal of a sharp tariff reduction and the removal

of many non-tariff barriers.14 In June of 1988 the government adopted a weaker

reform that lowered tariffs and removed some non-tariff barriers. In March 1990

import bans were eliminated, and firm-level import restrictions were removed in July

1991, so that by the end of 1991 tariffs represented the primary means of import

protection. Between 1991 and 1994, phased tariff reductions were implemented,

with the goal of reducing average tariff levels and reducing the dispersion of tariffs

across industries in hopes of reducing the gap between internal and external costs

of production (Kume et al. 2003). Following 1994, there was a slight reversal of

the previous tariff reductions, but tariffs remained essentially stable following this

period.

Figures 2.2 and 2.3 show the evolution of nominal tariffs and effective rates of

14See Kume et al. (2003) for a detailed account of Brazil’s liberalization, from which this paragraph is drawn.
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protection in the ten largest sectors by value added. Note that along with a general

reduction in tariff levels, the dispersion in tariffs was also greatly reduced during

liberalization, consistent with the goal of aligning domestic production incentives

with world prices. Before liberalization, effective rates of protection were higher than

nominal tariffs because of a graduated tariff structure that imposed higher tariffs on

final goods than on imported intermediates. As the dispersion in the tariff structure

fell during liberalization, the graduated structure was eliminated and effective rates

of protection fell to approximately the same level as nominal tariffs.

It is clear in the figures that the move from a high-level, high-dispersion tariff

structure to a low-level low-dispersion tariff distribution generated substantial vari-

ation in tariff changes across industries; industries with initially high tariffs experi-

enced the largest tariff cuts, while those with initially lower tariff levels experienced

smaller cuts. These large differences in tariff cuts across industries provide the iden-

tifying variation in the empirical analysis below and make Brazil an ideal context in

which to study the differential impact of liberalization across regions with varying

industrial distributions.

2.5.2 Exogeneity of Tariff Changes to Industry Performance

The empirical analysis below utilizes variation in tariff changes across industries.

Figure 2.4 shows that industries facing larger tariff cuts shrank in terms of total

workers employed, while industries facing smaller tariff cuts expanded their employ-

ment (The “tariff-induced price change,” calculated based on (2.9) is described in

detail in the next section).15 Interpreted causally, this result implies that the cross-

industry variation in tariff cuts generated changes in the national industry mix that

may have induced workers to move from regions with many shrinking industries to

15A figure similar to Figure 2.4, appearing in Ferreira et al. (2007), provided the initial motivation for undertaking
the present study.
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regions with many growing industries. However, in order to make this causal claim,

it is essential that the tariff changes were not correlated with counterfactual industry

performance in the absence of liberalization. Such a correlation may arise if trade

policy makers impose different tariff cuts on strong or weak industries or if stronger

industries are able to lobby for smaller tariff cuts.

There are a number of reasons to believe that these general concerns were not

realized in the specific case of Brazil’s trade liberalization. As mentioned above,

qualitative analysis of the political economy of liberalization in Brazil indicates that

the driving force for liberalization came from government rather than from the pri-

vate sector, and that private sector groups appear to have had little influence on the

liberalization process (Abreu 2004a, Abreu 2004b). The 1994 tariff cuts were heavily

influenced by the Mercosur common external tariff (Kume et al. 2003). Argentina

had already liberalized at the beginning of the 1990’s, and it successfully negotiated

for tariff cuts on capital goods and high-tech products, undermining Brazil’s desire

to protect its domestic industries (Abreu 2004b). Thus, a lack of private sector inter-

ference and the importance of multilateral trade negotiations decrease the likelihood

that the tariff cuts were managed to protect industries based on their strength or

competitiveness.

More striking support for exogeneity comes from the nature of the tariff cuts dur-

ing Brazil’s liberalization. It was a stated goal of policy makers to reduce tariffs in

general, and to reduce the cross-industry variation in tariffs to minimize distortions

relative to external incentives (Kume et al. 2003). This equalizing of tariff levels im-

plies that the tariff changes during liberalization were almost entirely determined by

the pre-liberalization tariff levels. This pattern is apparent in Figure 2.6. Industries

with high effective rates of protection before liberalization experienced the greatest
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cuts, with the correlation between the pre-liberalization ERP level and change in

ERP equaling −0.9.16 The pre-liberalization tariff regime was based upon a tariff

schedule developed in 1957 (Kume et al. 2003). Since the structure of the liberal-

ization imposed cuts based on the tariff level that was set decades earlier, it is very

unlikely that the tariff cuts were manipulated to induce correlation with counterfac-

tual industry performance or with industrial political influence.

Finally, one can gain insight into the exogeneity of tariff changes by observing

their relationship to industry growth. This relationship is demonstrated in Figure

2.4. As expected, industries facing larger tariff cuts shrank in terms of the number

of workers employed in the industry, while those facing smaller tariff cuts grew. It

is possible that certain industries were simply declining over time while others were

growing, and that trade policy makers’ choices were influenced by this observation17.

However, this interpretation can be tested by observing the pattern of industrial real-

location during the time period immediately preceding liberalization. If trade policy

choices were related to industrial performance, there should be a correlation between

pre-liberalization industry employment growth and subsequent tariff changes. As

shown in Figure 2.5, this is not the case. There is no relationship between the pre-

liberalization employment growth and the subsequent tariff changes, supporting the

argument that tariff changes were not related to industry performance and can be

considered exogenous in the empirical analysis below.

2.6 The Effect of Liberalization on Regional Wages

Given the previous section’s evidence supporting the exogeneity of tariff changes,

I move to analyzing the effect of tariff changes on wages as predicted by the model
16The results for nominal tariffs are essentially identical, with a correlation of −0.95.
17This interpretation is somewhat implausible, since the observed pattern of tariff cuts were precisely the opposite

of what one would expect if policy makers were trying to protect declining industries. The observed pattern would
imply that policy makers cut tariffs most on declining industries that were most in need of protection



27

in (2.10). I first calculate the necessary terms and then test the model’s prediction

that regions facing larger tariff cuts experience larger wage declines relative to other

regions. The results strongly confirm the model’s prediction, implying that regions

facing a 10% larger tariff decline experience 6.3%-7.6% larger wage declines. This

finding is consistent with some equalizing interregional migration, motivating the

subsequent migration analysis.

2.6.1 Regional Wage Changes

The model described in Section 2.2 considers homogenous labor, in which all

workers are equally productive and thus receive identical wages in a particular region.

In reality, wages differ systematically across individuals, and the wage change in a

given region could be due changes in individual characteristics, changes in the returns

to those characteristics, or changes in regional labor demand due to liberalization.

In order to isolate the last effect, I calculate regional wage changes as follows. In

1991 and 2000 I separately estimate a standard wage equation, regressing the log

of real wages on demographic and educational controls, industry fixed effects, and

microregion fixed effects. The results of these regressions are reported in Table 2.2.

I then calculate the regional wage change as the change in microregion fixed effects,

plus a term reflecting the change in wages for an average 1991 individual. The

addition of this average wage change term is purely for interpretation, as it does not

vary across regions. It means that the regional wage change is interpreted as the

proportional wage change an average 1991 individual would expect to face living in

each microregion.

Figure 2.7 shows the regional wage changes in each microregion of Brazil. States

are outlined in bold while each smaller area outlined in gray is a microregion. Mi-

croregions that are lighter experienced the largest wage declines during the 1991-2000
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time period, while darker regions experienced the largest wage increases. As the scale

indicates, some observations are quite large in magnitude. Happily, only 8 observa-

tions fall outside the±0.3 range, and these are all in sparsely populated areas, leading

to imprecise estimates.

2.6.2 Tariff-Induced Price Changes

The discussion of industry aggregation in Section 2.3.1 suggests that tariff changes

will have a larger impact on prices in industries where many of the goods comprising

the industry face import competition. In particular, (2.9) suggests multiplying the

tariff changes by the fraction of industry workers producing import-competing goods.

This fraction is unknown, but we can proxy for it with industry import penetration,

γi, calculated as imports divided by the sum of imports and domestic production.18

Although I expect this measure to substantially understate the level of import com-

petition in a given industry (i.e. γi < φi), it is likely to capture the relative degree of

import competition across industries. As a proxy for world prices in (2.9), I use U.S.

prices. Using these proxies and allowing for random measurement error in prices ui,

the proportional change in the Brazilian price level π, and the proportional change

in the Real-dollar exchange rate S, equation (2.9) becomes

P̂i = π + γi ˆ(1 + τi) + S + P̂US
i + ui. (2.13)

This relationship is estimated as

d ln(Pi) = ψ0 + ψ1γid ln(1 + τi) + ψ2d ln(PUS
i ) + ui, (2.14)

where d represents the long difference between 1997 and 1995, ψ0 captures the effect

of inflation and exchange rate changes, and ψ1 is likely to be substantially larger than

18Alternative measures of import penetration have been used as well with no qualitative changes in results.
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one given that import penetration understates the level of import price competition

in each industry.

The results of estimating (2.14) are shown in Table 2.3. Columns (1) and (2)

omit the tariff pass through term and find no relationship between tariff changes and

price changes. This result is consistent with the findings of Gonzaga et al. (2006),

and demonstrates the importance of the import penetration adjustment in capturing

variable tariff pass through across industries. Columns (3) and (4) include the import

penetration adjustment, finding a positive and statistically significant relationship

between price changes and tariff changes. The estimate’s large size suggests that

import penetration does underestimate the scale of import competition, as expected.

Letting hats represent estimates (rather than proportional changes as in the theory

section), The tariff-induced price change is calculated as

ˆd ln(Pi) = ψ̂1γid ln(1 + τi). (2.15)

By omitting ψ̂0 from this expression, tariff-induced price changes are calculated rel-

ative to changes in the overall price level. Figure 2.8 shows the tariff-induced price

changes resulting from this calculation. Since these measures are normalized relative

to the overall price level, they may be positive or negative in individual industries

even though all tariffs were cut. This reflects the inherently cross-sectional nature of

the empirical exercise. The goal is to measure the different effects of tariff changes

on prices across industries rather than the overall effect of the liberalization on the

price level.

2.6.3 Region-Level Tariff Changes

Based on (2.10), the effect of a given set of tariff changes on a region’s wages is

determined by a weighted average of tariff-induced price changes. In what follows, I
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call this weighted average the “region-level tariff change.” Calculating the βri terms

in (2.11) requires information on the allocation of labor across industries and on

labor demand elasticities. The industrial allocation of labor is calculated for each

microregion from the 1991 Census. As mentioned above, it is not feasible to calculate

elasticities of factor substitution across regions and industries, so I restrict production

to be Cobb-Douglas. This implies that σri = 1 and θri = θi, which is calculated as

one minus the wagebill share of industry value added using national accounts data

from IBGE. Given these restrictions I calculate the region-level tariff change (RTC)

for each microregion as follows.

RTCr =
∑
i 6=N

βri ˆd ln(Pi) (2.16)

where βri =
Lri

1
θri∑

i′ 6=N Lri′
1
θri′

. (2.17)

The results of this calculation appear in Figure 2.9. Lighter microregions faced

the most negative tariff-induced price changes, while darker microregions faced more

positive price changes. Recall that the tariff-induced price changes are calculated

relative to the overall price level, so although all tariffs were cut, they may be positive

or negative. This normalization is reflected here in the region-level tariff changes as

well.

2.6.4 Wage-Tariff Relationship

Given the empirical estimates of the regional wage changes and region-level tariff

changes, it is now possible to examine the effect of tariff changes on regional wages

predicted by the specific-factors model. I form an estimating equation from (2.10)

as

d ln(wr) = ζ0 + ζ1RTCr + εr, (2.18)
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where d ln(wr) is calculated as described in Section 2.6.1. Since these wage changes

are estimates, I weight the regression by the inverse of the standard error of the

estimates. RTCr is given by (2.16). ζ0 captures the increase in average real wages

between 1991 and 2000. In the model without migration, the theory predicts that

ζ1 = 1. As discussed in Section 2.2.3 any interregional mobility in response to liber-

alization will smooth out the regional wage variation that would have been observed

on impact. In the extreme case of costless, instant worker mobility, all liberalization-

induced wage variation would be immediately arbitraged away by worker migration

and there would be no relationship between region-level tariff changes and regional

wage changes. Since Brazil’s population is particularly mobile (inter-state migration

rates are similar to those in the U.S.), I expect some equalizing migration over the

9 year period being observed and thus expect that 0 < ζ1 < 1. Finally, the error

term εr captures any drivers of wage change that are unrelated to liberalization.

In case of changes in state policies that may have influenced wages similarly across

microregions within the state, I will also include state-level fixed effects.19

Table 2.4 presents the results of regressing the regional wage changes on the region-

level tariff changes. As expected, the effect of region-level tariffs on regional wages is

positive and statistically significant. This implies that microregions facing the largest

tariff declines, as predicted by the model, did experience slower wage growth than

regions facing smaller tariff cuts. The point estimates for ζ1 are both less than 1,

indicating the presence of some equalizing interregional migration.20 The following

section will examine migration patterns directly, corroborating this finding. The

addition of state fixed effects lowers the magnitude of the point estimate somewhat,

but remains qualitatively similar. In case of remaining covariance in the error term

19State-specific minimum wages were not implemented until 2002, so this does not confound the analysis.
20Although the estimate in column (1) is not statistically different from 1 at the 5% level
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across microregions in a given state beyond a common additive component captured

by the state fixed effects, I report standard errors clustered by state. This reduces

the significance in column (1), but leaves the fixed effect specification essentially

unchanged. Recall that these results are interpreted cross-sectionally - they do not

measure the effect of liberalization on national wage growth or contraction, but

rather describe the different effects of liberalization across regions of the liberalizing

country. Thus, the estimate in column (2) implies that a region facing a 10% larger

tariff decline will experience a 6.3% larger wage decline relative to other regions.

These results confirm the model’s prediction, particularly in finding an estimate

of the expected sign that is significantly different from zero, but below one. This sup-

ports the assumption that cross-region differences in the effects of liberalization are

correctly measured and can be applied to other labor market outcomes of interest.

The next section does this by examining the effects of liberalization on inter-state

migration. The wage results also have implications for policy makers considering un-

dertaking a large trade policy change, as they imply a clear link between trade policy

decisions at the national level and local policy challenges. Given the predictions of

the model, national policy makers could use the pre-liberalization distribution of

labor across industries in different regions to determine what regions’ workers are

most likely to be negatively impacted by a proposed trade policy change. They can

then coordinate with local policy makers to respond to the expected local impacts

of the national policy change.

2.7 The Effect of Liberalization on Interstate Migration

The preceding section showed that trade liberalization caused substantial vari-

ation in wage changes across Brazilian microregions, and suggested that workers
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responded by migrating away from locations facing the most negative wage changes

to locations facing the most positive changes. This section directly measures the

impact of liberalization on migration patterns utilizing detailed survey data on in-

terstate migration from Brazil’s yearly household survey. The results show that

migration patterns changed as a result of liberalization, with more individuals mov-

ing away from states facing the largest tariff cuts and toward states facing smaller

cuts. Counterfactual simulations imply that the most affected Brazilian states gained

or lost approximately 2% of their populations as a result of liberalization-induced

shifts in migration patterns.

2.7.1 Location Choice Specification

This section derives a framework for estimating the effect of tariff changes on in-

dividuals’ location choice from a model of individual maximizing behavior. Although

wages are an important aspect of location choice, other considerations such as local

amenities, proximity to friends and relatives, and costs of moving to a particular lo-

cation will also be relevant. These various aspects of location choice can be captured

in the following additive random utility model.

Uigdt = Vgdt + εidgt (2.19)

Vgdt ≡ αg lnwdt + µgdt + ηgd (2.20)

Uigdt is the utility that individual i in group g (described below) receives from living

in destination state d at time t. Vgdt represents the average utility individuals in

group g receive from living in location d at time t, while εidgt represents individual

idiosyncratic deviations from the average. The average utility in a given destination

depends upon wages, w, and unobservable characteristics of the destination, some of

which vary over time, µgdt, and some of which are fixed over time, ηgd.
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The “group” subscript, g, determines how the unobservable terms in (2.20) vary.

In this analysis, groups are always at least based upon state of residence, and po-

tentially upon other demographic characteristics such as age or gender. Grouping

by state of residence implies that the unobserved terms, µgdt and ηgd, vary by state

pairs. Any moving costs associated with the distance between two states are therefore

subsumed in these unobserved effects. Location-specific amenities such as natural

beauty or urban nightlife will similarly be captured by these terms. Now suppose

that groups are defined by state of residence and by age. This allows the value of

these location-specific amenities to vary across age groups. Idiosyncratic variation

in the utility of a particular location, due to the presence or absence of friends and

relatives, desire for a change, or individual deviations from the average preferences

of one’s group, is captured in the error term εidgt. By careful group definition, the

model can capture many rich and complex considerations that are relevant to loca-

tion choice. The parameter of interest is αg, the importance of wages in location

decisions. Note that this parameter may also be assumed to vary across groups,

as indicated by the group subscript. The empirical results presented below include

specifications in which α is assumed constant across groups and others in which αg

may vary across groups.

Individuals compare all states and choose to live in the state that maximizes

utility. Assuming that the εidgt are independently drawn from a Type I extreme

value distribution, the probability πgdt that an individual in group g chooses location

d at time t is

πgdt =
eVgdt

Dgt

where Dgt ≡
∑
d′

eVgd′t . (2.21)

In the absence of the unobservable ηgd and µgd terms in Vgdt, this expression would

reduce to a standard conditional logit model. Given that these unobserved terms cap-
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ture the effects of distance, amenities, and other important aspects of location choice,

dropping them is an unattractive alternative. In particular, if wages are correlated

with these unobserved terms, omitting them and estimating a standard conditional

logit model would yield inconsistent estimates of αg. Thus, an alternative approach

is necessary. I employ a strategy developed by Scanlon, Chernew, McLaughlin and

Solon (2002) and adapted to the migration context by Cadena (2007) that differences

out the time invariant unobserved characteristics through the use of a first-order

Taylor series approximation. This process, implemented in Appendix C, yields the

following equation.

d lnSgd − d lnSgh ≈ αg(d lnwd − d lnwh) +

[
(dµgd − dµgh) + d

(
ξgd
πgd

)
− d

(
ξgh
πgh

)]
(2.22)

Before describing the notation, replace the wage change terms with liberalization’s

effect on regional wages, the region-level tariff change (RTC), calculated in (2.16).

d lnSgd − d lnSgh ≈ αg(RTCd −RTCh) +

[
(dµgd − dµgh) + d

(
ξgd
πgd

)
− d

(
ξgh
πgh

)]
(2.23)

For simplicity, assume for the moment that g represents only state of residence,

without any distinctions between demographic groups. Sgd is the observed share of

individuals from state g choosing to locate in destination state d. The subscript h

represents the current state of residence, or “home,” so Sgh is the share of people from

state g choosing to stay there rather than relocate. Thus the left hand side of (2.23)

is the change in the share of individuals from g who choose to locate in d relative

to the change in the share that choose to stay home. This difference-in-difference

structure removes the time-invariant unobservables, ηgd. The independent variable

of interest is the liberalization induced wage change in destination d, again relative

to the same expression at home. Having an estimate of the coefficient on this term,
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αg, makes it possible to run counterfactual simulations describing how individuals

would have moved under different circumstances. I do this below to measure the im-

pact of liberalization on the distribution of population across Brazilian states. The

term in brackets represents the error term, consisting of two parts. The first is the

difference in time varying unobservable amenities. The presence of this expression

in the error term makes clear the additional identification assumption necessary to

estimate (2.23) in practice - changes in regional amenities must be uncorrelated with

region-level tariff changes. This term also introduces a common error component

across observations considering the same destination, so I calculate standard errors

clustered by destination. ξgd is random sampling error in measuring Sgd, generating

heteroskedasticity. I therefore weight by the square-root of the number of observa-

tions used to calculate Sgd.

2.7.2 Location Choice Results

I calculate region-level tariff changes by state (rather than by microregion as in

the wage analysis) in the same manner as described in Section 2.6.3, the only dif-

ference being that employment shares were calculated using the 1987 PNAD rather

than the Census. Figure 2.10 shows the results. The left hand side of (2.23) is cal-

culated using migration data from the PNAD. Table 2.5 presents summary statistics

regarding inter-state migration in Brazil among different demographic groups. The

first column presents the fraction of the total population in each demographic group,

while subsequent columns describe the fraction of individuals in each demographic

group reporting different migration behaviors. Inter-state mobility in Brazil is very

high. 29% of adults report having moved across states, which is nearly identical to

the same figure in the U.S. (Dahl 2002). As a comparison to another large devel-

oping country, inter-state migration in Brazil is much more common than in India.
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Topalova (2005) reports that only 3-4% of people migrated between Indian districts

within a ten-year time period, whereas 9.7% of Brazilians report moving between

states during a ten year period. Districts in India are very small compared to Brazil-

ian states (on average each Indian state consists of 16 districts), so the difference in

mobility is particularly striking.

The analysis compares individuals’ location decisions just preceding trade liberal-

ization (September 1982 - September 1988) to those just after liberalization (Septem-

ber 1996 - September 2002). The final two columns of Table 2.5 present the fraction

of each demographic group that migrated in each of these periods. A number of pat-

terns emerge. Consistent with the early observations of Sjaastad (1962) and nearly

every subsequent study of migration, younger individuals are more likely to move.

More educated individuals are more mobile, although the effect is not monotone over

years of schooling, and those with larger families are far less mobile than individuals

or couples. Whites and those of mixed heritage (reporting Pardo) are much more

mobile than Blacks. Contrary to expectations, married people generally report more

mobility than unmarried people, although the sample fractions are nearly equal in

the post-migration period. These observations provide insight into what portions of

the population are likely to be most mobile and therefore most likely to respond to

changing geographic incentives by moving to a new location. These expectations are

largely borne out in the empirical results.

The baseline results of estimating (2.23) are presented in Table 2.6. In the first

row, grouping is by state of residence (source state) only. Thus, each observation

represents a source-destination state pair. Since the equation for the share of individ-

uals choosing to stay in the same state has been differenced from each observation,

and there are 19 states included in the analysis, the total number of potential ob-
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servations is 19 ∗ 18 = 342. The analysis drops any state pairs in which the share

term, Sgd, was estimated using less than five underlying observations, so the realized

number of observations is 168 rather than 342.21 The estimate of α in the first row of

Table 2.6 is 1.92. In order to assess the scale of this estimate, note that the estimat-

ing equation admits a convenient reduced-form interpretation that can be obtained

by differentiating (2.21) with respect to lnwdt for all d.

dπsd = απsdt

(
(1− πsdt)d lnwd −

∑
d′ 6=d

πsd′td lnwd′

)
(2.24)

This expression describes how changes in wages across all regions affect the proba-

bility that an individual from state s will choose to locate in state d. Evaluating this

expression at the estimate of α, the observed pre-liberalization migration fractions,

and the tariff-induced wage changes given by (2.16), it is possible to calculate dπsd

for each source-destination state pair. Then, by multiplying each of these estimates

of the change in migration fraction by the relevant source state population in 1988

and summing over all sources for a given destination, it is possible to calculate the

number of people accounted for by liberalization-induced shifts in the interstate mi-

gration pattern. The results of this exercise are shown in Table 2.7. The first column

reports the number of people in each state that are accounted for by liberalization-

induced shifts in migration patterns and the final column reports the same number

as a fraction of the state’s 1988 population. For those states facing the largest and

smallest tariff cuts, liberalization accounts for gains or losses of approximately 2% of

the state’s population. Although not so large as to be implausible, this represents an

economically significant shift in the Brazilian population’s geographic distribution.

The remaining rows in Table 2.6 differ from the specification in the first row in that
21Since (2.23) requires taking logs of Sgd, group-destination bins containing zero observations, i.e. when no one in

a particular group chooses a given destination, must be dropped. Although cells generated with 1-4 observations are
technically usable, they are omitted in order to avoid wildly inaccurate estimates. A more stringent rule, dropping
observations based on less than 10 underlying observations yield similar results.
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grouping is based on state of residence (source) and on demographic characteristics.

Given that group-destination pairs containing less than five underlying observations

are dropped from the analysis, each demographic characteristic is separated into

only two bins in order to avoid creating such fine grouping classifications that many

group-destination pairs are dropped. When source state and demographic groups are

considered, the number of potential observations is 19∗18∗2 = 684. Although group-

ing by demographics increases the potential number of observations, the number

of clusters (19) remains constant across all specifications, so demographic grouping

does not inappropriately increase statistical power by “inventing” more observations.

When grouping by demographic characteristics, two different specifications are con-

sidered. The first, labeled “homogeneous effect across groups,” restricts the estimate

of α to be constant across demographic groups, but does not place any restriction

on the unobserved effects across demographic groups. Different age groups can value

unobserved amenities differently even though α is constant across groups.

The second specification, labeled “heterogeneous effects across groups,” allows

αg to vary across demographic groups, along with accounting for differences in un-

observed effects across groups. In these specifications, it is expected that younger

and more mobile individuals and those who are more connected to the labor market

will exhibit stronger effects of location choice on tariff-induced wage changes, since

these individuals have more to gain in expectation from choosing a new location.

The results for age, gender, and family size all demonstrate the expected pattern -

the more mobile group exhibits a stronger relationship (in statistical and economic

terms) between tariff-induced wage changes and location choice. Note that the point

estimates for the mobile groups are in a few cases much larger than the estimate from

the first row considered above, indicating substantially larger liberalization-induced
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migration responses for these demographic groups. The results for education in Table

2.6 are more surprising. Although those with fewer years of education are less mobile

in general (see Table 2.5), less educated individuals exhibit a very strong location

response to liberalization. The result may indicate that labor markets are segmented

between high-skilled and lower-skilled workers, and that employers adjust to tariff

changes primarily through changes in lower-skilled labor demand. This is an area for

further study in a framework that accounts for worker heterogeneity in production.

These findings provide strong evidence that the disparate effects of trade liber-

alization on labor market conditions across Brazilian states led individuals to alter

their location choices, moving away from states facing the largest tariff-induced price

declines and toward states facing smaller cuts. The results also demonstrate the

importance of accounting for variation in unobserved components of utility across

demographic groups, and the fact that groups that are more mobile and more con-

nected to labor market outcomes are most influenced by the geographic variation in

the returns to work. As in the wage analysis, these results have important policy

implications in linking trade policy decisions at the national level to local policy

challenges. If a country’s regions have different industrial compositions, then the

adjustment to a large change in trade policy will necessarily involve some movement

of workers from regions with many contracting industries toward regions with many

growing industries. The results presented here show that the specific factors model

of regional economies provides a means of predicting the pattern of interregional mi-

gration resulting from liberalization. Given this information, national policy makers

can work at the local level to help individuals make the geographic transitions that

necessarily come with a large industrial reorganization.
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2.8 Conclusion

This paper develops a specific-factors model of regional economies addressing

the local labor market effects of national price changes, and applies the model’s

predictions in measuring the effects of Brazil’s trade liberalization on regional wages

and interstate migration. The model predicts that wages will fall in regions whose

workers are concentrated in industries facing the largest tariff cuts, and workers will

then migrate away from these regions in favor of areas facing smaller tariff cuts.

These predictions are confirmed by the empirical analysis. Regions whose output

faced a 10% larger liberalization-induced price decline experienced a 7% larger wage

decline. Liberalization also caused a substantial shift in migration patterns. The

most affected Brazilian states gained or lost approximately 2% of their populations

as a result of liberalization-induced shifts in migration patterns.

Given these results, it seems likely that liberalization has different local effects

on other outcomes that could be studied in future work. For example, the frame-

work presented here assumes full employment, so that all adjustment occurs through

wages. In order to study the impact of liberalization on employment, the opposite

assumption could be incorporated by fixing wages in the short run and allowing em-

ployment to adjust. Alternatively, Hasan et al. (2009) motivate their study of the

effects of liberalization on local unemployment with a two-sector search model. An

interesting avenue for future work would be to incorporate a search framework into

a multi-industry model and directly derive an estimating equation relating changes

in regional unemployment to tariff changes, paralleling the approach taken here.

The model also suggests a novel channel through which liberalization could affect

inequality. While the present analysis considered a homogenous labor force, future
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work could examine the impact of trade liberalization in a situation with laborers of

different skill levels working in industries of varying factor intensities. Particularly

mobile groups of individuals will be able to smooth out regional wage variation by

migrating while less mobile individuals will not. If the two groups work in segmented

labor markets, liberalization could greatly increase national wage dispersion for the

immobile group while leaving the mobile group’s wages relatively unchanged.

This paper’s findings have important implications in linking national policy changes,

such as liberalization, to local policy challenges involving migration, transportation,

and housing, as individuals migrate to restore geographic equilibrium. National pol-

icy makers can use the specific-factors model’s predictions to assess what areas are

likely to experience an influx of migrants hoping to gain employment in an area with

many expanding industries and can mobilize local services to respond during the

transition. On a larger scale, the migration results demonstrate a channel through

which a country may reap the production gains from trade liberalization. Produc-

tion gains can only occur by reallocating factors, and in countries with geographically

distinct industrial distributions, a large scale industrial reallocation of labor requires

laborers to migrate from one part of the country to another. Thus, relocation, trans-

portation, and retraining services play an important role when pursuing a change in

national policy that requires substantial industrial reallocation.
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2.9 Appendix A: Specific Factors Model Solution

2.9.1 Factor prices

This section closely follows Jones (1975), but deviates from that paper’s result by

allowing the amount of labor available to the regional economy to vary. Consider a

particular region, r, suppressing that subscript on all terms. Industries are indexed

by i = 1...N . L is the total amount of labor and Ti is the amount of industry-specific

factor for industry i available in the region. aLi and aT i are the respective quantities

of labor and specific factor used in producing one unit of industry i output. Letting

Yi be the output in each industry, the factor market clearing conditions are

aT iYi = Ti ∀i, (2.25)

∑
i

aLiYi = L. (2.26)

Under perfect competition, the output price equals the factor payments, where w is

the wage and Ri is the specific factor price.

aLiw + aT iRi = Pi ∀i (2.27)

Let hats represent proportional changes, and consider the effect of price changes P̂i.

θi is the cost share of the specific factor in industry i.

(1− θi)ŵ + θiR̂i = P̂i ∀i, (2.28)

which follows from the envelope theorem result that unit cost minimization implies

(1− θi)âLi + θiâT i = 0 ∀i. (2.29)

Differentiate (2.25), keeping in mind that Ti is fixed in all industries.

Ŷi = −âT i ∀i (2.30)
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Similarly, differentiate (2.26), let λi = Li
L

be the fraction of regional labor utilized in

industry i, and substitute in (2.30) to yield∑
i

λi(âLi − âT i) = L̂. (2.31)

By the definition of the elasticity of substitution between Ti and Li in production,

âT i − âLi = σi(ŵ − R̂i) ∀i. (2.32)

Substituting this into (2.31) yields∑
i

λiσi(R̂i − ŵ) = L̂. (2.33)

Equations (2.28) and (2.33) can be written in matrix form as follows.

θ1 0 . . . 0 1− θ1

0 θ2 . . . 0 1− θ2

...
. . .

...
...

0 0 . . . θN 1− θN

λ1σ1 λ2σ2 . . . λNσN −
∑

i λiσi





R̂1

R̂2

...

R̂N

ŵ


=



P̂1

P̂2

...

P̂N

L̂


(2.34)

Rewrite this expression as follows for convenience of notation. Θ θL

λ′ −
∑

i λiσi


 R̂

ŵ

 =

 P̂

L̂

 (2.35)

Solve for ŵ using Cramer’s rule and the rule for the determinant of partitioned

matrices.

ŵ =
L̂− λ′Θ−1P̂

−
∑

i λiσi − λ′Θ−1θL
(2.36)

Note that the inverse of the diagonal matrix Θ is a diagonal matrix of 1
θi

’s. This

yields the effect of goods price changes and changes in regional labor on regional

wages:

ŵ =
−L̂∑
i′ λi′

σi′
θi′

+
∑
i

βiP̂i (2.37)
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where βi =
λi

σi
θi∑

i′ λi′
σi′
θi′

(2.38)

This expression with L̂ = 0 yields (2.1). Changes in specific factor prices can be

calculated from wage changes by rearranging (2.28).

R̂i =
P̂i − (1− θi)ŵ

θi
(2.39)

Plugging in (2.37) and collecting terms yields the effect of goods price changes and

changes in regional labor on specific factor price changes.

R̂i =
(1− θi)
θi

L̂∑
i′ λi′

σi′
θi′

+

(
βi +

1

θi
(1− βi)

)
P̂i −

(1− θi)
θi

∑
k 6=i

βkP̂k (2.40)

Setting L̂ = 0 in (2.37) and (2.40) yields the equivalent expressions in Jones (1975).

2.9.2 Nontraded goods prices

As in the previous section, consider a particular region, omitting the r subscript

on all terms. Industries are indexed by i = 1...N . The final industry, indexed N , is

nontraded, while other industries (i < N) are traded. The addition of a nontraded

industry does not alter the results of the previous section, but makes it necessary

to describe regional consumers’ preferences to fix the nontraded good’s equilibrium

price.

Assume a representative consumer with CES preferences over goods from each

industry. This implies the following goods demands.

Y c
i =

(
αi
Pi

)σ
m∑

j α
σ
j P

1−σ
j

, (2.41)

where Y c
i is consumer demand, m is total consumer income, αi is the CES share

parameter, σ is the elasticity of substitution in consumption (not to be confused

with σi, which is the elasticity of substitution between factors of production), and Pi
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is the good’s price. To simplify future expressions, define P̄ as the CES price index,

P̄ ≡

(∑
i

ασi P
1−σ
i

) 1
1−σ

. (2.42)

Substituting this into (2.41) and calculating the proportional change in Y c
i yields

Ŷ c
i = m̂− σP̂i + (σ − 1) ˆ̄P, (2.43)

where hats represent proportional changes. The goal of the remaining steps is to

express the terms of (2.43) in terms of price changes and changes in labor.

Change in the Price Level. Given the definition of P̄ ,

ˆ̄P =
∑
i

µiP̂i (2.44)

where µi ≡
ασi P

1−σ
i∑

j α
σ
j P

1−σ
j

. (2.45)

Change in Consumer Income. Consumer income equals total factor payments, so

m̂ = ηL(ŵ + L̂) +
∑
i

ηiR̂i, (2.46)

where ηL and ηi are, respectively, the share of labor earnings and industry i spe-

cific factor earnings in total income. Substituting (2.37) and (2.40) into (2.46) and

collecting terms yields

m̂ =
∑
i

ηLβiP̂i +
∑
j

ηjβjP̂j +
∑
j

ηj
∑
k 6=j

βkP̂k︸ ︷︷ ︸
X

+
∑
j

ηj
θj

(1− βj) P̂j −
∑
j

ηj
θj

∑
k 6=j

βkP̂k︸ ︷︷ ︸
Y

(2.47)

+

(
ηL

(∑
i

λi
σi
θi
− 1

)
+
∑
i

ηi
(1− θi)
θi

)
L̂∑
i λi

σi
θi︸ ︷︷ ︸

Z
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Examining the group of terms labeled X ,

X =
∑
i

ηLβiP̂i +
∑
i

ηi

(
βiP̂i +

∑
k 6=i

βkP̂k

)
(2.48)

=
∑
i

ηLβiP̂i +
∑
i

ηi
∑
j

βjP̂j (2.49)

=

(
ηL +

∑
i

ηi

)∑
j

βjP̂j (2.50)

=
∑
i

βiP̂i (2.51)

where the final equality follows from noting that ηL +
∑

j ηj = 1 by construction.

Now examining the group of terms labeled Y , first note that ηi
θi

= PiYi∑
j PjYj

, which is

industry i’s share of total production value; call this share ϕi.

Y =
∑
j

ϕjP̂j −
∑
j

ϕjβjP̂j −
∑
j

ϕj
∑
k 6=j

βkP̂k (2.52)

=
∑
j

ϕjP̂j −
∑
j

ϕj
∑
k

βkP̂k (2.53)

=
∑
j

ϕjP̂j −
∑
k

βkP̂k, (2.54)

where the final equality comes from the fact that
∑

i ϕi = 1. Finally, examine the

group of terms labeled Z. Note that

∑
i

ηi
(1− θi)
θi

=
∑
i

RiTi
m

wLi
PiYi

PiYi
RiTi

=
w

m

∑
i

Li = ηL. (2.55)

Plugging this into the expression for Z,

Z =

(
ηL

(∑
i

λi
σi
θi
− 1

)
+ ηL

)
L̂∑
i λi

σi
θi

(2.56)

= ηLL̂ (2.57)

Combining these results implies

m̂ = ηLL̂+
∑
i

ϕiP̂i (2.58)
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Change in Nontraded Good Production. For the nontraded good, regional produc-

tion equals consumption, so Ŷ c
N = Ŷ p

N . Substitutions using (2.28), (2.29), (2.30), and

(2.32) yield the following expression for the change in nontraded good output.

Ŷ p
N =

(1− θN)

θN
σN

(
P̂N − ŵ

)
(2.59)

=
(1− θN)

θN
σN

(
P̂N +

L̂∑
i λi

σi
θi

−
∑
i

βiP̂i

)
(2.60)

Combining Terms. Plugging (2.44), (2.58), and (2.60) into (2.43) for the nontraded

industry N yields

(1− θN)

θN
σN

(
P̂N +

L̂∑
i λi

σi
θi

−
∑
i

βiP̂i

)
= ηLL̂+

∑
i

ϕiP̂i− σP̂N + (σ− 1)
∑
i

µiP̂i.

(2.61)

Isolate and collect terms including P̂N[
(1− θN)

θN
σN(1− βN)− ϕN + σ − (σ − 1)µN

]
P̂N =

[
ηL −

(1− θN)

θN

σN∑
i λi

σi
θi

]
L̂

+
∑
i 6=N

[
(1− θN)

θN
σNβi + ϕi + (σ − 1)µi

]
P̂i

(2.62)

Grouping terms on the left hand side and solving for P̂N ,

P̂N =
ηL − (1−θN )

θN

σN∑
i λi

σi
θi∑

i′ 6=N
(1−θN )
θN

σNβ′i + ϕ′i + (σ − 1)µ′i
L̂+

∑
i 6=N

ξiP̂i (2.63)

where ξi =

(1−θN )
θN

σNβi + ϕi + (σ − 1)µi∑
i′ 6=N

(1−θN )
θN

σNβi′ + ϕi′ + (σ − 1)µi′
(2.64)
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2.9.3 Restrictions to Drop the Nontraded Sector from Weighted Averages

Under Cobb-Douglas production with equal factor shares across industries (θi =

θ ∀i), the first order conditions imply that, for all i

Pi(1− θ)
Yi
Li

= w (2.65)

ϕi(1− θ) = ηLλi (2.66)

ϕi =

(
θ

(1− θ)
ηL
∑
i′

λi′
σi′

θi′

)
βi (2.67)

ϕi = κβi, (2.68)

where the final equality comes from defining κ as the coefficient on βi, which does not

vary across industries. Restrict consumer preferences to be Cobb-Douglas (σ = 1).

Under this restriction, and plugging in (2.68), ξi is

ξi =

(
(1−θN )
θN

+ κ
)
βi∑

i′ 6=N

(
(1−θN )
θN

+ κ
)
βi′

(2.69)

=
βi∑

i′ 6=N βi′
(2.70)

Plug this result into (2.3) and (2.1)

ŵ =
∑
i 6=N

βiP̂i + βN

(∑
i 6=N βiP̂i∑
i 6=N βi

)
(2.71)

=

(
1 +

βN
1− βN

)∑
i 6=N

βiP̂i (2.72)

=

∑
i 6=N βiP̂i∑
i′ 6=N β

′
i

(2.73)

This is equivalent to omitting the nontraded industry N from the sums in (2.1) and

(2.2).

2.10 Appendix B: Industry Aggregation

Begin with equation (2.7).

P̂ig = 1(ipcig) ˆ(1 + τi) + ˆPW
ig . (2.74)
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Plug this into (2.1), under the new notation including goods within industries.

ŵr =
∑
i

∑
g∈i

βrig(1(ipcig) ˆ(1 + τi) + P̂W
ig ) (2.75)

=
∑
i

ˆ(1 + τi)
∑
g∈i

βrig1(ipcig) +
∑
i

∑
g∈i

βrigP̂
W
ig (2.76)

The empirical analysis will impose the additional restriction of Cobb-Douglas pro-

duction, as it is not feasible to calculate elasticities of factor substitution by industry

and region. This restriction along with identical technologies across regions implies

that σrig = 1 and θrig = θi. Imposing this restriction implies

∑
g∈i

βrig1(ipcig) =
1
θi

∑
g∈i Lrig1(ipcig)∑

i′
1
θi′

∑
g′∈i′ Lri′g′

(2.77)

=
Lri
θi

∑
g∈i Lrig1(ipcig)

Lri∑
i′ Lri′

1
θi′

(2.78)

= βriφri (2.79)

where φri ≡
∑
g∈i

Lrig
Lri

1(ipcig) (2.80)

φri is the fraction of industry i workers producing goods that face import competition.

Now consider the second term in (2.76).

∑
g∈i

βrigP̂
W
ig =

1
θi

∑
g∈i LrigP̂

W
ig∑

i′
1
θi′

∑
g′∈i′ Lri′g′

(2.81)

=
Lri
θi

∑
g∈i LrigP̂

W
ig

Lri∑
i′

(2.82)

= βriP̂
W
i (2.83)

where P̂W
i ≡

∑
g∈i

Lrig
Lri

P̂W
ig (2.84)

P̂W
i is the average proportional change in prices in industry i, with weights based on

the amount of labor producing each good in the industry. Although it is impossible to

obtain world prices with this particular weighting scheme, it is likely that industry
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level world prices calculated with a similar weighted mean structure will closely

approximate this expression. Plugging these results back into (2.76), yields the

result of the aggregation.

ŵr =
∑
i

βri(φri ˆ(1 + τi) + P̂W
i ) (2.85)

2.11 Appendix C: Location Choice Estimation Equation Derivation

This appendix follows Scanlon et al. (2002) and Cadena (2007) to difference out

time invariant unobservable terms from the location choice specification described in

(2.21). The observed share of individuals in group g who choose to live in location d

at time t, Sgdt, will consist of the true choice probability, πgdt, and mean zero random

sampling error, ξgdt.

Sgdt =
eVgdt

Dgt

+ ξgdt (2.86)

Taking logs yields

lnSgdt = ln(eVgdt + ξgdtDgt)− lnDgt. (2.87)

A first-order Taylor series approximation evaluated at ξgdt = 0 yields

lnSgdt ≈ Vgdt − lnDgt +
ξgdt
πgdt

. (2.88)

Plugging in the definition of Vgdt from (2.20),

lnSgdt ≈ αg lnwdt + µgdt + ηgd − lnDgt +
ξgdt
πgdt

. (2.89)

The model is still nonlinear in αg, due to its presence within Dgt. This term can

be canceled by subtracting the log share of an arbitrary reference destination. For

convenience, the reference state is h, the state of residence of individuals in group g.

lnSgdt−lnSght ≈ αg(lnwdt−lnwht)+(µgdt−µght)+(ηgd−ηgh)+
(
ξgdt
πgdt
− ξght
πght

)
(2.90)
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Although the preceding expression is linear in αg, it still contains unobserved com-

ponents that may be correlated with log wages. The time invariant unobserved

components, ηgd, can be canceled out by differencing over time.

d lnSgd − d lnSgh ≈ αg(d lnwd − d lnwh) +

[
(dµgd − dµgh) + d

(
ξgd
πgd

)
− d

(
ξgh
πgh

)]
(2.91)

2.12 Figures and Tables
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Figure 2.1: Graphical Representation of Specific Factors Model of Regional Economies

(a)  Initial Equilibrium

 
 
(b)  Response to a Decrease in PA – Prohibiting Migration 

 
(c)  Response to a Decrease in PA – Allowing Migration 
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Figure 2.4: Industry Employment Growth and Tariff Changes
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Figure 2.5: Industry Employment Growth and Tariff Changes - False Experiment
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Figure 2.6: Relationship Between Tariff Changes and Pre-Liberalization Tariff Levels
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Figure 2.7: Regional Wage Changes
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Figure 2.8: Tariff-Induced Price Changes

Source: Author's calculations - see text
Industries sorted by 1987 employment share (descending order)
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Figure 2.9: Region-Level Tariff Changes
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Figure 2.10: State-Level Tariff Changes
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Table 2.2: Cross-Sectional Wage Regressions - 1991 and 2000 Census

Year 1991 2000

Age 0.060 0.067
(0.000)** (0.000)**

Age2 / 1000 -0.616 -0.690
(0.004)** (0.003)**

Female -0.364 -0.310
(0.001)** (0.001)**

Inner City 0.102 0.081
(0.001)** (0.001)**

Race
Brown (parda) -0.129 -0.124

(0.001)** (0.001)**
Black -0.192 -0.164

(0.002)** (0.001)**
Asian 0.137 0.111

(0.006)** (0.005)**
Indigenous -0.158 -0.102

(0.010)** (0.006)**

Married 0.190 0.161
(0.001)** (0.001)**

Fixed Effects
Years of Education (18) X X
Industry (21) X X
Microregion (558) X X

Observations 4962311 5664677
R-squared 0.517 0.503

Robust standard errors in parentheses
+ significant at 10%; * significant at 5%; ** significant at 1%
Omitted category: unmarried white male with zero years of education, outside inner city,

   working in agriculture

dependent variable: log wage = ln((monthly earnings / 4.33) / weekly hours) at main job
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Table 2.3: The Effect of Tariff Changes on Price Changes

(1) (2) (3) (4)

Δ ln(1 + τi) 0.029 0.142
(0.512) (0.491)

γi Δ ln(1 + τi) 12.587 12.240
(5.446)* (6.117)+

Δ ln PUS,i 0.694 0.397
(1.014) (0.849)

Constant 18.686 18.603 18.933 18.855
(0.260)** (0.327)** (0.159)** (0.295)**

R-squared  0.000  0.036  0.281  0.293

Robust standard errors in parentheses
+ significant at 10%; * significant at 5%; ** significant at 1%
20 industry observations
weighted by 1990 industry value added

Effect of Tariff Changes on Price Changes 1987-1995

dependent variable: change in log wholesale price in Brazil

Table 2.4: The Effect of Liberalization on Local Wages

(1) (2)

Regional Liberalization Shock 0.764 0.629
(0.242)** (0.171)**
[0.381]+ [0.158]**

Constant 0.037
(0.007)**
[0.022]

State Fixed Effects (27) X

R-squared 0.061 0.620

Heteroskedasticity robust standard errors in parentheses ( )
Standard errors adjusted for 27 clusters by state in brackets [ ]
+ significant at 10%; * significant at 5%; ** significant at 1%
558 microregion observations
Weighted by inverse of standard error of microregion wage premium estimate
a Change in microregion wage premium, calculated from microregion fixed effects

in cross-sectional wage regressions

dependent variable: change in log microregion wagea
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Table 2.5: Migration Summary Statistics

Demographic Group

Fraction of Total 
Population in 

Demographic Group

Fraction of 
Demographic Group 
that Ever Migrated

Migrated in the 10 
Years Preceding the 

Survey

Migrated during
Sept 1982 - Sept 1988

(Pre-Liberalization)

Migrated during
Sept 1996 - Sept 2002
(Post-Liberalization)

All 100.00% 29.04% 9.65% 6.22% 5.90%

Gender
Female 51.54% 28.46% 9.21% 5.94% 5.66%
Male 48.46% 29.65% 10.12% 6.51% 6.15%

Age
18-24 24.93% 19.83% 10.58% 5.63% 7.19%
25-34 30.27% 28.36% 12.43% 8.09% 7.65%
35-54 44.80% 34.63% 7.26% 5.15% 4.11%

Education
0 11.72% 30.06% 8.80% 5.39% 5.57%
1-3 14.51% 31.01% 9.82% 6.31% 5.99%
4-7 31.46% 29.92% 9.90% 6.32% 5.91%
8-10 16.30% 27.58% 9.76% 6.28% 5.76%
11-14 20.00% 25.81% 9.06% 6.14% 5.73%
15+ 2.22% 36.99% 14.05% 10.02% 9.10%

Race
White 55.50% 28.85% 9.22% 6.30% 5.51%
Brown (Pardo ) 38.16% 30.09% 10.65% 6.49% 6.51%
Black 5.72% 23.41% 6.95% 3.71% 4.83%
Asian 0.48% 33.81% 12.63% 4.97% 10.39%
Indigenous 0.14% 30.34% 10.55% 3.23% 10.77%

Marital Status
Married 62.23% 32.46% 10.13% 6.88% 5.89%
Unmarried 37.77% 23.40% 8.87% 5.04% 5.91%

Family Size
1-2 15.51% 31.31% 11.95% 7.14% 7.87%
3-4 49.84% 28.93% 9.58% 6.45% 5.67%
5-6 25.89% 29.32% 8.98% 5.97% 5.16%
7+ 8.76% 24.80% 8.00% 4.93% 4.90%

Baseline Population 81,099,568 81,099,568 81,099,568 72,282,488 92,562,936
Survey Years Utilized 1992-2002 1992-2002 1992-2002 1992 2002
Observations 1,612,368 1,612,368 1,612,368 158,061 208,080

Source: Author's calculations based on 1992-2002 PNAD
Sample: Individuals age 18-55
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Table 2.6: The Effect of State-Level Tariff Changes on Location Choice

Additional grouping 
beyond source state

Homogeneous effect 
across groups

Heterogeneous effect 
across groups Observations

None 1.920 168
(0.983)+

Age 1.848 253
(0.872)*

Age 18-34 2.524
(0.864)**

Age 35-55 0.576
(1.725)

Gender 1.768 258
(0.975)+

Male 2.118
(1.072)+

Female 1.381
(0.898)

Education 2.733 251
(1.048)*

0-7 Years 3.583
(1.006)**

8+ Years 1.048
(1.335)

Race 1.828 241
(1.029)+

White 2.376
(1.348)+

Non-white 1.054
(0.844)

Familiy Size 2.291 231
(1.119)+

4 or fewer 2.413
(1.043)*

5 or more 2.061
(1.369)

Standard errors clustered by 19 destination states
+ statistically significant at 10%,  * at 5%,  ** at 1%

Observations represent group (including source state) x destination pairs
Sample: Individuals age 18-55 at time of survey
Dropping groups with less than 5 observations in either period
Weighted by the square root of the number of observations in each cell

Source: Author's calculations based upon the following data sets
Migration and employment: 1987,1992, and 2002 PNAD
Trade policy: Kume et al. (2003)
Import penetration: IBGE Brazil national accounts
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Table 2.7: Liberalization-Induced Population Shifts

Liberalization-induced 1988 population Proportional
State population change (aged 18-55) population change
Mato Grosso 20,655 780,113 2.65%
Mato Grosso do Sul 19,820 853,602 2.32%
Paraiba 18,420 1,347,519 1.37%
Espirito Santo 13,553 1,161,370 1.17%
Alogas 10,877 987,854 1.10%
Bahia 53,789 4,936,731 1.09%
Pernambuco 33,794 3,209,443 1.05%
Ceara 27,433 2,703,695 1.01%
Parana 40,412 4,375,543 0.92%
Piaui 8,541 1,051,501 0.81%
Minas Gerais 58,643 7,481,558 0.78%
Sergipe 4,141 580,131 0.71%
Rio Grande do Norte 6,453 1,016,421 0.63%
Goias 17,062 3,244,584 0.53%
Maranhao 9,111 2,007,522 0.45%
Santa Catarina 3,236 2,197,374 0.15%
Rio Grande do Sul -4,749 4,672,987 -0.10%
Rio de Janiero -43,956 7,331,464 -0.60%
Sao Paulo -297,234 16,810,570 -1.77%

Source: Author's calculations - see text for details



CHAPTER III

Overestimating the Effect of Complementarity on Skill
Demand

3.1 Introduction

Numerous studies have documented substantial increases in U.S. wage inequality

beginning in the early 1980’s.1 A large number of these analyses estimate cost func-

tion parameters in an effort to measure the effect of capital-skill complementarity on

increased skill demand. In this paper, I present a model of production incorporating

capital-skill complementarity showing that cost minimizing behavior will lead these

previous studies to overestimate the effect of complementarity when production is

subject to skill-biased technological change. I then implement a novel instrumental

variables strategy based on changes in the tax treatment of income from capital dur-

ing the early 1980’s to show that the standard complementarity estimates are biased

upward in practice.

Cost function estimates with quasi-fixed capital were first introduced in the in-

equality literature by Berman, Bound and Griliches (1994), and a large number

of subsequent papers utilize this approach.2 The following intuition explains why

estimates derived using this approach will be systematically biased toward overes-
1Recent surveys of the large wage inequality literature include Acemoglu (2002) and Card and DiNardo (2005).
2Examples include Autor, Katz and Krueger (1998); Berman and Machin (2000); Berman, Somanathan and

Tan (2005); Blonigen and Slaughter (2001); Caroli and van Reenen (2001); Chun (2003); Doms, Dunne and Troske
(1997); Dunne, Haltiwanger and Troske (1997); Goldin and Katz (1998); Haskel and Slaughter (2002); Machin and
Van Reenen (1998); and Pavcnik (2003).
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timating the impact of capital-skill complementarity. The cost-function approach

derives an estimating equation that relates changes in skill demand to changes in

capital, with the regression coefficient on capital representing complementarity. The

equation’s error term represents skill-biased technological change (SBTC) in produc-

tion. Firms experiencing SBTC will by definition increase their skill demand, but if

complementarity is present, the increased use of skilled labor will also lead the firm

to increase capital usage. Optimal firm behavior in the presence of complementarity

implies a positive relationship between SBTC (the error term) and capital changes

(the regressor of interest). Thus, the estimated coefficient on capital changes will

be biased upward, overstating the impact of capital-skilled complementarity on skill

demand.

After demonstrating this intuition in a production framework that incorporates

capital-skill complementarity, the analysis moves to determining the practical im-

portance of the bias. I introduce a novel instrumental variable derived from policy

changes in the tax treatment of capital that generated variation in the user cost

of capital faced by different industries. This approach is particularly well suited to

identifying the role of complementarity, since it relies on exogenous variation in the

price of capital across industries. The empirical results show that the theoretically

predicted bias is realized in practice. The OLS estimates overstate the importance of

capital-skill complementarity relative to the IV estimates, which are indistinguish-

able from zero, indicating no significant role of complementarity.

Previous papers in the wage inequality and complementarity literatures have noted

the possibility of biased cost function estimates resulting from measurement error or

endogeneity of cost function inputs. Dunne et al. (1997) and Duffy, Papageorgiou

and Perez-Sebastian (2004) respond to these concerns by using lagged values of pro-
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duction inputs and output as instrumental variables.3 Krusell, Ohanian, Rios-Rull

and Violante (2000) utilize functional form restrictions and nonlinear estimation

techniques to resolve potential endogeneity when estimating the effects of comple-

mentarity in the presence of skill-biased technological change.

The present analysis contributes to the previous literature in two ways. First,

it refines the general endogeneity concerns discussed previously, demonstrating in

a simple production model that optimal firm behavior itself will generate bias in a

particular direction, overstating the role of complementarity. This bias is neither

arbitrary, nor the result of measurement error, but results directly from cost mini-

mizing behavior. Second, this paper uses a new policy-driven instrumental variables

approach to consistently identify the effect of complementarity on changes in skill

demand. This represents an alternative to the lagged-values instruments and simu-

lation estimation approaches employed previously.

The analysis presented here has implications beyond the inequality literature. In

general, OLS estimates of cost function parameters will be systematically biased

when the following two conditions hold: 1) production is modeled with a quasi-fixed

factor that exhibits different levels of substitutability across variable inputs, and 2)

the production function is subject to factor-biased technical change. These condi-

tions clearly hold in the inequality literature, but they are also likely to be relevant in

industry studies of productivity growth that utilize the quasi-fixed factor assumption.

Caves, Christensen and Swanson (1981) introduced the quasi-fixed factor technique

in the productivity growth context, and more recent studies utilizing similar tech-

niques include Bloch and Tang (2007), Casarin (2006), Lee (2008), and Nostbakken

(2006). Understanding the extent of capital-skill complementarity in production is

3Although Dunne et al. utilize different instruments, their long-difference IV cost function estimates also support
this paper’s conclusion. The IV analysis in Duffy et al. (2004) yields very imprecise estimates, making it difficult to
infer bias by comparison with baseline estimates.
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also of independent interest. This parameter is fundamental to the study of labor de-

mand, particularly in measuring the elasticity of substitution between different types

of labor. Such labor-labor elasticities are necessary to understand how changes in

workforce skill mix affect relatives wages (Fallon and Layard 1975) and in decid-

ing how to aggregate different groups of workers when conducting empirical work.

Capital-skill complementarity estimates are also of direct interest when predicting

the effect of capital subsidies on different workers’ wages (Hamermesh 1993).

This paper has four remaining sections. The next section describes how cost func-

tion estimation has been employed in the wage inequality literature and discusses the

source of estimation bias. Section 3.3 presents a model that explicitly incorporates

capital-skill complementarity, demonstrating that the standard estimation procedure

will overestimate the effect of complementarity. Section 3.4 implements an instru-

mental variables strategy suggesting that the theoretically predicted bias is present

in practice, and section 3.5 concludes.

3.2 The Complementarity / SBTC Decomposition

Two potential causes of increased demand for skilled labor relative to unskilled

labor are skill-biased technological change (SBTC) and capital-skill complementarity.

SBTC is normally defined in a two-factor model, including skilled and unskilled

labor. Berman, Bound and Machin (1998) provide a concise definition: “A skill-

biased technological change is an exogenous change in the production function that

increases the [relative demand for skilled to unskilled labor] at the current wage level.”

An alternative driver of within-industry increases in relative skill demand is capital-

skill complementarity combined with falling capital prices. A production function

exhibits capital-skill complementarity if its derived factor demands imply that capital
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is more complementary with skilled labor than with unskilled labor. Under capital-

skill complementarity, a fall in the price of capital will result in an increase in the

demand for skilled labor relative to unskilled labor, given fixed relative wages. As

shown in Figure 3.1, the price of new investment relative to production worker wages

fell sharply during the first half of the 1980’s, the time period exhibiting the sharpest

increase in inequality (Card and DiNardo 2002).

Thus, both SBTC and capital-skill complementarity may have driven shifts in

relative skill demand giving rise to increased inequality. Given the fundamental diffi-

culty in directly measuring technological changes, studies generally seek to measure

the effect of capital-skill complementarity and attribute residual shifts in relative

skill demand to SBTC. In an effort to generate such an estimate of the effect of

capital-skill complementarity on inequality, Berman, Bound and Griliches (1993,

1994), hereafter BBG, adapt a technique from Brown and Christensen (1981). They

estimate an industry-level cost function using data on U.S. industries from the An-

nual Survey of Manufactures, and use the resulting parameter estimates to describe

the effect of capital-skill complementarity on changes in industry skill share. The

remainder of this section describes the BBG cost function estimation approach in

order to highlight potential problems in the approach’s ability to identify the effect

of complementarity on skill share.

An estimation equation that distinguishes between the effects of capital-skill com-

plementarity and SBTC can be derived from a translog variable cost function of the
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form

lnV C =α0 + αy lnY +
∑
j

αj lnwj + β lnK +
1

2
γY Y (lnY )2

+
1

2

∑
j

∑
k

γjk lnwj lnwk +
1

2
δ(lnK)2 +

∑
j

ρYj lnY lnwj

+
∑
j

ρj lnwj lnK + π lnY lnK + φtt+
1

2
φttt

2 + φtY t lnY

+
∑
j

φtwj t lnwj + φtKt lnK

(3.1)

where V C is variable cost, Y is value added, wj is the cost of variable input j, K

is capital, and t is time, representing technical change. BBG assume that capital is

quasi-fixed, implying that firms do not maximize over capital, which accounts for its

inclusion separate from other variable inputs in (3.1). Under this assumption, cost

minimization yields a share equation which is then time differenced to yield

dSj = φtwjdt+ ρYjd lnY +
∑
k

γjkd lnwk + ρjd lnK (3.2)

where Sj is the wagebill share of variable input j, and d is the long difference op-

erator. Assuming linear homogeneity of the cost function, constant returns to scale

production, and that all industries have the same elasticities of substitution between

factors yields the following estimating equation for industry i:

dSS,i = γd ln(wS,i/wU,i) + ρd ln(Ki/Yi) + φidt (3.3)

where SS,i is the wagebill share of skilled workers, wS,i is the wage of skilled workers,

and wU,i is the wage of unskilled workers in industry i. γ is related to σSU , the

elasticity of substitution between skilled and unskilled labor, and ρ measures the

effect of capital-skill complementarity on increases in demand for skilled labor relative

to unskilled labor. The technology term in this equation, φidt, includes an industry

subscript, which can be interpreted as modeling a common cross-industry technology
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shock that has different effects on each industry.4 In what follows, (3.3) will be

referred to as the “decomposition equation.”

In practice, the technology term in the decomposition equation, φidt, is interpreted

as the error term of the estimating regression. (3.3) is generally estimated using

industry or firm level data that is differenced over time spans ranging from 1 to 14

years. When determining how much of the changes in skill share can be attributed to

capital-skill complementarity, one is primarily interested in estimating the parameter

ρ in (3.3), which is identified by cross-industry variation in the change in capital

intensity. By imposing the quasi-fixed capital assumption, the analysis assumes that

changes in capital intensity are not the result of decisions by maximizing agents, and

thus are exogenous to technology shocks in the error term.

Under the quasi-fixed capital assumption agents do not adjust capital, but the

analysis simultaneously relies on capital intensity changes to identify the parameter

of interest. Moreover, capital investment data almost certainly reflect the decisions

of cost minimizing firms to some degree, so investment decisions are likely to be

affected by changes in technology. Therefore, changes in capital intensity will be

correlated with technology shocks in the error term, resulting in a biased estimate

of the causal effect of complementarity on changes in skill share.5

The same problem can be seen from another perspective when considering the

potential sources of identifying cross-industry variation in capital intensity changes.

The two most likely sources of variation are different capital price changes across

industries and different arrival times of new technology to different industries. Since

4An observationally equivalent interpretation would impose a common effect of a given technology shock in all
industries, but would allow for different shocks in each industry.

5Situations in which (3.3) is estimated using one-year differences may not suffer as much from this problem, as
capital intensity may not have time to adjust to recent technology shocks over such a short time span. However, if
technology shocks are serially correlated within industries, then the change in capital intensity in a given year, which
is driven by the previous year’s shock, will still be correlated with the error term, leading to bias. Since industries
receiving new technologies are likely to experience the continued influence of technological developments, such serial
correlation is quite likely in this case.
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capital-skill complementarity implies that industries experiencing a decrease in the

price of capital will increase their skill share, identification based on different capital

price changes will be successful. Identification based on different arrival times of

technology is more problematic. Variation in the error term is interpreted as result-

ing from skill-biased changes in technology. Industries experiencing large skill-biased

technology shocks by definition will have more positive changes in skill share con-

ditional on the change in capital intensity. If industry production functions exhibit

complementarity, then increases in skill-share will raise the marginal product of cap-

ital and induce increased investment. Therefore, complementarity creates a causal

link between SBTC and changes in capital intensity, which results in an overestimate

of the effect of complementarity.

3.3 The Decomposition in a Model with Complementarity

In order to demonstrate the preceding intuition, this section presents a framework

that explicitly imposes capital-skill complementarity (rather than simply allowing for

complementarity as with the translog cost function). This framework demonstrates

the resulting association between SBTC (the error term in (3.3)) and changes in

capital intensity (the regressor of interest in (3.3)).

As defined by Griliches (1969), capital-skill complementarity implies that

σKU > σKS (3.4)

where σij is the Allen-Uzawa partial elasticity of substitution between factors i and

j, and U , S, and K represent unskilled labor, skilled labor, and capital, respectively.

The simplest three-factor production function that allows the imposition of capital-

skill complementarity as defined in (3.4) is the two-level CES production function
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examined by Sato (1967):6

Y = [αZ
σ−1
σ + (1− α)(gULU)

σ−1
σ ]

σ
σ−1

where Z = [β(gKK)
ψ−1
ψ + (1− β)(gSLS)

ψ−1
ψ ]

ψ
ψ−1

(3.5)

The share parameters α and β ∈ (0, 1), the factor augmenting terms gU , gK , and gS >

0, and the substitution parameters σ and ψ > 0 are all technology parameters, andK,

LS, and LU represent capital, skilled labor, and unskilled labor inputs, respectively.

Given this production function, the elasticities of substitution between capital and

unskilled labor and between skilled labor and unskilled labor are σKU = σSU =

σ, while the elasticity of substitution between capital and skilled labor is σKS =

σ + 1
θKS

(ψ − σ), where θKS ∈ (0, 1) is the cost share spent on capital and skilled

labor combined.7 The production function exhibits capital-skill complementarity as

defined in (3.4) when σKU > σKS, which in this case is equivalent to σ > ψ.

Consider this production function in a partial equilibrium framework in which the

price of the final good is normalized to one, and real factor prices are exogenous. In

this framework, the first order conditions can be subjected to shocks to the different

technology parameters, allowing one to observe the resulting comovement between

the error term in the decomposition equation and capital intensity, the regressor

of interest.8 For notational convenience, I set ψ = 1 in the following expressions,

corresponding to the case in which the inner CES aggregate reduces to Cobb-Douglas,

and capital-skill complementarity is equivalent to σ > 1. The results are similar to

those in the general case, but can be demonstrated using much simpler expressions.9

6This functional form is used here for illustrative purposes, but similar forms have been used directly in empirical
estimation in Krusell et al. (2000) and Duffy et al. (2004).

7Although Sato (1967) does not include the factor-augmenting technology parameters, these elasticities can be
derived following similar calculations to those in the appendix of Sato (1967).

8An alternative approach would be to derive the cost function implied by (3.5) and take a second order log
approximation, which would correspond to (3.1). Unfortunately with capital fixed, no closed form solution for this
cost function exists, and calculating the necessary derivatives to implement the second order approximation using
the implicit function theorem quickly yields intractable mathematical expressions.

9The Appendix presents the analysis in the general case in which the only restriction placed on the elasticity
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The dependent variable in the decomposition regression is the wagebill share of

skilled labor. The two-level CES production function, (3.5), yields a particularly

unruly form for this share. However, since the wagebill share of skilled labor is

increasing in LS/LU for a fixed wage ratio, one can infer the direction of change of

the wagebill share of skilled labor by observing changes in LS/LU .10 Taking the ratio

of the first order conditions with respect to LS and LU and taking logs yields

ln(LS/LU) =σ ln(α/(1− α)) + (1 + (1− β)(σ − 1)) ln(1− β) + β(σ − 1) ln β

− (σ − 1) ln gU + β(σ − 1) ln gK + (1− β)(σ − 1) ln gS + σ lnwU

− (1 + (1− β)(σ − 1)) lnwS − β(σ − 1) ln r

(3.6)

where wU , wS, and r are the respective prices of unskilled labor, skilled labor, and

capital. From this expression, it is clear that LS/LU is increasing in gK , gS, and

α, and decreasing in gU . Thus, in this model SBTC is associated with exogenous

increases in gK , gS, and α, or decreases in gU .11

The first order condition with respect to capital will demonstrate how capital

intensity changes when the production function is subjected to SBTC parameter

parameters is the complementarity assumption that ψ < σ. The only substantive difference from the simpler ψ = 1
case concerns the parameters gK and gS . If ψ ≥ 1 then the Cobb-Douglas case results continue to hold. Otherwise
the signs of gK ’s effect on K/Y and gS ’s effect on LS/LU are ambiguous.

10The wagebill share of skilled labor is defined as

wSLS

wSLS + wULU
=

wS
wU

LS
LU

wS
wU

LS
LU

+ 1

which is increasing in LS
LU

for a fixed wage ratio.
11The effects of changes in β on ln(K/Y ) and ln(LS/LU ) depend on the value of other parameters and input

prices, and thus cannot be signed in general. However, taking the partial derivatives of (3.6) and (3.7) with respect

to β, one can show that
∂ ln(K/Y )

∂β
> 0 whenever

∂ ln(LS/LU )
∂β

> 0. If this is the case, increases in β will induce

positive bias in estimating ρ, as is the case with the other parameters. However, the bias could be negative or zero
in other cases.
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shocks. Taking logs of the first order condition with respect to capital yields

ln(K/Y ) =σ lnα + (1− β)(σ − 1) ln(1− β) + (1 + β(σ − 1)) ln β + β(σ − 1) ln gK

+ (1− β)(σ − 1) ln gS − (1− β)(σ − 1) lnwS − (1 + β(σ − 1)) ln r

(3.7)

This expression shows that K/Y is increasing in gK , gS, and α, and invariant to

gU . The likely endogeneity in the decomposition equation is apparent given these

comparative static results. The SBTC-inducing parameter changes directly cause

increases in capital intensity, with the exception of gU which has no effect on capital

intensity. Thus, the capital intensity term in (3.3) is likely to be positively correlated

with SBTC shocks in the error term, and the OLS estimate of ρ will be biased upward,

overestimating the effect of complementarity on the relative demand for skilled labor.

To see this bias more clearly, it is possible to use (3.6) and (3.7) to calculate the

OLS estimate of ρ in (3.3) that would be obtained if the data used in estimation

reflect the production technology just described. Following the previous literature,

assume that the relative wage term in (3.3) is constant across industries and is

therefore absorbed into the intercept term (see section 3.4 below). In this case,

plim ρ̂ =
Cov

(
dSS,i, d ln Ki

Yi

)
Var

(
d ln Ki

Yi

) . (3.8)

For small changes in LS
LU

, the definition of SS,i implies that dSS,i = (SS,i−S2
S,i) d ln

LS,i
LU,i

.

Assuming for simplicity that all industries begin with the same skill share, (3.8) can

be restated as

plim ρ̂ =
(SS − S2

S) Cov
(
d ln

LS,i
LU,i

, d ln Ki
Yi

)
Var

(
d ln Ki

Yi

) . (3.9)

Given information on the variation in factor prices and technology parameters across

industries, the covariance and variance terms in (3.9) can be calculated directly from

(3.6) and (3.7), yielding the corresponding estimate of ρ.
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In practice, the researcher estimating (3.3) observes variation in d ln(Ki/Yi) that

may be driven by capital price variation or by SBTC. Figure 3.2 uses (3.9) to show

that the estimate of ρ increases as the variation in d ln(Ki/Yi) is more heavily driven

by SBTC, even when the degree of complementarity is held fixed. As an example

of how the estimates in Figure 3.2 were calculated, consider the case where capital

variation is driven only by cross-industry variation in the capital price r and the

technology parameter α, and these two drivers are independent. The variation in

d ln(Ki/Yi) is then given by

Var

(
d ln

Ki

Yi

)
= σ2 Var (d lnαi) + (1 + β(σ − 1))2 Var (d ln ri) , (3.10)

with the first term on the right hand side describing the portion of the variation

in d ln(Ki/Yi) due to α-based SBTC and the second term describing the remainder

of the variation due to r. The x-axis in Figure 3.2 represents the fraction of the

total variation in d ln(Ki/Yi) due to variation in the relevant SBTC parameter, so

when this value is 0, all of the capital variation comes from r, and there is no

variation in SBTC. The line labeled α in the left panel of Figure 3.2 shows how

the estimate of ρ increases as the fraction of the variation in d ln(Ki/Yi) due to α-

based SBTC increases from 0 to 1 in the presence of complementarity (since σ > ψ).

The line’s intersection with the y-axis shows the correctly identified estimate of ρ,

which is positive, indicating the presence of complementarity. As the variation in

SBTC is increased, however, the ρ estimates increase, in spite of the fact that the

substitution parameters are unchanged. A similar pattern is seen in the right panel

of 3.2, in which production does not exhibit capital-skill complementarity (since

σ = ψ). The ρ estimates only reflect the absence of complementarity when all of the

capital variation is driven by variation in r, and the estimates of ρ are increasingly

upward biased as SBTC variation becomes more important.
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Figure 3.2 presents similar results for SBTC based upon variation in gS and gK ,

yielding the same conclusion. The degree of complementarity is correctly identified

only when capital variation is driven by r and is overestimated when SBTC is present.

Note that the estimates for gS and gK variation are identical in the left panel due to

the Cobb-Douglas assumption (ψ = 1), and are absent from the right panel because

neither parameter affects d ln(Ki/Yi) in the absence of complementarity, so the x-axis

is undefined. Estimate plots generated without the Cobb-Douglas restriction on ψ

are presented in Figure 3.3, yielding the same qualitative conclusions.

This section has demonstrated that cost minimization implies that SBTC drives

changes in both skill share and capital intensity. Therefore OLS estimates of the

decomposition equation overestimate the effect of complementarity on skill demand.12

The estimate plots in Figures 3.2 and 3.3 support this conclusion, and suggest that

consistent identification can be achieved by using variation in capital intensity that

is driven by cross-industry variation in the price of capital. The following section

operationalizes this observation using an instrumental variables estimation strategy

based on the tax treatment of capital.

3.4 Disentangling the Effects of Complementarity and SBTC

The preceding theoretical discussion suggests that the decomposition equation

overestimates the effect of capital-skill complementarity on relative skill demand, and

thus underestimates the residual effect attributed to SBTC. In an effort to assess

this theoretical prediction, the remainder of this paper presents an instrumental

variables analysis that takes advantage of changes in the U.S. corporate income tax

12BBG and others have included proxies of SBTC such as computer investment or R&D expenditures in an effort
to directly measure the effects of technical change. While previous studies appear to have included these proxy
variables for reasons other than concerns with endogeneity, a perfect measure of SBTC would completely remove it
from the error term and resolve the endogeneity problem just discussed. However, the data previously used appear
to be quite weak proxies for SBTC, and any cross-industry variation in SBTC that is not accounted for by the proxy
will remain in the error term, continuing to cause biased parameter estimates.
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code during the early 1980’s. These changes resulted in cross-industry variation in

the tax treatment of industry capital, which provide an instrument for the change in

industry capital intensity. The results suggest that the theoretically predicted bias

is realized empirically.

3.4.1 Corporate Income Tax and Effective Marginal Tax Rates

The corporate income tax in the U.S. is similar to a tax on corporate profits, al-

lowing businesses to deduct input and materials costs that are incurred in generating

revenues. Since capital inputs provide services over a long period of time and are

“used up” slowly through economic depreciation, a textbook profits tax would allow

businesses to deduct the value of economic depreciation incurred each year rather

than the full price of the capital asset at the time of purchase. In practice, the U.S.

corporate income tax has deviated from the textbook profits tax by providing in-

vestment tax credits allowing firms to immediately reduce tax liability by a fraction

of a capital good’s purchase price and by creating statutory depreciation schedules

that differ substantially from economic depreciation rates. These deviations result

in effective marginal tax rates that differ from the statutory tax rate.13 Since the

size of the investment tax credit and the gap between economic and statutory depre-

ciation rates vary across capital assets, income from investment in different capital

assets faces different effective marginal tax rates even though the statutory tax rate

is the same across income from all assets. The empirical analysis presented here

utilizes estimates of effective marginal tax rates on 28 different capital assets gen-

erated by Gravelle (2001) using the Hall and Jorgenson (1967) user cost of capital

formula, which accounts for investment tax credits, statutory depreciation, economic

depreciation, inflation, and interest rates.

13The effective marginal tax rate is defined as the marginal tax rate on true economic profits that would yield the
same incentive to invest as the tax structure actually faced by the firm.
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During the time period being examined, legislative changes greatly affected the

tax treatment of capital investment.14 The overall effect of these legislative changes

was to generate significant variation in effective marginal tax rates across assets. In

order to utilize this variation as an instrument for capital intensity in the decom-

position regression, it is important that the investment incentives were not targeted

toward capital assets that may embody SBTC. If such targeting did take place, the

changes in tax rates might be correlated with SBTC shocks in the decomposition’s

error term and would not yield a valid instrument for changes in capital intensity.

In its Report on the Economic Recovery Tax Act of 1981, the U.S. Senate Commit-

tee on Finance (1981) states that ”tax reductions are urgently needed to stimulate

capital formation,” and goes on to note that the Act provides broad accelerated de-

preciation allowances for both plant and equipment capital assets. Neither the report

nor the individual senators’ additional comments mention targeting particular types

of assets. These apparently ad-hoc investment incentives appear to have changed

marginal tax rates in ways that do not exhibit any systematic pattern across asset

classes. Table 3.1 reports the difference in the time averaged effective marginal tax

rates in the 1975-79 and 1980-87 periods, and ranks the 28 asset classes by how much

each was affected by the early 1980’s tax changes. Assets of different types are quite

evenly distributed throughout this ranking. For example, the six different classes of

structures fall at ranks 7, 10, 15, 24, 25, and 26. High-tech equipment assets that are

generally associated with SBTC, Office/Computing, Instruments, and Communica-

tions Equipment, fall at ranks 1, 19, and 27, respectively. Thus, it appears that the

14The Economic Recovery Tax Act of 1981 redefined depreciation categories, substantially increasing depreciation
rates for most assets, and decreased the statutory tax rate on income from capital from 46% to 47%. Legislation
during the 1981-85 period reduced the very large investment incentives of the 1981 Act. Finally, the Tax Reform Act
of 1986 decreased the tax rate to 34% and sought to bring the system back in line with true economic depreciation
by repealing many investment incentives and creating more variation in statutory depreciation rates across asset
classes. See Auerbach, Aaron and Hall (1983); Gravelle (1994); and Gravelle (2001) for detailed summaries of the
relevant changes in tax law.
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tax changes did not target particular types of capital assets, and rather attempted to

promote investment in general while affecting individual assets in essentially random

ways. This suggests that industry tax changes provide a valid instrument for changes

in capital intensity.

3.4.2 Data and Estimation

Equation (3.3) is estimated using data from the Annual Survey of Manufac-

tures (ASM) in the NBER Manufacturing Productivity Database (Bartlesman and

Gray 1996). As is common in studies of wage inequality, nonproduction and produc-

tion workers respectively define skilled and unskilled workers. For comparison with

previous results in the literature, this analysis follows a number of choices made by

Berman, Bound and Griliches (1993) in implementing the estimation of (3.3). The

relative wage term in the share equation is dropped due to a lack of data in the ASM

on nonproduction worker hours. Under the assumption that any measured varia-

tion in relative wages across industries reflects unobserved quality variation within

worker categories rather than true variation in relative wages for equivalent workers,

it is appropriate to drop this term as it would be absorbed by the constant term if

properly measured. Y is measured as shipments rather than value-added due to the

lack of appropriate price deflators for industry value-added. As already mentioned,

the technology term in (3.3), representing SBTC, is left in the error term. In an ef-

fort to reduce noise induced by measurement error in smaller industries in the ASM,

data are weighted using the industry’s share of the total manufacturing wage bill.15

Finally, the results presented examine changes between 1979 and 1987. As seen in

Card and DiNardo (2002), this was the period over which wage inequality exhibited

the largest increase.

15See Berman et al. (1993) p.23 for a detailed discussion.
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I use the change in the industry effective marginal tax rate on capital income as

an instrument for the change in industry capital intensity. This approach directly

corresponds to the definition of complementarity based upon elasticities of substitu-

tion - it examines changes in relative skill demand resulting from exogenous changes

in the price of capital assets. The industry effective marginal tax rate is calculated

as follows. Given the effective marginal tax rates for assets a in years t from Gravelle

(2001), and assuming that a marginal investment will have the same asset mix as

the industry’s investments at a given point in time, t0, an overall marginal tax rate

on capital income in industry i can be constructed using a weighted average.16

τ ti =
∑
a

κt0a,im
t
a (3.11)

where τ ti is the industry-level measure of the effective marginal tax rate on capital

income in industry i at year t, κt0a,i is the weight for asset a in industry i at a given

point in time t0, and mt
a is the effective marginal tax rate on asset a at year t. The

asset weights, κt0a,i, reflect how much each industry utilizes each asset class, calculated

here as the fraction of total industry i investment allocated to asset a as reported in

the 1977 Benchmark Input-Output Accounts Capital Flow Tables (Silverstein 1985).

This data set is published using the I-O Accounts industrial classification system,

which includes 52 manufacturing industries corresponding to the 2- or 3-digit SIC

level, each of which is assigned a tax rate for each year using equation (3.11). The

change in the time averaged tax rate between the periods 1975-1979 and 1980-1987

is then used as an instrument for the change in capital intensity from 1979 to 1987.17

16Similar approaches are employed in Auerbach et al. (1983), Fullteron and Karayannis (1993), Gravelle (1982),
Gravelle (1983), Gravelle (1994), and King and Fullerton, eds (1984)

17One potential concern with this technique stems from the way in which the Capital Flow Table was generated.
As described in Bonds and Aylor (1998), certain types of aggregate equipment investment were allocated across
industries based on an assumed mapping between occupations and equipment types. Given this assumption, an
industry’s occupational mix influenced the measure of its capital asset use. Thus, it is possible that the industry-
level tax measure presented in (3.11) is correlated with the industry’s skill intensity in 1977. If SBTC shocks arriving
before 1977 were correlated with subsequent shocks, it is possible that the tax change instrument would be correlated
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Since capital asset use data is available only by the I-O Accounts classification,

the instrument varies only at the I-O Accounts industry level. Thus, all empirical

results are reported with standard errors adjusted for 52 clusters at the I-O Accounts

classification level, using the mapping from 4-digit SIC industries in the ASM to the

I-O Accounts in Young (1991).

Table 3.2 presents OLS and IV estimates of the decomposition equation, (3.3), and

Table 3.3 presents regression variable means. The OLS point estimates in Column

(1) of Table 3.2 are identical to those in BBG Table 11, Column (1), although the

standard errors presented here are somewhat larger due to clustering at the I-O

industry level. As seen in previous work, the coefficient on d ln(K/Y ) is positive,

suggesting the presence of complementarity. Column (2) presents the IV results for

the same specification, using the change in the industry effective marginal tax rate

on capital income as an instrument for the change in capital intensity. As expected,

the first-stage results indicate that industries facing larger tax cuts exhibited larger

increases in capital intensity. The first-stage F statistic is 8.74. Based on the results

in Stock and Yogo (2002), this F statistic is just large enough to allay concerns

regarding large size distortions due to weak instruments.18 The IV complementarity

estimate is essentially zero, implying that the OLS results are biased upward, as

expected based upon the theoretical discussion above. In keeping with the intuitive

notion that equipment assets are more relevant to complementarity than structures,

columns (3) and (4) report OLS and IV regressions examining equipment assets

rather than combining equipment and structures. In this case, the instrument is

with SBTC shocks in the error term of (3.3), making the instrument invalid. This hypothesis relies on a correlation
between the tax change instrument and the 1977 skill intensity. Since skill intensity is observable, it is possible to
gauge whether the potential problem exists. The correlation coefficient between the tax change instrument and the
1977 skill intensity is extremely small, 0.0048, indicating that the cross-industry variation in the tax change was not
influenced by the use of occupational mapping in the capital flow table.

18The F statistic of 8.74 is large enough to reject the null hypothesis that the actual size of a 5% test is greater than
20%, given the critical value Stock and Yogo (2002) of 6.66. It is nearly large enough to rule out smaller distortions
as well - the critical value for the actual size of a 5% test is greater than 15% is 8.96.
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calculated using only tax rates on equipment assets. The results are very similar to

those in the first two columns, although the instrument is somewhat weaker in this

case due to the decreased instrument variation resulting from the restricted set of

assets.

Previous work often includes changes in structures intensity along with changes in

equipment intensity and a separate regression term for changes in output to account

for deviations from constant returns to scale. These terms are omitted from the

present analysis due to a lack of available instruments. It is conceptually feasible

to instrument for changes in structures intensity, just as for equipment intensity

in column (4) of Table 3.2. Unfortunately, this is not practically possible in this

case, due to the nature of the policy variation driving cross-industry variation in the

instrument. Nearly all structures investment in manufacturing industries involves

assets in the Industrial Structures and Commercial Structures classifications. As

seen in Table 3.1, these two assets experienced nearly identical tax changes during

the period being examined, so there is essentially no cross-industry variation in the

tax treatment of structures that could be used to instrument for changes in structures

intensity. However, with data on more detailed structures assets or a different tax

policy change, the current methodology could in principle be used to generate a

structures instrument. Output changes are omitted because they, like capital, are

likely to be endogenous, but no instruments are readily available beyond the tax

changes already being used to instrument for changes in capital intensity.19 Thus,

the approach developed here utilizes the constant returns assumption, which obviates

the need for a separate term measuring changes in output.

19Dunne et al. (1997) and Duffy et al. (2004) instrument for changes in capital intensity and changes in output
with flexible functional forms of lagged levels and changes in the regression variables. Given concerns about serially
correlated SBTC shocks within industry potentially invalidating the exogeneity of lagged values as instruments, I
have chosen to focus on policy-based instruments in this analysis.
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The IV results in Table 3.2 imply that the OLS complementarity estimate is biased

upward, as predicted in the theoretical analysis above. Columns (2) and (4) present

the P-value from a Hausman test of the difference between the corresponding OLS

and IV estimates, indicating that failing to instrument will lead to a statistically

significant difference in the estimate for equipment. The negative point estimates in

the IV regressions are somewhat surprising given that many previous studies have

found capital-skill complementarity; Hamermesh (1993) concludes a review of the

relevant empirical literature by stating “We are fairly sure that capital and skill

are p-complements.” However, the same review discusses a number of individual

studies finding no complementarity or even complementarity between capital and

unskilled labor, and the results of a number of the studies finding complementarity

in translog production systems are “not robust to whether assumptions of symmetry

and homogeneity are imposed on the translog system.” Noting this variation in

previous findings, the present estimates are less surprising.

The results presented here provide evidence against the strong complementarity

found in previous studies estimating the share equation and support the theoreti-

cal finding that OLS estimates are biased upward. However, the IV estimates are

somewhat imprecisely estimated, and they do not rule out small positive comple-

mentarity estimates. Thus, although the present results do indicate upward bias in

previous estimates, they should not be taken as strong evidence against smaller levels

of complementarity. The IV approach developed here could be used to generate more

precise estimates given more detailed data on how industries use different capital as-

sets. Since the capital asset data used here varies only across 52 industries, clustering

at this level implies that the analysis essentially uses only 52 observations. The U.S.

Census Bureau’s Annual Capital Expenditure Survey included questions regarding
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investment by detailed asset class in its 1998 and 2003 surveys, with the expectation

of continuing to ask these questions every five years (U.S. Census Bureau 2005).

Although this data source began after the period of sharply increasing inequality of

interest in the present study, it could provide future investigations with asset use

data for more detailed industries, hopefully allowing for greater instrument strength

and more precise estimates.

3.5 Conclusion

This analysis has demonstrated that cost function estimates in many recent studies

of wage inequality systematically overstate the influence of capital-skill complemen-

tarity on increases in relative skill demand. This bias results from the assumption

of quasi-fixed capital in the presence of skill-biased technological change. Although

this finding is consistent with the inequality literature’s consensus that complemen-

tarity alone cannot account for the observed increases in skill demand during the

1980’s, an accurate measure of complementarity is of independent interest in many

areas of labor demand and when evaluating policies that affect the price of capital.

The instrumental variables analysis confirms the theoretical prediction that standard

OLS estimates overestimate complementarity. In fact, the IV estimates are indis-

tinguishable from zero and rule out large complementarity estimates. Since much

of the recent evidence in favor of complementarity comes from studies utilizing the

cost function approach, these contrary results suggest a need to further investigate

the extent of capital-skill complementarity in manufacturing production using al-

ternative methods. The tax-based instrumental variables approach presented here

represents one possible approach that could be used to examine complementarity

following future tax changes.
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3.6 Appendix: Two-Level CES Production Function with General Pa-
rameter Values

The analysis presented above imposes ψ = 1 in (3.5) for simplicity. Without

imposing the restriction that ψ = 1, the primary complication is that the unit price

of Z, the capital-unskilled labor aggregate, has the following form:

λ =

[
βψ
(
r

gK

)1−ψ

+ (1− β)ψ
(
wS
gS

)1−ψ
] 1

1−ψ

As this term does not log-linearize to a convenient expression, it generates very

complex comparative static results for factor demands. For completeness, the general

case factor demands are as follows.

LU
Y

=

(
1− α
wU

)σ
gU

σ−1

K

Y
= ασβψgK

ψ−1r−ψλψ−σ

LS
Y

= ασ(1− β)ψgψ−1
S w−ψS λψ−σ

As described in the text, taking logs of these factor demands allows determination

of the effect of each parameter on the elements of the decomposition regression, K/Y

and LS/LU . Given the complementarity assumption that ψ < σ, the results of this

exercise are as follows.

Positive changes in α cause positive changes in both LS/LU and K/Y . The effects

of β remain ambiguous. Increases in gU have no effect on K/Y and cause positive

(negative) changes in LS/LU if σ < 1 (σ > 1). Increases in gK cause positive changes

in LS/LU and cause positive changes in K/Y if ψ ≥ 1 (otherwise the effect on K/Y

is ambiguous). Increases in gS cause positive changes in K/Y and cause positive

changes in LS/LU if ψ ≥ 1 (otherwise the effect on LS/LU is ambiguous). Thus the

conclusions in the text hold, with the added restriction that ψ ≥ 1 to determine the
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effects of gK and gS. Note, however, that Krusell et al. (2000) estimate ψ = 0.67 and

σ = 1.67, which is consistent with the complementarity assumption, but not with

the restriction that ψ ≥ 1.

3.7 Figures and Tables
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Figure 3.1: Movement in the Price of New Investment Relative to Production Worker Wages

Source: Author's calculations based on Annual Survey of Manufactures data and price indices 
provided in the NBER Manufacturing Database (Bartlesman and Gray, 1996)

Notes: Production workers' wages calculated as production worker wagebill divided by 
production worker hours

Each yearly observation is a weighted sum of industry-level values for that year with 
weights equal to the industry's share of total yearly manufacturing wage bill

Values normalized to equal 1.0 in 1979
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Figure 3.2: Complementarity estimates implied by 2-Level CES production function
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Figure 3.3: Complementarity estimates implied by 2-Level CES production function - without
Cobb-Douglas restriction on ψ
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Table 3.1: Changes in Average Effective Marginal Tax Rates

Rank Asset Average MTR 1975-79 Average MTR 80-87 Difference
1 Office/Computing -8.0 9.0 17.0
2 Trucks/Buses/Trailers 7.0 10.1 3.1
3 Construction Machinery 5.0 8.0 3.0
4 Agricultural Equipment 4.0 6.8 2.8
5 Tractors 6.0 8.6 2.6
6 Furniture and Fixtures 5.0 7.3 2.3
7 Mining Structures 12.0 11.5 -0.5
8 Other Equipment 13.0 9.4 -3.6
9 Railroad Equipment 28.0 24.4 -3.6
10 Public Utility Structures 30.0 26.1 -3.9
11 Other Electrical Equipment 12.0 8.1 -3.9
12 Special Industrial Equipment 12.0 7.9 -4.1
13 Engines and Turbines 36.0 31.5 -4.5
14 Metalworking Machinery 13.0 8.4 -4.6
15 Farm Structures 44.0 37.8 -6.3
16 Mining/Oilfield Equipment 17.0 10.3 -6.8
17 Autos 19.0 12.0 -7.0
18 Aircraft 18.0 11.0 -7.0
19 Instruments 22.0 14.9 -7.1
20 Electric Transmission Equipment 33.0 25.6 -7.4
21 General Industrial Equipment 23.0 14.0 -9.0
22 Fabricated Metal 30.0 20.4 -9.6
23 Service Industry Equipment 22.0 10.9 -11.1
24 Commercial Structures 51.0 39.4 -11.6
25 Other Structures 57.0 45.4 -11.6
26 Industrial Structures 54.0 42.0 -12.0
27 Communications Equipment 25.0 9.0 -16.0
28 Ships and Boats 32.0 10.0 -22.0

Source: Calculations derived from data presented in Gravelle (2001)
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Table 3.2: Share Equation Estimates - All Industries

Equation (1) (2) (3) (4)
OLS IV OLS IV

d ln(K/Y)  0.028 -0.012
(0.018) (0.031)

d ln(E/Y)  0.030 -0.041
(0.017)+ (0.034)

Constant  0.437  0.482  0.414  0.542
(0.073)** (0.067)** (0.070)** (0.067)**

R2  0.028  0.036
1st stage coefficient -1.499 -0.959

on tax instrument (0.507)** (0.424)*
1st stage F   8.74   5.11
Hausman test P-value  0.131   0.046*
Sample: Annual Survey of Manufacturers, 450 manufacturing industries
Standard errors adjusted for 52 clusters at the I-O accounts industry classification level
The d operator represents long differences over the 1979-1987 range, divided by 8 for yearly changes
Data weighted by industry share of total manufacturing wage bill, averaged between 1979-1987
+ significant at 10%;  * significant at 5%;  ** significant at 1%

dependent variable: change in non-production workers' wage bill share (d Ss)

Table 3.3: Regression Variable Means - All Industries

Variable Mean
d Ss 0.468
d ln K 2.807
d ln E 3.492
d ln Y 1.693
d ln(K/Y) 1.113
d ln(E/Y) 1.799

Sample: Annual Survey of Manufacturers, 450 manufacturing industries
All differences represent changes over the 1978 - 1987 range, divided by 8 for average yearly changes
Data weighted by industry share of total manufacturing wage bill, averaged between 1979 and 1987



CHAPTER IV

Offshoring and Price Measurement in the Semiconductor
Industry

4.1 Introduction

The recent growth in offshore outsourcing of intermediate input production has

generated concern that standard government data collection methods are ill-suited

to an increasingly international productive structure (Houseman 2007). This paper

focuses on the semiconductor industry to estimate the effects of offshore outsourcing

on input price measurement. We find that offshoring in this industry necessitates

the collection of very detailed product data to adequately adjust prices for input

quality, and that shifting sourcing patterns may cause standard price measures to

understate price declines for processed semiconductor wafer inputs by as much as

0.8% per year.1

We choose to examine wafer fabrication, an intermediate stage in semiconductor

production, for a number of reasons. First, semiconductor wafer production has

moved offshore to a dramatic degree in the last forty years, with continual shifts

in the geographic distribution of semiconductor manufacturing capacity. Second,

China’s entrance in the semiconductor manufacturing market in 2001 was much

heralded in the media, and provides an interesting case study on the effects of growing

1Semiconductor wafers are described in detail in Section 4.2.
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Chinese economic strength on an important industry. Third, the discrete nature of

technological progress in semiconductor wafer fabrication techniques makes careful

quality adjustment feasible, as we describe in detail below. Finally, we have obtained

a new dataset of semiconductor input prices with information on country of origin,

making possible an empirical investigation of the effects of shifts in sourcing on input

price measurement.

Offshoring poses a number of challenges for price measurement in the semicon-

ductor manufacturing sector in particular. First, suppose a U.S.-based manufacturer

contracts out all production to a firm overseas and that, prior to its decision to off-

shore, it had purchased final goods from an independent supplier here in the U.S.

or had made the good itself. The one-time decline in the price level associated with

the decision to offshore is not captured by current data-collection procedures. The

Producer Price Index’s universe does not include imports, so it does not reflect the

price reduction. The Bureau of Labor Statistics (BLS) International Price Program

(IPP) measures price changes beginning in the second month in which the imported

good is observed, as it is not designed to measure the initial price decline that occurs

when a domestic producer first off-shores a segment of production. A similar problem

can arise if the firm has already contracted out production overseas but now sources

from a low-cost supplier in China rather than from a producer in Taiwan.2

The problem posed by shifting sourcing arrangements is essentially equivalent to

the problem of outlet substitution bias in the CPI, described in detail by the Boskin

Commission Report (Boskin, Dulberger, Gordon, Griliches and Jorgenson 1996) and

Diewert (1998). While those studies were concerned with consumers shifting their

2In principle, the IPP would measure this change if the manufacturer imported the good itself or if it continued
to work through the same intermediary that is surveyed by IPP. If, on the other hand, the manufacturer contracts
with a different intermediary in order to access a new market overseas, the IPP will miss the price decline since it
surveys the importer, which in this case was the original intermediary. Unfortunately, to the best of our knowledge,
there is little information on the relative importance of intermediaries in the IPP.
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consumption toward low-cost retail outlets, this paper confronts the problem of semi-

conductor producers shifting their intermediate input sourcing toward low-cost sup-

pliers located abroad. The bias is most acute whenever the inputs, as in our case,

are approximately identical, which implies that the unmeasured price change when

production is shifted to a new location does in fact represent a genuine price decline

for the same good.

The final significant challenge is quality adjustment. As a greater share of pro-

duction is shifted abroad, the composition of imports becomes increasingly sophis-

ticated. This is particularly true within the semiconductor industry, which imports

many complex intermediate inputs at various stages in the production process. This

process places much greater demands on quality adjustment procedures for import

prices, as semiconductor technology changes so quickly. The challenge of quality

adjustment in the semiconductor industry is well known and has been demonstrated

in many previous studies.3

We address these concerns using new transaction-level data on semiconductor

wafer purchases, collected by the Global Semiconductor Alliance (GSA). These data

contain fine detail on product characteristics, allowing us to generate constant-quality

price indexes. They also report the source country for each transaction, making it

possible to examine the effects of shifting geographic production on price measure-

ment. Our results demonstrate the importance of having such detailed data when

constructing price indexes in industries with large amounts of offshoring. This need is

likely to increase as more countries move up the technical ladder and begin exporting

ever more complex products.

The paper proceeds as follows. Section 4.2 describes aspects of the semiconductor

3See, among others, Flamm (1993), Grimm (1998), and Aizcorbe, Corrado and Doms (2003).
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manufacturing process that are relevant to price measurement. Section 4.3 describes

the data we utilize to build input price measures. Section 4.4 presents our price

index calculations. We begin with a standard matched model index as a baseline

and then follow Reinsdorf (1993) to bound the potential effect of outlet substitution

bias due to shifting input sourcing across countries. This section concludes with

comparisons to a hedonic index and a publicly available official semiconductor price

index. Section 4.5 concludes.

4.2 Semiconductor Production

This section describes the semiconductor manufacturing process and recent changes

in the business models employed by semiconductor firms, highlighting characteristics

of the industry that are important for price measurement. Semiconductor produc-

tion technology progresses in distinct measurable steps, allowing us to account for

technological improvement when constructing price indexes in spite of rapid changes

over time. The continuing movement to outsource semiconductor production to off-

shore firms raises the possibility of outlet-substitution bias in standard price indexes

and motivates our choice to focus on foundry wafer fabrication.

4.2.1 Semiconductor Production Technology

Semiconductor fabrication involves creating networks of transistors on the surface

of a thin piece of semiconducting material.4 The process begins with the design

and layout of a new chip. Semiconductor designers use suites of complex software to

specify the functionality of the chip, convert that logic into the corresponding network

of transistors, determine the physical layout of those transistors, and simulate the

behavior of the proposed design for debugging purposes.

4Turley (2003) provides an accessible overview of semiconductor technology, manufacturing, and business.
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Semiconductors are manufactured in a facility called a fab. Transistors are created

on the surface of the wafer through a photolithography process, in which successive

layers of conducting and insulating materials are deposited on the surface of the wafer

and chemically etched away in the appropriate places to form the desired pattern of

transistors and necessary interconnections. The design layout software determines

the etching pattern for each layer, which is projected onto the wafer through a mask

containing the negative of the desired pattern, in a process similar to developing a

photograph by projecting light through a negative. Each step of the etching process

is repeated multiple times across the wafer, resulting in a grid pattern of many copies

of the chip. Once all transistors and connection layers are complete, the chips are

tested in a process called “wafer probe,” and any faulty chips are marked to be

discarded. The wafer is then cut up, leaving individual chips, called die. The die are

then placed inside protective packages and connected to metal leads that allow the

chip to be connected to other components.

Semiconductor fabrication technology has advanced over time in discrete steps,

defined by wafer size and line width (also called feature size). Increases in wafer size

allow larger numbers of chips to be produced on a wafer. Most fabs currently produce

150mm (roughly 6 inches), 200mm (8 inches), or 300mm (12 inches) diameter wafers.

Although larger wafers cost more to produce, the move to a larger wafer has generally

reduced the cost per die by approximately 30% per die (Kumar 2007).

Line width is the size of the smallest feature that can be reliably created on the

wafer. Decreased line width means that individual transistors are smaller, and more

functionality can be integrated into a given area of silicon. This makes chips of a

given functionality smaller, lighter, and faster, and also makes it feasible to include

more functions on a single chip. The number of transistors that can be produced on a
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chip has grown exponentially over time, following Moore’s Law, the Intel co-founder’s

famous observation that the number of transistors on a chip doubled every eignteen

months (Moore 1965).5 Figure 4.1 shows the maximum number of transistors per

chip and the minimum line width used to produce Intel processors over the last 40

years (both plotted on logarithmic scales).

Current line widths are measured in microns (µm) or nanometers (nm). The

smallest line width currently being produced in volume is 25nm. As a rule of thumb,

Kumar (2007) estimates that moving a given chip design to a 30% smaller line width

will result in cost savings of approximately 40%, assuming the same number of defects

in both processes. The primary drawback of smaller line widths is increased cost per

wafer, particularly early in the technology’s life span. Masks are much harder to

produce when creating smaller features, and new process technologies often result in

higher defect rates and lower yields, the fraction of chips on a wafer that function

correctly. In spite of these challenges, the benefits of increased die per wafer and

better performance outweigh the problems of decreased yields, particularly as the

fabrication technology matures and yields increase. Given the benefits of smaller line

widths, semiconductor manufacturers have steadily moved toward newer technology.

This is apparent in Figure 4.1 for Intel processors and can be seen even more clearly in

Figure 4.2, which plots the technology composition of sales at Taiwan Semiconductor

Manufacturing Company (TSMC), the largest semiconductor foundry.

There are a number of options regarding the chemicals used to create the tran-

sistors themselves and how the transistors are arranged to implement logical func-

tions. The most common technology, called complementary metal-oxide semiconduc-

tor (CMOS), accounted for 97% of worldwide semiconductor production in 2008.6

5This regularity later slowed to doubling every two years.
6 Share of actual wafer starts reported in SICAS Semiconductor International Capacity Statistics.
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Other transistor arrangements, such as bipolar logic, and other chemical processes,

such as Gallium Arsenide (GaAs) or Silicon Germanium (SiGe), generally focus on

niche markets for high-frequency, high power, or aerospace devices, rather than the

storage and computational logic products comprising the majority of the CMOS

market. In the following analysis, we will refer to each combination of wafer size,

line width, and logic family as a “process technology” (e.g. 200mm, 180nm, CMOS

constitutes one process technology).

The price index calculations below require us to define the set of product char-

acteristics that determine the performance, and hence the price, of a given wafer.

To guide this choice, we have consulted pricing models used by engineers at fabless

firms to estimate production costs when developing business plans. Kumar (2008)

presents a wafer cost model based on wafer size, line width, and logic family. A

commercial cost estimation firm, IC Knowledge, distinguishes wafer cost estimates

by wafer size, line width, logic family, number of polysilicon layers, and number of

metal layers. Given this potential importance of the number of layers in a given

design, indicating the design’s complexity, we calculate price per layer rather than

price per wafer. These pricing models support the use of process technology (wafer

size, line width, and logic family) to distinguish between goods in our price indexes,

calculated in Section 4.4.

4.2.2 Changing Semiconductor Business Models

In the early 1970’s nearly all semiconductor producers were vertically integrated,

with design, wafer fabrication, packaging, testing, and marketing performed within

one company. By the mid ’70’s, firms began moving packaging and test operations

to East Asia to take advantage of lower input costs (Scott and Angel 1988, Brown

and Linden 2005). In spite of outsourcing these relatively simple steps in the produc-
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tion process, firms maintained their complex wafer fabrication operations in house.

Firms that perform both design and wafer fabrication are referred to as Integrated

Device Manufacturers (IDM). As wafer fabrication technology advanced, the cost

of production facilities increased dramatically; the cost of a fabrication facility has

risen from $6 million in 1970 (IC Knowledge 2000) to $4.2 billion in 2009 (Global

Foundries 2009). This sharp increase in cost has made it ever more difficult to stay

at the leading edge of process technology. In the mid 1980’s, small semiconductor

firms began producing some of their more advanced designs on the manufacturing

lines of larger, more established semiconductor manufacturers that were better able

to bear the capital costs of maintaining a state-of-the-art fab facility. Many Japanese

semiconductor firms had substantial excess manufacturing capacity during this time

period, making such production partnerships particularly attractive (Hurtarte, Wol-

sheimer and Tafoya 2007).

These production sharing arrangements led to the creation of a new business model

through the emergence of wafer foundries that manufacture semiconductors designed

by other firms. At first, foundries were used by IDMs as an alternative source of ca-

pacity for older process technologies (Kumar 2008). By the late 1980’s a number

of new semiconductor firms avoided wafer fabrication by doing all of their manufac-

turing through foundries. Semiconductor companies with little or no in-house wafer

manufacturing capability are called “fabless” firms. In general, fabless firms perform

chip design and layout, and use foundries and other contractors for mask produc-

tion, wafer fabrication, packaging, and testing. The fabless business model has grown

quickly over the last 30 years, accounting for 24% of total semiconductor industry

revenue in 2009, as shown in Figure 4.3.7 Since the largest foundries are located in

7Note that the shares in Figure 4.3 are likely to understate the extent of fabless production activity because
companies must derive 75% or more of their semiconductor revenue from fabless production. Many companies not
counted as fabless nevertheless rely heavily on foundries
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Asia, and the largest fabless semiconductor producers are located in North America

and Europe, the growth of the fabless model has increased the internationalization of

semiconductor production.8 Although the fabless share of the global semiconductor

industry only edged up from 2006 to 2008, as new process technologies continue to

raise the costs of fab facilities, the prominence of the fabless model may well increase

even more. Indeed, AMD, the second largest microprocessor producer, spun off its

manufacturing division as an independent foundry company in 2009, boosting the

fabless share of the industry (Clendenin and Yoshida 2002).9

4.2.3 Implications for Price Measurement

The extremely fast pace of technological change in semiconductor manufactur-

ing poses a large challenge to quality-adjusted price measurement. Aizcorbe (2002)

demonstrates the difficulty government price indexes have had in tracking rapid

price declines in finished semiconductors. However, as just described, technologi-

cal advance in semiconductor production proceeds in discrete, measurable steps, in

contrast to continuous and difficult to measure quality improvements seen in other

industries (Flamm 1993). This discrete nature of technological advance in the semi-

conductor industry makes it possible to control for quality changes, given detailed

enough data on product characteristics. In this study we construct constant-quality

price indexes for wafer fabrication using quarterly pricing data that includes the most

relevant aspects of process technology: wafer size, line width, and logic family. We

also control for the number of layers used in constructing the chip, a proxy for design

complexity.

8In 2008, the 5 largest foundries (accounting for 84% of foundry revenue) were all located in Asia. Of the 25
largest fabless semiconductor companies (accounting for 75% of fabless revenue), 19 were located in North America
or Europe. These figures were calculated from proprietary reports from iSuppli and GSA, respectively.

9A recent report (IC Insights) predicts that between 2008 and 2013, total foundry sales will grow at double the
rate of the overall semiconductor industry.
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This section has also documented the increasing internationalization of the semi-

conductor supply chain coinciding with offshoring various steps in the production

process and the growth of the fabless model of semiconductor production. Houseman

(2007) describes the challenges faced by statistical agencies attempting to measure

price changes when producers switch suppliers, particularly when the suppliers are

located abroad. In particular, substitution toward low-cost suppliers is likely to be

missed in standard price index calculations (see below for a more detailed discus-

sion), understating the rate of input price decline. As semiconductor production

technology advances and the fabless business model becomes more prominent, it is

likely that these price measurement challenges will remain relevant in the foreseeable

future.

In the remainder of this paper, we focus on foundry wafer production, leaving

analysis of IDM production for future work. We make this choice for practical rea-

sons. Our pricing data include only wafer purchases from foundries, though those

purchases could have been made by fabless firms or IDM’s choosing to use foundry

suppliers. Also, the issue of within-firm transfer pricing raises a number of compli-

cations that are beyond the scope of this study and makes data collection essentially

impossible.

4.3 Data Sources and Descriptive Results

To construct the price indexes used in our analysis, we require information on

prices paid and quantities purchased for foundry services, specified by the character-

istics relevant for pricing. We obtain prices from a survey conducted by the Global

Semiconductor Alliance (GSA) and we calculate quantities by merging several dif-
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ferent sources.10 Observations are quarterly, and our data span the period from 2004

to 2008. Descriptive results demonstrate the importance of controlling for process

technology. They also reveal substantial shifting of production toward lower cost

countries.

4.3.1 Wafer Pricing Survey

Our primary dataset consists of 7,455 individual responses to GSA’s Wafer Fabri-

cation & Back-End Pricing Survey, provided to us for 2004 to 2008.11 The survey has

been conducted quarterly since 2004 and provides extensive detail on contracts for

foundry services, including key technological features, foundry location, price paid,

and volume for a diverse set of foundry customers. The survey responses account for

a representative sample of about 20 percent of the wafers processed by the foundry

sector.

As shown in Table 4.1, we drop observations missing key variables. We also drop

observations reporting prices for engineering runs, preliminary fabrication before vol-

ume production. To focus on substitution between onshore and offshore production,

and between offshore locations, we retain only contracts for production at the major

offshore locations (Taiwan, Singapore, and China), U.S. foundry contracts, and Eu-

ropean contracts for comparison.12 A small number of observations with internally

inconsistent responses are dropped, as are the handful of observations on 100mm

wafers - a very dated technology. All told, we use 5,464 observations for index con-

struction.
10GSA is a semiconductor trade association whose membership includes fabless producers and IDMs. It survey is

administered to members and non-members.
11Individual respondents are not identified in our data.
12Significant omissions from the global foundry industry are Japan and Korea. Our approach to estimating capacity,

described below, does not allow us to assign reasonable weights on technologies in Korea. Our preliminary price
index for Japan behaved erratically, and suggested that the product composition was changing in a way not captured
by our data. We have obtained more detailed data extracts that may assist in alleviating this problem in subsequent
versions.
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4.3.2 Descriptive Price Results

Descriptive statistics for key variables in the resulting dataset are shown in Table

4.2. We observe 273 prices per quarter, on average. Wafer prices average $1,575

over the period covered. Interestingly, no substantial time trend is evident before

adjusting for composition. The average contract was for 2,307 wafers, and the average

contract size climbs over time. The number of layers per wafer also rose significantly

over the period studied, from 23 in 2004 to 28 in 2008, reflecting a trend toward

foundries handling increasingly complex products.

The changing technological characteristics of the fabrication process are evident in

the statistics for wafer diameter and geometry. Pilot lines for 300 mm wafers were first

introduced in 2000 and the share for this emerging technology rises from 3.5 percent

of contracts to 20 percent of contracts over the survey. Similarly, new generations

of lithography increase in penetration over time: 90 nanometer technology reached

volume production in the overall semiconductor industry in 2004 and slowly gained

share in the foundry market, ending at 7 percent in 2008; 65 nanometer contracts

were just emerging in 2008.13 Meanwhile, older technologies, with processes above

250 nanometers, dwindle in prominence from 45 percent in 2004 to 28 percent in

2008. 92 percent of contracts reported in the survey are for CMOS technology, but

prices are available for other processes as well.

A challenge with the GSA pricing survey is sporadic reporting for some technolo-

gies in certain geographic regions, despite independent evidence that such production

existed. For such cells where we believe there was production (based on our capacity

database described in the next subsection) we linearly interpolate prices using values

132004 and 2007 mark the years when volume production of DRAM began at 90nm and 65nm, respectively
(International Technology Roadmap for Semiconductors 2007).
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from surrounding periods or extrapolated based on higher-level prices.14

4.3.3 Quantities and the Shifting Geography of Production

To construct a price index, we need to weight individual price observations by

quantity. Although the GSA survey includes information on the size of each order,

some gaps in reporting remain. This makes weights based on the GSA data unstable

at quarterly frequencies. As an alternative, we construct weights based on global

foundry capacity. Although capacity is an imperfect proxy for actual production

or purchases, we must choose between erratic sales measures and highly credible

capacity estimates. Our baseline index uses the latter.

The Gartner Semiconductor Fab Database provided us with quarterly capacity

data from 2004 to 2007. For specific fabs, key features are reported, including planned

wafer start capacity, minimum line width, operating status, and whether the fab

was operating as a foundry. We extended these data with GSA’s 2009 IC Foundry

Almanac which provides a snapshot of capacity and technology by fab as of 2009.

Merging these data sets gives us a preliminary set of weights, but we address three

remaining shortcomings. First, Gartner only reports planned capacity by fab and

ramp-up status, leaving the contours of the ramp-up process unknown. Fortunately,

many major foundries provide quarterly information on actual operational capacity,

showing the actual path of capacity as equipment is added incrementally. We employ

these directly reported capacities, when available, and add a comparable ramp-up

period to fabs for companies without direct reporting.15 Second, the data do not

distinguish CMOS production quantitatively, though GSA does indicate whether a

14Note that the alternative, dropping these periods for lack of directly observed prices, is not neutral, since it
amounts to 1) assuming the product mix within the industry is different than we know it is, and 2) throwing out
price information from this period for cells with similar technology or geography. See discussion of this approach in
Gordon (2006).

15Ramping new capacity to volume production typically takes 12 months (International Technology Roadmap for
Semiconductors 2007)



109

fab uses CMOS and other processes. Since CMOS prices behave rather differently

than non-CMOS prices, we assigned a weighted average of the CMOS and non-CMOS

prices to each fab for the technology in operation, using overall industry weights from

the GSA. Third, in the Gartner fab database, we only observe the minimum line

width in use at a fab, but we know that fabs often operate multiple geometries one

time. This raises the possibility that we overweight leading edge technologies. On

the other hand, it is important to bear in mind that we only observe capacity, not

actual production. Since capacity utilization is higher for leading edge geometries,

the application of capacity weights generates a bias in the opposite direction – toward

underweighting these geometries.16

Table 4.3 compares two aggregate measures of foundry capacity, constructed as

just described, to industry estimates from other sources. First, wafer fab capacity as

reported to the SICAS survey suggests our wafer fab measure is not fully capturing

the overall size of the sector. However, the growth rate from 2004 to 2008 for the

measure constructed from our bottom-up approach is very close to the SICAS mea-

sure, suggesting we are catching the overall trend in industry capacity. Our measure

of revenue is also somewhat lower than the measure of foundry company revenue

published by the consultancy iSuppli. This may simply reflect that not all foundry

revenues are for the services we are studying. Table 4.4 shows shifting revenue weights

among the largest offshore foundry suppliers. While Taiwan’s share falls somewhat,

China and Singapore both gain revenue share, representing movement toward lower

cost foundry locations.

16Utilization on fab lines using 90nm and smaller geometries was 94% in 2007, noticeably higher than the 86%
utilization for larger geometries (SICAS 2008).
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4.4 Price Index Results

This section presents our price index calculations using the database just de-

scribed. The level of detail in our data allows us to adjust for differences in physical

product attributes. In addition, since our data also includes foundry location, we

are able to isolate the effect of shifting production across countries on the average

wafer price. We find that substitution across countries may account for no more

than a 0.8 percentage point per year decline in the average wafer price. Our findings

also support the established importance of careful quality adjustment to capture the

effects of rapid technological change on semiconductor prices.

4.4.1 Fisher Matched Model Index

Our data set includes price information by detailed semiconductor wafer type and

source country at the quarterly frequency. As discussed in Section 4.2, a wafer’s

process technology (defined by wafer size, line width, and logic family) determines

its performance, along with circuit design. Process technologies proceed in discrete

steps, so our detailed data on prices by process technology yields a time series of price

observations for each wafer type, with attributes held constant over time. This high

level of detail allows us to construct a matched model price index tracking quarterly

price changes for each wafer type.

The matched model index is calculated as a Fisher index of price relatives for

each process technology and country pair. First we calculate Laspeyres and Paasche

indexes, respectively, as

P t
L =

∑
i

∑
j

st−1
ij

ptij

pt−1
ij

(4.1)

P t
P =

∑
i

∑
j

stij

(
ptij

pt−1
ij

)−1
−1

(4.2)
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where i represents process technology, j represents source country, t is time (quarter),

and p is the average price for a given process technology, country, and quarter in

the GSA survey.17 s is the share of total output value in time t accounted for

by wafers in the relevant process technology and country cell, calculated using our

capacity database. As the Laspeyres index overstates price changes and the Paasche

understates them, it is advisable to construct the Fischer index, which is a geometric

mean of the Laspeyres and Paasche indexes.

P t
F =

√
P t
L P

t
P (4.3)

We normalize the index to 100 in the first quarter of 2004.

The procedure just described treats observations from different source countries

as separate “models” by calculating separate price relatives by country. This paral-

lels the treatment of prices across outlets in the U.S. CPI, and is subject to similar

assumptions (Reinsdorf 1993). When a new process technology and country combi-

nation appears, it is assumed that any difference in the price level across countries

for that process technology entirely reflects quality differences, where “quality” refers

to any unmeasured attribute of the wafer or transaction that makes one production

location more attractive than another. This is the “link-to-show-no-price-change”

method in Triplett’s (2006) classification of linking methods for matched model in-

dexes. This linking strategy is based upon the assumption that the law-of-one-price

holds for quality adjusted units across outlets. As we argue below, there is reason

to believe that this assumption does not hold in the semiconductor wafer fabrication

industry, potentially leading the standard matched model index to understate the

true rate of price decline.

17Note that we use price per layer for the results presented here to account for the increased cost of producing
more complex wafers containing more layers. As we expect, an index based on price per wafer falls somewhat more
slowly, but the qualitative conclusions using price per wafer are the same as those presented here.
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As expected, entry and exit of products is a prominent feature of the data. As

shown in Table 4.5, 27 cells are new entrants in the 2004-2008 period, and 23 cells

are exits. This raises the challenge of estimating price changes for the first and last

periods in the series for a large share of the data. However, because our data is

high frequency (quarterly), the number of entrants or exits in any given quarter is

small, at 2.5 on average. In addition, the weights on these periods are small as new

technologies ramp up gradually.

Table 4.6 presents our price index calculations. Column (1) contains the Fisher

matched model index just described. We present the quarterly index, yearly averages,

and the average yearly change between 2004 and 2008. The index falls by 12.6%

per year. As has been known since at least Flamm (1993), Grimm (1998), and

more recently Aizcorbe (2002), quality adjustment of prices for semiconductors, and

indeed for all high-tech products is critical. In particular, bear in mind (see Table

4.2) that the average price change before adjusting for product composition was

slightly positive. The substantial differences across countries points to the necessity

of accurate weights by country.

4.4.2 Relaxing the Location as Quality Assumption

Our previous index maintained the assumption that price differences across coun-

tries for otherwise identical goods reflect unspecified differences in quality. We

now make the opposite assumption: price differences reflect genuine price disper-

sion across goods of identical quality. Formally, this means that we calculate unit

values by technology, averaging across observations from different countries. As a re-

sult, substitutions toward low-cost producers will be reflected in the average product

price. These two assumptions bracket the truth, which likely lies in between.

We consider this alternative index because the location-as-quality assumption can
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lead to biased estimates of price changes under certain circumstances. Consider the

convenient example of a situation in which two countries exhibit similar price trends

for a given wafer type, but one has a consistently lower price level. Under the

approach of Section 4.4.1, any shift toward the lower cost country’s foundries will

have no effect on the aggregate price index, since the prices decline at the same rate in

both countries. The linking procedure implicitly assumes that the savings accrued in

shifting supplies are offset by lower quality of the goods being purchased. If, however,

the goods are actually identical, then the shift to the lower cost country represents a

genuine price drop for the relevant customer. The standard matched model linking

approach misses this price drop achieved in switching suppliers, and thus understates

the true rate of price decline. This is the so-called “outlet substitution bias” discussed

in the Boskin Commission report (Boskin et al. 1996).

To address this, we follow Reinsdorf (1993) and calculate an average price index

across outlets.18 This index is motivated by the opposite quality assumption of the

index presented above. If models are very narrowly defined, one can assume that

quality for a given model is identical across outlets. In our context, this amounts

to assuming that a given process technology is identical across foundries in different

countries. If this assumption is correct, then there is no reason to distinguish price

relatives by country. Instead, we calculate average prices across countries for each

process technology.

P̄ t
i =

∑
j

wtijp
t
ij, (4.4)

where w is country j’s fraction of the total number units of process technology i

produced at time t. We then generate price relatives of these average prices for each

process technology and use them to generate a Fisher price index as described above.

18Ideally, one would be able to directly observe particular buyers substituting between different outlets. Since our
data do not include purchaser identifiers, directly observing substitution is not possible.
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This approach is able to capture the effect of substitution toward low cost countries

as the weights on the lower prices increase with substitution.

If demand for wafers is shifting toward low cost suppliers, and the matched model

is missing this substitution effect, we expect to find that the average price index

declines more quickly than the matched model index. The results are presented in

Column (7) of Table 4.6. The index falls by 13.4% per year, which is 0.8 percentage

points faster than the matched model index in Column (1). This result supports

the notion that outlet substitution bias causes the standard measure to understate

the price declines for wafer fabrication, suggesting an outlet substitution problem no

bigger than 0.8 percentage points per year. Note, however, that the scale of quality

change over time is much larger, as indicated by the sharp overall price declines.

This result should be interpreted with a number of caveats in mind. Both the

law-of-one-price assumption and the alternative assumption of uniform quality across

countries are extreme. The data likely reflect both quality differences across coun-

tries and some persistent quality-adjusted price differences. Thus, the two approaches

bound the true quality-adjusted price change, and the difference between them is an

upper bound on the effect of outlet substitution. This discussion raises the question

of why quality-adjusted price differences should be able to occur in equilibrium. In

the semiconductor fabrication market, a number of observations support the idea

that quality-adjusted price differences can persist over time. There have been sub-

stantial shifts toward low cost countries. This behavior suggests the presence of

quality-adjusted discounts at the low cost countries. Why might that be? Although

Reinsdorf (1993) discusses the role of costly information gathering in generating real

price dispersion, we think that this explanation is unlikely to hold in a market as con-

centrated as this one. Rather, we propose an alternative reason for price dispersion
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based on the particular characteristics of the wafer fabrication industry.

Very large fixed costs are incurred when getting a production line up to capacity

with a given design. Discussions with engineers at a large U.S. fabless firm indicate

that it takes a large number of sensitive calibrations to fabricate a particular design

on a particular production line. This creates substantial startup cost, such that

semiconductor firms are very reluctant even to switch production lines within the

same foundry, much less to move a product to a different foundry. This fact, coupled

with the nature of new product introduction across countries leads us to a potential

explanation for equilibrium price dispersion.

Consider the price plots presented in Figure 4.4. The top panel plots prices by

country for a leading edge technology. Taiwan entered the market first, with a high

price. Singapore and China each entered later, each at a lower price level. In spite

of the increased competition from competitors entering the market, the Taiwanese

price continued to decline at a steady rate, maintaining a roughly constant price

differential relative to the others. A similar pattern for a more mature process

technology is apparent in the bottom panel of Figure 4.4, in which a roughly constant

price differential is maintained between the U.S. and Taiwan relative to Singapore

and China.

To understand the implications of these observations, consider only Taiwanese and

Chinese foundries for simplicity. If a given design requires the newest technology, it

will have to be produced in Taiwan. In two years’ time, when the Chinese foundry

brings the same process technology on line, they charge a lower price in order to

win market share away from their Taiwanese competitors. However, the lower wafer

price in China does not outweigh the fixed cost of moving the existing products

from Taiwan. The Taiwanese foundry can maintain a discretely higher price without
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losing its existing business, and only new products using the now year-old technology

will go to the lower priced Chinese foundry. The Chinese foundry may adopt the

new technology more slowly due to a relative lack of technical expertise or due

to U.S. export license restraints on advanced semiconductor fabrication equipment

going to China (U.S., China at odds on fab-gear export 1998). In any case, the

presence of large fixed costs of switching foundries coupled with staggered entry

into a given technology makes persistent quality-adjusted price differences across

countries possible.

4.4.3 Hedonic Price Index

To check the robustness of our results, we next generate a hedonic price index.

Table 4.7 presents some information on the importance of the characteristics we ob-

serve. We regress log price per wafer on indicators for foundry location, technological

characteristics, contract size, and quarter indicators using the 5,000 observations on

contracts for CMOS technology.19 All of these variables have a noticeable effect on

prices and are estimated precisely. Collectively, they account for 88 percent of the

variation in wafer prices.

The point estimates on foundry location and process technology appear to be

reasonable. Controlling for technology, China has a markedly lower prices than

Taiwan, which serves as the baseline case in the regression. Singapore’s prices are

moderately lower than Taiwan’s, while U.S. and European prices are substantially

higher. Production using more advanced technologies clearly commands a higher

price. Compared to the baseline case of production on 200 mm wafers with 180 nm

geometry, production on larger (300 mm) wafers and production with narrower line

19As mentioned above, non-CMOS technology is generally used in specialized niche markets. Although we do use
non-CMOS prices when calculating industry price indexes, we omit them here for simplicity of exposition. Results
for non-CMOS prices, not shown, indicate that location explains little of the variation in pricing, but technological
characteristics do play a role.
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widths is significantly more expensive. More overall layers per chip, and more metal

layers in particular, both proxies for the complexity of the circuitry, also drive up the

price. Finally, contracts involving a greater scale of production do appear to draw

a volume discount; other things equal, doubling contract size would be expected to

reduce wafer costs by 5.5 percent.

Like the matched-model index, the hedonic index also falls rapidly, though the

11 percent average yearly rate of decline is 2 percentage points short of the rate

for the matched model.20 From this we conclude that our baseline results are fairly

robust to choice of price index construction methodology. The hedonic specification

also controls for characteristics not addressed in the matched model index, which

suggest that contract size and the composition of layers contracted does affect pricing.

The regression statistics indicate that these features explain over 80 percent of the

variation in prices.

4.4.4 Official Indexes

For completeness, this section compares our results to the Bureau of Labor Statis-

tics’ price series for imported semiconductors. The BLS’ International Price Program

(IPP) publishes a price index for Harmonized System code 8542, Electronic inte-

grated circuits. These include microprocessors and memory, the final products of

the semiconductor production chain.

IPP draws its sample from Customs lists at the more detailed 10-digit Harmonized

System level.21 For instance, until recently, IPP would draw a sample of establish-

ments whose product(s) are recorded under the just phased-out HS classification

8542.21.80.05 for “unmounted chips, die, and wafers.” Price indexes are calculated

20Aizcorbe et al. (2003) find a similar result for microprocessors.
21This discussion draws on a number of conversations with Sonya Wahi-Miller of the IPP. We are very grateful for

the time she spent educating us on the IPP’s procedures. Any errors in our characterization of the IPP, however,
are our own.
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at this more disaggregated level and IPP then aggregates across the price relatives

to produce the published index. Unfortunately, this more detailed data is sealed to

outside researchers for confidentiality reasons.

Perhaps the measurement challenge for IPP is to control for quality improvements

in ICs. We do this via a matched model price index that controls for several important

performance-related characteristics of wafers. IPP does not necessarily observe as

many characteristics of each IC, but it does have a potentially promising way to

identify quality improvements. At least some respondents provide BLS staff with

their own internal product code assigned to the surveyed item. It is likely that new,

higher quality products would receive a new product code. If IPP observes that

the product code attached to the surveyed item changes, it will follow up with the

respondent to ask what the price of the new product would have been last month

so that it can record the true price change for the quality-enhanced good. These

follow-ups based on observed changes in firm product codes appear to be one of

the principal ways by which IPP adjusts goods, at least in HS 8542, for quality

improvements.22

The ICs observed by IPP are not directly comparable to the wafers studied in

this paper. To see this more clearly, it is useful to recall that we can break up the

production of ICs into four stages - design, wafer fabrication, test, and assembly.

Our data pertain to the input produced in stage two whereas IPP measures the price

of final output shipped at the conclusion of stage four. Nonetheless, it is instructive

to ask how average price per wafer compares to the IPP estimate of the price of the

finished product.

Table 6 Column (9) presents the IPP index by quarter over the period 2004-

22Thus far, we have been unable to obtain information on how often this procedure is generally used in generating
the HS 8542 index.
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2008. Over this time period, the index falls on average 2.9% per year. Even though

this is not directly comparable to our indexes, the discrepancy is quite large. It

would imply that the prices in the remainder of the production chain (development,

wafer test, and assembly) fall implausibly slowly. Consider, for instance, that recent

research has found price declines that approach 40-50 percent per year for finished

semiconductors sold in the U.S. (see, among others, Aizcorbe (2002), Table 1). This

work suggests that prices at other stages of the production chain, such as test and

assembly, actually fall faster than the price of wafer fabrication, which contrasts

starkly with the message sent by the IPP series. A critical task for future work is to

dig deeper into the sources of these discrepancies. In particular, it seems worthwhile

to investigate whether the IPP’s follow-up procedure for product code changes does

in fact effectively capture key quality improvements.

4.5 Conclusion

Our analysis exploits a rich new data set to calculate constant quality price indexes

for processed semiconductor wafers. We calculate a matched model price index,

finding that wafer prices fall on average by 12.6% per year. Given that average

prices, unadjusted for quality, remain fairly constant over the time period, the sharp

yearly price decline demonstrates the importance of careful quality adjustment in

this industry. Our results support the conclusion of numerous previous studies that

official statistics substantially understate the rate of semiconductor price decline.

Since our data set includes information on the source country for wafer purchases,

we can also measure how geographic changes in sourcing patterns affect price mea-

surement. Our approach is analogous to Reinsdorf’s (1993) measurement of retail

outlet substitution bias in the CPI. We calculate an average price index that captures
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the effects of shifting sourcing patterns toward wafer foundries in low cost countries.

Our results imply that the baseline matched model approach understates the yearly

price decline by at most 0.8 percentage points.

Although this problem is not overwhelming, particularly in comparison to the

much larger issue of quality adjustment in the semiconductor industry, it is suggestive

that continued shifts in international sourcing patterns will cause the problem to

persist and potentially grow. Our findings here should motivate research into other

industries that have seen large shifts in sourcing patterns across countries. Since there

are large fixed costs of shifting suppliers in semiconductor production, the finding

here may be smaller than the bias in more footloose industries that can substitute

quickly in response to smaller price differences. Note however, that future analyses

will need to motivate the assumption of persistent quality adjusted price differences

across suppliers, as we do here.

4.6 Figures and Tables
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Figure 4.1: Moore’s Law — Intel Processors
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Figure 4.2: Technology Cycle - TSMC Sales by line width
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Figure 4.3: Growth of the Fabless Business Model
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Figure 4.4: Price Differences Across Locations
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Table 4.1: Dropped Observations

Total observations 7455

Used in analysis 5464

Dropped 1991
Missing:

foundry location 813
wafers purchased 19
price 19

Other reason:
engineering run 778
location 499
100mm wafer 3
inconsistent 3

Note: there may be multiple reasons to drop a particular observation
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Table 4.2: Descriptive Statistics

Mean Std. Dev 2004 2005 2006 2007

Price Per Wafer ($) 1575.40 1145.54 1,576.58 1,609.53 1,502.86 1,545.03

Number of Wafers Contracted 2307 7514 1924 2357 1941 2710

Number of Layers Per Wafer 25.74 7.57 23.25 24.64 25.79 26.64
Metal Layers 4.77 1.81 4.23 4.55 4.75 4.97

Wafer Size
   150 mm or less 0.14 0.35 0.17 0.17 0.15 0.12
   200 mm 0.76 0.42 0.80 0.77 0.79 0.76
   300 mm 0.10 0.30 0.03 0.06 0.06 0.12

Line Width
   65 nm 0.00 0.06 0.00 0.00 0.00 0.00
   90 nm 0.03 0.16 0.00 0.08 0.01 0.03
   130 nm 0.23 0.42 0.14 0.18 0.22 0.27
   180 nm 0.25 0.43 0.26 0.27 0.26 0.26
   250 nm 0.13 0.34 0.13 0.16 0.12 0.12
   older vintage 0.36 0.48 0.45 0.38 0.38 0.31

CMOS process 0.92 0.28 0.92 0.92 0.92 0.91

5464 Observations
Source: Authors' calculations based on GSA Wafer Fabrication & Back-End Pricing Survey

Yearly Means
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Table 4.3: Coverage of Constructed Capacity and Revenue

SICAS Constructed iSuppli Constructed
2004 194 123 16.6 9.1
2005 252 139 16.3 9.0
2006 285 151 19.5 9.6
2007 288 172 19.7 9.8
2008 297 188 20.1 9.9

Source: SICAS, iSuppli, and author's calculations from sources described in text

Wafer Start Capacity
(1,000 Wafers per Week)

Revenue
(US $ Billion)

Table 4.4: Foundry Revenue and Share for Major Offshore Locations

Revenue ($million) Taiwan China Singapore
2004 7232 66.0% 19.7% 14.3%
2005 8517 61.7% 20.4% 17.8%
2006 8549 62.0% 20.1% 17.9%
2007 8668 60.3% 21.6% 18.1%
2008 8432 59.8% 21.7% 18.5%

Note: Includes pure-play foundries only.
Source: Authors' calculations based on data from GSA, Gartner, and

company reports

Table 4.5: Entry and Exit Statistics, CMOS Process

country technology cells with data 74
ave. no. quarterly prices per cell 10.18
new entrants 27
exits 23
cells with entry or exit 38
ave. quarters with missing prices 5.375
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Table 4.7: Descriptive Wafer Price Regression Results

Variable Coefficient Std. Err. t-Stat

Foundry Location
China -0.272 0.019 -14.59
United States 0.218 0.014 15.58
Europe 0.119 0.018 6.54
Singapore -0.062 0.012 -5.30

Wafer Size
150 mm -0.344 0.015 -22.20
300 mm 0.645 0.014 47.68

Line Width
≥ 1000 nm -0.696 0.038 -18.24
800 nm -0.353 0.027 -13.31
600 nm -0.358 0.022 -16.12
450 nm -0.355 0.019 -18.35
350 nm -0.194 0.013 -14.59
250 nm -0.092 0.012 -7.74
130 nm 0.306 0.012 26.31
90 nm 0.511 0.025 20.19
65 nm 0.737 0.050 14.63

layers per wafer 0.012 0.001 13.83
no. metal layers 0.057 0.004 14.30
log wafers contracted -0.055 0.002 -32.92

constant 6.743 0.030 223.47

R-squared 0.8773
Observations 5000

Specification also includes quarterly indicator variables
non-CMOS production not included
Baseline case (omitted category) is Taiwan, 200mm, 180nm

dependent variable: log of price per wafer



CHAPTER V

Conclusion

As described in the introduction, the three essays comprising this dissertation are

independent and span the fields of trade and labor economics. The first essay exam-

ines the effects of trade liberalization on local labor market outcomes and workers’

migration patterns. The findings demonstrate a link between trade and internal mi-

gration that had been absent in theoretical and empirical examinations of the effects

of trade liberalization on labor markets. The second essay argues that standard cost

function estimates overstate the effect of capital-skill complementarity, a potentially

important driver of increased income inequality. The analysis demonstrates an alter-

native method to correctly measure the effects of complementarity that can be used

in future examinations of the drivers of inequality. The third essay examines the

implications of global production sharing for measuring the price of semiconductors,

with important implications for measuring productivity when inputs to final goods

are produced across various countries.
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