To see the world in a grain of sand
And heaven in a wild flower,
Hold infinity in the palm of your hand,
And eternity in an hour.

-William Blake
This thesis is dedicated to my family
for always believing in me,
and to the chicks used in these scientific studies.
ACKNOWLEDGEMENTS

This work would not have been possible without the assistance from collaborators and support staff, and it is a pleasure to thank all those who made this thesis possible. I would like to thank the Husbandry Staff who have helped with the raising of thousands of birds over the years. I would especially like to thank the germ-free animal staff, in particular Sara Poe and Chriss Vowles. The microarray experiments would not have been possible without the generous help of Dr. Craig Parker at the USDA- California. Ted Huston (U-Michigan) ran the ICP-M/S analysis. The microbiota analysis, including tRFLP and 454-Sequencing was done in collaboration with Dr. Gary Huffnagle and Dr. Vincent Young. I would also like to thank my Campylobacter colleagues and friends, Dr. Dave Hendrixson (UT-Southwestern) and Dr. Erin Gaynor (UBC) for their support, reagents, experimental suggestions, and friendship.

This thesis would not have been possible without my advisor, Dr. Victor DiRita, who has supported me and taught me invaluable life and science lessons over the years. It is not often that you find a mentor who always finds time to listen to your roadblocks, fix typing errors and share a cup of coffee. He allowed me to grow as a scientist by giving me the freedom and responsibility of independent research. I could not ask for a better mentor and friend. I would also like to thank the members of my committee for their advice, scientific suggestions, guidance, and support.

I am grateful to all the members of the DiRita Lab that have encouraged, commiserated, and laughed with me over the years. I would especially like to thank Dr.
K.T. Elliot. The time she took to teach and encourage, as well as her never-ending patience, was invaluable. (Look, K.T...I’m a star-fish!). Each member, past and present, (Dr. KT Elliot, Dr. Becky Weisner, Dr. Tsutomu Kakuda, Dr. Jeremy Ellermeier, Dr. Dave Hendrixson, Dr Jyl Matson, Dr. Jeff Withey, Aimee Richards, Becca Anthouard, Kevin Ginsburg, Sam Carpentier, Wei-Ping Teoh, and Andy Perault), made my time in the DiRita Lab one that I will never forget. I would especially like to thank a member of team Campy, Dr. Jeremy Ellermeier, for his banter and encouragement during the writing of this thesis. Thank you to everyone for sharing in the many frustrations and disappointments, and the few and far-between victories that come with bench-science.

I would also like to thank all my friends that have helped me maintain my sanity outside of lab. I am blessed to be surrounded by great friends. I would especially like to thank Dr. Andrea Radtke, my confidant and source of endless encouragement.

I would like to thank my entire family who has always supported my dream to be a microbiologist. They have encouraged and supported me over the years, never doubting my ambitions and me. I could not have done it without you.

Lastly, I could not thank enough the love of my life and best friend, Ben. Thank you for making me laugh when I wanted to cry, believing in me when I had doubts, and showing me the world. Thank you for your unending love, support and encouragement.
TABLE OF CONTENTS

DEDICATION ... ii
ACKNOWLEDGEMENTS .. iii
LIST OF FIGURES ... vii
LIST OF TABLES ... x
LIST OF APPENDICES .. xi

CHAPTER

I. Introduction.. 1

Campylobacter jejuni Biology.. 1
Outcomes of Infection in Humans versus Chickens ... 20
Animal Models of *Campylobacter jejuni* Colonization and Virulence 33
Zinc Homeostasis.. 51
Symbiotic Relationships... 55
Intestinal Microbiota and Influences on Host-Bacterial Interactions 57
Summary .. 65
References .. 66

II. Materials and Methods.. 85

Bacterial Experiments... 86
Animal Use and Experiments... 94
References .. 100

III. *Campylobacter jejuni* Invasion of the Chick Cecum Stimulates an
 Inflammatory Response and Leads to Asymptomatic Colonization 102

Introduction ... 103
Results.. 105
Discussion ... 140
References .. 144
IV. A *Campylobacter jejuni* znuA Orthologue is Essential for Growth in Low Zinc Environments and Chick Colonization ... 147

Introduction .. 148
Results .. 150
Discussion ... 170
References .. 174

V. Microbiota Influences on Intestinal Zinc in the Chick Cecum 177

Introduction .. 178
Results .. 180
Discussion ... 211
References .. 216

VI. Conclusions and Future Directions ... 219

APPENDICES ... 232
LIST OF FIGURES

1. Sources and Outcomes of C. jejuni Infection ... 2
2. Uptake and Activity of Cytolethal Distending Toxin ... 11
3. O- and N-Linked Protein Glycosylation ... 18
5. Signaling Cascades and Outcomes of Infection .. 40
6. Model of C. jejuni Infection in Humans .. 50
7. Colonization and Heterophil Response to 6 C. jejuni Strains ... 106
8. H&E Staining of Infected Tissue .. 108
9. virB11 Detection by PCR ... 110
10. Colonization and Heterophil Response to ΔvirB11 and ΔvirD4 Infections 111
11. Colonization and Heterophil Response to ΔcdtB Infection ... 113
12. Cell Culture Invasion of INT407 and Primary Chicken Intestinal Cells 115
13. In vivo Gentamicin Protection Assay .. 117
14. Electron Microscopy .. 120
15. Immunofluorescent Microscopy .. 121
16. Colonization and Heterophil Response to C. jejuni Strain 81-176 StrR 123
17. C. jejuni Recovery From Systemic Sites .. 126
18. Colonization and Heterophil Response During Low-Dose Infection 128
19. Colonization and Heterophil Response During Day-7 Inoculation 130
20. Colonization and Heterophil Response to Cecal Material.................................132
21. Colonization and Heterophil Response to S. typhimurium..............................135
22. Quantitative RT-PCR of Cytokine Transcripts from Infected Chicks..................139
23. Alignment of znuA and Operon Structure..152
24. RT-PCR of znuABC Operon..154
25. Quantitative RT-PCR of znuA in EDTA..156
26. Quantitative RT-PCR of znuA in Defined Media..157
27. Growth of ΔznuA in Defined Media ...158
28. Growth of ΔznuA in EDTA...160
29. Glycosylation of ZnuA ...162
30. Localization of ZnuA ...163
31. ZnuA Stabilizes with Increasing Amounts of EDTA ..165
32. ZnuA Binds Zinc ...167
33. Chick Colonization by ΔznuA ..169
34. ΔznuA Mutant Early Colonization Events ..181
35. tRFLP Chromatogram of Conventional and Limited-flora Chicks183
36. DAPI-Stained Cecal Tissue from Conventional and Limited-flora Chicks........184
37. Phyla Composition from 454-Sequencing of Conventional and Limited-flora Chicks ...185
38. C. jejuni Colonization in Germ-Free Mice and Limited-flora Chicks...............195
39. Enumeration of Heterophils in Limited-flora Chick Ceca..................................197
40. Conventionalization of C. jejuni-Colonizing Limited-Flora Chicks199
41. ICP-HRMS of Chick Cecal Contents ...201
42. Growth of C. jejuni in Chicken Cecal Media ..202
43. *C. jejuni* Growth with Zinc-Binding Proteins from Conventional Chick Cecal Contents ...205

44. Growth of *C. jejuni* with Zinc-Binding Proteins and ZnSO₄ ..207

45. Heat Treatment of Zinc-Binding Proteins ..208

46. Growth of *C. jejuni* in the Presence of Ovotransferrin ...210

47. Model of *C. jejuni* Colonization of the Chick Cecum ..222

48. Chick Cecal Colonization of the ΔpglB Mutant ...234

49. Motility of the ΔpglB Mutant and Variants ..240

50. Arylsulphatase Assay for flaA Expression in Wild-type and ΔpglB Backgrounds .245

51. *C. jejuni* ΔcprS Mutant Chick Colonization ..252

52. *C. jejuni* cprOE Chick Colonization ...253

53. Western-Blot of *C. jejuni*-Infected Chick Sera ..258

54. Detection of sIgA in the Cecal Mucus of *C. jejuni* Infected Chicks260

55. Wild-type Colonization of Germ-Free Mice ..265

56. *C. jejuni* Mutant Colonization of Germ-Free Mice ...266

57. Cecal Colonization and Mouse Survival of *C. jejuni* Infected IL-10 -/- Germ-Free Mice ..269

58. ΔznuA Mutant Colonization of Germ-Free IL-10 -/-Mice ...271

59. Recovery of *C. jejuni* from 5-FU Treated Chicks ..276

60. Heterophil Recruitment in 5-FU Treated Chicks ...279

61. Growth of *C. jejuni* in the Presence of 5-FU ...281
LIST OF TABLES

1. Strains and Plasmids Used ..87

2. Phyla Identities from 454 Sequencing of Conventional and Limited Flora Chicks...186

3. Genus Identities from 454 Sequencing of Conventional and Limited Flora Chicks ...187

4. Zinc-Binding Protein Identification ...204

5. Genes Down-regulated in ΔpglB Mutant Compared to Wild-type C. jejuni........235

6. Genes Up-regulated in ΔpglB Mutant Compared to Wild-type C. jejuni238

7. Genes Down-regulated in ΔpglB- motile Variant Mutant Compared to Wild-type C. jejuni ..241

8. Genes Up-regulated in ΔpglB- motile Variant Mutant Compared to Wild-type C. jejuni ..242
LIST OF APPENDICES

A. Disruption of the N-glycosylation system in C. jejuni Inhibits Chick Colonization and Increases Flagellar Phase Variation ..232

B. The Two-Component Regulatory System CprRS Controls Aspects of Campylobacter jejuni Pathogenesis by Mediating the Switch Between Planktonic and Biofilm Lifestyles..249

C. Antibody Production Against C. jejuni in the Day-of-hatch Chick Colonization Model ..256

D. Murine Models of C. jejuni Colonization and Pathogenesis263

E. 5-Flourouracil Depletion of Heterophils and Its Effects on C. jejuni Colonization ...274