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INTRODUCTION

The so=called harmonics method was first used for the steady-
state nuclear reactor problem by Goertzel and Garabedian (1). Further
work using the method was later carried out by Edlund and Noderer (2).

In 1959, Garabedian and Leffert extended the method in order to deal

with the non-steady state problem (3). Also, at that time Holway (k4)

added a perturbation scheme to the harmonics method, and was the first

to use it for problems having more than one energy group. Furthermore,

he was the first to allow discontinuous diffusion coefficients. TIh 1960,
Foderaro and Garabedian (5) attacked the two energy-group problem without
recourse to the perturbation method of Holway. The same authors also
solved the two-group kinetics equation by means of the harmonics method (6),
in effect a continuation of the work of Garabedian aﬁd Leffert mentioned
previously.

This thesis is a further development of the harmonics method.
In the first section, only the static case is considered. The present
development is felt to be superior to the previous ones for the following
reasons:

(a) Tt is applicable to any number of energy groups. Previously

a maximum of two has been considered., The computer program

which is included with this thesis is, however, limited %o a

maximum of four groups. The code is not a production code;

it has been written to check the methods developed in this

report.
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(b) Group constants may vary arbitrarily with position. Previous
developments allowed only constant cross sections within a
subregion of the reactor.

(¢c) Group skipping is permitted; that is, neutrons may be scattered
from one group to any or all groups below it. Also, neutrons
may cause fissions in any group, with resulting neutrons emitted
into any group. These features are not included in most few=-
group codes in use today., Up=-scattering presents no difficulty
to the solution of the multigroup equations by the harmonics
method, but it has not been included in this work,

(d) An iteration procedure, based on a variational principle, is
used to find the eigenvalue of the static diffusion equation.
This procedure is faster and more accurate than other procedures
previously used in conjunction with the harmonics method,

(e) The adjoint fluxes are calculated as well as the fluxes.

The second section deals with some aspects of the kinetics of
nuclear reactors., These are also attacked by the harmonics method, and
some of the kinetics calculations are also incorporated into the code.

The third section presents some further properties of the harmonics
method with other methods in use today. Some calculations for which the
methods described in this work are particularly well suited are also in=
cluded,

The fourth section describes the computer program to an extent

that the reader may use it for his own problems, if he so desires.



CHAPTER I

THE STATIC PROBLEM

In the multigroup diffusion approximation to the Boltzmann
equation the set of equations to be solved, for one dimensional slab

geometry, is

d o dh 3
‘d—‘)‘(‘ DL.(X)ZZ@L(X - O/a" (X) ¢4' (X) +%0;'_y;: (X)¢J(X)

For i = 1, the third term does not appear. The symbols in Equation (1)

are defined as

2

Dy

neutron flux in the ith group,

It

diffusion constant for the ith group,

]

1

Oai

< N
Di(gr’),{ taa bs + gf"—)g”
5 A=t/
(Bp): = transverse buckling for the ith group,
i
i

th

Q
I

2bs macroscopic absorption cross section for the i** group,
Gj—ai = macroscopic transfer cross section from group j to group i,
Xy = fraction of all fission neutrons which are emitted into
group i,
Vop; = the average number of neutrons produced by a fission in the ith

total macroscopic removal cross section from the ith group,

group multiplied by the macroscopic fission cross section in

the ith group,
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N = number of groups,

x = distance measured from the origin,

k = the eigenvalue, or the static effective multiplication factor.

The harmonics method will be used to find a solution to Equation

(1) such that
(a)
(v)
(c)
(d)
(e)
(£)

p'S everywhere,

x) is bounded,

Bi(x) >
B3 (x)
¢1(X) vanishes on energy-independent outer boundaries.
Bi(x) =
D, (x)

g (x g:(-x), or agi(0) . 0 (symmetry about x = 0. )
d¢1 (x) . :
5 (x is continuous everywhere,
d¢ is continuous within each sub-region of the reactor.
dx

Requirement (d) is imposed for convenience; it is not necessary.

The eigenvalue k corresponding to the solution satisfying condi-

tions (a) to (e) is the effective multiplication factor of the reactor.

This is well known, see, for example, Reference (21). It is also known (29)

that this eigenvalue, which will frequently be denoted by keff’ is positive,

real, and larger in magnitude than all other eigenvalues.

If Equation (1) is multiplied by a continuous, bounded function

a(x)

which vanishes at the outer boundaries of the reactor, and is then

integrated over the reactor volume the result is

"(K v Mz
=

k7

,(x)i.{ﬂ ™ o x -jé(x)(w (x) ¢j (x) dx
X

SG(K) d p
X

{Gmo:,&(x) @.(x) dx

fc-(x)v X ¢j(x) dx =0,



The reactor is assumed to consist of R sub-regions, each having
D, (x), dai(x), etc,, which are continuous, Points of discontinuity of any
of these space-dependent coefficients define the region boundaries. We
may carry out the integrations required in Equation (2) by summing the
contributions of all the sub-regions. In particular, let us now examine
the first term. Carrying out the integration of the first term by parts,

there results

R *r ,
jé (X) %Z Dé(x)%@(x) = Z )(Gﬂ(x)% D} (’X)%ﬁ' ™ g/

=1 xv>l

R
- " d B (x q '
-— Z[G‘(xr) D&' (xr)g_x_g (Xr) — G(Xr_ﬁ DL (xf—l)adgi (Xr—l)

r=i
(3)
" d6w dg
_ (3 dG60 d 6, %)
X; tl (x);;§ 5[24 ]
fof

In the above notation r represents the region number. =x., is
the position of the interface between the rt® and (r+1)™ region. D= (xy)
is the diffusion coefficient at the left of x,.; D(x,_1) is the diffusion
coefficient to the right of x, y. The other notation is obvious. The

integration by parts performed above is valid only if, within each r,

D. (r)(X) d¢i(x)
- dx
ditions are fulfilled by virtue of Equation (1) and conditions (b) and (e)

is continuous and its derivative is bounded, These con-

below Equation (1).
The order of summation in Equation (3) may be rearranged to

yield



j&(x) d D dé'(")o[x = G (D, W d g, &

dx 7 dx
b Surfaces
= ) G %[0 W) LBL Drar) - D (x ’zj (Xy)
= B G S I
R I J
- D) d &) gy(x)
AGEE 30

But it has been specified that G(x) vanishes on the surface of
the reactor. Hence the first term on the right vanishes. Also, the second

term on the right vanishes by virtue of condition (e) under Equation (1).

Hence,
(s o0y, - 3 (Bl dato dgguiyg
=14 dx = - A £ elx
K dx r=1 ’)(r"n & o (5)
= (D dox) dg g
)( o~ T

Equation (5) is actually a consequence of Green's theorem and
applies equally to cylindrical or spherical geometries.

Equation (2) thus becomes

- fDifx)o[G(X)@;(Q d "’[@’X) 28! x) ¥

*Z fé 0 elx (6)

v ;:v% o



Because of conditions (b), (c), (d), and (f), the fluxes may
be represented by an infinite sum of eigenfunctions of the scalar
Helmholtz equation,

2

which vanish at the outer boundaries and are symmetric about x = 0. The
reader should not confuse the physical quantity v which appears as vcfj
with the subscript v which appears in Equation (7). These eigenfunctions
form a complete set for functions with similar properties so there is no
question of the validity of such an expansion. Because of the symmetry,
it will suffice to concentrate on the interval [0,L], unless otherwise

specified, The orthonormal eigenfunctions of Equation (7) are

¥, 0= JZ cos B,x (8)

where
= (yv—-4
By ( z)'[ (9)
The continuity requirements on the fluxes are sufficient to
allow us to represent their derivatives by a term by term differentiation

of their Fourier series expansions (7). Accordingly,

M,
¢{(x)=ZQ$"}"V (x) (10)
Y=

d. A i {
%“Za d
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In principle, M should be infinite, But in practice, it is
necessary to keep only a finite number of eigenfunctions.
Until now, G(x) has not been specified. Any wu(x) has the

properties required of G(x)., Thus let

Gx)=" ()

If Equations (10), (11), and (12) are substituted into Equation

M:._Ilz,)nwv}M (12)

(6), there results

M

Z { fD d’)“ xon (Xa(x /'Y‘ K¢, (x)/)lﬂy(x)o/x}
0

=

<

v ok
+Za U X)a’._ﬂ(xml” (x) dx (13)
J:

|

L
+ %LJ/\Q (x) vq’rew f%(x)dx}]zo

Let

(1k)

(J"’" M) =0 fer }‘Tfﬂj

where 813 is the Kronecker delta,



and let

i;;f: 7(4, j/)"’M (x) VO-Z/’ (X) /WV (x)dx, (15)
(¢}

Equation (13) now becomes

Equation (16) represents a set of MV homogeneous linear equations

with unknowns ai, The coefficient matrix may conveniently be arranged in

either of two equivalent forms,

First let
{ iy <4
ij =E,. Sﬁ: (17)
K

In what is denoted as the (Qw)ij representation, Equation (16)

is written in matrix form as

A = O (18)
where
11 11 11 12 1N
1 Q12 °ee Qﬂﬂ 1°°° QIM
11 ’
Q21
Q = %ﬁ%ﬁ . (19)
21 o
11 °
°N1 * NN
%lg ooooo tovcoqoct-dosnu-covvoacvo%&
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and

| AV

%
L

Y
In the (Q J)w representation, Equation (18) applies with

11
Qll

1N
.9 Q]M

12
11

1N
11

11

Q

12
12 <

< 12

ces Q

‘21

Qll

°

Q = Qup seeeereess Q5 (21)

11

Q21

N1 NN

Qup wvee- cacos QMM

and
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In the (Qw)ij representation the matrix Q consists of e
submatrices, each having degree M x M, so that Q has degree MN x MN,
In the (Qij)uv representation, Q consists of M? submatrices, each having
degree N x M; again Q has degree MN x MN,

In this work, the (QW)ij representation will be used exclusively,

It is well known from the theory of linear algebraic equations
that Equation (18) can be solved for the unknowns ai, within an arbitrary
multiplicative constant, only if the determinant of the matrix Q vanishes,

Accordingly, we must set

det (Q):def‘(E“%)zoa (23)

If k = 1, Equation (23) is the critical condition of the
reactor. If det(E-S) # O, the value of k which satisfies Equation (23),
and yields ai corresponding to @;(x) which are everywhere > 0, is the
effective multiplication factor. Of course, the ai are obtained from
Equation (16), once Equation (23) is satisfied.

At first glance, it appears that there are MN values of k which
will satisfy Equation (23), However, because of the high singularity of
the matrix S, only M of these are not equal to zero, This observation
will now be proved. Some of the properties of the matrices dealt with
will become clear during the proof, which is the primary motivation for
carrying it out. First note that S may be written as a product of an
MN x M matrix with a M x MN matrix. Remember also that, in principle,

M - oo,



] P =

X1
0
X
0 1
Xy
« Yo
X .
D 0 0
S = X .
o .° .
o X2 ch
XN o O
o Xy
Xy

The rank of the X matrix is obviously equal to M because it con-

gists of N diagonal matrices, each of rank M, It will now be shown that

the Vo matrix also has rank My in fact it will be shown that each of the

N submatrices of which it is composed are non=-singular.

An arbitrary submatrix is made up of elements of the form

ﬂ(x) P, 0 P 0 dx.

If the (vaf)‘:’ submatrices were singular, it would be possible to express

the elements of one row, say the nth, as & linear cambination of the other

rows, Thus

M

[0ty de =3 o, (10, o, &
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But since f(x) is quite arbitrary the above equality holds only if the

integrands are equal, which implies

M
7@ = ZQM Vi
A=
MEm
However, this violates the condition that the V¥, are linearly
independent. Thus, it must be concluded that the submatrices are non-
singular. The matrix S will then also have rank equal to M
Satisfying Equation (23) is equivalent to obtaining the eigen-
values k of the matrix E-lS, providing that E_l exists. E is a lower
triangular block matrix. For a moment consider the value of the determi-

nant of E, For the square matrix E, whose degree is n = MN, one method

for evaluating det E is
det E = ZT(V/;' )€y @y,

where the sum is over all permutations vy, ..., v, of 1, ..., n and
ﬂ(Vl, ooy vn) is +1 or -1 according as the sequence vy, ..., V, has
an even number or an odd nmumber ofinversions (8). But it is clear
that all permutations which include an element from a submatrix below
the diagonal blocks must also include at least one element from a sub-

matrix above the diagonal blocks, But the latter are all null matrices.
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Accordingly, the off-diagonal blocks do not contribute to the value of
the determinant. Therefore, for the purpose of calculating det E, E

may be regarded as a block diagonal matrix. But it is known that the
determinant of such a matrix is equal to the product of the determinants
of the diagonal blocks (9). Each of these submatrices is non-singular,
as can be shown in the same way as was done for the(vcf)j submatrices.
Accordingly, their determinants must differ from zero, the determinant

of E differs from zero, E-l exists, If S has rank M and EL nas rank MN,
E™'S must have rank M (8). The diagonal matrix consisting of the eigen-
values k must be equivalent to E"lS, and it must therefére have the same
rank M. Therefore there can onlj be M non-zero eigenvalues k, This
completes the proof. Of the M non-zero eigenvalues, only one corresponds
to fluxes which aré éverywhere > 0. This is the root which is all import-
ant in this work,

In principle, the static reactor problem can be solved by
following the above procedure. In practice, if one recalls that the
matrix Q has dimension Mﬁ (which may be quite large), the numerical
difficulties in finding the value of k which satisfies Equation (23) may
be quite formidable.

Attention will now be devoted to finding an efficient method
of obtaining k.

Equation (1) may be written in matrix operator form

Lg=Lyug (24)
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where L is a N x N matrix whose coefficients are

) e —_—t) e e d D'x d’ — J—-— . X 25)
Lij ) N loF R A E AN (
¢ and X are column vectors consisting of the N components @;(x) and X35
respectively. Note that X is not the same as the X matrix of page 12 .

U is a row vector whose components are vofj(x).

An equation which is closely related to Equation (2h4) is
¥ K
VAVl (26)

Where L¥, U¥, and X* are respectively the transposed matrices of L, U, and

Ve
L_ —_— —
K

X as defined above.
The solutions @* of Equation (26) are trke adjoint fluxes.

Equation (26) may be written in the expanded form

A=l2, . N Of-;a‘(wzo for 4'7(}',.
For i = N, the third term does not appear.
Note how Equation (27) compares to Equation (1). If Equation
(27) is solved by the same method used to solve Equation (1) the equation
which results is

N M , » ¥
22 bH[EL - St =0

(28)
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where the bj are defined by
M .
¥ < 4L
y=

Equations (28) and (29) are analogous to Equations (16) and (10),
respectively., The 1 and j indices are interchanged on the E and S matrices.
Actually, p and v may also be interchanged, for it is obvious from Equa-
tions (14) and (15) that the E and S matrices are not affected by an
interchange of the lower indices.

The interchange of both upper and lower indices corresponds to
taking the transpose of the matrix Q, defined by Equation (19).

Thus to obtain the solution for the bi , 1t is necessary to
solve the matrix equation

R'p=o0 (30)
where Q¥ is the transpose of Q and B is defined by

b

SIS

T

o]
0l
° o
ol \V]

=

b
| M

For a non-trivial solution to Equation (30), det (Q¥) must be
made to vanish by adjusting k. Once k is determined, one may solve for
B by means of Equation (30). It is well-known that the same value of k

which makes det Q vanish, will also meke det (Q¥) vanish (10). Of course,
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it is Just as difficult to obtain keff from the adjoint calculation as it
was from the flux calculation, and for the same reason,

If Equation (24) is pre-multiplied by @*, and the resulting
equation is integrated over the volume of the reactor, there results

an expression for k which is "stationary" (11).

IW“ x) K Uy (%) X
}W‘ (x) @ (x) X

If the matrix multiplications required in Equation (32) are

(32)

carried out, there results

ij NM 00X v X ¢(x)olx

&

K= (33)

i ZN: (/’5 L .,/x)ng(x)dx

<= ’;—

If trial functions are chosen for ¢i x) and @;(x), the difference
between the exact value of k and the k calculated from Equation (33) will
be proportional to second order differences between the exact fluxes and
adjoints and their respective trail functions.

Let the trial functions for the fluxes and adjoints be repre-
sented by Equations (10) and (29).

Accordingly,

M
¢4.<x)=Zaf, ", (X) (10)

v=i
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and

M

é*(x) = ZB: P, (x) (29)

Vol
Insertion of the above expressions into Equation (33) yields

N N M Y .
S>> o bish e

K__ (=} !1=l M=l V=) (3}4_)

X

NNMM.u~'
4 &4 }
7.2 2 2 WEye
, e
Of course, one must now determine the a& and b% which, when

inserted into Equations (10) and (29), yield the best trial functions.

The usual procedure is to set

K
3aj " (35)
and
K
2i=0 (36)

-

In this way, the ag and bg will be adjusted so that k is

statlonary; i.e., elther a meximum or a minimum.

Performing the differentiations indicated above yields the
result that k will be stationary if Equations (10) and (29) are satisfied.
Of course, this 1s not much help because these are the same equations we
have tried to avoid having to solve, for reasons given previously.
Nevertheless, it is informative to note that the coefficients of the
Helmholtz eigenfunctions adjust themselves so that k is stationary. This
contrasts with the usual expansion of a function in a Fourier series, In
the latter case, the coefficients adjust themselves so that the series best

approximates the function in a least squares sense,
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The usual methods of calculating the best parameters for use
in the trial functions lead to Equations (10) and (29). As pointed out
above, this leads to an interesting conclusion but it sheds little light
on the numerical difficulties of obtaining the parameters. Another method
of obtaining the parameters will now be discussed.

Consider a set of n linear homogeneous algebraic equations

having n unknowns,

a“)(,'f"a,zxa-ﬁ- RN o a,mxm::o

0, X, + Xyt (37)

‘
’

’

'a—MIX,"‘" a et +amﬂy\m:o;

Suppose that this set of equations has one and only one solution
and that x; # O.

These conditions can be fulfilled only if det A = 0, and if any
matrix obtained by deleting the first column and any row is non-singular,

Accordingly, the set of equations

A, ¥t Ay Xyt v &y, Xy = = Ay

(38)

Xz’?"‘“" -:}—Qmmx,,::—'a,m

which is obtained by deleting the first equation, settting Xy = 1 (the
normalization is arbitrary), and moving the first column to the right hand

side, must have a solution.
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In an engineering problem, the accuracy with wich the co-
efficients of the A matrix is known may be limited to very few significant
figures, say 3. Furthermore, if the manipulations are carried out with,
say, 8 place accuracy, it is in general not possible to have det A = O,
exactly. Nevertheless one formally writes the set of Equations (38) and
solves for xo, X35 <o Xpo The reliability of the answers, however, may
be questionable, This depends on whether or not the matrix of the co-
efficients in Equation (38) is ill-conditioned (12). If it is ill-conditioned,
the answers may be of little value. If, on the other hand, the matrix is not
ill-conditioned, the answers are as reliable as the coefficients in the
matrix A, The problem of determining whether a matrix is ill-conditioned
is a difficult one. The easiest method for determining this is to solve
the problem formally and to observe whether or not the answers with one's
intuition, experimental results, or a completely different method of solv-
ing the physical problem which led to Equation (37), if these are feasible.

Now assume that the coefficients of the matrix A contain a
parameter which is to be adjusted so that det A = O, in order that =
solution to Equation (37) exist., If this parameter is not known, a non-
trivial solution for the x;'s cannot be obtained. Nevertheless, if the

1

parameter is known "approximately," a formal solution for Equation (38),
may yield a solution for the x;'s which are "approximately" correct. That
is, the solution obtained in this manner is approximately the same as the
solution of Equations (37) with the correct parameter., If the matrix of

coefficients on the left side of Equation (38) is not ill-conditioned,

this would be expected as a consequence of the previous discussion,
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Now, once again consider Equation (16)

Z Za [E‘f— Sw (16)
' =]

1
Flrst, note that 8y cannot be zero, This can easily be shown,

M
(x)zzaﬁ M, (x) (39)
v=1

the orthonormality of the IIIV(X) functions yields

, = f g, (111, () olx (o)

Since

In particular,

a, =/¢5, (x) ¥, (x) dx (k1)

Since $1(x) and Yy1(x) are everywhere > 0, it follows that ai > 0,
Also, there can only be one independent solution for the ag s
for otherwise the f;(x) would be multi-valued, a physical impossibility.
Of course, we are concerned only with ¢i(x) > 0. There are other solutions
to Equation (16), corresponding to different values of k, and to ¢i(x)
which are negative over regions of the reactor, but these are of no
concern in this work,
Thus the set of Equations (16) satisfies the requirements put
on Equation (37). Accordingly, take an "intelligent" guess, based on
physical knowledge, for the effective multiplication factor; i.e, the
value of k which will make det Q = O. Furthermore, set al = 1, and solve

1

for a%, al oy qM, l’ vaey gﬁ by discarding the first row of the matrix
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Q defined by Equation (19) and moving the first column to the right hand
side of Equation (18).

These values are accepted as approximate values - still assuming
that the matrix obtained by deleting the first row and column of Q is not
ill-conditioned.

. 1
By using the same guess for k, setting b. = 1, and proceeding
1 Y

as above, Equation (29) is solved approximately, for b%, b%, coos b&,
2 -
BT, .1y by

Now Equation (34) is used to calculate the next guess far k,

presumably more nearly accurate than the initial guess. Once again the

aﬁ and bi are obtained; this time the approximation is closer to their

correct values, and k is recalculated by Equation (34), This procedure
is repeated until two successive values of k differ by less than a specified
small €, At this time, the process has converged. The final values of the
ai and bi are the correct solutions and k is the multiplication factor of
the reactor. The fluxes and adjoints may then be calculated from Equations
(10) and (28),

A check on the validity of the final answers 1s provided as

N M

follows, The quantity jZi Z& ai Qig represents the product of the first
= V=

row of Q and A, and must equal zero if the ag are correct, Because the
first row of Q does not enter the reduced simultaneous equations solution,
this procedure provides a simple and valid check, A similar check may be

. N M 5 41
performed for the bi by evaluating Y. L 'bJ leo After any iteration,
1 J

j=1 v=lL ¥
even if the problem has not converged, the two quantities calculated above
must be equal, This simple obssrvation provides a useful check after each

iteration, and is particularly informative when one wonders about round-off
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errors, That these two quantities are indeed equal is easily shown.

Consider a partitioned matrix of the form

¢ 1s a square, non-singular matrix; a and b are row and column matrices,

respectively., The two checks provided above correspond to evaluating ax

and yTb, where x is the solution of
CX = =D
and y is the solution of
T T T

cTy =~a- , Or Yy Cc==a
Hence it is clear that
ax = -ac™ib = yTb

The superscript T denotes the transpose. This is to be differ=
entiated from the ¥ which has been used previously to denote the adjoint.
It frequently happens, however, that the adjoint and transpose of a matrix
are equal. The reader should have no difficulty with this aspect of the
notation.

The iterative procedure described sbove for the solution of
homogeneous linear equations is actually an extension of the method of
W, Kohn (13). Kohn's method is more limited in that it is restricted to
equations of the form Ax & Ax where A i1s a symmetric matrix, Imn this work
the method has been apﬁlied to Ex = A Sx where neither E nor S are

symmetric. It is pointed out in Reference (14) that Kohn's method is
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basically the same as Wielandt's method of "broken iteration." The
latter, however, requires a good initial guess for the eigenvalue but

it does not work if the guess corresponds to the exact value. The method
given in this work is not subject to this limitation.

For the purpose of garrying out numerical calculations, it is
desirable to have available formulas for the evaluation of the matrix
elements Eig and Siﬁ.

By inserting Equation (8) into Equations (14) and (15), and

performing some trivial trigonometric manipulations, one obtains

% “’j[[s -4 T+ s 0]

- O‘;__,(' () Cos (M—V)T% +ES‘»; [—D{(X)(V"é')

(k2)
(o) CE ) ] g x]eos v B
and
L L
5/%:7_%_' o3 1) [cos () TX e cos(uev-DT]dx - (i3)
4]

In the code which accompanies this work, the necessary integrations are
carried out by Simpson's rule, unless a cross section is constant within
a subregion of the reactor, In the latter case, the integrals are very

easily carried out without recourse to Simpson's rule,
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The method of harmonics is also applicable to multi-dimensional
problems. In particular the finite cylinder, with arbitrary space de-
pendent cross-sections in the r and z directions, will now be considered
in some detall. Of course the method is applicable to other geometries,
but the finite eylinder serves as a good example of the two dimensional

problem,

The appropriate multigroup diffusion equations are

R . ,
Far D i)r%%mz‘) 4—%0,{(",2)%—% ) _ 7, (ne) g (n?)

: (4h)
A—1 N

' ¢ . x'
+;0}—n ("/%)% (r2) -f-_Kju_/E:lvo;j (v, 2) %7 (ri2)=o

As in the one dimensional problem, multiply by a function G(x,z),

integrate over the volume of the reactor, and apply Green's theorem to get

R H

//{’rD'(”*)%m*}}ﬁ”*)érQ;(n%)%ﬁM )26 (r2)
oo ‘ W 9)’ by Py
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It is assumed that the problem has axlal symmetry. The radius of
the cylinder is R and its height is 2H, These distances, as before, include
extrapolated lengths,

As before, expand the fluxes in a series of eigenfunctions of
the Helmholtz equation which vanish at the outer boundaries. The appropriate

expansion is

Mz My |
6910 ] % et T "

y=| m=|{

where Oy, are the zeros of the Bessel function Jy(x). Note that M, and M
need not necessarily be equal; that is, the.cutnoff approximation need not
be the same in the axial and radial directions. Because of the piecewise

continuity of the derivatives of the fluxes, they may be represented by

r.
A a’ %y cos[(v-L)T2]T, (XLl (47)
Ym R 2 H R

and
Mz M
'3@(%2) "4
- - — a, v-L)Isin[ly-L)T2 Xy ¥ (48)
°E V:,;,V'" e (-5 ]% (g
Choose
(%)= cos (w-4)TL T, (%, &) ()
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Tnserting Equations (46) through (49) into Equation (45) yields

:E:TZE:.:EjClV44i:E;;5~n~1 '#T 4 anm:]

'-_- y=| m=| (50)

/M-‘—!} Y ME / /W):.l} ey Mr
. H
£ o, o
E/m{mm = - &.2 [%"fdz C oS Ev—-ﬁ)?]cos [(M—ZL)IZE
o
2
'ofrE(C?)j(% I(%)O(r+ (M'Ll)(v——'z)(%)

f R
,Ia/z sm[(v—i-)%sin EM*—%)%—*—]{\FQ(‘O?)% («——'-/;-C)I (o%“r)d'“ (51)

R

jolz cos[[v-4) T2 cos[(u- m” 193, _%f)% (on ) ar
O
p R
+/a/2~ cos [(v ljﬁjcos (M,_q_)_ﬂ jr?_um?_)% (o%_f)%((; \dr
and
S/Mfmm =K, /o!z cos [(V»J—)@] CDSBM-L)EHZ_‘.”
RO (52)
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Equation (50) can be solved only if det Q vanishes; Q, as
before, is defined by E-S/k. There are several ways in which one may
conveniently arrange the matrix elements in the matrix Q. One such
arrangement can be formed by placing Mi matrices of the form given in
Equation (19) in a square array. The degree of the resulting matrix
is obviously NM,M,. As before, one runs into the same problem of having
to adjust k so that det Q vanishes. However, the variational principle
which was used fof the one-dimensional problem applies equally well to
the two-dimensional case, Thus, in principle, one may obtain the fluxes,
adjoints, and k for multi-dimensional problems by using the harmonics
method. As in finite difference methods of solution (17), however, one
has to deal with larger matrices than for the one-dimensional case.

The two-dimensional problem has not been programmed for a
computing machine, Therefore it is not possible, at this time, to

analyze the merits of the harmonics approach to multi-dimensional problems.



CHAPTER II

KINETICS

In this section, the harmonics method will be used in the analy-

sis of some aspects of the kinetic behavior of reactors.

The time-dependent multigroup equations, with no feedback, may

be written as

{- N
; ;f._,im g 0,0+ -9, ;%J AR

gzi is the fraction of delayed neutrons from the /-th precursor

which are emitted into the i-th energy group. These are normalized so that

N
ijl =l for A=1,2,.., 1
{=l

where I 1is the number of delayed neutron precursors. The delayed neutron

fractions Bz are defined so that

I
7 %= ¢
£=

-29-
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It is assumed that for t < O, the reactor was in the steady
state (k=1) with fluxes @i(x,O). At =0, some material is inserted
(or removed), resulting in the coefficients of Equation (42). For
t >0, it is assumed that the coefficients are independent of time (no
feedback). Furthermore, there is no external source.

First, take Laplace transforms in Equation (42). Thus let

¢4. (X)W):f@{» (%, ¢) e_wroéé (54)
0

Equation (42) becomes

ff- D, (0L (x,1) = ag (g 0 ) —e g W)

A= I N
DA (008, ) -0 ; A—%‘ﬁf]@,'(%xw)
= J:

j=l

Impose the following requirements on @(x,t)
(a) @;(-L,t) = ¢;(L,t) = 0 for all t.
(b) o;(x,t) = ¢;(-x,t) for all x and t.
(c) @i(x,t) is bounded and has continuous second-order
space derivatives inside each subregion for t < e .

(@) o; (x,t) and Di(x)d a)gt) are continuous everywhere.
X
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Also, let G(x) be a function, independent of time, which also
satisfies the above conditions.

If Equation (55) is multiplied by G(x) and integrated over
the reactor volume there results, after applying Green's theorem and

conditions (a) through (b)

- b tx A ) dE0y - (66950006, )

L N
+(-a)X, +; %/J;fé(x)w;/(x)@. (x,w) d

=—[é(x)4—'; 3, 1xy0) dx - iljf; Zf/x Ve, x@ Ko)dx ()
¢ /=1 [~

Now expand ¢i(x,w) in a series of eigenfunctions of the Helmholtz

equations, as was done for the static case. Accordingly,

M '
(x/ w) = ;CVL(WJ /%‘)V (X) (57)

and

M .
@L' (%, 0)22%4/% (%) (58)
V=)

The fluxes, @i(x,O), in the initial reactor which existed at
t <0, and the corresponding values of a® are obtained by the methods
v

given previously. These are, therefore, known quantities in the present

discussion.
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If G(x) is chosen to be wu(x), and Equations (57) and (58)

are inserted into Equation (h5), there results the set of algebraic

equations
- q4_oB =510
Z_; ;Cv(w)‘} E/Av "WBAAV+[("@)XA* - %‘Df F/:\V
- S (B +F =~ 4,1
i e\ B ¢+ A 42:]
J.Z::IVZIV£MV M/:/ WM
Mzl M sty N (59)

where E'J is defined by Equation (14),
Hv

=7, (X)szj )7, (0 d

and

d |
g [Ronhes e

In principle, the set of Equations (59) may be solved for each
ca(w) by the use of Cramer's Rule. That is, each ci(w) is equal to
the ratio of two determinants, each having the form of Q in Equation (19).

The denominator is
c{.ez‘(- —WBZ'P[' BX; -i-ZA/?/*B/ /,,5
7 Wik
while the numerator is the same, except that the [(i-1)M + v]-th column

is replaced by the right hand side of Equation (59).
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It is possible to write
: '(2) '[M(N+1)-]
. i (Wi (e ) e (W )
/A("J)=K/A (62)
(W'W,)(W-Wz)"‘(W"WM(WI))

where the numerators for each ct as well as the common denominator have
vl

been factored. Ki is merely a constant, which generally differs for
each p and i. It is obvious from the form of Equation (59) that the
expansions of the determinants involved consist only of polynomials in

®. Therefore Equation (62) is a valid representation of the solutions for
cﬁ(w).

The denominator in Equation (62) indicates that there are M(N+I)
roots. This can be proved quite easily. The w's which appear with the
source term--due to delayed neutrons--contribute ML roots. This can be
shown in precisely the same way as was done previously for the k eigen
values. The (%;JHV elements form a non-singular matrix. Therefore they
contribute MN ;oots. Thus, as indicated above, the total number of roots
is M(N+I). Physically, this indicates that each mode contributes N+I
roots, and that the finite neutron velocities, or neutron lifétimes, con-
tribute roots in exactly the same manner as the finite precursor delay
times do. From the manner in which the numerators of Equation (62) are
formed, it is obvious that they will contain one root less than the denomi-

nator has. If there are no multiple roots in the denominator, the Laplace

transform cﬁ(w) may be inverted to yield (Reference 15)
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where
#(2) A | _
Ai ¢ () ) (y w (M(NVFT) ’J)
J Jd-[u w,) w w)'"'(w'wM(I"'N))]w:wj- (64)

From Equation (46), the complete solution for the fluxes is
I+I)
M [ UQ'I

B, (xt)= Zﬂh ;’ﬁe (65)

or, by changing the order of summation,

M(N+I)

@,{_ <>(/ t):Z ZAJV /Y/) (X) (66)
]5=I
From physical considerations, it is expected that the wj‘s
are not only distinct, but real. This statement is not easy to prove,
but is has been shown to be true for a variety of simple cases.(3)
The assumptions made in arriving at Equation (65) are
(1) The fluxes are well represented by the first M terms
of a Fourier Series expansion.
(2) No feedback.
(3) No external source.
It has not been assumed that the space-time problem, Equation
(51), is separable. Thus, subject to the above restrictions, Equation
(66) is the complete solution to Equation (51). Now recall that the ;'s

J

were the roots of

¥ L
i p'l S0 07
det(—gwj_w@”%%ﬂﬁ/_zl é%?q;
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Equation (67) may be regarded as a generalized Inhour Equation.
It is more general than the conventional Inhour Equation because it does
not assume that the space and time dependence of the fluxes in Equation
(55) are separable. Thus, the manner in which the flux shape changes
with time may be obtained from Equation (67).

The conventional Inhour Equation has (I+1) roots, while Equa-
tion (67) has M(I+N) roots. The problem of finding all the roots of
Equation (67) is thus considerably more difficult than finding the roots
of the conventional Inhour Equation.

If one waits long enough, the fluxes will reach their asymptotic

behavior,
M
w b {

where @, the algebraically largest root of Equation (67), is the recip-

rocal of the stable period. ¢i(x), defined by
M ‘
d )
= A X

is often referred to as the dynamic flux.

Thus far, a formal procedure has been given for the calculation
of the time-dependent fluxes, subject to the restrictions given previously.
In principle, one may obtain the solutions to any desired accuracy by
choosing a large enough value of M. In practice, however, one must find
the roots of Equation (67). This is the only serious disadvantage of this

method because there is no fast and accurate method of obtaining the roots.
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In order to circumvent the difficulty mentioned above, a more
conventional approach to the time-dependent problem will now be taken.

If, at t=0, the magnitude of the change of the coefficients
of Equation (53) is small (small reactivity change), it is safe to assume
that the space-time problem is separable; that is, the space dependence
of the flux will not appreciably change with time.

Accordingly, let

t
@l (x, 4) = ¢A. (X) € “ (70)

Upon insertion of Equation (70) into Equation (53) there results

4=
0= L0, 5 & 09~ 004 00+ ;szo;_,z )09

S
-

{ " *Z@M/‘]Z_ X)yf/.kx)

J =1

In matrix operator form, Equation (71) may be written as

(L) =1V (2

where f is a column vector having components

YRYET)
'ﬁk ('_%3)'y%( +_‘;'.' :f;~4(~“f

w—f—X/

w

Vi

9

L is a diagonal matrix whose components are
v
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L and U are the matrices defined below Equation (25). The
column vector ¢d of Equation (61) is not equal to the ¢ of Equation
(24)--except in the steady state (w=0, k=1). ¢d(x) is frequently re-
ferred to as the dynamic flux [see Equation (69)]; the § of Equation
(24) is known as the static flux.

Equation (72) may be multiplied by some arbitrary weighting

function G(x) and the resulting equation integrated to yield

f&(x)[ﬁ%]@ dx:wf/GwéC/ X (73)

At this point, the dynamic fluxes will be approximated by the
static fluxes. It should be emphasized that this approximation is not
rigorous, but in most applications it results in no difficulty. For a
thorough discussion of the difference between the static and dynamic
fluxes, see Reference 16.

Accordingly, Equation (73) becomes

/¢*(L+%}¢JX=4[¢*U¢& (74)

where G(x) has been chosen to be the static adjoint flux matrix defined
by Equation (26).

Previously, when the static case was analyzed, no mention was
made of delayed neutrons. This omission introduces only a neglible error
in the calculation of the static fluxes, adjoints, and keff’ which were
the only quantities of interest in section 1. If the time behavior is to
be calculated, the presence of delayed neutrons cannot be ignored.

Some results of section 1 will presently be used, and these

should now be modified so as to include delayed neutrons. This can be
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done simply by replacing X; Dby

I
(1=8) K + ;@ 3

Accordingly, Equatlon (%2) vbecomes

| pwl-ors ww o dx

“ [t s

T
(l-—/ﬂ)?(-r-;l@ 5

where

represents a column matrix whose N  components are

L
(=81 + 2% %0

Equations (74) and (75) may be rearranged to yileld the conven-

tional Inhour equation,

yu / +”’"ﬂ/(€f{)“
T— /:. Hf‘r‘

*
where the prompt neutron lifetime ﬁp is

. 9tEpd
g v

the effective delayed neutron fractions are

, @(W@U¢”
Yetf) /7§ [(‘_/5)%_,_1/5’ &]U¢5/X
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the reactivity p 1is defined by

If, as in Chapter I,

I
-6 X+ 2 4%y
=
is approximated by X, Equations (68) and (69) become

* [ %35 P x
f‘/¢*x U¢C/X (81)

laéﬂif} L’¢Sd%
@(fff)=@/¢*7(u¢a’x (82)

and

If each component of the flux and adjoint matrices is expanded

according to Equations (10) and (28), respectively, Equation (81) becomes

where
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and Sig is defined by Equation (15). Similarly Equation (82) becomes
N M M , ‘
/1437
L“ H,¢ a
— L_"m Ay Y

b=t 1 2

N M ' iy .
ZZ_ 2_ b S/m{ an
1=l _’ M=l V=i

where

Hy = / % &7 00 00, ) (86)

The results derived above enable one to compute effective de-
layed neutron fractions, by Equation (85), and the prompt neutron life-
time, by Equation (85), of a reactor very simply. After having solved
the static problem, all that is required to compute the above kinetic
parameters are a few additions aﬁd multiplications. These have been in-
corporated into the computer program which accompanies this thesis.
Together with k, which is calculated by the methods given in Chapter I,
the calculated parameters may be inserted into the conventional Inhour

equation, Equation (76), to obtain the time behavior of the reactor.



CHAPTER III

FURTHER PROPERTIES OF THE HARMONICS METHOD

Many interesting conclusions may be obtained by solving the multi-
group diffusion equations by the method described earlier. These will be

discussed in this section.

1. The eigenvalue k as an upper bound.

Although the set of multigroup equations is not self-adjoint,
the set behaves in many ways as if it were self-adjoint. For instance, there
is always a real eigenvalue k. Furthermore, the value obtained for Kepp bY
the harmonics method is always an upper bound. This observation has not been
proved mathematically, but it has not been violated in a very large number
of trials. As the number of harmonics M is increased, keff decreases mono-
tonically toward its correct value. This 1s because an increase of M corre-
sponds to a better trial function for the fluxes and adjoints. This observa-
tion can be quite useful. For instance if for M = 1, a value for kopp Which
1s less than unity is obtained, one knows immediately that the reactor is
sub-scritical. This 1s so because it is known that the correct value of kepr
is less than the one obtained for M = 1. Thus it is often possible to deter-
mine if a reactor is sub-critical by means of a trial function which is quite
poor. Such calculations are often so trivial that they can easily be carried
out by hand in a few minutes. The dependence of the prompt neutron lifetime,
by contrast, can be either above or below its correct value. This behavior
of kopp and ﬂ; is shown.in Table II for illustrative reactor 1, whose proper-

ties are given in Table I.

4] -
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TABLE I

PARAMETERS FOR ILLUSTRATIVE REACTOR 1

Core Reflector
Width (cm) 20 Lo
Group 1
oy 0.02 0.0k
D 1.15 1.10
vap 0.0 0.0
o]
1-2 0.02 0.04
X 1.0 1.0
6
v x 10 52.0 52.0
Group 2
0, -0.0005 x + 0.045 0.02
D 0.20 0.15
VO 0.05 0.0
X 0.0 0.0
vV X 106 0.22 0.22



11
13
15

20
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TABLE II

kepp AND PROMPT NEUTRON LIFETIME FOR

ILLUSTRATIVE REACTOR 1, FOR VARIOUS VALUES OF M

Kerr

1.02321
1.00543
1.00327
1.00157
1.00141
1.00121
1.00110
1.00109

1.00101

2% x 10°

D

5.83547
3.8150
3.7980
5.7970
5.7972
3.7970
5.7971
5.7971
5.7971
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2. Convergence.

There are actually two calculational procedures which must con-
verge before the problem can be considered solved. The first procedure is
the convergence, for a given M, of the iterative solution of the simultaneous
homogeneous algebraic equations. The second convergence question arises
when one wishes to know how large M must be; that is, how many Fourier co-
efficients must be retained in order to arrive at satisfactory solutions for
kerr, the fluxes, and adjoints. These convergence problems will now be dis-
cussed in some detail.

The question which arises in connection with the first convergence
problem is: "How good should the initial guess for Kepp be in order to assure
good convergence?" It has been found, by actual computation, that no great
care is required for the initial guess. Naturally, the better the guess, the
faster the convergence. However, even for very poor guesses, the number of
iterations required is surprisingly small. Table III shows, for illustrative
reactor 2 whose properties are given in Table IV, the number of iterations
required for convergence for different initial guesses of kepp. In this case,
M has been chosen to be eleven. It can be seen that, although in some casges
the initial guess is very poor, the necessary number of iterations is never
very large. Figures 1 and 2 illustrate the rate of convergence of the fluxes
for a poor initial guess of keff' It may be noted that the fluxes approach
their converged values quite rapidly. Usually, in reactor criticality calcu-
lations, one has a fair idea of the value of k. pp before attacking the éroblem.
Using that estimate should never lead to complications concerning convergence.

When referring to Figure 2 it should be noted that the term "thermal flux"
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TABLE III

ITERATES FOR ILLUSTRATIVE REACTOR 2
IN ELEVEN MODE APPROXIMATION

Initial guess First iterate Second iterate

of Keff

0.2 0.95109 1.00150
1.2 1.00147 1.00151
3.0 1.00137 1.00151
k.o 1.00138 1.00151
5.0 1.00140 1.00151

TABLE IV

PARAMETERS FOR ILLUSTRATIVE REACTCR 2

Region 1 Region 2 Region 3
Width (cm) 10 2 10
Group 1
T, 0.02 0.0k 0.02
D 1.15 1.10 1.15
Ve 0.0 0.0 0.0
9,0 0.02 0.0k 0.02
X 1.0 1.0 1.0
Group 2
Og, 0.04 0.015 0.0k
D 0.20 0.15 0.20
Ve 0.05 0.0 0.05

X 0.0 0.0 0.0

Third iterate

1.00151

Region 4

8

0.0

0.0
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is used somewhat loosely in this work. For our purposes the thermal flux
1s used synonimously with the flux in the lowest energy group. Physically,
of course, the lowest energy group may include neutrons whose energies are
higher than thermal.

Calculations show that the number of iterations required is in-
dependent of the number of energy groups.

The second convergence problem is more difficult to deal with.
However, it is possible to make some general statements concerning it. The
number of energy groups used does not affect the number of modes to be used.
An appropriate choice for M depends primarily on the spatial variation of
the group flux which shows the greatest deviation from a pure cosine, usually
the thermal flux. The presence of local disturbances of the flux, due to
water gap peaking for instance, necessitates a larger value of M than would
otherwise be needed. In such a case one may estimate an appropriate choice

of M quite easily. The value of M chosen should be such that cos(M - %)E%
T

A

has a half-period approximately equal to the range of the local disturbance,
or MrVL/d, where 4 is the range of the disturbance. - It is apparent that if
the total dimension of the reactor far exceeds the dimensions of local dis-
turbances, the value of M will have to be large.

Other considerations enfter the choice of M. One can easily see,
from the form of Equation (42), that as M is increased there comes a time

when the Eii elements, for high y and v will completely dominate the matrix.

uy :
s . . 1 1, ,n\2 . 1\ nx
This is due to the presence of the term (V—E)(“_E)(E) L/pDi(x) sin (M-E)ET
sin (v—%)%E . This will obviously occur sooner if L is small. Furthermore

the diagonal elements Eii, for high u, of the diagonal sub-matrices will
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dominate the sub-matrices because the above integrals are small for u # v.

If Di(x) is constant over the entire reactor, all off-diagonal elements Eiij
K

o) f v, are zero. Thus the Eii elements are large compared to other elements,

and the ai, as obtained from the iterative calculation, may be obtained di-

rectly by dividing the right hand side of the equations by Eii. Hence for

.

large u, the ai

are determined independently and they are all small. At this
stage it may be concluded that convergence has been achieved. If Di(x) is

not constant, off-diagonal terms will generally not vanish, but they will also
eventually become small compared to the diagonal elements. In this case,
however, it will be necessary to go to a higher value of M. In general,
therefore, the harmonics method works best for those reactors which are small,
which have few local disturbances, and which have constant diffusion coeffi-
cients. These conditions are of course not necessary, but they insure good
results with low values of M. The disadvantage of having to use a high value
of M is merely one of computation time; a larger value of M means that the
degree of the matrices involved becomes larger. There have been no round-
off errors in any calculation carried out thus far, so it appears that the
method 1s generally applicable.

Note that if the fluxes were known exactly, the first M coefficients
of a Fourier expansion of these fluxes would not be the same as those obtained
by an M mode approximation by use of the harmonics method. This is so be-
cause the two methods converge differently; the Fourier series converges in
a least-square sense while the harmonics method makes kepp an extremum.

This has been mentioned earlier. Of course, as M becomes large the two sets
of coefficients approach each other. In fact, even for small M, the differ-

ence is not usually significant.
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Further indication of the convergence of the fluxes for increasing
M is provided by Tables V and VI, in which the harmonic coefficients of the
fluxes for illustrative reactor 1 are given. The fluxes are normalized so
that the first coefficient of the fast flux is 1.0. Note that as M is in-
creased, the dominant coefficients stabilize to their final values. The
data given is for values of M from 1 to 10. M = 10 is sufficient for con-

vergence for illustrative reactor 1.

3, Comparison of harmonics method with finite difference schemes.

The details of the finite difference method of solving the multi-
group diffusion equations will not be repeated here. They have been widely
published; see for instance Reference (17).

A comparison between the harmonics method and the‘finite difference
method seems in order. In particular, it is of interest to know the rela-
tionship between the number of mesh points (for the finite difference approach)
and the number of harmonics (for the harmonics approach) which have to be
used to obtain a solution with the same accuracy.

An advantage of the finite difference approach is that one can choose
a different mesh spacing for each region. Thus a small region which signifi-
cantly affects the flux shape can be covered by many closely spaced mesh
points, while other regions are covered with more widely separated mesh points.
In the use of the harmonics method it is not possible to require greater ac-
curacy in one region than in another; one must increase the number of har-
monics throughout the entire reactor. Another advantage of the finite differ-
ence approach is that, for one-dimensional problems, the matrices involved

are of the tri-diagonal type. These are easier to work with than the
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completely filled matrices which one deals with in using the harmonics
method(17). One advantage of the harmonics approach is that the calculated
value for k. pp, for a given M, is always an upper bound. The usefulness of
this fact has been mentioned earlier. Another advantage is that an approxi-
mate Fourier series representing the fluxes is automatically provided. Such
a series is frequently desired in reactor analysis. For instance, Gyorey (18)
utilizes such an expansion in his study of the xenon oscillation problem,
although he uses a sine series as well as a cosine series. ©Still another
advantage of the method used in this work is that the flux and adjoint flux
problems are solved simultaneously, frequently in less time than is required
to solve either problem by finite differences. In the finite difference
approach one begins by guessing a source distribution. In order to minim;ze
the number of iterations required, it is desirable to make an intelligent
guess for the source. This frequently requires some insight concerning the
problem at hand. The method described in this paper begins with a guess for
keff' This quantity is usually known to a fair degree of accuracy before
the solution is even attempted. Furthermore, it has been demonstrated that
even for a poor initial guess the number of iterations is small. This 1s a
distinct adventage of the harmonics approach as described in this paper.
Figures 3 and 4 illustrate the fluxes in the 7, 11, and 20 mode
approximations for illustrative reactor 2. Results obtained from the WANDA
code (25), by using a large number of mesh points to assure a correct solution
agree exactly with the curves drawn for the 20 mode approximation. Also

note that a seven mode approximation yields a better representation of the
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TABLE VII

keff FOR ILLUSTRATIVE REACTOR 2 FOR DIFFERENT NUMBERS
OF HARMONICS AND MESH SPACINGS

Modes k.e ff

7 1.0054

9 1.0027

11 1.0015

13 1.0013

15 1.0005

19 0.9999

20 0.9997
Mesh spacing® Kepp
2, 2, 2, 2 1.0072
b, 2, 4 4 1.0029
10, 8, 10, 8 0.9999
20, 8, 20, 16 0.9995

* L2, 4 L4 implies that regions 1, 3, and 4 are subdivided into 4
mesh spacings, region 2 into 2 mesh spacings.
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fast flux than of the thermal flux. Thus the relatively poorer representa-
tion of the latter does not affect that of the former, although the two are
not obtained independently.

Further insight concerning the comparison of the harmonics approach
with the finite difference method may be gained by examining Table VII. Values
of Kerp, for different mesh spacings and different M, are given for illustra-

tive reactor 2.

4. Applications.

It should be emphasized that the applications of the harmonics me-
thod to reactor calculations are the same as those of the finite difference
methods; the harmonics method merely represents a different approach to the
same problems which have been solved successfully by the finite difference
methods for a number of years.

It is of course possible to solve, by means of finite difference
methods, those reactor problems which have arbitrary space-dependent co-
efficients in the diffusion equations. However, the finite difference codes
which exist today allow only constant coefficients within a region of the re-
actor. The harmonics code, written in connection with this work, does allow
arbitrary space dependent coefficients. Accordingly the applications of the
harmonics method which are described below are based on this additional fea-
ture.

The first application is to the well known Goertzel minimum critical
mass problem (19). The details of the Goertzel method of analysis will not be
repeated hére, but results obtained from it will be checked by the harmonics

method. The code written in connection with this paper is particularly well
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suited for such problems because it allows the diffusion equation coefficients
to be arbitrary functions of position, and it accepts these in analytic form.
The illustrative problem is one which has been solved by Wilkins (20) in connec-
tion with his study of the minimum total mass problem, which is closely related
to the Goertzel problem mentioned above.

Consider a slab reactor, consisting only of water and pure U255,
whose properties are:

thickness of core = 14.072 cm.

thickness of reactor, including reflector = 13.832 cm.

Group Core Reflector
1 D =1.00 D =1.00
0y = 0.03185 0y = 0.03185
voe = 0.0 voe = 0.0
0,0 = 0.03185 0,5 = 0.03185
2 D = 0.1588 D = 0.1588
Oy = 7 g = 0.01955
vop = 17 vap = 0.0

Wilkins shows that for the material properties given above, the
critical reactor will have minimum total mass if the fuel is distributed
so that

= X
062(001’8) - 0'05755 + 0.272 cOs a
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and

= 0.0376 + 0.56 X
vos, 0.0376 + 0.565 cos o

According to the Goertzel theory, such a fuel distribution should yield a
perfectly flat thermal flux in the core. The thermal flux for this problem
has been obtained by using the harmonics code with M = 12, and plotted in
Figure 5. This value of M is more than sufficient for convergence. It can
be seen that the flat thermal flux in the core is very well reproduced by
the harmonics method. The reason for solving the above problem is to illus-
trate the usefulness of a computer program which permits the added freedom in
specifying cross sections mentioned above. The method could also be used to
solve the flat flux problem, by a trial procedure, for reactors which do not
have the many restrictions of the Goertzel problem. For instance, one could
apply the method to a nonthermal reactor. Of course, any reactor in which
the material composition is distributed arbitrarily can be handled in the
same manner,

Another problem to which the code might profitably be applied is one
in which the neutron spectrum varies appreciably in different positions of
the reactor. The usual approach to such a problem is to calculate the diffu-
sion equation coefficients by appropriately averaging the microscopic cross
sections over an energy spectrum corresponding to each region of the reactor.
It is thus assumed that within each region the neutron spectrum is the same
everywhere. Such an assumption is frequently not justified. For instance,
temperature gradients or interfaces between two regions whose material com-

positions are very different could very well result in neutron spectra which
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vary considerably within a region of the reactor. In order to take into
account these effects it would be preferable to use a different spectrum

at each point within a region. Such a procedure would result in diffusion
equation coefficients which are not constant within a region, and the results
obtained would be more indicative of the true physical situation. The pro-
blem of obtaining the appropriate space-dependent neutron energy spectra
for the averaging process is by no means a trivial one. In fact, to this
day there exists no satisfactory method for obtaining these. A possible
attack to the latter problem might be made by coﬁparing Korp and fluxes ob-
tained by experiment with those obtained by calculations using different
space-dependent spectra. In this way some light might be shed on this im-
portant space-energy problem.

A related application which is well suited to our code is that of
replacing a many-group calculation which uses constant coefficients in each
region with a few-group calculation whose coefficients vary continuously with
position. The latter is a much faster computation, but that is compensated
by the fact that it is more difficult to obtain the parameters for the cal-
culation. This objection can be removed, however, as workers in the field
obtain a better "feel" for working with space-dependent cross sections.

To illustrate the above, consider a reactor, in which the materials
are distributed symmetrically about the origin. On each side of the origin
are three regions of thicknesses 7.97 cm., 2 cm., and 10 cm., in which ma-

terials are distributed as follows:
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Element Atomic Densities (atoms/cc x 10-24)
Region 1 Region 2 Region 3
ye33 .00231 ——- .0000667
y228 .00911 --- ---
gt - L0667 L0667
0t --- L0533 0533
12 L0564 - -

The transverse buckling was chosen to be zero. Note that Region 1
is composed of atomic densities such that the neutron spectrum is fast, re-
gion 2 is a water gap,; and region 3 has a material composition typical of a
thermal reactor. Primarily because of region 1, a large number of energy
groups 1s ordinarily required for a meaningful-analysis. Accordingly, the
AIM program (26), which is based on a finite difference calculation, was used
to calculate the fluﬁes by using 18 energy groups. The cross sections used
for the calculation will not be reported here, but they are based on the 18
group cross section set given in Reference (27). The 18 group cross sections
were then reduced to an equivalent space-dependent 2 group cross section set
by combining the first 8 groups into one larger group, and the lower 10
groups into the second group. This was done by flux weighting the 18 group
constants set. For instance, the absorption cross section for group 2 of

the reduced set was calculated by

— f__(aﬁs,: £ (x)

Cgl (X) = 4=9

$(2) i 75,1' (X)

= -
for many points in the reactor. The result is a Oabs(g)(x) which varies
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continuously with position. The other reduced group constants were obtained
in a similar fashion. The reduced group constants are given in Table VIII.
Also the group 1 and group 2 fluxes are shown in Figure 6, where they are
compared with their equivalents, igi @i (x) and 'Z ¢; (x), as obtained from
the AIM calculation. The agreement is seen to be quite good. The computed
values of kopp are .997 and 1.07 as obtained from the 18 group calculation

and the equivalent two group calculation, respectively. The two group calcu-
lation, done with the harmonics code, was done for M = 20. Having noted the
good agreement of the two calculations, particularly insofar as the fluxes are
concerned, much further analysis for this reactor could be done with the faster
two group calculation. The two methods are almost equivalent because the

flux weighting of the coefficients conserves the fotal absorption and neutron
production rates at each point. The leakage rate is not conserved by flux
welghting however. In order fo do so, it would be more appropriate to define
Dy, for instance, by

d d L 9’5 (x) d*3; (x)
a/X D( c/X ZD a’xl

52 would be defined in a similar way. Flux weighting of the dif-
fusion coefficients is obviously a far simpler procedure. Furthermore it is
seen to yield fluxes which agree quite well with the 18 gfoup results. The
agreement in the values korf is not very good however. This is to be attri-
buted to the method of reducing the cross sections; not as an indication of
poor performance of. the harmonics method.

In addition to the calculation described above, a comparison was

made between the results obtained from the 18 group calculation and a 2 group
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TABLE IX

REDUCED SPACE INDEPENDENT TWO GROUP CROSS SECTION SET

Region 1 Region 2 Region 3
Group 1
D 1.50 1.05 1.05
o .010 Neyinnt .04y62
VOp .01k 0.0 .0004
9 5 .0008 .0L45 L0496
Group 2
D .643 275 .22%
0y .163 .010 .039

15 135 0.0 .050
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calculation using constant cross sections. The constant cross sections were
taken from the space dependent set by choosing values far from region bound-
aries. These were felt to be most representative for the material compositions
of the regions. The cross sections are given in Table IX. The value of kees
obtained by using the constant two group set was .888 which is considerably
worse than that obtained by using the space dependent set. Figure 7 compares
the fluxes obtained by the constant two group set with those obtained from

the 18 group AIM calculation. The agreement is not so good as that obtained

with the space dependent cross section calculstion.



CHAPTER IV

DETATILS OF THE COMPUTER PROGRAM

A computer program, written in "MAD" (23), which is based on the
theory given previously has been written for the IBM 704 with 8192 word capa-
city. The details of the code will be given now.

1. Input
A list of required input is given below. The manner in which these

are to be punched on cards will be given later.

M -- number of modes desired.
N -- number of energy groups.
REG -- number of regions to the right of center-line.

Y(1), Y(2),..., Y(REG) -- These are the positions, in cm., of the region
boundaries, measured from the centerline of the reactor. Y(n),
for n < REG, is the position of the interface between regions
n-1 and n. Y(REG) corresponds to the half-thickness of the re-
actor;

K1 -- This is an estimate of keff’ It is not necessary that it be a good
guess, but it is desirable as it will sometimes reduce the compu-
tation time.

EPSK - This quantity represents the convergence criterion. EPSK is the
accuracy to which kopp 1s desired, for a given M.

XI(1), XI(2),..., XI(N) -- The fraction of neutrons, resulting from fission,
which are emitted into group i is given by XI(i).

POINTS -- The number of points in the reactor at which the fluxes, or adjoints

if desired, are to be computed and printed. These points are

-69-
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automatically spaced at equal intervals of length Ax = L/POINTS.

The quantity POINTS does not enter the computation. It merely
determines the amount of information to be printed. The fluxes

and / or adjoints at the edge of tle reactor, whose values are

zero, are not printed.

quantity is equal to 2 if a printout of the adjoint fluxes is desired;

otherwise P = 1.

KIN -- This quantity is equal to 1 if a calculation and printout of prompt

neutron lifetime and effective delayed neutron fractions are de-

sired. If these are not desired, KIN = 2.

Q(1),...,Q(REG) -- These are the coefficients of the diffusion equation.

ND -- the

BETA (1),..

sQ(1,1),..

These will consist of several cards, one for each coefficient and
each enefgy group, as will be described later. If a coefficient
is constant within a region, its value is printed on a card. How-
ever, if the coefficient is not constant, the value assigned to

is -1.0, and an analytic function describing the space dependence
of the coefficient must be inserted in the form of an external
function (or subroutine). This will be described in greater de-
talil later.

Cards for the following input quantities are to be punched only if
KIN = 1.

number of delayed neutron groups.

., BETA (ND) -- These quantities are the delayed neutron fractions,
which may be obtained in Reference (24).

., SQ(ND,N) -- These are the fission spectra for each delayed neu-

tron group.
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v(1,1),..., V(N,REG) -- The group velocities. These are allowed to vary from

region to region, but must be constant within each region.

2. Card Format

The data required are in Fixed point, Floating point, and Integer
forms. These are designated by the letters F, E, and I, respectively. E
and I data must be punched to the extreme right of the alloted columns. F
data may be punched anywhere within the alloted columns, but all decimal
points must be included. For further information concerning the various num-
ber forms, see Reference (23).

The contents of each input card are described below.

First Card:
Item Columns Form Comment
M 1-2 I 1 <M<20
N 3-4 I 1 <N< 4, but
| 1 <MV <40
REG 5-6 I 1<REG<11
P 7-8 I
KIN 9-10 I
POINTS 11-1k I 1 < POINTS < 160
K1 15-2k F
EPsK 25-3L F
BUCK 35-4L F
Next Card:
Y(L),...,Y(REG) 1-10, F A maximum of seven values may
be placed on 1 card. If REG>T,
11-20, etc continue on another card, plac-

ing Y(8) in Cols. 1-10, etc.



Ttem

Next Card:

Next Card:

gj_;i(l)""

Next Card:

D, (1),...,
%i(%EG)

Next Card:

chl(l) ’

.o .,chl(REG>
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Columns Form

1-10, F

11-20, etc.

1-12, F

13-24, etc.

1-12, F

13-2k4, etc.

1-12, 13-2k, F
etc.

1-12, 13-24, F
etc.

Comment.

These are assumed independent
of position.

If N =1, do not include these
cards. The ordering of the
cards is as follows:
1=2,3=11=3, ] =12;
i=L4, 5 =1,2,3. Cards must
be printed only for i = 2 to N.
A maximum of 6 values may be
punched on a card. If REG>6,
continue on another card with
the same format. See dis-
cussion of Q(1),...,Q(REG)

for added details.

A maximum of 6 values may
be punched on a card. If
REG>6, continue on another
card with the same format.
See discussion of @(1),...,
Q(REG) for added details.

See previous comment.

See previous comment.

The following cards contain values of Dy, o0, , vop for 1 =2 to N in the
i i

same order and format as is given for i = 1 above.
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Ttem Columns Form Comment
Next Card:
ND 1-2 I This card and all suc-

ceeding ones are included
only if KIN =1, 1 < ND < 6

Next Card:

BETA (1),..., 1-10, F

BETA (ND) 11-20, etc.

Next Card:

sQ(1,1),..., 1-10, 11-20, F
etce,

5Q(1,N)

The following cards contain values of SQ(i,1),...,5Q(i,ND) for

i=2,...,N with the same format as is given for i = 1 above.

Next Card:

v(1,1),..., 1-12, 13-2k, E A maximum of 6 values may
etc. be punched on a card. If

v(1,REG) REG > 6, continue on another

card with the same format.
The V's are constant with-
in each region.

The following cards contain values of V(i,1),111,V(i,REG) for

i =2 to N in the same order and format as is given for i = 1

above.

3. Output
The information which is printed for each problem is as follows:
(1) The input data.
(2) k_pe after each iteration.

(3) The harmonic coefficients of the group fluxes and adjoints

(if desired).
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(L) The group fluxes and adjoints (if desired) for points separated
by Ax.
(5) ox.
(6) After each iteration, the flux and adjoint checks, as dis-
cussed in Chapter I.
The Fourier coefficients, the fluxes, and adjoints are normalized
1

1
so that a) = by = 1; that is, the first Fourier coefficients of the first

flux and adjoint groups are set equal to unity.

L, Further details

In addition to those given previously, some added comments regard-
ing the code are in order.

It has been pointed out earlier that if a coefficient of Equation (1)
is not constant within a region of the reactor, a subroutine must be written
to describe its space dependence. A brief description of the subroutines
follows.

The scattering cross sections cj_)i(x) are described by a subrou-
tine named SIGRE.; Di(x), Gai(x), and v0fi(x) are described by the names D.,
SIGA., and NUSIFG., respectively. These last three are different entries
to the same subroutine,

As a simple illustration, let us assume that oag(x) in a certain

region which extends from x = 10 to x = 15 may be described by

0a2(x) = 1.15 + .05x - .0OLx®

Also assume that for another region
o (x) = .0k + .005e ™ 2% for 20< x < 26

and assume that all other coefficients are constants within regioms.
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| The values assigned to cal and Oag in the appropriate regions are
assigned the value -1.0. The following subroutine is then included with the
main program:
EXTERNAL FUNCTION (I,x)
INTEGER I
ENTRY TO D.
FUNCTION RETURN 0.0
ENTRY TO SIGA.
WHENEVER x.G.10.0 L.AND. x.L.20.0 .AND. I.E.Z2
FUNCTION RETURN 1.15 + .05%x-.0L*x*x
OTHERWISE
FUNCTION RETURN .OL + .Q05%EXP.(-3.0%x)
END OF CONDITIONAL
ENTRY TO NUSIGF.
FUNCTION RETURN 0.0
END OF FUNCTION

Obviously some knowledge of MAD is required to write the necessary
subroutines. The details of the language will not be discussed here because
they are available, in great detail, in Reference (23).

Note that the third, fourth, eleventh, and twelfth statements must
be included although D and vop are constant for the problem at hand. Entries
must be provided for all subroutines even if they are not used.

When all coefficients are constant within a region, one need not
be concerned about the mechanics of MAD. If the subroutines are used, how-

ever, the binary IBM card marked EX1 (which describes SIGRE.) and/or the
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cards marked EX2 (which describe D., SIGA., and NUSIGF.) must be removed and
replaced by the appropriate subroutine(s) for the problem at hand.

The main program consists of three sections, all of which are in-
dependent, except for some data and intermediate results which are common
to all three.

If it is desired to run more than one problem at a time, one

simply stacks succeeding deck of data behind the first deck.

5. Timing

As with most programs which have many options, it is difficult
to assign an execution time estimate for a general problem. In this pro-
gram the number of energy groups, the number of harmonics, the initial guess
for keff which affects the number of iterations required, as well as several
other factors affect the execution time. It might be useful to the reader,
however, if one example is given. The fluxes, adjoints, and keff for illus-
trative reactor 1 were obtained in 46 seconds for 2 energy groups, 10 har-

monics, and an initial guess for keff of 1.3.

6. Flow Diagram

A flow diagram of the computer program follows:



FLOW DIAGRAM OF COMPUTER CODE

YES
READ M, N, REG, Is °
L,XI(1),...,XI(N),| | FRINT Nel
POINTS, P, KIN, INPUT NO rid - o
¥(1),...,Y(REG) Ky
i =1,...,N-1 @
Q J = 1i+l,...,N
p=1l...,M
Y = J;L"' ,M @
READ Q(R) ¢ B(U) =0 ¢—] FRINT
R=l,...,REG U0,.,.,2M-1 i,3
B(U):B(U)+[SIN(I-J£%(B)—) -
ves [ g B(0) = B(O) +
__’ -
s A i (x()-xrn | em(UeEl)y) B
R
>0 U=1,...,2M-1 v
NO GET SUBROUTINE
DESCRIBING SPACE BY SIMPSON'S RULE GET
DEPENDENT COEFFI- (% B(U) = B(U) + ——®

CIENT SIGRE.(I,J,x)

JSIGRE. (I,J,x)cos(Y™)ax

el ™

R L
(DD E
IS
R =
REG
= B(uwtw-1)+B([u-v[) | ypo
=1,...,M Lam— e
=1,...,M
Lyx PRINT -
BA(v)=(v - pF @ B(U) =0 o EXECUTE
2L " g T O MANIP
Yy =1,...,M (D.,OB
Bl - CB(oMip+p-1) - B(oM«|y-
e e
~BA(v)+BA(p) [B(|v-p|)~B(p+y-1) ] — .
v (SIGA.,2)
TP T RV B
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B(Y) =0 N EXECUTE 5 B(2M(i+1)+U) = B(U)
C) ’ U=0,...,2M-1 MANIP. UsO. ... oM-1
(NUSIGF.,0) >
i1 YES
wa =Q IS
=l,...,M XI(J
=ll $ o 0 |M _-=0
NO
Sy = [Blurv=1)4B(|v-p[) IXI(J)
¢
u=l,...,M
v=1,...,M
NO
1S
J=N
PRINT |
Ax=L/POINTS
LT sii a)
PRINT R, _ypil EXECUTE
K1 LTS g o ¢ VAR — L e x
TRV 20 4
viuil]
NO ()
EXECUTE, 1s
K=K1 ~
™ um. KIN | yrs
COMPUTE COMPUTE 4* NORM= READ & PRINT ,‘_J
¢ ; < 1gij oJ :
Bierr °Y by Eq.(8% E % ;‘: % L SuiJ» 8y ND,By,84i5vi
Eq. (85)




SUBROUTINE MANIP.(F.,Z)

TES _IPRINT (R)

IS|
Q(R)
>0

NO

NO piGet subroutine

‘[describing spacd
dependent coef-

ficient F.(I,x)

By Simpson's rule get

, B(Z' M+U)= B(Z'M+U) +
NO S < Uxx <
. f{fF (I,x) cos (4=)ax
(ES REG
|| B(Z M+U) = B(Z M+U) + B(Z-M) = B(Z'M

Lﬁ(R) [s‘IN(UﬂiiW)-SIN(.@_I(‘&:Q.) [T em v@) -v-1)

Return to
Main Program
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SUBROUTINE VAR.

1]
S ]
Tig = Eiﬂv+ -Ek!’- SOLVE FOR A, BY GAUSS ELIMINATION,s

SYSTEM OF EQUATIONS TgrR = W, WHERE

yesoy

=1,...,N lst COLUMN OF “T WITHOUT TH.

o= 1,...4M ol TR IS T WITHQUT lst ROW AND lst
B B COLUMN; A = ( My a0 w 1S
1
J

= l,ooo,N

INTERVAL Ax

OBTAIN TRANSPOSE OF T;
SOLVE FOR B, BY GAUSS ELIMINATION, 190 mit
SYSTEM OF EQUATIONS TgB =V, = T
WHERE Tg IS T WITHOUT lst ROW |g—— el M
AND 1st COLUMN; B = (b3,...,bY) i ST
AND V IS 1st COLUMN OF T* ‘i’:l""’N
WITHOUT AR

ll J = l,voo ,N
CALCULATE AND
PRINT
s * Ly aJ'I“jl
= 1 " v
CALCULATE
$ AND PRINT
Jmld
T bvr},
PRINT a&l; 1 =1,...,N YES
M = l’on.,M I8
AXD GROUP FLUXES AT Pl

PRINT: bl, i=l,a..,N
'J.—lp-oo ,M ‘—

AND GROUP ADJOINTS

AT INTERVAL Ax

RETURN TO
MAIN PROGRAM




APPENDIX

COMPUTER PROGRAM

The computer program used for the calculations described
in the text is given on the following pages. The principal
symbols have been defined previously, Those which have not been

defiﬁed are temporary storage locations.
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# COMPILE MADs EXECUTEs» DUMP, PUNCH OBJECTsPRINT OBJECT CR1

JOHN
NAJ

SFA

LAN

SMITH

BAR

ARF
MAN

PROGRAM COMMON MyNsbLsPIsK19EPSKoXIsPOINTSIEsPsVVyMNsV S
19BsYsREGsKINSPIOL

DIMENSION E(1599)45(1599) sXI(4)aVV(40)eV(4)sY(10)sDX{10)
1 BA(20)sNMESH(10)+B(159)4+Q(10)

INTEGER VoMNsVVeI s JoMsNsMUSNUSPsRyUsS39POINTSIREGINMESH,KIN
Y(0)=00

READ FORMAT CARD1sMsNsREGsPsKINSPOINTSsK1sEPSK

PRINT FORMAT TITLEsNsMsREG

READ FORMAT CARD3y Y(1l)eeoY(REG)

PRINT FORMAT INTs Y{O)eaeY(REG)

PRINT FORMAT WANTs Kls EPSK

READ FORMAT CARD2s XI(1)eeeXI(N)

PRINT FORMAT SPECTs XI(1l)eeeXI{N)

WHENEVER PeEe29 PRINT FORMAT CHAL

WHENEVER KIN<Eels PRINT FORMAT BOT

PI=3,1415927

L=Y(REG)

PIOL=pI/L

MN =M¥N

THROUGH JOHNsFOR R=1»1sReGeREG
NMESH(R)={Y{(R)~-Y(R=-1))/L%200,

NMESH(R)=2% (NMESH(R)/2)

DX(R)=(Y(R)=-Y(R-1))/NMESH(R)

THROUGH NAJs FOR I=1l9ls I4GeMN

VWI(l)z =1+(1-1)#MN

THROUGH SFAs FOR I=1sls I.GeN

Vil)z(1-1)%M

WHENEVER NeEelsTRANSFER TO REC

THROUGH LANSFOR I=191914GeN-1

THROUGH LANSFOR JU=I+1s519JeGeN

THROUGH LANs FOR MU=191sMUeGeM

S3zVV(MU+VIT)I+V(J)

THROUGH LANs FOR NU=1919sNUeGeM

E(S3+NU)=0.0

THROUGH CHUCKsFOR I=231914GeN

THROUGH CHUCKsFOR J=19lsJeGel~-1

PRINT FORMAT SGROUPsJs I

THROUGH SMITHs FOR U=0s19UeGe2¥M-1

B(U)=ge

READ FORMAT CONSTs Q(1l) «eeQ(REG)

THROUGH WMANs FOR R=1919ReGeREG

WHENEVER Q(R)eEe0sOs TRANSFER TO WMAN

WHENEVER Q(R)eGe0s0Os TRANSFER TO LIN

S1=0.

52=0,

THROUGH BARs FOR X=Y(R=1)+DX(R)92+%DX{R)9XeGeY(R)=2+*DX(R)
S1=S14+SIGREe{IsJsX)

§22S524+SIGREe (I 9JeX+DX(R))
B(O)=R{0)+(SIGRES(I9JsY(R=-1)+DX(R) /1006 )+44%5142,%#S2+
1 4e#SIGREe(I9JsY(R)=DX(R))I+SIGRE4(IsJsY(R)-DX(R)/100+))*DX(R)
2 /3.

THROUGH MANs FOR U=1919UeGe2%M-1

S$1=0.

$2=0e

THROUGH ARFs FOR X=Y(R=1)+DX{(R)92+#*#DX{R)sXeGeY{R)~2¢%DX(R)
S1=S14SIGREe (I 9JsX)%#COS, (UXPIOL%X)

$2=2S24SIGRE« (I 9Je X+DX(R) ) RCOS (UXPIOLE(X+DX(R) )}
B{U)=p(U)+(SIGRE«(I9JsY{R=1)+DX(R) /1006 )} #COSe(UnPIOL*¥Y(R=1))



LIN

KAD

WMAN

CHUCK
REC
LUVE

Ylp

GAH

GEE

GLEN

ABC

LUKA

DEL
JONES

NAH
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1+6e%5142%#52+40#SIGRE« (19JsY(R)=DX(R) ) #COS. (U¥PTOL*(Y(R)-DX(R
2 )))4+SIGRE«(19JsY(R)=DX{R)/100.)%COSe (U¥PIOL*Y(R)))*DX(R)/3e
TRANSFER TO WMAN

PRINT FORMAT SCAT»R»Q(R)

B(O)=g(0)+Q(R)*¥{Y(R)-Y{R-1))

THROUGH KADs FOR U=1slsUeGe2%M-1

B(UI=g(U)+(SINe (U¥PIOL¥Y(R))~SINe (URPIOL¥*Y(R-1)))*L*¥Q(R)/(U*
1 PI1)

CONTINUE

THROUGH CHUCKy FOR MU=151s MUsG.M

S3=VV{MU+V(11}+V(J)

THROUGH CHUCKs FOR NU=1s19 NUeGeM

E(S3+NU)= B(MU+NU-1)+B(+ABS« (NU-MU))

THROUGHLUVEs FOR NU=19s13NUsGeM

BA(NU)=(NU-«5)#PIOL

THROUGH JONESs FOR I=1s191eGeN

PRINT FORMAT PHAL,!

THROUGH YIPs FOR U=0s1l9sUeGob¥M~1

BlU)=qe

EXECUTE MANIPo(DesOy9DIFF)

EXECUTE MANIP.(SIGA.929ABS)

THROUGH GAHs FOR MU=1s1y MUsGM

S3=VV(MU+VI(I))+v(I])

THROUGH GAHs FOR NU=1sls NU.GeM

E{S3+NU)= =B{2%*¥M+MU+NU~-1)~B(2%¥M+,ABS« (NU-MU})=BA(MU)I*BA{NU)*
1 (B{eABSs (NU-MU))=-B(MU+NU~-1))

THROUGH GEEs FORU=0319UeGe2%¥M~1

BlU)=(e

EXECUTE MANIP.{NUSIGFes0sFISS)

THROUGH GLENs FOR U=0s1sUeGe2%M~1

B{2%Mx(I-1)+U)=B(U)

THROUGH JONESs FOR J=1sl9JeGeN

WHENEVER XI(J)eEeOes TRANSFER TO LUKA

THROUGH ABCs FOR MU=1sly MUsGeM

S3=WMU+VIJ)I+VIT)

THROUGH ABCs FOR NU=1lsls NUeGeM

S{S3+NU) = (B(MU+NU-1)+B(+ABSe (NU-MU) I I %XI(J)

TRANSFER TO JONES

THROUGH DELs FOR MU=13s19sMUeGeM

S3=VV(MU+VIJ)I+V(T)

THROUGH DELs FOR NU=1s19sNUeGeM

S{S3+NU)= 0.0

CONTINUE:

S3=MNs#MN-1

INTERNAL FUNCTION (Fes 29 STAT)

ENTRY TO MANIP.

INTEGER Zs STAT

READ FORMAT CONSTy Q(1l) eeeQ(REG)

THROUGH RAM, FOR R=1415ReGeREG

WHENEVER Q(R)+EesOs0s TRANSFER TO RAM

WHENEYER Q(R)eGe0s0s TRANSFER TO ABE

S1=0.

52=0.

THROUGH NAH, FOR X=Y(R~1)+DX(R)s2+*DX(R)sXeGeY(R)=2+*DX(R)
S1=S14Fe(IeX)

$2=S24Fe (19 X4+DX(R))
B(Z*M)=B(2¥M)+(Fe(1sY(R-1)4DX(R)/100e)+4e%#S51+2,%32+4e*Fs(]>
1 Y(R)=DX{R))+Fe (1 sY(R}=DX(R)/1004))%#DX(R) /30



JET
AKA

ABE

GRAS

RAM

* COMPILE MADs PUNCH OBJUECT, PRINT OBJECT

#  BREAK
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THROUGH AKAs FORU=151sUsGe2%#M-1

S1=0.
5220,

‘THROUGH JET» FOR X=Y(R-1)+DX(R)s2+%#DX{R)sXeGeY(R)=24*DX(R)
S1=S14Fe (19X ) %COS. (UXPIOL%X)
$2=524F e (19 X+DX(R) ) #COSe (U*PIOL* (X+DX(R)))

B(Z*¥M4U)=B{Z*M+UI+( F
1 1)) 44e%S1+2.%S52+4 0% F

2 (RYV)y+ F

e(IsY(R=1}4DX(R) /100 }%COSe (UHPIOL®YIR
e (IsY{R)}-DX(R})*COSe(y#PIOL*(Y(R)~DX

o (IsY{R)=DX{R) /1004 )%#COSe (UXPIOL*Y(R)))*DX(R) /3,

TRANSFER TO RAM

PRINT FORMAT STATy R

Q(R)

B(Z®*M)=B(Z*M)+Q(R)*(Y(R)=Y(R-1))

THROUGH GRAS)

FOR U=1s19UeGe2%M~1

B(Z*M4+U)=B(Z*M+U)+(SIN. (U*PIOL*Y(R))-SIN-(U*PIOL*Y(R-I)’)*L*Q

1 (R)/(U*P1)
CONTINUE

FUNCTION RETURN
END OF FUNCTION

VECTOR VALUES
VECTOR VALUES
10 GROyYPI3*s

VECTOR VALUES
VECTOR VALUES
1S5=]3%g
VECTOR
VECTOR
VECTOR
VECTOR

VALUES
VALUES
VALUES
VALUES
VECTOR VALUES
VECTOR VALUES
1CY=F1ge 728
VECTOR VALUES
VECTOR VALUES
VECTOR VALUES
VECTOR VALUES
16%$

VECTOR VALUES
11SF10,6%*$
VECTOR VALUES

CARD1=$51291492F12.,6%*S$
SGROUP=$26HOSCA CROSS-SECTIONSs GROUPI3,11H INT

SCAT=$THOREGIONI3+s12H SIGMA SCAT=F10Qe6%$S
TITLE=$8H1GROUPS=13,51096HMODES=13,S10+8HREGION

CARD3=$(T7F10+2)%$%

CONST=$(6F12+6) %%

CARD2=$4F10.4%*%

INT=5.16HOBOUNDARY POINTS/(9F13.2)#$

SPECT= $9HOSPECTRUM/4F 204 7*$

WANT=$11HOINITIAL K=F10e7+510917HDESIRED ACCURA

CHAL=$15HO0ADJOINT WANTED*$

BOT= $16HOKINETICS WANTED®$

PHAL=$6HOGROUP13%$

DIFF=$26HODIFFUSION COEF FOR REGIONI3s3H ISF10.
ABS=$33HOREMOVAL CROSS~-SECTION FOR REGIONI3,3H

F1SS=$19HONUSIGMAF IN REGIONI3s3H 1SF1l0.6%$

EXECUTE SEQPGM.

END OF PROGRAM
* COMPILE MADs PyUNCH OBJECTs PRINT OBUECT

EX1

EXTERNAL FUNCTION (IsJsX)
ENTRY TO SIGRE.

INTEGER 144

FUNCTION RETURN 0.0
END OF FUNCTION

EX2

EXTERNAL FUNCTION (I+X)

INTEGER 1
‘ENTRY TO D.

FUNCTION RETURN 0.0

ENTRY TO SIGA.

FUNCTION RETURN 0.0
ENTRY TO NUSIGF,
FUNCTION RETURN 0.0
END OF FUNRCTION
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® COMPILE MAD, EXECUTEs DUMP, PUNCH OBJECT»PRINT OBJECT CR2
PROGRAM COMMON MyNsbL sPIsK19EPSKsX1sPOINTSsEsPsVVIMNsV 5
1+sB9YH»REGyKINFPIOL,A,C

CIMENSION E(1599)55(1599) oXI(4)sVV(40) sV (4)sT(1599)9A(40),
1 Cl&p)sBA(20)9CC{40)sDD(40), B(159)sY(10)sW(122)+BB(40)
EQUIVALENCE (WsBB)s(W(41)sCC)s(W(82)+DD)

INTEGER VoMNaVV T sJsMaNsMUSNUIP sR4U9S3sPOINTSHKIN

LA=MN-1
THROUGH JIZs FOR NU=1sls NU:GeM
JI17 BA(NU)=(NU-e5)*PI0OL

DX=L/POINTS

PRINT FORMAT SPACEs DX

K=0,0

THROUGH PAMs FOR R=1919ReGe20 ¢ORe ¢ABSe(K=K1l)4LoEPSK
K=K1

EXECUTE VAR,

S$1=0.0

$2=0.9

THROUGH DUBs FOR I=1sls [+GeMN
THROUGH DUBs FOR J=1lsls JeGeMN
T=C(l-1)®A(J=1)

MU=VYV(I)+J

S1=S14TH*E (MU)

bus $2=S2+4T%S(MU)
K1=«82/S51

PAM PRINT FORMAT TEMP, RsK1
K=K1

EXECUTE VAR.
WHENEVER KINGE.1
EXECUTE SEQPGM.
OTHERWISE
EXECUTE SELPGMe(1)
END OF CONDITIONAL
INTERNAL FUNCTION
ENTRY TO VAR.
THROUGH SOFTs FOR- MU=2s1s MUeGeMN
I=vviMU)+1
53=VV(MU-1)
TES3+MN)= —E(1)=S(T)/K ,
THROUGH SOFTs FOR NU=1sls NUSECMN
J=I+Ny
SOFT T{S3+NU)=E(J)I+S(J) /K
S1=SLINEQe(ToLA91409AsBB9CCHyDD)
A(O)=140
THROUGH CLARy FOR I=1s1s IleE«MN
CLAR A(1)= T(VV(I)+MN)
THROUGH BILLy FOR I=19191eGeMN
THROUGH BILLs FOR J=1lslsJeGeMN
BILL TIYVL )+ =EtYVII)I+J)+SIVVIT)+D) /K
THROUGH HARDs FOR MU=2919 MUeGeMN
I=VViMU}+1
$3=vv(MuU-1)
T(S3+MN)= =T (1)
THROUGH HARDy FOR NU=1lsls NUSEMN
J=1+Ny
HARD T(S3+NU)I=T(J)
S1=SLINEQe(ToLA,1409CyBBsCCHDD)
Ct0)=1.0



GLAT

MAF
ONnLY

FAM

MYF

SLIM

MYA

LASH

BUT

GEM
ABZ
BAR
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THROUGH GLATs FOR I=1s19]4EeMN

CiI)=T(VV(I)+MN)

WHENEVER PeEels TRANSFER TO ONLY

S1=0.9

THROUGH MAFs FOR 12041y [eEeMN

JeVV(1+1)+1

S13S14+C(I)®{E(J)I+S(J)/K)

PRINT FORMAT CHECK2s S1

S1=0.9

THROUGH FAMy FOR I=0s1s]eEeMN
S1=S14+A(T1)*#(E(I)+S(1)/K)

PRINT FORMAT CHEC, S1

WHENEVER PeEels TRANSFER TO SLIM

THROUGH MYFy FOR I=z09s1ly IeEeMN

Ti)=¢(1)

EXECUTE FINe.(AFOURy ADJ)

THROUGH MYAs FOR 12041y I4EeMN

T(I)=A(])

EXECUTE FINe(FOURIEs FLUX)

FUNCTION RETURN

END OF FUNCTION

INTERNAL FUNCTION (STTsSTV)

ENTRY TO FIN.

THROUGH LASHs FOR I=1s1y 1.GeN

PRINT FORMAT STTy Iy T(V(I))eeaT{V(I}+M=1)
iHROUGH BAR»s FOR I=19s1l91eGeN

W(0)=pe

THROUGH BUTs FOR MU=Z191sMUeGeM
W(O)=W(O0)Y+T(VI(I)+MU-1)

THROUGH ABZs FOR J=1319JeE.POINTS

$1=0.

THROUGH GEMy FOR MU=1913sMUeGeM
S1=S14T(V(I)+MU-1)#COS+(BA(MU) ®JRDX)

W(J)=sl

PRINT FORMAT STVsls W(O)eeeW{(POINTS~-1)

FUNCTION RETURN

END OF FUNCTION

VECTOR VALUES TEMP=$10HOITERATIONI3s4Hs K=E15.7%$
VECTOR VALUES CHEC=$17HOCHECK PARAMETER=E15.7%*s
VECTOR VALUES FOURIE=$28HOFLUX COEFFICIENTS FOR GROUPI3/
1 (TE17.7) %8

VECTOR VALUES SPACE=$16HOSPACE INTERVAL=E15.7%*s
VECTOR VALUES FLUX= $6HOGROUPI3s6HFLUXES/(TEL17,7)%$
VECTOR VALUES AFOUR=$31HOADJOINT COEFFICIENTS FOR GROUPI3/
1 (TE17.7)%%

VECTOR VALUES ADJ=$6HOGROUPI3y8HADJOINTS/(TELT,T7)%*$
VECTOR VALUES CHECK2=$11HOADJ CHECK=E15.7#$

END OF PROGRAM

* COMPILE MADs PYNCH OBJECT, PRINT OBJECT EX3

EXTERNAL FUNCTION (AsNNyMM, IsIXeJXsPVT)
INTEGFR IsJsNsJXsIXsLsTsR KN

BOOLEAN PVT

ERASABLE JoXMXsLsTsDIVSsRsTM9yKNsN

ENTRY TO SLINEQ.

KN = NN + ¢ABSeMM

PVT = 1B

N = NN

THROUGH SETs FOR Izlele]l oGe N

MVERTL110
MVERT115

MVERT140
MVERT145
MVERT185
MVERT225
MVERT245



SET

MAXELM
TMAXEL

SWAP
DETRM

Dlv

SUB
ELMCOL

* TBREAK”

* COMPILE AADy EXECUTEs DUMP, PUNCH OBJECTsPRINT OBJECT
: PROGRAM COMMON MyNsL sPIsK1sEPSKeXIsPOINTSsEsPovV I MNIV S
19BsYIsREGKINJPIOLyA»C
“OIMENSION E(1599),5101599) 9 XI(4)sVV(40) sV{4)sY{10)981159)5
1 S2(6)+sBETA(6)9SQ(24)9Q(10)9sA(40)4C(40)
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I 6 KN =1

PVT(1y=08

THROUGH ELMCOLs FOR TE17 1» LeGoN
XMX=0 ,0

‘THROUGH MAXELs FOR I=1s1s1 oGe N
WHENEVER PVT{1), TRANSFER TO MAXEL

"THROUGH MAXELMs FOR J=1lslsJ oGe N

WHENEVER PVT(J)s TRANSFER TO MAXELM

TEIMI 4T

WHENEVER oABSeA(T) oGe o¢ABSeXMX
XMX = A[T)
IX 2 1
JX = J
END OF CONDITIONAL
CONTINUE
WHENEVER IX eEe JUX9 TRANSFER TO DETRM
THROUGH SWAPy FOR J=1slsJ «Ge KN
T=I(IxX)+J
R=1(JX)+J
TM=A(T)
Al(T)=A(R)
A(R)=TM
PVT(JUX)=18B
IX(L)=IX
JX(L)=JX
ALT{JIX)+JUX) =160
THROUGH DIV FOR U=1s1sJ oGe KN
T=I(JX)+J ’
A(T)=A(T) ZXMX
THROUGH ELMCOLs FOR I=19191 «Ge N
WHENEVER I oEe¢ JX» TRANSFER TO ELMCOL
T=1(1y+UX
XMX=A(T)
A(T)=pe0
THROUGH SUBs FOR J=1ls1lsJ «Ge KN
T=I(1y+J
A{T)I=AtTI-ACT (X)) +J) RXMX
CONTINUE
“FUNCTIOR RETURN 1,0
END OF FUNCTION

INTEGER Vol s JsMyNyMUSNUIR»UsS3 sREGIND 955956
READ FORMAT NDELs ND

PRINT FORMAT PDEL, ND

READ FORMAT BETs BETA(1l)eesBETA(ND)

PRIRT FORMAT PBETy BETA(1)eesBETA(ND)
THROUGH WAWs FOR U=z 1519UeGeND

READ FORMAT DELy SQ((U~1)%¥N+1)eeeSQIURN)
PRINT FORMAT DELPyUsSQEIU=1)%N+1)0o0eeSQIU¥N)
"§2(01=0,0

§12049

"NORME 460

THROUGH SUMs FOR I=191s1+.GeN

MYERT250 -
MVERT255
TMVERT295
MVERT300
MVERT330
MVERT335
“MVERT 34D
MVERT345

MVERT355
MVERT360
MVERT365
"MVERT3T0™
MVERT375

MVERT&405
MYERT410"
MVERT415
MVERT420
MVERT425
“MYERTH30 -
MVERT435
“MVERT460"
MVERT465
" MYERT470-
MVERT535
MYERT540-
MVERT545
MVERTS550
MVERT570
‘MYERTS575~
MVERT580
MYERT585
MVERT590
MVERT595-
MVERT600
MYERT605-
MVERT610
MYERT690
MVERT695
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PRINT FORMAT GRP, 1

THROUGH JICs FOR U20sls UeGe2%M~1
JIT ETUT=geU

READ FORMAT CONSTs Q(1)essQ(REG)

THROUGH PHIL» FOR R= 1s1s ReGeREG

PRINT FORMAT PQ, Rs Q(R)

E(O1EETOT#(Y(R)=Y(R=1)1/Q(R)

THROUGH PHILs FOR U=lsls UeGe2¥M~1
PHIT ETUTEETUTFISTN. [UFPTOLEY(R) ) =SINs [URPTOTHYR=I1 1T *C/ tQTRIFU

1 PI)

THROUGH SUMs FOR MU=0»s1y MUeEeM

ADJ=C (V(1)+MU)

THROUGH "SUMs "FOR NU=0s1s NUGEeM

S5=4ABS e (NU=-MU)

‘SEENUFMUFT

S1=S14ADJ*A(V(I)+NU) #(E(S5)+E(S6))

THROUGH SOMs FOR J=lsls JeGeN

S3z2#M¥(J=1)

T=ADJ*ATV(JI#NU) #(B(S3+S5 ) +B(S3+456))

NORM=NORM+T*XI (1)

THROUGH SUMTFOR U=1,1sUsGaND

SUM S2(U)xS2(U)+T*SQ((U-1)¥N+1)
THROUGH RUF s FOR U=1sls UeGeND
RLF S$2(U)=S2{U)*BETA(U) /NORM

PRINT-FORMAT BEFFs S2€(1)seeS2(NDY
PRINT FORMAT RECLs S1/NORM
PRINT-FORMAT DENy) NORM
VECTOR VALUES NDEL= $I2%$
VECTOR VALUES PDEL=$1H0s12923H DELAYED NEUTRON-GROUPS*S-
VECTOR VALUES BET=$36F10,6%$
VECTOR VALUES PBET=$ 26 HODELAYED REUTRON-FRACTIONS/6F15+6#%
VECTOR VALUES DEL=$4F10,4%$
VECTORVALUES DELP=$ 1 2HODELAY GROUP I3 voH—SPECTRUMZ 4 F 15+ 44§
VECTOR VALUES GRP= $22HOVELOCITIES FOR GROUP I2x$
“VECTOR VALUES CONST= $(6E1235)1*$
VECTOR VALUES PQ= $19HOVELOCITY IN REGIONI342H =E15,5#%$
-VECTOR VALUES BEFF= SIOHOBETA €FF/76E15v6*S
VECTOR VALUES DEN=$12HONORMALIZER=E15.5#%%
VECTOR VALUES RECL=$25HOPROMPT REUTRON LIFETIMEXEYST6*S
EXECUTE SEQPGM.
“END OF PROGRAM
& BREAK
‘* DATA
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