

To see the world in a grain of sand And heaven in a wild flower, Hold infinity in the palm of your hand, And eternity in an hour.

-William Blake

This thesis is dedicated to my family for always believing in me, and to the chicks used in these scientific studies.

ACKNOWLEDGEMENTS

This work would not have been possible without the assistance from collaborators and support staff, and it is a pleasure to thank all those who made this thesis possible. I would like to thank the Husbandry Staff who have helped with the raising of thousands of birds over the years. I would especially like to thank the germ-free animal staff, in particular Sara Poe and Chriss Vowles. The microarray experiments would not have been possible without the generous help of Dr. Craig Parker at the USDA- California. Ted Huston (U-Michigan) ran the ICP-M/S analysis. The microbiota analysis, including tRFLP and 454-Sequencing was done in collaboration with Dr. Gary Huffnagle and Dr. Vincent Young. I would also like to thank my *Campylobacter* colleagues and friends, Dr. Dave Hendrixson (UT-Southwestern) and Dr. Erin Gaynor (UBC) for their support, reagents, experimental suggestions, and friendship.

This thesis would not have been possible without my advisor, Dr. Victor DiRita, who has supported me and taught me invaluable life and science lessons over the years. It is not often that you find a mentor who always finds time to listen to your roadblocks, fix typing errors and share a cup of coffee. He allowed me to grow as a scientist by giving me the freedom and responsibility of independent research. I could not ask for a better mentor and friend. I would also like to thank the members of my committee for their advice, scientific suggestions, guidance, and support.

I am grateful to all the members of the DiRita Lab that have encouraged, commiserated, and laughed with me over the years. I would especially like to thank Dr.

K.T. Elliot. The time she took to teach and encourage, as well as her never-ending patience, was invaluable. (Look, K.T...I'm a star-fish!). Each member, past and present, (Dr. KT Elliot, Dr. Becky Weisner, Dr. Tsutomu Kakuda, Dr. Jeremy Ellermeier, Dr. Dave Hendrixson, Dr Jyl Matson, Dr. Jeff Withey, Aimee Richards, Becca Anthouard, Kevin Ginsburg, Sam Carpentier, Wei-Ping Teoh, and Andy Perault), made my time in the DiRita Lab one that I will never forget. I would especially like to thank a member of team Campy, Dr. Jeremy Ellermeier, for his banter and encouragement during the writing of this thesis. Thank you to everyone for sharing in the many frustrations and disappointments, and the few and far-between victories that come with bench-science.

I would also like to thank all my friends that have helped me maintain my sanity outside of lab. I am blessed to be surrounded by great friends. I would especially like to thank Dr. Andrea Radtke, my confidant and source of endless encouragement.

I would like to thank my entire family who has always supported my dream to be a microbiologist. They have encouraged and supported me over the years, never doubting my ambitions and me. I could not have done it without you.

Lastly, I could not thank enough the love of my life and best friend, Ben. Thank you for making me laugh when I wanted to cry, believing in me when I had doubts, and showing me the world. Thank you for your unending love, support and encouragement.

TABLE OF CONTENTS

DED	DICATION	ii
ACF	KNOWLEDGEMENTS	iii
LIST OF FIGURESLIST OF TABLES		vii
		X
LIST	Γ OF APPENDICES	xi
CHA	APTER	
I.	Introduction	1
	Campylobacter jejuni Biology	1
	Outcomes of Infection in Humans versus Chickens	20
	Animal Models of <i>Campylobacter jejuni</i> Colonization and Virulence	
	Zinc Homeostasis	
	Symbiotic Relationships	
	Intestinal Microbiota and Influences on Host-Bacterial Interactions	
	Summary	
	References	
II.	Materials and Methods	85
	Bacterial Experiments	
	Animal Use and Experiments	
	References	
III.	Campylobacter jejuni Invasion of the Chick Cecum Stimulates an	
	Inflammatory Response and Leads to Asymptomatic Colonization	102
	Introduction	
	Results	
	Discussion	140
	References	144

IV.	A Campylobacter jejuni znuA Orthologue is Essential for Growth in Low Zing	
	Environments and Chick Colonization	147
	Introduction	148
	Results	
	Discussion	
	References	174
V.	Microbiota Influences on Intestinal Zinc in the Chick Cecum	177
	Introduction	178
	Results	180
	Discussion	211
	References	216
VI.	Conclusions and Future Directions	219
APP	ENDICES	232

LIST OF FIGURES

1.	Sources and Outcomes of <i>C. jejuni</i> Infection	2
2.	Uptake and Activity of Cytolethal Distending Toxin	11
3.	O- and N-Linked Protein Glycosylation	18
4.	Molecular and Cellular Features of the Innate Immune Response to <i>C. jejuni</i> in Humans and Chickens	25
5.	Signaling Cascades and Outcomes of Infection.	40
6.	Model of <i>C. jejuni</i> Infection in Humans	50
7.	Colonization and Heterophil Response to 6 <i>C. jejuni</i> Strains	106
8.	H&E Staining of Infected Tissue	108
9.	virB11 Detection by PCR	110
10.	Colonization and Heterophil Response to $\Delta virB11$ and $\Delta virD4$ Infections	111
11.	Colonization and Heterophil Response to $\Delta cdtB$ Infection	113
12.	Cell Culture Invasion of INT407 and Primary Chicken Intestinal Cells	115
13.	In vivo Gentamicin Protection Assay	117
14.	Electron Microscopy	120
15.	Immunofluorescent Microscopy	121
16.	Colonization and Heterophil Response to <i>C. jejuni</i> Strain 81-176 Str ^R	123
17.	C. jejuni Recovery From Systemic Sites	126
18.	Colonization and Heterophil Response During Low-Dose Infection	128
19.	Colonization and Heterophil Response During Day-7 Inoculation	130

20.	Colonization and Heterophil Response to Cecal Material	132
21.	Colonization and Heterophil Response to <i>S. typhimurium</i>	135
22.	Quantitative RT-PCR of Cytokine Transcripts from Infected Chicks	139
23.	Alignment of znuA and Operon Structure	152
24.	RT-PCR of znuABC Operon	154
25.	Quantitative RT-PCR of znuA in EDTA.	156
26.	Quantitative RT-PCR of znuA in Defined Media	157
27.	Growth of ΔznuA in Defined Media	158
28.	Growth of ΔznuA in EDTA	160
29.	Glycosylation of ZnuA	162
30.	Localization of ZnuA	163
31.	ZnuA Stabilizes with Increasing Amounts of EDTA	165
32.	ZnuA Binds Zinc	167
33.	Chick Colonization by ΔznuA	169
34.	ΔznuA Mutant Early Colonization Events	181
35.	tRFLP Chromatogram of Conventional and Limited-flora Chicks	183
36.	DAPI-Stained Cecal Tissue from Conventional and Limited-flora Chicks	184
37.	Phyla Composition from 454-Sequencing of Conventional and Limited-flora Chicks	185
38.	C. jejuni Colonization in Germ-Free Mice and Limited-flora Chicks	195
39.	Enumeration of Heterophils in Limited-flora Chick Ceca	197
40.	Conventionalization of <i>C. jejuni</i> -Colonizing Limited-Flora Chicks	199
41.	ICP-HRMS of Chick Cecal Contents	201
42	Growth of C. ieiuni in Chicken Cecal Media	202

43.	C. jejuni Growth with Zinc-Binding Proteins from Conventional Chick Cecal Contents	.205
44.	Growth of <i>C. jejuni</i> with Zinc-Binding Proteins and ZnSO ₄	.207
45.	Heat Treatment of Zinc-Binding Proteins.	.208
46.	Growth of <i>C. jejuni</i> in the Presence of Ovotransferrin	.210
47.	Model of <i>C. jejuni</i> Colonization of the Chick Cecum	.222
48.	Chick Cecal Colonization of the Δ <i>pglB</i> Mutant	.234
49.	Motility of the $\Delta pglB$ Mutant and Variants	.240
50.	Arylsulphatase Assay for $flaA$ Expression in Wild-type and $\Delta pglB$ Backgrounds.	.245
51.	C. jejuni ΔcprS Mutant Chick Colonization	.252
52.	C. jejuni cprOE Chick Colonization	.253
53.	Western-Blot of <i>C. jejuni</i> -Infected Chick Sera	.258
54.	Detection of sIgA in the Cecal Mucus of <i>C. jejuni</i> Infected Chicks	.260
55.	Wild-type Colonization of Germ-Free Mice.	.265
56.	C. jejuni Mutant Colonization of Germ-Free Mice	.266
57.	Cecal Colonization and Mouse Survival of <i>C. jejuni</i> Infected IL-10 -/- Germ-Free Mice	269
58.	ΔznuA Mutant Colonization of Germ-Free IL-10 -/-Mice	.271
59.	Recovery of <i>C. jejuni</i> from 5-FU Treated Chicks	.276
60.	Heterophil Recruitment in 5-FU Treated Chicks	.279
61	Growth of <i>C jejuni</i> in the Presence of 5-FIJ	281

LIST OF TABLES

1.	Strains and Plasmids Used	87
2.	Phyla Identities from 454 Sequencing of Conventional and Limited Flora Chicks.	186
3.	Genus Identities from 454 Sequencing of Conventional and Limite4ed Flora Chicks	187
4.	Zinc-Binding Protein Identification	204
5.	Genes Down-regulated in ΔpglB Mutant Compared to Wild-type C. jejuni	235
6.	Genes Up-regulated in ΔpglB Mutant Compared to Wild-type C. jejuni	238
7.	Genes Down-regulated in $\Delta pglB$ - motile Variant Mutant Compared to Wild-type $C.$ $jejuni$	241
8.	Genes Up-regulated in $\Delta pglB$ - motile Variant Mutant Compared to Wild-type $C.$ $jejuni$	242

LIST OF APPENDICES

A.	Disruption of the <i>N</i> -glycosylation system in <i>C. jejuni</i> Inhibits Chick Colonization and Increases Flagellar Phase Variation	
В.	The Two-Component Regulatory System CprRS Controls Aspects of Campylobacter jejuni Pathogenesis by Mediating the Switch Between Plankton and Biofilm Lifestyles	
C.	Antibody Production Against <i>C. jejuni</i> in the Day-of-hatch Chick Colonization Model	
D.	Murine Models of <i>C. jejuni</i> Colonization and Pathogenesis	263
E.	5-Flurouracil Depletion of Heterophils and Its Effects on <i>C. jejuni</i> Colonization	274