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Abstract 
 

Traffic congestion has increased significantly in urban areas over the past several 

decades and is associated with significant environmental and health impacts.   This 

research characterizes air pollutant emissions, exposures and health risks due to traffic, 

particularly when congestion is present.  It examines key factors affected by congestion, 

including time allocation patterns, vehicle emissions, and near-road exposures. 

Congestion alters time allocation patterns of commuters since more time is spent 

in traffic, and thus less time must be spent elsewhere.  Time allocation shifts between 

time spent in a vehicle and other microenvironments were derived using the National 

Human Activity Pattern Survey and robust regression techniques. Congestion primarily 

reduced the time spent at home, especially for children and retirees. 

Vehicle emissions occurring during traffic congestion, especially in work zones, 

have received little attention.  A field study was conducted to collect data on speed-

acceleration profiles in work zone, rush hour and free-flow conditions, and a power 

demand-based emission model was used to simulate emissions. Acceleration and 

deceleration significantly increased emission rates.  Emission rates differed from those 

based on average speed, and depended on vehicle type and congestion condition. 

 xiii



 

Statistical and process-based estimates of traffic impacts on near-road air quality 

were derived using generalized additive models, the Motor Vehicle Emissions Factor 

Model 6.2 (MOBILE6.2), and the California Line Source Dispersion Model.  The 

simulation model performed reasonably well for carbon monoxide (CO), but significantly 

underestimated PM2.5 (particulate matter less than 2.5 μm in diameter) concentrations, a 

likely result of underestimating PM2.5 emission factors. 

An approach was developed to identify pollutant exposures and health risks 

associated with traffic congestion.  Scenarios for arterial roads and freeways suggest that 

air pollution and health impacts attributable to congestion are significant, although 

limitations in the information and models available lead to large uncertainties, 

particularly with respect to estimating the emissions that are attributable to congestion 

and the dose-response relationships.     

This study highlights the importance of accounting for changes in time allocations, 

vehicle emissions, and exposures due to traffic congestion.  The research results are 

applicable to air quality, exposure and health risk assessments, as well as transportation 

planning. 
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Chapter 1 
Introduction1

1.1 Background 
Urban air quality is a major environmental concern around the world, and its 

significance is increasing as the world becomes more urbanized.  The world’s urban 

population was expected to reach 3.3 billion in 2008 and 5 billion in 2030 (UNFPA, 

2007).  Urban air pollution has been associated with increased morbidity and mortality 

(WHO, 2005) and pollutant levels far exceed desired levels or standards in many cities.   

Mobile sources are a major contributor to urban air pollution, and include both 

on- and off-road sources (TRB, 2002; CARB, 2007). On-road sources include passenger 

cars, motorcycles, trucks, and buses, while off-road sources include heavy-duty 

construction equipment, recreational vehicles, marine vessels, lawn and garden 

equipment, and small utility engines (CARB, 2007).  These sources emit PM2.5 

(particulate matter less than 2.5 micrometers in aerodynamic diameter), PM10 (particulate 

matter less than 10 micrometers in aerodynamic diameter), nitrogen oxides (NOx), 

hydrocarbons (HC) and carbon monoxide (CO), among other pollutants.  In the U.S., 

mobile source emission and on-road vehicle emissions accounted for 53% and 30% of the 

national total for criteria pollutants, respectively (U.S. EPA 2003), and on-road emissions 

contribute a larger share in urban areas where most people live.  A recent review (WHO, 

2005) of PM apportionment studies in Europe concluded that road transport accounts for 

one-quarter to one-half of PM2.5 in a typical urban area, and that road transport is the most 

important source of NOx, CO, benzene and black carbon.  Mobile sources also play an 

important role in tropospheric ozone formation due to emissions of volatile organic 

compounds (VOCs) and NOx, which are precursors of ozone (TRB, 2002).  

                                                 
1  The format of my dissertation follows the guidelines established by the Rackham graduate school at the 
University of Michigan, Ann Arbor.  
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Traffic congestion has been increasing dramatically in the U.S. and elsewhere 

over the past 20 years (World Bank, 2006; Schrank and Lomax, 2009), and poses 

significant air quality challenges.  Traffic congestion is often defined as an excess of 

vehicles or slower speeds when traffic volume exceeds road capacity (CAMSYS and TTI, 

2005).  Vehicle and fuel technology improvements, including improved emission controls 

such as 3-way catalytic converters, have significantly reduced vehicle emissions, but 

these can be counteracted by rapid growth in vehicle miles traveled (VMT) and 

congestion (Nam et al., 2002; TRB, 2002; Panis et al., 2006; Smit, 2006).  In the US, 

total urban VMT increased from 0.86 x 1012 miles in 1980 to 1.96 x 1012 miles in 2005 

(BTS, 2006).  During the same period, the urban supply or road capacity, as measured by 

lane miles, grew from 1.40 x 106 to 2.26 x 106 miles (BTS, 2006).  Thus, urban VMT 

grew about twice as fast as the urban capacity.  Such growth is reflected by marked 

increases in traffic congestion, which has become nearly ubiquitous in many parts of the 

U.S. and elsewhere (U.S. FHWA, 2005; The World Bank, 2006). 

Congestion can be caused by physical bottlenecks (40% of cases in the U.S.), 

traffic incidents (25%), work zones (10%), weather (15%), traffic control devices (5%), 

special events (5%), and fluctuations in normal traffic (CAMSYS and TTI, 2005).  In 

addition to degrading urban air quality, consequences of congestion include travel delays, 

wasted fuel, decreased economic competitiveness, and decreased quality of life (Downs, 

2004).  Congestion in 438 U.S. urban areas in 2007 was estimated to cause approximately 

4.2 billion hours of travel delay and waste 2.8 billion gallons of fuel, at a total cost of 

$87.2 billion (Schrank and Lomax, 2009).  Congestion can be divided into recurring 

congestion and incident congestion, the latter caused by an accident or disabled vehicle 

(CAMSYS and TTI, 2005).   

Concentrations of traffic-related air pollutants show strong spatial patterns 

(Funasaka et al., 2000; Kingham et al., 2000; Nakai et al., 1995; Roorda-Knape et al., 

1998; Zhu et al., 2002). A review by WHO (2005) concluded that concentrations of NOx, 

black smoke and PM0.1 within 200 to 500 m of roadways far exceeded urban background; 

PM2.5 and PM10 had somewhat higher concentrations than urban background; NO2 had no 

evident spatial distribution; and higher concentrations of many pollutants were found in 

street canyons.  A few studies have explored temporal patterns of traffic-related air 
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pollution.  Temporal patterns can be dramatic since traffic quantities (and congestion), as 

well as meteorological factors affecting dispersion of pollutants, are substantially related 

to the time of the day, day of the week, and/or season (Abraham et al., 2002; Beauchamp 

et al., 2004; Martuzevicius et al., 2004; Roosli et al., 2001).  

1.1.1 Time activity patterns and traffic congestion 

Understanding time activity patterns (TAPs) is an essential component of 

exposure estimation, along with the air pollutant concentrations in each 

microenvironment. TAPs specify where and how people spend their time in various 

locations called microenvironments, which represent physical spaces that are assumed to 

have a constant pollutant concentration (EPA, 1992).  Shifts in TAPs can either increase 

an individual’s total or cumulative exposure if the concentration and/or exposure time in 

the congestion microenvironment (e.g., passenger cabin of a vehicle, or roadside 

playground) increase, or possibly decrease exposure if congestion-related exposure 

concentrations are lower than levels in the other (displaced) environments. Congestion 

alters the TAPs of commuters since more time is spent in traffic, and thus less time must 

be spent in other microenvironments.   

A few studies have applied TAPs to air pollutant exposure and health risks since 

the 1980s, most of which have emphasized inhalation exposure (McCurdy et al., 2000; 

Klepeis et al., 2001).  These studies have mainly used survey methods to understand how 

much time respondents spent at various locations (McCurdy et al., 2000; Klepeis et al., 

2001).  Studies on exposures to traffic air pollutants show that personal exposure to PM10 

and CO can be significantly increased by traffic-related microenvironments (e.g., in a car 

and outdoor roadside microenvironment), even if little time was spent in them (Chang et 

al., 2000; Johnson et al., 2000; Marquez et al., 2001; Marshall et al., 2003, 2005; Rea et 

al., 2001).  

Unfortunately, all of the previous work has considered TAPs to be static, i.e., 

fixed in time, and no study has addressed the question of how time allocations change 

when time spent in a specific microenvironment increases or decreases.  Thus, the 

previous studies cannot be used to evaluate air pollution exposures resulting from 

increases in traffic congestion.  Moreover, the earlier studies have not separated 

transport/commuting microenvironments into congestion and non-congestion periods, a 
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potentially important omission since vehicle emissions and concentrations in these modes 

can differ considerably (Frey et al., 2001; TRB, 2002).  

1.1.2 Vehicle emissions and traffic congestion 

Vehicle emissions are generated through combustion, fuel evaporation, brake and 

tire wear, and re-entrainment of dust. However, most attention focuses on engine tailpipe 

emissions.  Gasoline and diesel engines vehicles emit pollutants that include black smoke, 

carbon monoxide (CO), oxides of nitrogen (NOx), volatile organic compounds (VOCs), 

particulates (PM2.5 and PM10), and sulfur dioxide (SO2).  Black smoke is mainly 

composed of carbon particles and is often measured to represent the blackness of 

particles (WHO, 2005).  Ground-level ozone (O3), a secondary pollutant, is formed in the 

lower atmosphere (troposphere) from precursors NOx and VOCs and photochemical 

reactions by the action of sunlight and warm temperatures.   

Vehicle exhaust emissions from fuel combustion include cold start and hot start 

emissions and running emissions (U.S. EPA, 1994). A cold start occurs when a vehicle is 

started after being turned off for more than one hour;  a hot start occurs when a vehicle 

engine starts after less than one hour from last operation (U.S. EPA, 1994).  Running 

emissions, the focus of this dissertation, occur during driving and idling (U.S. EPA, 

1994).   

Many factors affect vehicle emissions (TRB, 1995): 

 Travel-related factors: speed, acceleration, deceleration, engine demand, the 

number of trips, distance traveled, etc; 

 Driver behaviors affecting the smoothness and consistency of vehicle speed, e.g., 

aggressive behavoir (hard stops and quick acceleration) results in high emissions;  

 Highway-related factors: signal control, road type, road grade, road conditions, 

geometry design, etc;  

 Vehicle-related and other factors: type and condition of engine, control 

technology, fuel, ambient temperature, vehicle-to-vehicle and vehicle-to-control 

interactions. 

Among these factors, acceleration, deceleration and engine demand are strongly related 

to congestion. 
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The relationship between congestion and vehicle emissions is complex (TRB, 

2002).  Emission rates are associated with the distributions of speed and acceleration, 

which depend on road type, traffic flow and other factors (TRB, 2002).  Congestion alters 

driving patterns, specifically causing frequent acceleration and deceleration in stop-and-

go traffic, which increases emissions (Cappiello, 2002; Smit, 2006; TRB, 2002).  

Acceleration increases the load placed on engines, and thus engines are operated in a 

fuel-rich and high emission mode that can overload catalytic converters (TRB, 1995).  

CO and VOC emissions are most affected (TRB, 1995).  Effects on NOx emissions are 

limited because fuel-lean modes cause higher NOx emissions (TRB, 1995).  Deceleration 

contributes particularly to PM and VOC emissions because unburned fuel can be emitted 

under fuel enleanment conditions (Cappiello, 2002).  However, congestion does not 

always increase emissions since vehicle emissions may be reduced at low speeds (TRB, 

2002).   

Information regarding emissions that pertain to congestion is very limited.  A few 

experimental studies have explored the relationship between congestion and emissions.  

Anderson et al. (1996) found that congestion increased CO, HC and NOx emissions by 

71%, 53% and 4% respectively, compared to free flow conditions.  Sjodin et al. (1998) 

showed a 10-fold increase in CO and HC emissions with congestion (average speed, 20 

km/h) compared to uncongested conditions (average speed, 60-70 km/h).  De Vlieger et 

al. (2000) indicated that CO and HC emissions in rush hour increased by 60% and 10%, 

respectively, compared to smooth conditions, but NOx emissions were unchanged.  Frey 

et al. (2001) used on-board measurements for CO, NO and HC and found that emissions 

for all three pollutants increased by 50% in congestion.  

1.1.3 Emission modeling and traffic congestion 

Mobile emission models can be classified as: (1) macroscopic emission models 

based on average speed, such as the Motor Vehicle Emissions Factor Model version 6.2 

(MOBILE6.2) developed by the U.S. Environmental Protection Agency (EPA) and the 

Emission Factor Model (EMFAC) developed by the California Air Resources Board 

(CARB).; and (2) microscopic emission models based on second-by-second vehicle 

speed profiles and operation conditions, e.g., the Comprehensive Modal Emissions Model 

(CMEM) (Ahn, 2002).   
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Macroscopic models utilize emission factors that depend on average speed, 

vehicle type and age, ambient temperature, fuel, and vehicle operating mode (start, run, 

idle).  Smit (2006) has recently reviewed many of the macroscopic emission models.  For 

example, MOBILE6.2 uses a facility-based methodology (freeway, arterial, ramp and 

local) to estimate emissions of HC, CO, NOx, PM and air toxics (Pierce et al., 2008) 

based on chassis dynamometer measurements and standard driving cycles (e.g., Federal 

Test Procedure, FTP).  These have been criticized as insufficiently representative of 

actual driving patterns (Joumard et al., 2000).  Macroscopic models cannot estimate 

instantaneous emissions since speed fluctuations are not simulated, thus they do not 

accurately estimate congestion emissions.  Moreover, these models substantially 

underestimate real emissions because they do not account for acceleration, deceleration 

and aggressive driving (Joumard et al., 2000). 

Microscopic models can be classified as response surfaces or emission maps (e.g., 

MODEM, an emission model developed by Jost et al., 1992); regression-based models 

(e.g., the Georgia Institute of Technology Model, the Virginia Polytechnic Institute 

Model); and load-based models (e.g., CMEM, Cappiello, 2002; and the new EPA Motor 

Vehicle Emission Simulator, MOVES, EPA, 2009).  Emission maps utilize a two-

dimensional matrix representing intervals of vehicle speed and acceleration (Cappiello, 

2002).  Cell values in the matrix are the mean of emission measurements corresponding 

to the specific speed-acceleration condition (Cappiello, 2002).  Emission maps are 

sensitive to the driving cycles used to calibrate them, and inflexible with respect to their 

ability to account for road grade, accessory use and other factors (Cappiello, 2002). 

Regression-based models usually use linear models associating emissions to operational 

conditions, such as instantaneous vehicle speed and acceleration (Cappiello, 2002).  

Although they can handle sparseness problems by building an underlying model, they 

tend to overfit the data, lack clear mechanistic interpretations, and are inappropriate for 

the cases beyond the calibration data (Cappiello, 2002).  Load-based models account for 

physical mechanisms producing emissions, and simulate steps of the physical and 

chemical process.  These models are calibrated using laboratory measurements and 

vehicle specifications data (Cappiello, 2002).  
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Microscopic models estimate emissions under user-specified congested conditions.  

Smit et al. (2008) recently concluded that macroscopic models do not account for 

congestion explicitly because these models do not provide input parameters related to 

congestion.   In contrast, microscopic models can account for congestion by specifying 

dynamic speed and acceleration/deceleration profiles as model inputs.  Although 

microscopic models provide useful tools, they have not been widely applied for 

congestion scenarios, and no applications for work zones yet exist.  Bushman et al. (2008) 

estimated CO, NOx and VOC emission rates for cars and trucks due to travel delay 

caused by a work zone using idling emission factors provided by EPA.  These emission 

rates, however, were neither measured nor based on real speed profiles, and idling 

emission rates incompletely represented work zone conditions which likely included 

acceleration, deceleration, idling, and some medium speeds.  Moreover, no study has yet 

compared emissions occurring in work zones, rush hour congestion and free-flow 

conditions.  

1.1.4 Roadway dispersion models 

Many dispersion models have been developed to predict near-road concentrations 

of CO, NO2, PM and other pollutants. In many applications, these dispersion models use 

emission factors derived from the emission models discussed above.  For example, line 

source models with Gaussian-plume diffusion equations are widely used to predict 

pollutant concentrations (Bluett et al., 2004), and models such as the California Line 

Source Dispersion Model version 4 (CALINE4), have become useful tools for air quality 

regulatory applications.  CALINE4, developed by the California Department of 

Transportation, simulates dispersion with algorithms that represent vehicle-induced heat 

flux and mechanical turbulence (Benson, 1989).  CALINE4 can predict CO, PM, NOx 

and other pollutant concentrations near roadways, intersections, parking areas, bridges 

and underpasses. Each CALINE4 model execution simulates from 1 to 8 hrs, and predicts 

mean concentrations at selected “receptor” locations.  The emission, meteorological and 

traffic data are critical inputs to this model.  Ausroads, another a line source Gaussian-

plume model developed by the Australian EPA, has greater flexibility, although it uses 

the CALINE4 methodology (Ministry for the Environment New Zealand, 2004).  The 

Hybrid Roadway Model (HYROAD), is another Gaussian plume model developed by 
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Systems Applications International, Inc., that uses traffic volume to calculate vehicle 

induced airflows and turbulence (Carr et al., 2002).   

Dispersion models have several disadvantages.  First, emission factors are 

required, and are usually taken from the EPA MOBILE model or the California Air 

Resources Board's EMFAC model (Pierce et al., 2008).  Second, these models only 

simulate emissions from the roadway sources specified, to which “background” 

concentrations must be added.  These can be difficult to estimate, and typically upwind 

measurements are needed, especially for PM since other regional and urban sources make 

large contributions.  Third, all models have a limited range of applicability, e.g., 

CALINE4 does not perform well for street canyons and low wind speed conditions 

(Benson, 1992).  

1.1.5 Statistical models for near-road air quality 

An alternative approach to the emission/dispersion models discussed above uses 

statistical models to predict the effect of traffic on air quality.  These models can be 

classified as (1) spatial regression models and (2) non-spatial regression models.  Spatial 

regression models predict traffic’s contribution to pollutant concentrations using 

environmental variables, generally characterized using a geographic information system 

(GIS), e.g., land use, traffic intensity, and distance-to-highway (Atten et al., 2005; Jerrett 

et al., 2005; WHO, 2005).  They have been widely used in exposure assessment to assess 

long term impacts due to traffic (Atten et al., 2005; Jerrett et al., 2005; WHO, 2005).   

The non-spatial regression models include linear regression models, mixed 

models, generalized additive model (GAM), and nonparametric regression models (Abu-

Allaban et al., 2003; Aldrin et al., 2005; Levy at al., 2003).  Levy at al. (2003) used linear 

mixed models to link concentrations of PM2.5, polycyclic aromatic hydrocarbons (PAHs) 

and ultrafine particles with traffic counts, GIS-based traffic density scores, wind direction, 

the percentage of traffic that was diesel-fueled, distance from the road and temporal 

autocorrelation.  Abu-Allaban et al. (2003) modeled PM using vehicle class-specific 

counts (e.g., cars, light-duty trucks and high-duty trucks).  Aldrin et al. (2005) adopted a 

GAM to relate the concentrations of PM10, PM2:5, the difference PM10–PM2.5, NO2 and 

NOx to traffic counts, temperature, wind speed, wind direction, precipitation, relative 

humidity and a snow cover indicator.  Most of these studies used concepts from statistical 
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air quality forecasting, e.g., Aldrin et al., 2005; Gardner et al., 1999; Hastie et al., 1990; 

Kukkonen et al., 2003; Schlink et al., 2003; Thompson et al., 2001.  Hastie et al. (1990) 

compared several approaches in predicting ozone concentrations in Los Angeles and 

concluded that non-linear methods were superior to linear models, and that additive 

models with backward selection had the best performance.  Neural network models 

improved upon linear regressions in predicting PM10, NO2, NOx and ozone (Gardner et al., 

1999; Kukkonen et al., 2003).  Schlink et al. (2003) suggested that neural networks and 

GAMs performed the best because they accounted for non-linear relationships and site 

characteristics.   

Compared to neural networks, GAMs provide more interpretable results since 

each predictor variable enters the model separately in an additive structure. The core idea 

of GAM is to characterize non-linear relationships by smoothing confounders using 

spline smoothing or weighted averaging (Hastie et al., 1990).  In adjusting meteorological 

variables, GAM has been the dominant statistical approach used in air quality 

epidemiological studies, which investigate associations between air pollutant 

concentrations and mortality or morbidity outcomes, after controlling for meteorological 

parameters (Bell et al., 2004; Dominici et al., 2000, 2002).   

The main advantage of statistical approaches is that they can capture site-specific 

characteristics which are difficult to accomplish in air dispersion models.   On the other 

hand, limitations of statistically-based approaches include a lack of physical 

interpretation, a likely over-fitting of data, the need for extensive data, and a lack of 

generalizability.  In addition, statistical and mechanistic approaches for predicting traffic-

related air pollutants have not yet been compared. 

1.1.6 Traffic air pollution, congestion and health effects 

Traffic-related air pollutants are associated with many adverse health effects, 

including mortality, non-allergic respiratory morbidity, allergic illness and symptoms, 

cardiovascular morbidity, cancer, preterm birth, and decreased male fertility (WHO, 2005; 

HEI, 2010).  A growing number of epidemiological studies provide strong evidence 

between mortality and either exposure to black smoke or PM2.5 (Schwartz et al., 2002; 

WHO, 2005; HEI, 2010).  The epidemiological evidence is less consistent for NO2 

(Samet et al., 2000).  Most of the epidemiological and experimental studies that have 
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focused on traffic-related air pollutants and respiratory outcomes suggest that black 

smoke, PM2.5 and NO2 increase the risk of respiratory symptoms (WHO, 2005; HEI, 

2010).   

A few studies have examined congestion-related impacts on exposure and health 

risks.  Tonne et al. (2008) predicted that congestion charging zone (an area that drivers 

must pay to enter) in London, UK would extend 183 years-of-life per 100,000 population 

in the congestion charging zone, and would provide a total of 1,888 additional years of 

life in the greater London area.  Eliasson et al. (2009) suggest that the congestion pricing 

zone in Stockholm, Sweden would avoid 25-30 deaths annually due to traffic air 

pollution, in a region with approximately 1.4 million inhabitants.  These two studies were 

conducted in Europe and focused on congestion charging zones’ impacts.  No study is 

known that has investigated the impact of rush hour congestion on health in the U.S. 

population. 

1.2 Research objectives 
The overall objective of this research is to understand emissions, exposures and 

health risks that arise from traffic-related air pollutants, and particularly when traffic 

congestion is present.  Figure 1-1 describes the research framework.  The research has 

four related specific aims.  The first is to examine changes in the time allocations 

occurring between exposure microenvironments when congestion is present. The second 

characterizes vehicle emissions under different traffic conditions, including work zones, 

rush hour, and free-flow conditions.  The third aim is to compare simulation and 

statistical models of emission and dispersion processes with the goal of improving near-

road air pollutant predictions.  Finally, the fourth aim develops and applies a 

methodology to estimate exposures and health effects resulting from rush hour 

congestion.  These aims and their significance are elaborated below. 

Specific aim 1:   This aim characterizes shifts in time allocations occurring 

between microenvironments due to congestion.  Data from the National Human Activity 

Pattern Survey (NHAPS) are used to investigate trade-offs between time spent in vehicles 

and eight other microenvironments.  Statistical models, using robust regression, are used 

to characterize these trade-offs, and scenarios are developed that demonstrate 

congestion’s effects on total exposures.  It is clear that traffic congestion results in more 
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time spent in transit, and specifically vehicles, thus less time elsewhere.  As mentioned in 

the background, previous TAP studies for the purpose of exposure assessment have not 

considered dynamic trade-offs of time allocations, and thus cannot be used to evaluate 

time shifts due to traffic congestion.  Although a few travel time studies in the 

transportation field have used linear regression to model travel time as a function of time 

use (Levinson, 1999; Zhang, 2005), these studies did not account for outliers and results 

might not be robust.  Moreover, previous work has not separated transport related 

microenvironments into congestion and non-congestion periods, an important omission 

since vehicle emissions and concentrations in these periods can differ considerably.  .  

Specific aim 2: Vehicle emissions are characterized under different traffic 

conditions, including work zone and rush hour congestion, and compared to emissions 

under free-flow conditions.  This aim utilizes a field study to develop typical 

speed/acceleration profiles, and then predicts emissions using these data in an 

instantaneous emission model.  As noted, few studies have examined emissions under 

congested conditions, and most of which have used on-board measurements.  Such 

approaches are expensive, and results can vary dramatically from vehicle to vehicle, 

although they do directly link transient emissions to transient speed, acceleration and 

deceleration behaviors, and thus can capture emissions resulting from congestion.  

Emission measurements also are difficult to generalize to the whole fleet of vehicles.  

The approach taken in this specific aim is to estimate emissions under work zone and 

rush hour using an instantaneous emission model (CMEM) using the second-by-second 

speed profiles collected in a field study that uses the vehicle following technique. 

Specific aim  3:  This aim compares simulation (or process-based) models to 

statistical models, both of which represent emission and dispersion processes, in order to 

characterize model capabilities and ultimately to improve model performance.  The 

analysis uses CO and PM2.5 pollutant concentrations measured near an interstate freeway 

in Detroit, MI, traffic counts on the freeway, the MOBILE6.2/CALINE4 simulation 

model, and a statistical model using generalized additive models (GAM).  Although both 

roadway dispersion models and statistical models can estimate traffic impacts on near-

road air quality, few studies have combined or compared process- and statistically-based 

approaches that potentially can yield more accurate predictions.  Differences between 
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these independent approaches can help to highlight model deficiencies, and may lead to 

approaches that use the models in a complementary or confirmatory manner.  As 

examples, statistical methods have the advantage of deriving empirical emission factors, 

which can be used in dispersion models to reduce both bias and uncertainty of the 

emission factors.   

Specific aim 4: This aim develops and applies a methodology to estimate 

exposures and health effects resulting from rush hour congestion.  Risk assessment and 

incremental analysis methods are used, along with site-specific information on travel 

delay, emission changes, and meteorology. As noted, previous studies have not separated 

the health impacts due to vehicle emissions into congestion and non-congestion related 

components.  This is a potentially significant omission since vehicle emissions, near-road 

concentrations, exposures and health risks are likely to differ considerably between 

congestion and congestion-free periods.  

1.3 Importance and novelty 
This research addresses several key knowledge gaps in our understanding of the 

impacts of traffic and congestion.  These include the significance of dynamic adjustments 

to time activity patterns in estimating exposures both on- and near-roadways, the impacts 

of congestion on emissions and air quality, and the magnitude of health risks associated 

with traffic and congestion.  Despite a growing number of observational studies, the 

environmental and health effects of traffic and congestion remain poorly understood.  

There have been relatively few applied or theoretical studies specifically aimed at 

congestion conditions.  Only rarely have pollutant concentrations in traffic-impacted 

locations under both congestion and free flow conditions been measured, which 

represents a critical piece of information for exposure assessment purposes (Chan et al., 

1991; Riediker et al., 2004; Rodes et al., 1998).  While receiving little attention, these 

factors warrant increasing analysis as congestion increases worldwide.  This work 

represents a fusion of several advanced techniques, including instantaneous emissions 

models, roadway dispersion models and advanced statistical models.   

Work in specific aim 1 increases the understanding of changes of TAPs due to 

congestion.  To date, studies examining TAPs in exposure analysis have considered time 

allocations to be static, i.e., fixed in time.  They have not considered how time allocations 
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would change when time spent in different microenvironment increases or decreases, and 

thus, cannot be used to evaluate effects of congestion that increase the time spent in 

traffic.  The research conducted for this aim helps to fill this gap by estimating the time 

allocation shifts due to congestion. 

Work in specific aim 2 estimates pollutant emissions under work zones, rush hour 

and free-flow conditions, and thus helps to quantify congestion’s contribution to 

emissions.  In addition, it has applications in evaluating improvement alternatives aimed 

at managing congestion, an important use since traffic congestion is growing rapidly 

worldwide.  

Work in specific objective 3 compares emission/roadway dispersion models and 

statistical models.  It can improve the understanding of the relationship between traffic 

and roadway pollutant concentrations.  Emissions can be estimated using the statistical 

models in an inverse manner, which potentially can improve the performance of 

dispersion models like CALINE4.  Emission inputs required by CALINE4 are usually 

derived from models such as the Motor Vehicle Emissions Factor Model (MOBILE) or 

the Emission Factor Model (EMFAC).  However, such models do not represent actual 

driving patterns on the roadway links or segments of interest.  Many other factors may 

also bias results of the macroscopic emission models.  

Work in specific aim 4, designed to increase the understanding of exposures and 

health risks of commuters and near-road communities due to traffic and congestion, is 

relevant to urban areas with increasing levels of congestion.  It is anticipated that the 

research methodologies and results can be used to estimate on- and near-roadway 

exposures and risks in many areas, and thus can find practical application in health risk 

assessment.  Moreover, improved exposure and risk information makes it possible to 

account for environmental and health costs, in addition to “agency” costs, in 

transportation planning decisions.  For example, an evaluation of alternative paving 

materials, specifically engineered cement composites (ECC), shows that one of the major 

benefits is a greatly reduced frequency of repairs.  However, the higher initial costs of 

ECC are only offset if energy and environmental benefits are factored in (Keoleian et al., 

2005).  The use of a life cycle approach such as this, and one that includes environmental 

and health costs, is increasing among transportation agencies.  
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1.4 Organization of this dissertation 
This dissertation is organized into six chapters.  This chapter (Chapter 1) has 

described the background, objectives and specific aims of this research, and has 

summarized the current literature for the main topics of the research.  Chapter 2 

investigates the trade-offs of time allocation shifts between time spent in traffic and other 

microenvironments due to traffic congestion.  Chapter 3 estimates emissions under work 

zones, rush hours and free-flow conditions, and describes field and modeling studies.  

Chapter 4 compares predictions from emission/dispersion models and statistical models 

based on a near-road monitoring dataset.  Chapter 5 develops a methodology to estimate 

air pollution and health impacts due to rush hour congestion and applies it to a case study 

in Detroit, MI.  Chapter 6 summarizes the findings and presents conclusions and future 

research directions.  

Chapters 2 through 5, the research chapters, have been written as stand-alone 

sections, in anticipation of submission to journals as manuscripts.  At the time of this 

writing, Chapter 2 has been published in the journal Science of the Total Environment 

(2009, 407: 5493-5500), and Chapter 4 has been published in Atmospheric Environment 

(2010, 44: 1740-1748).  
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Figure 1-1 Framework of the dissertation research (Different shadings represent different 
specific aims) 
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Chapter 2 
Time Allocation Shifts and Pollutant Exposure due to 

Traffic Congestion: An Analysis using the National Human 
Activity Pattern Survey 

 

2.1 Abstract  
Traffic congestion increases air pollutant exposures of commuters and urban 

populations due to the increased time spent in traffic and the increased vehicular 

emissions that occur in congestion, especially “stop-and-go” traffic.  Increased time in 

traffic also decreases time in other microenvironments, a trade-off that has not been 

considered in previous time activity pattern (TAP) analyses conducted for exposure 

assessment purposes.  This research investigates changes in time allocations and 

exposures that result from traffic congestion.  Time shifts were derived using data 

from the National Human Activity Pattern Survey (NHAPS), which was aggregated to 

nine microenvironments (six indoor locations, two outdoor locations and one 

transport location).  After imputing missing values, handling outliers, and conducting 

other quality checks, these data were stratified by respondent age, employment status 

and period (weekday/weekend). Trade-offs or time-shift coefficients between time 

spent in vehicles and the eight other microenvironments were then estimated using 

robust regression.  For children and retirees, congestion primarily reduced the time 

spent at home; for older children and working adults, congestion shifted the time 

spent at home as well as time in schools, public buildings, and other indoor 

environments.  Changes in benzene and PM2.5 exposure were estimated for the current 

average travel delay in the U.S. (9 min day-1) and other scenarios using the estimated 

time shifts coefficients, concentrations in key microenvironments derived from the 

literature, and a probabilistic analysis.  Changes in exposures depended on the 

duration of the congestion and the pollutant.  For example, a 30 min day-1 travel delay 

was determined to account for 21 ± 12 % of current exposure to benzene and 14 ± 8 
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% of PM2.5 exposure.  The time allocation shifts and the dynamic approach to TAPs 

improve estimates of exposure impacts from congestion and other recurring events.  

2.2 Keywords  
Activity pattern; air pollutants; congestion; exposure assessment; robust regression; 

time allocation. 

2.3 Introduction  
 Traffic congestion has increased significantly in the U.S. and elsewhere over 

the past 20 years (Schrank and Lomax, 2007) and has led to detrimental effects on air 

quality and health.  Congestion not only increases the time individual spend in traffic, 

but also vehicular emissions, already the most significant urban source of many air 

pollutants (Rosenbaum et al., 1999; EPA, 2003a).  Increase in congestion can thus be 

linked to increases in exposures to air pollutants of the on-road population (e.g., 

drivers, commuters), the near-road community (e.g., individuals working or living 

near major roads), as well as the general urban population.  Although time spent in 

traffic-related microenvironments such as vehicle cabins and near-road activities is 

relatively short, averaging 97 (in-vehicle) and 80 (near-road) min day-1 for the U.S. 

population (EPA, 1997), traffic can account for a significant fraction of exposure to 

PM2.5 (particulate matter <2.5 μm aerodynamic diameter), carbon monoxide (CO), 

benzene and other pollutants (Marshall et al., 2003, 2005; WHO, 2005).  Congestion 

will increase an individual’s exposure if concentrations in traffic exceed those in the 

displaced microenvironments.   

 Traffic-related exposures can be estimated with knowledge of time activity 

patterns (TAPs), which specify where and how individuals spend their time, along 

with knowledge of air pollutant concentrations in each microenvironment, defined as 

a physical space that has a spatially invariant concentration that is constant for a short 

period (EPA, 1992).  Research on time budgets, which dates back to 1920s, generally 

has used survey data to estimate the time spent among different microenvironments 

(Klepeis et al., 2001; McCurdy et al., 2000).  Several surveys have included 

commuting and other transport-related microenvironments and, starting in the 1980s, 

TAPs have been used to estimate air pollutant exposures and health risks (Klepeis et 

al., 2001; McCurdy et al., 2000).  All of this work, however, has considered TAPs to 

be static, i.e., fixed in time. Thus these studies cannot be used to evaluate shifts in 

time allocations among microenvironments, specifically when time in one 
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compartment changes.  In addition, the previous work has not separated transport-

related microenvironments into congestion and non-congestion periods, an important 

omission since vehicle emissions and concentrations in these periods can differ 

considerably (TRB, 2002). 

 This paper examines how traffic congestion changes time allocation patterns 

and pollutant exposures.  The time spent in a vehicle, which would be expected to 

increase with congestion, as well as the time spent in other microenvironments, are 

considered as dynamic variables.  We separate traffic-related exposures into normal 

and congestion modes, and estimate the effect of congestion on pollution exposures 

for several scenarios.  The remainder of this paper is organized as follows:  In 

methods, we describe the modeling approach, data sources, microenvironmental 

classifications, and key variables.  The results describe the statistical analyses, and 

several scenarios.  The discussion compares results to the literature, and evaluates the 

approach’s strengths and limitations.  We conclude by summarizing the results and 

suggesting research needs.   

2.4 Methods  

2.4.1 Approach  

 Time allocation shifts due to recurring congestion can be estimated in several 

ways.  However, there are advantages in separating the problem into several 

components for examining incremental changes.  First, the overall increase in travel 

(vehicle) time due to congestion is estimated and represented as ΔTv,j for the jth 

individual (min).  Next, changes in the time budget among other microenvironments 

are estimated assuming a linear trade-off with congestion time: 

ΔTi,j = βi,v ΔTv,j  ∀ i =1 … n      (1) 

where ΔTi,j = shift in time for microenvironment i and individual j (min); and βi,v = 

time shift (tradeoff) coefficient between time spent in microenvironment i and the 

transport environment.  This equation applies to all n microenvironments and assumes 

that trade-offs are linear in the case of small time shifts, as discussed below.  Lastly, 

the total time spent in microenvironment i for individual j or Ti,j (min) is: 

Ti,j = Ti, j,nom + ∆Ti,j = Ti,j,nom + βi,v ∆Tv,j      (2) 

where Ti,j,nom is the nominal or average time spent in microenvironment i.  The overall 

time budget forms a constraint that “conserves” time: 
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ΔTv,j + Σi ΔTi,j = 0        (3) 

i.e., increased travel time must be exactly displaced by changes among other 

microenvironments.  The approach represented by eqs. (1) - (3) is simple and flexible, 

i.e., it allows analysis of alternative scenarios that change ΔTv by different amounts.  

As mentioned, however, it applies to only small changes in ΔTv.  Large increases in 

congestion may produce nonlinear changes as well as alter the assumption of 

independence between microenvironments.  For example, individuals may combine 

trips as a result of significant changes in congestion, work longer hours but fewer 

days, or shift to a different travel mode.  

 Travel time ∆Tv,j in congestion is estimated using travel delay, which is 

defined as the travel time above that needed to complete a trip at free-flow speeds 

(Schrank & Lomax, 2007), and derived using a macroscopic approach as the extra 

time spent traveling when compared to free flow conditions.  Delays on road 

segments are based on information contained in the Federal Highway 

Administration’s Highway Performance Monitoring System (HPMS) database, traffic 

volume, and information about link speeds (Schrank and Lomax, 2007).  The 

estimated average annual travel delay for a traveler making trips during rush hours 

(based on surveys in 437 small to large U.S. urban areas) increased from 30 hours in 

1993-94 to an average of 38 hours in 2005 (Schrank and Lomax, 2007).  Most reports 

of travel delay use this method.   

 The derivation of time shift coefficients βi,v representing trade-offs between 

in-vehicle and other microenvironments is challenging.  We could not identify any 

surveys that tracked time spent in congestion and other microenvironments using a 

large and representative population.  Moreover, many factors can affect time 

allocations and time shifts, e.g., age, gender, employment status, income, marital 

status, presence of children, work characteristics, mode to work, and day of the week 

(weekday/weekends) (Buliung, 2005; Krantz, 2005).  The most common methods for 

examining time allocations in travel behavior analyses are structural equations, 

discrete choice model and survival models (Bhat and Koppelman, 1999; Buliung, 

2005; Zhang, 2005).  However, these methods are primarily used to identify factors 

affecting time use and how individuals choose among different activities and are not 

appropriate for estimating time shifts.  Time shift coefficients might be estimated 

using longitudinal surveys that track individuals during days with and without 
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congestion, possibly using “natural experiments” that produce periods with (large) 

differences in congestion, e.g., weekend/weekday, construction/non-construction 

events, or day/night periods.  However, many factors might bias such comparisons.  

Alternatively, longitudinal studies might use a random sample and attempt to 

statistical control for factors that might affect results; however, no such study has 

distinguished time spent in congestion from congestion-free periods.   

 Time shift coefficients also might be estimated using cross-sectional studies if 

socio-demographic and other factors that influence TAPs can be sufficiently 

controlled, and if congestion and congestion-free travel periods can be separated.  

Again, no known TAP survey has distinguished such periods.  This limitation can be 

addressed, however, if drivers primarily consider the total in-vehicle period in their 

time allocation decisions, that is, if they do not make major distinctions between time 

spent in congestion from time spent in “normal” traffic.  This follows if driver 

behavior is aimed at minimizing the overall trip (door-to-door) duration, which 

appears reasonable since most drivers, for example, will use highways that increase 

travel distances and trip cost (e.g., due to fuel and vehicle maintenance) if the overall 

travel time is reduced.  The use of cross-sectional analyses to estimate time shifts has 

not been attempted, although such analyses have been used to examine the 

dependence of travel time on activity duration (Levinson, 1999; Zhang, 2005).   

 Here, cross-sectional data are used to construct models that predict time 

allocation shifts.  We incorporate variables known to affect time allocations, and 

robust estimation is used to improve parameter stability and deal with non-normality, 

outliers and other statistical issues.  A separate linear model is constructed for each of 

the n microenvironments considered (excluding the vehicle compartment): 

Ti,j = βi,0 + βi,v Tv,j + Σk Γk Sk,j   ∀ i =1 … n  (4) 

where Ti,j = time spent in microenvironment i for individual j (min);  βi,0 is an 

intercept constant (min);  βi,v is the time shift between microenvironment i and the in-

vehicle microenvironment as defined earlier; Tv,j = time spent in a vehicle for 

individual j (min);  Γk are coefficients for the kth covariates; and Sk,j are covariates.  

Table 2-1 defines covariates for the dataset, which include time spent in 

microenvironments, gender, occupation, education, season, weekday/weekend, and 

others.  
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 The application of eq. (4) is subject to several limitations.  First, only those 

cases where a minimum amount of time is spent in each microenvironment can be 

considered since only incremental changes in an existing budget can be determined.  

Thus, individuals are assumed not to add or remove microenvironments to their time 

budget or to alter the travel mode.  We recognize that some or many individuals will 

modify behaviors in response to congestion, but much of this will be captured by the 

desire to minimize travel time, as noted.  Second, we focus on a normal commuting 

population and thus do not consider individuals who report no travel time (thus Tv,j > 

0) or those individuals who report no time at home.  We exclude individuals who 

might be professional drivers since such individuals likely have inelastic work 

demands.  Because such individuals cannot always be identified by occupation, we 

exclude individuals spending more than 4 h in a vehicle in a 24 h period.  Third, we 

expect that ‘true’ trade-offs will result in negative coefficients for βi,v; however, in 

cross-sectional analyses, positive βi,v coefficients may be obtained for discretionary 

visits to microenvironments such as restaurants.  These positive coefficients cannot be 

considered trade-offs.  Fourth, the estimated time shifts may not conserve time, as 

required in eq. (3), but increases in travel time must be exactly matched by reductions 

among time spent in all of the other microenvironments.  Thus, normalization is used 

to provide closure on the time budget:  

β'
i,v = βi,v / Σi |βi,v|        (5) 

where β'
i,v = the normalized coefficient.  Ideally, normalization will produce only 

small changes, suggesting that the time shift coefficients capture the major impacts 

and explain a large fraction of the observed variation. 

2.4.2 Data sources, cleaning and aggregation 

 TAP data collected in the National Human Activity Pattern Survey (NHAPS), 

a portion of the Consolidated Human Activity Database (CHAD) developed by the 

U.S. Environmental Protection Agency (McCurdy et al., 2000), was used to estimate 

time shift coefficients.  Conducted from 1992 to 1994, this nationwide survey 

included 9,386 randomly selected participants drawn from 48 states using a standard 

two-stage random digit dial (RDD) sample design.  Respondents were asked to record 

their locations and activities in a diary for a 24 h period.  Respondent locations were 

coded into 83 microenvironments (Klepeis et al., 1996).  This information, along with 

basic socio-demographic data, e.g., age, gender, employment status (full time, part 
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time work, not employed), education (less than high school, high school graduate, less 

than college, college graduate and post-graduate), and race (White, Black, Asian, 

Hispanic, other), was recorded using a computer-assisted telephone interview 

instrument (Klepeis et al., 1996).   

 To reduce the number of compartments and increase sample size, the original 

83 microenvironments were grouped into 9 microenvironments following Klepeis et 

al. (1996).  We further combined two outdoor locations (residence-outdoors and 

other-outdoor).  The final set included six indoor microenvironments (home, 

workplace, shopping, bar/restaurant, school/public building, and other indoor), two 

outdoor microenvironments (near road, other outdoor), and one transport category (in-

vehicle).  The school/public building includes school, hospital, church and public 

building/library/museum/theatre.  Our in-vehicle, near-road and outdoor 

compartments differed slightly from Klepeis et al. (1996):  (1) In-vehicle groupings 

included car, truck (pick-up/van), truck (other), bus and motorcycle/moped/scooter 

(n=6762), but not train/subway/rapid transit, airline and boat (n = 395), due to our 

focus on roadway congestion.  (2) The near-road grouping included walking, 

bicycle/skateboard/roller-skates, in a stroller/carried by an adult, 

sidewalk/street/neighborhood, parking lot, and service station/gas station, but 

excluded motorcycle/moped/scooter (moved to the in-vehicle microenvironment).  (3) 

The outdoor grouping included “residence-outdoors” and “other-outdoor”.  

 Data checking and cleaning for the NHAPS dataset included the following:  

Cases (individuals) were eliminated that were missing, repeated or invalid, including 

cases where (1) age or gender was missing (n=191 or 2% of the sample);  (2) time 

spent at home was equal to 0 (n=41 or 1%);  (3) travel time exceeded 4 h (n=425 or 

5%);  (4) travel time was spent in airline, transit, boat, other transportation modes not 

included in in-vehicle microenvironment defined above (n=195 or 2%);  (5) records 

were duplicated (n=298 or 3%); and (6) the time in all nine microenvironments for 

each individual was verified to sum to 1440 min (24 h; n=8297).  These steps left 

8,297 valid and complete cases.  The number of deletions represented a small fraction 

of the total cases, thus deletions seem unlikely to significantly affect results.

 Outliers were identified (but not removed) using Tukey’s 1.5 interquartile 

range (IQR) method, i.e., values that exceeded 1.5 IQR plus the 75th percentile value 

or fell below 1.5 IQR minus the 25th percentile value (Moore and McCabe, 2002).   
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 Several of the statistical methods required complete datasets.  Many cases 

(n=1773, 19%) were missing employment and education information, a potentially 

significant omission since employment status can affect time allocations (Klepeis et 

al., 1996).  Missing observations for these two variables were replaced using “hot 

deck” imputation (Little and Rubin, 2002), e.g., persons from 18 and 64 years of age 

had 53 and 11% chances of having a full- or part-time job, respectively, and these 

probabilities were used to replace missing values of this variable.  For children (≤17 

years of age), employment status was assigned to non-employed.   

2.4.3 Parameter estimation 

 Time shift coefficients between the time spent in vehicle and time in other 

microenvironments (in eq. 4) were first estimated using ordinary least squares (OLS) 

regression, primarily as an exploratory analysis based on the original dataset, and also 

using the 10% trimmed dataset (omitting the lowest and highest deciles).  Second, 

robust regression was used to obtain final estimates.  We used the MM method, a 

maximum likelihood procedures that combines Huber M estimation (addressing 

outliers in the dependent variable) and high breakdown value methods (handling high 

leverage or influential points) (Chen, 2002).  This technique addresses outliers in both 

the dependent and independent variables, and is more efficient and reliable than OLS 

with outlier deletions (Faraway, 2004). 

 In part to address interactions between age, gender and employment, data were 

stratified by respondent age (<4, 5-17, 18-64, and >64 years of age) and employment 

status (working/nonworking; only for adults).  Additionally, older children and 

working adults were divided into weekday and weekend groups.  We assumed that 

few individuals <17 years of age would have jobs, thus occupation-vehicle time shift 

coefficients were not estimated for this group.   

 Variable selection used backward elimination.  Sensitivity analyses were used 

to compare final and full models (including all covariates) in order to check to what 

extent variable selection affected the estimated time allocation shifts.   

2.4.4 Scenario analysis 

 Exposures to benzene and PM2.5 were simulated as follows.  Based on the 

national survey (Klepeis et al.,1996), a typical working adult in weekdays spent an 

average of 45 min day-1 in transit and experienced total annual travel delay of 38 h 

(Schrank and Lomax, 2007).  Distributing this delay over the 255 working days in a 
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year is equivalent to 9 min day-1.  Although estimates of travel times without and with 

travel delays, 36 and 45 min day-1, respectively, are quite robust, the amount of time 

spent in congestion is unknown.  Congestion periods could range from just slightly 

more than the travel delay (9 min day-1) to the entire transit duration (currently 45 min 

day-1).  A reasonable “midpoint” estimate might assume that travel delays result from 

congestion in which the average speed falls by half from free flow conditions.  In this 

case, the current travel delay of 9 min day-1 would represent congestion lasting 18 min 

day-1.  We recognize that this estimate is uncertain and subjective, and that the 

boundary between free flow and congested conditions is continuous and variable.  For 

the purpose of the scenario analysis, we tested three limiting cases:  (1) trips without 

delays, i.e., no congestion, in which the total travel duration = free flow duration = 36 

min day-1;  (2) current conditions with a travel time delay of 9 min day-1 and 

associated 50% speed reduction, i.e., total duration = 45 min day-1, free flow = 27 min 

day-1, and congestion = 18 min day-1;  and (3) high and possible future travel delay of 

30 min day-1 (total duration = 66 min day-1, free flow = 6 min day-1, congestion = 60 

min day-1).  These three scenarios, which represent a limited sensitivity analysis, can 

be regarded as ideal, current, and worst-case conditions.   

 Inhalation exposure was calculated as: 

Etotal = 1/1440 Σi Ci Ti,nom BRi      (6) 

where Etotal = total exposure (μg person-day-1);  Ci = pollutant concentration in 

microenvironment i (µg m-3);  Ti,nom = time in microenvironment i (min);  and BRi = 

breathing rate (m3 min-1).  The time budgets used the average values in NHAPS 

normalized to arrive at a 24 h budget.  Breathing rates for each microenvironment 

used recommended values (EPA, 1997).  The rate for sitting/standing activities (0.008 

m3 min-1 for adults) was used for traffic and congestion.  The incremental exposure 

attributable to congestion, ΔE (μg person-day-1), was calculated as: 

∆E = Σi Ci ∆Ti BRi       (7) 

where ∆Ti is the estimated time allocation shift from eq. (1) after normalization.   

 In urban areas, benzene is largely emitted from transport-related sources 

(WHO, 2005).  Benzene is considered a carcinogen (EPA, 2003b) and thus long-term 

exposure is important.  Mobile sources also are a major emission source of PM2.5, 

which has both acute and chronic morbidity and mortality effects (WHO, 2005).  Due 

to both the difficulty of locating concentration data for all nine microenvironments 
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and for simplicity, we further collapsed the analysis to six microenvironments:  

congestion-free transport;  transport with congestion;  near-road;  outdoor;  

workplaces;  and a new group called home and other indoors that combined home, 

shopping places, bar/restaurant, school/public building and indoor-other 

microenvironments (discussed in the data cleaning section).  Concentrations in these 

microenvironments were considered to be independent.   

 Benzene and PM2.5 concentrations were based on recent literature, and Monte 

Carlo (MC) analyses were used to address both the variation and uncertainty in the 

available data.  Our goal was to estimate the current range of concentration ranges 

found in the major microenvironments in urban settings in the U.S. Concentrations 

were assumed to be log-normally distributed.  The geometric mean μg was derived 

from the median or mean values (if medians were unavailable) among the selected 

studies, and a geometric standard deviation (GSD) σg was taken from the literature or 

our judgment.  For benzene, a weighted mean was calculated from 25 recent studies 

using sample size as weights (Table S2-2).  For PM2.5, many outdoor and residential 

measurements are available, but little information exists regarding representative 

levels in vehicles, most workplaces and near-road environments.  Instead, we used 

typical concentrations, indoor/outdoor concentration ratios, and near-road/ambient 

concentration ratios, again weighting the means by sample size.  We also conducted 

sensitivity analyses that examined effects of concentration in vehicle cabins and 

increases in GSDs.   

 The regression and robust analyses used SAS 9.1 (SAS Institute Inc., Cary, 

NC, U.S.).  The MC and sensitivity analyses used Crystal Ball software 

(Decisioneering Inc., Denver, CO, U.S.).   

2.5 Results and discussion  

2.5.1 Descriptive statistics and exploratory data analysis 

 The NHAPS respondents reported a daily travel time of 76 ± 52 min (mean ± 

standard deviation), and statistically significant differences were seen by respondent 

age, e.g., travel times averaged 62 ± 49, 65 ± 47, 80 ± 52 and 73 ± 53 min for the 0–4, 

5–17, 18–64, and >64 year old age groups, respectively (Kruskal-Wallis test, 

p<0.0001).  Differences by gender were small and not statistically significant, e.g., 

travel times for men and women in the 18–64 yr group were 82 ± 54 min and 79 ± 51 

min, respectively (Kruskal-Wallis p=0.35).  Time distributions were right-skewed, 
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especially for microenvironments that had relatively low durations, e.g., near-road and 

shopping activities.  The dataset contained many outliers (21% of the total 

observations across the nine microenvironments), and the roadside microenvironment 

had the largest fraction (17%).  Time allocations and outliers are summarized in Table 

S2-1.   

2.5.2 Time shifts due to traffic and congestion 

 Initial analyses using OLS regression models showed large differences 

between full and trimmed datasets, indicating that outliers strongly influenced results.  

Analysis using MM-type robust regression provided more stable estimates of time 

shifts, and results are displayed in Table 2-2.  Estimated time shifts were mostly 

negative, reflecting trade-offs between travel time and time in other 

microenvironments.  Overall, increased travel time was primarily associated with 

reductions in time at home, although smaller shifts were seen for workplaces and 

school/public buildings.  The travel/home trade-off is reasonable since most people 

spend the largest share of their time at home (71 ± 19% for the NHAPS population) 

and since time at home is likely to be more elastic than time spent in other 

microenvironments.  The following summarizes results by age group.   

 Children.  For children ≤4 yrs of age, the home/travel time shift coefficient 

was large (-1.76 ± 0.21) and no other microenvironment was associated with travel 

time.  The models explained a modest proportion of variance (R2 = 0.24).  Children 

spend most of their time at home (1219 ± 211 min in NHAPS).  Why the coefficient 

exceeded one by such a large amount is puzzling.  One possible reason was 

misclassification:  adults completed the child’s TAP survey and may have under-

reported travel times to day care, preschool, and other locations.  If so, the difference 

was absorbed by the home microenvironment.  A comparison between final models 

(containing only statistically significant covariates) and “full” models (including all 

covariates) showed little change (<1%) in the estimated coefficients, suggesting that 

the results are stable and robust.  Given that only one microenvironment is involved, 

the normalized travel time/home coefficient is simply -1, i.e., each additional minute 

of travel time reduces time at home by the same amount.  

 For children 5 to17 yrs of age, increased travel time on weekdays was 

associated with shifts at home (-1.05 ± 0.17), bars/restaurant (+0.30 ± 0.06) and 

school/public building (-0.23 ± 0.10).  The fit (R2) for these microenvironments was 
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low, especially for school/public buildings.  As shown by Levinson (1999) and Zhang 

(2005), the positive coefficient for bars/restaurants likely reflects trips that represent 

deliberate choices of the subject (or the subject’s family), and thus does not represent 

a trade-off due to congestion.  Time spent in school/public buildings was only slightly 

elastic, possibly because much of the school day is fixed, although there may be some 

trade-offs with extracurricular school activities, e.g., sports.  Normalization for the 

home and school/public microenvironments yielded coefficients of -0.82 and -0.18 

respectively.  On weekends, travel time was associated with less time at home (-1.65 

± 0.20) and more time for shopping (0.23 ±0.14) and near-road (0.15 ±0.05) activities.  

The positive coefficient for shopping again represents a deliberate choice, not a trade-

off.  The positive coefficient for near-road activities might represent time waiting for 

rides, and also does not to appear to be a travel or congestion trade-off.  As seen 

earlier, trade-off coefficients estimated for final and full models were close 

(changes<3%).  Overall, additional travel time for children on weekends appeared to 

be displaced solely with time at home, and normalization again leads to a -1 

coefficient.   

 Adults.  Travel time shifts for adults were distributed among many 

microenvironments.  The primary shift was between travel time and time spent at 

home, and estimated trade-off coefficients depended on weekend/weekday period and 

employment status (range from -0.68 ± 0.07 to -1.70 ± 0.21; Table 2-2).  No other 

microenvironments were affected for working individuals on weekends, or for non-

working individuals on weekdays.  The other adult groups had more complex 

situations.  For working individuals and weekday periods, travel time was associated 

with five microenvironments:  home, workplace, school/public buildings, shopping, 

and other indoor microenvironments.  The positive association for shopping indicates 

a preference choice and not a trade-off, as discussed above.  The association with 

workplaces was consistent with Schwanen and Dijst (2002), who showed an inverse 

relationship between commuting time and work duration.  Earlier, Kitamura et al. 

(1992) suggested that travel time for working individuals was proportional to the 

amount of non-working time.  Although we obtained a negative time shift for work, 

these two studies suggest that this should not be attributed to travel time or congestion.  

The time shifts for school/public buildings and other indoor environments might be a 

direct trade-off because time spent in these environments is likely to be more flexible 

than that in mandatory activities (e.g., work, sleep and lunch/dinner), thus, these shifts 
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are allocated to congestion.  For non-working adults on weekends, travel time was 

associated with three microenvironments, but only the time shift with the home was a 

trade-off since positive coefficients for shopping and school/public buildings indicate 

preference choices.  The coefficients of final (reduced) and full models were similar 

(changes were <1.5%, except for school/public buildings-travel trade-off among 

working adults on weekdays where the change was 10.5%).   

 In summary, increased travel time or congestion alters the time adults spend at 

home, as well as weekday activities for working adults, specifically, time spent at 

school and in other indoor activities.  For working adults on weekends and non-

working individuals on weekdays and weekends, normalized coefficients were -1 for 

the home.  For working individuals on weekdays, normalized coefficients were -0.23 

for home, -0.49 for school/public buildings and -0.28 for other indoor 

microenvironments. 

 Older adults.  Only two trade-offs were seen for this group:  The coefficient 

for the home microenvironment showed a nearly 1:1 trade-off and modest fit (R2 = 

0.25).  Older adults spend most of their time at home (83 ± 15% in NHAPS), thus this 

trade-off appears reasonable.  This group also showed time shifts with the near-road 

microenvironment, but the effect was small and marginally significant (-0.08 ± 0.04; 

p = 0.06) and may have reflected less time walking on roads due to a disability or 

other factor, thus this time shift seems unlikely to be due to congestion.  Again, results 

of final and full models were similar (coefficients within 1%).  Normalization gave a 

1:1 travel/home trade-off for this group.  

2.5.3 Benzene exposures 

 A recent review of benzene concentrations in a variety of microenvironments 

(HEI, 2007) was updated, focusing on homes, vehicle cabins (with and without 

congestion), workplaces, near-road and outdoor microenvironments.  The existing 

literature is not comprehensive and often inconsistent, thus some judgment was 

needed to estimate hopefully realistic but not necessarily representative concentration 

distributions in each microenvironment. 

 In vehicle cabins, benzene levels from 1 to 43 µg m-3 have been reported 

(Table S2-2).  Many factors affect concentrations.  Moderate to heavy traffic can 

increase benzene levels (Chan et al., 1991; Lawryk et al., 1996; Rodes et al., 1998), 

while a higher intake location for cabin air (away from the road and tailpipe locations) 
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tends to decrease concentrations (Batterman et al., 2002; Fitz et al., 2003).  In vehicles 

with defective fuel or exhaust systems, self-pollution due to vehicle emissions leaking 

into the cabin can cause high concentrations (Lawryk et al., 1996).  Concentrations 

are affected by fuel composition and vehicle technology, e.g., earlier studies used 

non-reformulated gasoline and often older and high emitting vehicles (Chan et al. 

1991; Lawryk et al., 1996), while newer studies reflect reformulated gasoline and 

newer emission standards (Fedoruk et al., 2003; EPA, 2007a).  Other factors include 

traffic mix, fuel type (diesel, gasoline, ethanol, etc.), vehicle maintenance, urban 

background concentrations, and meteorology (Rodes et al., 1998).  Overall, benzene 

concentrations have been decreasing (HEI, 2007).   

 Benzene concentrations in vehicle cabins were estimated as follows.  First, the 

selected studies were grouped into congestion and non-congestion periods based on 

routes and sampling periods.  Measurements taken in heavy traffic or during rush hour 

were considered to represent congestion conditions; those taken off-peak or with low 

or moderate traffic were considered to represent non-congestion conditions.  The 

study with evident self-pollution (Lawryk et al., 1996) was eliminated.  The overall 

weighted averages for non-congestion and congestion periods were 8.3 and 12.8 µg 

m-3, respectively, and a GSD of 1.9 was taken from Loh et al. (2007).    

 In the near-road environment, benzene concentrations can be influenced by the 

distance to the road, traffic volume and composition, wind direction and speed, and 

other factors (Chan et al., 1991; Riediker et al., 2003; Rodes et al., 1998; Sapkota et 

al., 2003).  A study near a tunnel entrance (Sapkota et al., 2003) was eliminated 

because it was not typical situation.  Concentrations typically range from 1 to 7 µg m-

3 (Chan et al., 1991; Riediker et al., 2003; Rodes et al., 1998), and the weighted 

average was 2.8 µg m-3.  Again, the GSD of 1.9 from Loh et al. (2007) was used.  

 Many investigators have measured benzene in residences, as summarized by 

Jia et al. (2008) for several of the more recent and larger studies.  Concentrations 

depend on many factors, including the presence of smokers, whether the residence has 

an attached garage, the contents of the garage, and the degree of urbanization.  

Typically, benzene levels in the studies averaged from 1 to 4 µg m-3, although much 

higher concentrations in individual homes have been measured, e.g., benzene levels in 

non-smoker residences ranged from 0.5 to 10 μg m-3 (HEI, 2007).  The weighted 

average concentration (among studies in Table S2-2) was 2.2 µg m-3, which is 

assumed to be representative.  Loh et al. (2007) derived a GSD of 3.1 for benzene 
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from studies that included residences with smokers or that were close to industrial 

sources.  We use a GSD of 2.0 as a more typical value for non-smokers’ homes.   

 Benzene concentrations reported for offices have typically ranged from 1 to 4 

µg m-3.  A median concentration of 3.7 μg m-3 was reported by Girman et al. (1999) in 

the largest office building study (n > 200); an average level of 1.0 μg m-3 was reported 

by Daisey (1994).  Another workplace study reported an average level of 1.0 μg m-3 in 

San Francisco (Daisey et al., 1994).  Because the sample sizes of the latter two studies 

were unclear, we used an unweighted average which gave 2.4 μg m-3.  A GSD of 1.8 

for this microenvironment was taken from Loh et al. (2007).  These office building 

studies are older than most of the other studies in the scenario analysis, and the 

derived average concentration may slightly overestimated.     

 Very few studies have provided representative statistics on benzene levels in 

public buildings, shopping areas, bars/restaurants, and other indoor 

microenvironments.  We assumed the same distribution as in homes (mean = 2.2 µg 

m-3, GSD = 2.0).   

 Outdoors, benzene levels tend to be elevated in urban areas, primarily due to 

mobile source emissions (HEI, 2007), although levels can also reflect proximity to 

sources such as gasoline stations.  Typical levels ranged from 0.5 to 3 µg m-3, and a 

weighted average of 1.7 µg m-3 was calculated.  A 1.6 of GSD was used, selected to 

match the variation at ambient monitoring sites, which shows a 10th to 90th percentile 

range of 0.5 to 2.8 μg m-3 (EPA, 2007b).   

 Table 2-3 summarizes the Monte Carlo exposure analysis and gives benzene 

apportionments by microenvironment for ideal, current and worst-case conditions.  

Typical concentrations in six microenvironments were taken from recent key studies 

with judgment as discussed above.  The dominant exposure source in each scenario 

was homes and other indoor environments, which accounted for about half of the total 

exposure.  For the congestion-free scenario, vehicle cabin exposures accounted for 10 

± 7% of the total benzene exposure;  the current congestion scenario increased the 

share to 15 ± 8%;  and the worst-case congestion scenario led to a share of 23 ± 12%.  

The simulation results depend on the time shift trade-offs, time allocations, 

concentration distributions, and breathing rates in each compartment.  The sensitivity 

analysis showed that each 1.0 µg m-3 increase in cabin concentration during 

congestion will increase the total benzene exposure by an average of 0.5 and 1.6% for 

the current and worst-case scenarios, respectively.  Increasing the GSD by 0.1 in each 
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microenvironment only slightly affected results.  Probabilistic and deterministic 

approaches (the latter considering only average concentrations) gave similar results.   

2.5.4 PM2.5 exposures 

PM2.5 concentrations in vehicle cabins depend on fuel type, vehicle 

characteristics (e.g., engine type, age, maintenance, and controls), air exchange rate, 

traffic composition and volume, meteorology, urban and background levels, and other 

factors.  (Table S2-3 summarizes several of the larger U.S. studies and one U.K. study, 

included given the scarcity of U.S. studies.)  Adam et al. (2001) found that PM2.5 

levels during non-congestion periods ranged from 20 to 26 µg m-3 and during 

congestion periods from 31 to 46 µg m-3.  Riediker et al. (2003) reported an average 

concentration of 23.0 µg m-3 in non-rush hour periods.  Rodes et al. (1998) indicated 

that PM2.5 levels in congestion increased slightly compared to non-congestion periods 

in Sacramento, but the opposite trend was seen in Los Angeles.  These studies may 

reflect differences in the vehicle mix.  The U.K. and Europe have a higher fraction of 

diesel-powered vehicles (many cars and most trucks), while at present there are few 

diesel cars in the U.S.  Additionally, the volume of heavy duty trucks, nearly all of 

which are diesel-powered, tends to decrease during rush hour periods.  Possibly the 

Los Angeles’ results are due to the relative scarcity of (highly emitting) diesel 

vehicles during congestion periods.  The weighted average concentrations for free-

flow and congestion periods was 28.5 and 35.4 µg m-3, respectively.  A representative 

GSD could not be derived from the available studies.  We chose a GSD of 1.8 both 

because of the measured concentration range (Table S2-3) and because the variation 

of in-cabin levels should exceed that of ambient levels since the former should reflect 

both the variation in background levels as well as on-road emissions.  Given the lack 

of information, however, the PM2.5 cabin concentrations are considered to be highly 

uncertain and not representative.   

 Near-road PM2.5 levels exceed background levels by 1.1 to 1.3 times, 

depending on the distance to the highway and other factors (Table S2-3; WHO, 2005).  

Most PM2.5 arises from background (distant) sources, e.g., power plants, and the 

variation among studies can be explained by urban background and varying distances 

to the highway.  A factor of 1.2 represents a typical ratio and gives a near-road 

concentration of 14.3 µg m-3 (based on the average ambient concentration, see below).  

A GSD of 2.0 was chosen given the variation in the available near-road measurements.   
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 In residences, PM2.5 levels depend on smoking, cooking, vacuum cleaning, 

human activity, ventilation, season, and other factors (Monn, 2001).  EPA (1996) and 

Monn (2001) suggest indoor/outdoor (I/O) ratios of 1 for homes without smokers, 2 

for homes in areas of low ambient PM2.5 concentrations, and 0.9 for homes in areas of 

high ambient PM2.5 concentrations.  Turpin et al. (2007) also found I/O ratio of 0.9 

ratio using median indoor and outdoor PM2.5 measurements in Los Angeles, CA, 

Houston, TX, and Elizabeth, NJ.  An I/O ratio of 0.9 was selected, and a GSD of 1.9 

was taken from Meng and Turpin et al. (2005).   

 In workplaces, PM2.5 levels are affected by smoking, ventilation, window 

status (open/closed), human activity, and other indoor sources, including sources 

specific to the workplace.  It was difficult to generalize typical levels or ratios from 

the literature.  Many workplaces, such as offices, often have better filtration than that 

found in residences and fewer internal sources.  Thus, we assumed an I/O ratio of 0.8 

for workplaces, schools/public buildings and shopping malls.  A GSD of 1.9 was 

chosen, matching the value for homes.   

Ambient PM2.5 concentrations in the U.S. in 2007 averaged 11.9 µg m-3, and 

the 10th and 90th percentiles were 7.5 and 15.4 µg m-3, respectively (EPA, 2008).  The 

national annual average was considered typical; a GSD of 1.6 matched the stated 

range. 

Table 2-4 summarizes the PM2.5 exposure analysis for working adults.  Typical 

PM2.5 levels in each microenvironment reported in the literature were taken with 

judgment as discussed above.  For the ideal, current, and worst-case congestion 

scenarios, exposures in vehicles accounted for 7 ± 5%, 10 ± 5%, and 15 ± 9% of the 

total PM2.5 exposure, respectively.  The sensitivity analysis shows that each 1 µg m-3 

increase in cabin concentration increases exposures by 0.1 and 0.4%, respectively, for 

the current and worst-case scenarios.  Overall, traffic’s contribution to PM2.5 exposure 

is smaller than that for benzene, a result of the many other PM2.5 sources that 

contribute to the exposure.  Nonetheless, the time spent in traffic and congestion 

accounts for a disproportionate share of exposure, a conclusion that applies to both 

benzene and PM2.5.  Importantly, this analysis does not consider that vehicle exposure 

includes ‘fresh’ exhaust particles and specifically ultrafine PM of potentially greater 

toxicity than the ‘aged’ aerosols that constitute most of the PM2.5 mass found in other 

microenvironments (Wang et al., 2008).  Unfortunately, the literature does not yet 

permit a parallel assessment of ultrafine PM exposure.  
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2.5.5 Discussion 

 This paper makes two primary contributions in exposure science.  It is the first 

study to investigate dynamic trade-offs in time allocations among different 

microenvironments, specifically those that arise due to traffic and congestion, which 

are important for understanding time budgets, behavioral changes, and pollutant 

exposures.  Individuals compensate for an increase in travel time by spending less 

time at home, and sometimes at school, public buildings, and indoor-other 

microenvironments.  These environments are selected because their time allocations 

are elastic.  In this study, these trade-offs were derived in an indirect manner using an 

existing TAP dataset.  Time shifts might also be derived using surveys that 

specifically note time spent in congestion, and that quantify differences between 

actual (congested) and free flow commuting time.  Such ‘direct’ approaches must 

account for multipurpose trips, which constitute over half of vehicle trips during rush 

hour (DOT, 2006), and they must address issues of confidentiality, since respondents’ 

homes and workplace addresses are needed to estimate free flow commuting time.  

Time shifts might also be estimated using longitudinal and panel sampling designs, 

conjoint analysis and other advanced survey techniques, although responses may not 

reflect actual behavior.  An intriguing and potentially accurate approach that is 

emerging would use advanced technology (global positioning systems, cellular 

phones) to track the location and travel behavior of a large number of individuals.  

Studies specifically investigating congestion would help to validate our results. 

 Time shifts were estimated in a cross-sectional analysis and results were 

assumed to apply to small changes in transport times.  While this assumption is 

unlikely to apply at the individual level, we assumed that it was relevant for the 

population and small time shifts.  Clearly, this analysis is subject to a number of 

limitations.  It implies that adaptations to avoid congestion were not utilized.  

Individuals often can and do alter commuting patterns (routes, mode and time of 

travel) to minimize travel time or to avoid congestion, although such adaptations are 

not always possible.  In our derivation of trade-offs, individuals were assumed not to 

differentiate between the time spent in free flow and congestion periods, a necessity 

for the analysis since available TAP studies have not distinguished between these 

periods.  While justifiable if individuals minimize total travel time, this assumption 

clearly has limits and is unlikely to apply to large changes.  We did not consider 

effects from different types or severities of congestion (e.g., recurring versus 
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unexpected congestion due to accidents), which might alter individual driving/routing 

decisions.  We excluded several groups of individuals who did not appear to belong to 

a ‘normal’ commuting population (e.g., individuals who spent no time at home, and 

who have travel times exceeding 4 hrs day-1). 

 The paper’s second major contribution is to help understand the significance 

of traffic and, in particular, congestion, to an individual’s total exposure.  The 

benzene and PM2.5 scenarios used fairly simple probabilistic techniques to apportion 

exposures among the major microenvironments.  On average, travel accounts for 15 

and 10% of the total benzene and PM2.5 exposure, respectively.  Long periods of 

congestion, e.g., 30 min day-1, can significantly increase exposures due to the higher 

concentrations and because the compensating environments typically have lower 

concentrations.  The high-end exposures, e.g., 90th percentile, can be considerably 

greater.  Results depend on the pollutant, and the analysis highlighted large data gaps 

that preclude precise – much less representative – results.  Still, results illustrate 

general trends.  If concentrations among the different microenvironments differ 

markedly, even relatively small time shifts will alter exposure.   

There is surprisingly little information regarding pollutant concentrations in 

vehicles and other microenvironments, and the lack of population-based samples may 

limit the generalizability of results.  Many of the available studies were conducted 

before 2000 and may reflect higher pollutant levels than current conditions.  The 

analysis likely underestimated the true variability of exposures since it used typical or 

average parameters for concentrations, durations, time shifts, and breathing rates.  

Further, emissions attributable to congestion will increase ambient, near-road and 

indoor concentrations, effects ignored in the present analysis which assumed that 

congestion altered time spent in different compartments, not the concentration.  

Accounting for increased emissions, a second order effect, would increase the 

significance of congestion emissions (though it may not greatly affect exposures in 

vehicle cabins, as shown in Tables 2-3 and 2-4).   

2.5.6 Recommendations 

 This study highlights several limitations in the information available for 

estimating time allocations and exposures.  First, both time allocation and exposure 

studies should separate transit activities into congestion and non-congestion periods.  

Second, longitudinal surveys and other analyses are needed to validate the travel 
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trade-offs derived here.  Third, the time trade-off and exposure models should be 

validated, which would increase their value to policy makers and others.  This would 

require collecting simultaneous personal exposure and time activity data to monitor 

and quantify the impacts of both congestion and non-congestion periods, especially 

for key pollutants like benzene and PM2.5.  Finally, it would be worthwhile to examine 

ultrafine particles and other pollutants that are strongly associated with traffic and for 

which current data gaps preclude analysis.   

2.6 Conclusions 
 A dynamic trade-off analysis was used to quantify effects of congestion on 

time allocations and pollutant exposures, which appears to be the first such analysis in 

the literature.  Increased traffic and congestion alters time allocations and increases 

exposures to the two traffic-related air pollutants examined.  Time shifts depend on an 

individual’s age and employment status, and also show weekend/weekday effects, but 

most individuals adjust for time in traffic by spending less time at home.  Exposures 

of benzene and PM2.5 calculated for several traffic/congestion scenarios show that 

traffic- and congestion-related exposures can account for a significant fraction of the 

cumulative exposure.  The analyses presented in this paper can be used to help 

evaluate interventions designed to reduce congestion, determine the cost-effectiveness 

of low-maintenance roadway and infrastructure materials that reduce congestion, and 

for other applications in exposure and risk assessment. 

 42



Table 2-1. Definitions of variables and percentage of respondents answering in the 
affirmative.  Sample size = 8,297.   

Variable Name Definitions Percent
(%)

Time in microenvironment Minutes in microenvironments NA
Age Individual age:   0-4 years 5.8

                           5-17 years 14.5
                           18-64 years 64.9
                           >64 years 14.9

Sex Male=1; Female=0 46.1
Employment Full-time =1; other=0 44.1
status Part-time=1; other=0 8.6
Education High School =1; other=0 28.3

Less than college =1; other=0 19.6
College or Post College =1; other=0 23.6

Summer Summer=1; other=0 26.3
Fall Fall=1; other=0 23.0
Winter Winter=1; other=0 25.2
Day type Weekend=1; Weekday=0 33.7  

 43



Table 2-2. Time shift coefficients between the vehicle and other microenvironments.  Results from robust regression without normalization.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 

 
 
 

Population group Category Home Workplaces Shopping BarsRes School/Public
Bldg.

Indoor-
other Near-road

Outdoors-
other

Coef. -1.76 (0.21) -j - - - - - -

Ni 319 - - - - - - -

R2 0.24 - - - - - - -
Coef. -1.05 (0.17) - - 0.30 (0.06) -0.23 (0.10) - - -

N 687 - - 112 545 - - -
R2 0.07 - - 0.07 0.01 - - -

Coef.   -1.65 (0.20) - 0.23 (0.14)k - - - 0.15 (0.05) -
N 303 - 112 - - - 102 -
R2 0.17 - 0.05 - - - 0.03 -

Coef. -0.68 (0.07) -0.51 (0.07) 0.14 (0.05) - -1.44 (0.20) -0.82 (0.22) - -
N 2540 1251 709 - 726 443 - -
R2 0.05 0.02 0.01 - 0.1 0.16 - -

Coef. -1.55 (0.13) - - - - - - -
N 1175 - - - - - - -
R2 0.14 - - - - - - -

Coef. -1.44 (0.14) - - - - - - -
N 620 - - - - - - -
R2 0.18 - - - - - - -

Coef. -1.68 (0.20) - 0.27 (0.11) - 0.47 (0.21) - - -
N 310 - 119 - 115 - - -
R2 0.18 - 0.03 - 0.03 - - -

Coef. -1.12 (0.11) - - - - - -0.08 (0.04)l -
N 808 - - - - - 214 -
R2 0.25 - - - - - 0.02 -

Older adul

a. Younger children (0-4 yrs of age); b. Older children (5-17 yrs of age) on weekdays; 
c. Older children (5-17 yrs of age) on weekends; d. Working adults (18-64 yrs of age) on weekdays; 
e. Working adults (18-64 yrs of age) on weekends; f. Non-working adults (18-64 yrs of age) on weekdays; 
g. Non-working adults (18-64 yrs of age) on weekends; h. Retirees above 64; i. sample size; 
j. Not statistically significant at 0.05 significant level; k.p=0.09; l.p=0.06.                                   

tsh

Weekday old
childrenb

Weekday working
adultsd

Young childrena

Weekend old
childrenc

Weekend working
adultse

Weekend non-
working adultsg

Weekday non-
working adultsf
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Table 2-3. Estimated benzene exposures (mean and standard deviation in parentheses) for working adults on weekdays for three scenarios:  no 
travel delay, 9 min of travel delay, and 30 min of travel delay.  

Duration Duration Duration
(µg m-3) (min)a (µg person-day -1) (%) (min) (µg person-day -1) (%) (min) (µg person-day -1) (%)

In-cabin - Free flow 8.3 (5.9) 36.3 2.4 (1.7) 10.5 (7.4) 27.3 1.8 (1.3) 7.5 (5.6) 6.3 0.4 (0.3) 1.6 (1.3)
In-cabin - Congestion 12.8 (9.3) 0.0 0.0 0.0 18.0 1.8 (1.3) 7.6 (5.5) 60.0 6.1 (4.4) 21.5 (12.3)
Near-road 2.8 (2.2) 61.3 1.4 (1.0) 6.1 (4.9) 61.3 1.4 (1.0) 5.8 (4.6) 61.3 1.4 (1.0) 5.3 (4.2)
Home & other Indoors 2.2 (1.6) 980.1 16.3 (12.5) 57.2 (16.8) 971.1 16.2 (12.4) 54.2 (16.6) 950.1 15.8 (12.2) 49.0 (17.0)
Workplaces 2.4 (1.5) 254.8 4.7 (3.0) 19.8 (11.5) 254.8 4.7 (3.0) 18.8 (10.9) 254.8 4.7 (3.0) 17.2 (10.1)
Outdoor 1.7 (0.8) 107.5 1.4 (0.7) 6.4 (4.0) 107.5 1.4 (0.7) 6.1 (3.7) 107.5 1.4 (0.7) 5.5 (3.4)
Total - 1440.0 26.2 (13.1) 100.0 1440.0 27.2 (13.1) 100.0 1440.0 29.7 (13.5) 100.0

Microenvironment
Exposure Exposure Exposure

Concentrations
With 30 min travel delayWithout travel delay With 9 min travel delay

 
a. Average durations of each microenvironment were normalized to meet time budget of 1440 min. 
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Table 2-4. Estimated PM2.5 exposures.  Otherwise as Table 2-3  

Duration Duration Duration
(µg m-3) (min)a (µg person-day -1) (%) (min) (µg person-day -1) (%) (min) (µg person-day -1) (%)

28.5 (12.0) 36.3 8.0 (5.2) 7.3 (5.1) 27.3 6.0 (3.9) 5.4 (3.9) 6.3 1.4 (0.9) 1.2 (0.9)
35.4 (15.5) 0.0 0.0 0.0 18.0 5.0 (3.2) 4.5 (3.2) 60.0 16.7 (10.6) 13.7 (8.4)
14.3 (11.3) 61.3 6.8 (5.4) 6.2 (5.0) 61.3 6.8 (5.4) 6.0 (4.8) 61.3 6.8 (5.4) 5.7 (4.5)
10.7 (7.8) 980.1 82.5 (61.4) 60.5 (15.6) 971.1 81.7 (60.9) 58.8 (15.6) 950.1 79.9 (59.5) 55.2 (15.9)
9.5 (7.1) 254.8 19.3 (14.4) 16.7 (10.6) 254.8 19.3 (14.4) 16.2 (10.3) 254.8 19.3 (14.4) 15.5 (9.9)
11.9 (5.9) 107.5 10.0 (5.0) 9.3 (5.6) 107.5 10.0 (5.0) 9.1 (5.4) 107.5 10.0 (5.0) 8.6 (5.1)

- 1440.0 126.7 (63.8) 100.0 1440.0 128.9 (63.3) 100.0 1440.0 134.2 (62.8) 100.0

With 30 min travel delay
Exposure Exposure Exposure

Concentrations
Without travel delay With 9 min travel delay

 
a. Average durations of each microenvironment were normalized adjusted to meet time budget of 1440 min. 
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Table S2-1. Descriptive statistics of time allocations for NHAPS by age groups.   

47 

Continuous Variables
No. of

Responsea Mean SDb Minc P25d Median P75e Maxf No. of
Outliersg

Home (min) 8297 1018.8 269.5 30.0 810.0 1005.0 1250.0 1440.0 5
Workplaces  (min) 1697 401.6 228.5 1.0 210.0 495.0 555.0 1037.0 0
Shopping  (min) 2391 116.5 143.5 1.0 30.0 60.0 135.0 1080.0 241
Bars or restaurants  (min) 1926 113.5 135.8 1.0 40.0 60.0 120.0 925.0 210
School/public bldg.  (min) 2624 277.9 202.0 1.0 100.0 235.0 435.0 1015.0 7
Indoor-other  (min) 982 209.8 216.6 1.0 55.0 120.0 337.0 1040.0 107
Near road  (min) 2437 80.3 141.5 1.0 10.0 30.0 65.0 985.0 411
Outdoor-other (min) 3508 190.4 186.3 1.0 60.0 125.0 275.0 1290.0 378
In a vehicle (min) 6762 76.4 51.8 1.0 35.0 64.0 105.0 240.0 460

Home (min) 478 1219.4 211.2 285.0 1080.0 1265.0 1410.0 1440.0 3
Workplaces  (min) 10 26.9 19.6 5.0 10.0 22.5 40.0 60.0 0
Shopping  (min) 106 91.0 78.7 5.0 40.0 65.0 110.0 420.0 9
Bars or restaurants  (min) 57 62.8 48.8 4.0 35.0 55.0 80.0 330.0 1
School/public bldg.  (min) 96 212.3 195.8 1.0 59.0 149.5 352.5 900.0 1
Indoor-other  (min) 25 95.3 77.1 10.0 25.0 85.0 160.0 270.0 0

g. The number of outliers according to Tukey 1.5 IQR criteria.

The total population

Age less than 4 (inclusive)

Near road  (min) 96 45.5 59.2 1.0 10.0 30.0 60.0 420.0 6
Outdoor-other (min) 223 202.5 170.3 1.0 85.0 145.0 300.0 980.0 7
In a vehicle (min) 319 61.6 49.4 1.0 30.0 45.0 80.0 240.0 20

Home (min) 1199 995.2 229.7 190.0 835.0 970.0 1165.0 1440.0 4
Workplaces  (min) 29 132.8 179.0 1.0 10.0 40.0 195.0 625.0 3
Shopping  (min) 246 84.0 88.8 1.0 20.0 60.0 120.0 530.0 12
Bars or restaurants  (min) 188 68.0 65.3 2.0 30.0 45.0 85.0 360.0 16
School/public bldg.  (min) 708 361.9 152.7 1.0 275.0 400.0 440.0 935.0 16
Indoor-other  (min) 118 131.9 147.7 1.0 40.0 93.5 160.0 910.0 7
Near road  (min) 507 47.3 70.7 1.0 10.0 22.0 50.0 540.0 58
Outdoor-other (min) 701 193.5 177.0 1.0 65.0 145.0 265.0 1250.0 33
In a vehicle (min) 990 65.3 47.0 1.0 30.0 55.0 90.0 240.0 24

Home (min) 5385 965.8 268.7 30.0 765.0 917.0 1185.0 1440.0 3
Workplaces  (min) 1548 427.3 215.3 1.0 300.0 505.0 561.5 1037.0 2
Shopping  (min) 1681 128.4 159.7 1.0 30.0 60.0 150.0 1080.0 188
Bars or restaurants  (min) 1449 124.6 148.0 1.0 40.0 65.0 135.0 925.0 160
School/public bldg.  (min) 1478 271.4 218.2 1.0 90.0 195.0 460.0 1015.0 0
Indoor-other  (min) 739 236.4 230.8 1.0 60.0 125.0 432.0 1040.0 1
Near road  (min) 1529 97.7 166.3 1.0 10.0 30.0 75.0 985.0 228
Outdoor-other (min) 2072 191.7 192.5 1.0 50.0 120.0 280.0 1130.0 82
In a vehicle (min) 4645 80.3 52.2 1.0 40.0 70.0 110.0 240.0 90

Home (min) 1235 1195.3 212.4 60.0 1060.0 1230.0 1380.0 1440.0 5
Workplaces  (min) 110 144.7 196.1 1.0 10.0 32.5 210.0 705.0 6
Shopping  (min) 358 90.5 91.4 1.0 30.0 60.0 120.0 655.0 19
Bars or restaurants  (min) 232 93.8 93.6 3.0 45.0 60.0 105.0 750.0 21
School/public bldg.  (min) 342 150.5 127.4 5.0 60.0 115.5 195.0 710.0 24
Indoor-other  (min) 100 134.0 138.1 2.0 45.0 80.0 162.5 610.0 13
Near road  (min) 305 58.8 89.2 1.0 10.0 30.0 60.0 560.0 28
Outdoor-other (min) 512 176.1 179.3 1.0 45.0 120.0 262.5 1290.0 17
In a vehicle (min) 808 73.3 52.5 4.0 30.0 60.0 100.0 240.0 24
a. The number of respondent who spent at least 1 minute in the corresponding microenvironment.
b. Standard deviation; c. minimum values; d. 25th percentile values; e. 75th percentile values; f. Maximum values;

Age greater than 65  (inclusive)

Age between 5 and 17  (inclusive)

Age between 18 and 64  (inclusive)

 



Table S2-2. Summary of benzene concentrations in major microenvironments (Those 
in bold have been selected; unit: µg m-3)  

Category Sduty Area Sample size Note
Min Mean Median Max SD

Batterman et al. (2002) Detroit, MI 74 - 4.5a - 10.8 3.0 Bus commutes
Chan et al.(1991) Raleigh, NC 17 - - 10.8 - 6.9 Urban traffic; in morning

18 - - 9.1 - 6.9 Urban traffic; in evening

Fedoruk et al. (2003) Los Angeles, CA 1 - 2.4 - - - Moderate heat / static to 90-min
driving condition

Fedoruk et al. (2003) Foxboro, MA 3 - 1.9 - - - Moderate heat / static conditions
Fedoruk et al. (2003) Foxboro, MA 3 - 10.0 - 14.0 5.8 Extreme heat / static conditions
Fitz et al. (2003) Sacramento, CA 20 - - -  9.5c - Bus commutes

Lawryk et al. (1996) New Jersey 32 - 16.2b - - 19.5 Mean speed=72kph
Riediker et al. (2003) Raleigh, NC 25 - 12.8 - 43.1 10.2
Rodes et al. (1998) Sacramento, CA 29 5.7 6.5 - 7.4 - Freeway non-rush hours

Los Angles, CA 29 13.8 14.4 - 15.1 - Freeway non-rush hours
Chan et al.(1991) Raleigh, NC 18 - - 11.6 - 6.9 Interstate higway traffic; in morning

16 - - 15.9 - 6.9 Interstate higway traffic; in evening
Lawryk et al. (1996) New Jersey 32 26.4 - - 27.1 Mean speed= 16 kph
Rodes et al. (1998) Sacramento, CA 29 7.4 10.3 - 13.9 Freeway rush hours

Los Angles, CA 29 9.8 14.4 - 21.9 Freeway rush hours
Chan et al.(1991) Raleigh, NC 6 - 6.8 7.1 8.9 1.5 Sidewalk
Riediker et al. (2003) Raleigh, NC 25 - 0.6 - 2.6 1.0 Near major traffic routes
Rodes et al. (1998) Sacramento, CA 20 1.5 1.9 - 5.9 - Downwind distance to road: 3-10m

Los Angles, CA 20 0.0 5.4 - 20.0 - Downwind distance to road: 3-10m
Sapkota et al. (2003) Baltimore, MD 56 - 12.7 - 33.0 8.2 Tunnel roadside
Adgate et al. (2004a) Minneapolis,MN 282 - 4.6 3.3 12.7d 0.3 Screening-phase

Adgate et al. (2004a) Minneapolis,MN 101 - 3.9 3.1 7.5d 0.3 Intensive-phase

Adgate et al. (2004b) Minneapolis,MN 88 - - 2.1 7.2e - Spring

Adgate et al. (2004b) Minneapolis,MN 93 - - 2.2 6.2e - Winter

CARB (1992) Woodland, CA 104 - - 2.2 8.3e -
Jia et al. (2008) Southeast MI, U.S. 252 - 2.8 1.2 47.4 -
Mukerjee et al. (1997) Brownsville, TX 9 - - 2.4 - -
Payne-Sturges et al. (2004) Baltimore, MD 33 - 3.7 - 8.3e -

Phillips et al. (2005)
Oklahoma, Tulsa,
Ponca and Stillwater,
OK

40 - 0.6 - 14.0 - Day

Phillips et al. (2005) 40 - 1.2 - 110.0 - Night

Sax et al. (2004) Los Angles, CA 40 - 2.5 - 6.3 1.3 Fall
Sax et al. (2004) Los Angles, CA 32 - 4.9 - 17.0 2.8 Winter
Sax et al. (2004) New York, NY 30 - 1.7 - 6.3 1.2 Summer
Sax et al. (2004) New York, NY 36 - 5.3 - 39.0 6.5 Winter

Sexton et al. (2004) Minneapolis/St Paul
metro, MN 292 - 5.8 1.9 15.3e -

Van Winkle et al (2001) Chicago, IL 48 - 4.1 2.9 34.0 4.8

Weisel et al. (2005)
Los Angles, CA;
Houston, TX and
Elizabeth NJ

554 - 3.5 2.2 36.4 5.2

Adgate et al. (2004a) Minneapolis,MN 47 - - 0.6 1.0e - Spring

Adgate et al. (2004a) Minneapolis,MN 39 - - 0.6 1.6e - Winter
Godwin et al. (2007) Southeat MI 65 - 0.1 - 1.6 -
Whitmore et al. (2003) CA 73 - 1.8 - 4.1d -
Daisey et al. (1994) San Francisco, CA - - 1.0 - 2.7 -
Girman et al. (1999) U.S. >200 0.6 - 3.7 17.0 -
Adgate et al. (2004b) Minneapolis,MN 10 - - 1.1 1.6e - Spring

Adgate et al. (2004b) Minneapolis,MN 8 - - 1.3 2.2e - Winter
CARB (2003) Barrio Logan, CA 69 - 3.2 - 10.0 -
CARB (2003) Boyle Heights, CA 74 - 3.9 - 22.0 -
CARB (2003) Crockett, CA 81 - 0.1 - 1.9 -
CARB (2003) Fresno, CA 65 - 1.8 - 8.2 -
CARB (2003) Fruitvale, CA 83 - 2.0 - 7.5 -
CARB (2003) Wilmington, CA 60 - 2.2 - 9.5 -
EPA (2007b) U.S. 152 - 1.5 - 6.1c -
Jia et al. (2008) Southeast MI 226 - 1.1 - 4.4 -
Kinney et al. (2002) New York, NY 35 - 1.3 - - 1.0 Summer
Kinney et al. (2002) New York, NY 36 - 2.6 0.9 - 1.4 Winter

Mohamed et al. (2002) 13 sites, LA, TX VT
and NJ 30 - - - 4.1c -

Payne-Sturges et al. (2004) Baltimore, MD 33 - 1.8 - 3.1e

Riediker et al. (2003) Raleigh, NC 50 - 0.3 1.8 2.0 0.6
Rodes et al. (1998) Sacramento, CA 12 - - - 2.9c - Samples taken during commuting

times
Rodes et al. (1998) Los Angles, CA 16 - - - 6.6c - Samples taken during commuting

times
Sexton et al. (2004) Minneapolis/St Paul

metro, MN 132 - 1.6 - 3.3e -

SCAQMD (2000) South coast, CA 60 - 3.3 - - -

Weisel et al. (2005)
Los Angles, CA;
Houston, TX and
Elizabeth NJ

555 - 2.2 1.7 11.1 2.1

Zielinska et al. (1998) AZ 250 - - - 39.0 - Several urban and rural areas
a. The bold numbers were chosen in calculating wegihted averages; b The unbold numbers indicated the studies were eliminated; 
c. Maximum average; d. 95th percentile; e. 90th percentile.

Ambient

Home

School

Office

Concentrations(µg m-3)

In-cabin in non-
congestion

In-cabin in
congestion

Near-road
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Table S2-3. Summary of PM2.5 concentrations in major microenvironments (Those in bold have been selected; unit: µg m-3)  

Category Sduty Area Sample size Note

Min Mean Median Max SD
Riediker et al. (2003) Raleigh, U.S. 25 6.8 23.0 - 58.7 10.8
Rodes et al. (1999) Sacramento, U.S. 29 12.2 14.4 - 16.6 - Freeway non-rush hours 

Los Angles, U.S. 29 50.5 54.7 - 59.0 - Freeway non-rush hours 
Adams et al. (2001) London, UK 26 9.3 - 26.3 46.6 - Summer

18 5.9 - 20.1 80.3 - Winter
Rodes et al. (1999) Sacramento, U.S. 29 3.9 14.7 - 21.8 - Freeway rush hours

Los Angles, U.S. 29 36.1 45.4 - 56.0 - Freeway rush hours
Adams et al. (2001) London, UK 45 14.3 - 45.6 97.4 - Summer

37 6.6 - 31.5 94.4 - Winter
Riediker et al. (2003) Raleigh, U.S. 25 8.9 29.9 - 62.3 12.7 Near major traffic routes
Rodes et al. (1999) Sacramento, U.S. 20 0.0 9.6 - 19.9 -

Los Angles, U.S. 20 35.3 44.7 - 76.0 -
Levy et al. (2003) Roxbury, U.S. 307 - 52.0 54.0 - 22.0
Reponen et al (2003) Cincinnati, U.S. 24 - 22 - - 14.0 80m from highway

Home Meng et al (2005)
Los Angles, CA;
Houston, TX and
Elizabeth NJ

- - 17.6 14.4 - 12.6

Ambient EPA (2008) U.S. - - 11.9 - - - Based on 774 sites

Near-road

Concentrations(µg m-3)

In-cabin in non-
congestion

In-cabin in
congestion
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Chapter 3
Vehicle Emissions in Congestion: Comparison of Work Zone, 

Rush Hour and Free-flow Conditions  
 

3.1 Abstract  
Traffic congestion frequently occurs during rush hour periods and in work zones, 

and it can account for a significant share of vehicle emissions and air quality impacts.  

This study estimates vehicle emissions from light-duty vehicles (LDVs) and heavy-duty 

vehicles (HDVs) in work zone and rush hour congestion, which are compared to 

emissions under free-flow traffic conditions.  Field experiments collected second-by-

second vehicle speed and acceleration data on typical weekdays along a freeway segment 

that experienced both rush hour and work zone congestion.  Collected data were 

smoothed and then simulated using the Comprehensive Modal Emissions Model (CMEM) 

to generate second-by-second emissions.  For LDVs, the transitional period between free-

flow and congestion conditions was associated with the highest emission rates when 

expressed as g mi-1 vehicle-1 of hydrocarbon (HC), carbon monoxide (CO) and nitrogen 

oxide (NOx); the lowest emission rates were associated with low speed work zone 

congestion.  In contrast, work zone congestion consumed the most fuel and produced the 

most carbon dioxide (CO2), while rush hour congestion consumed the least fuel and 

yielded the lowest CO2 emissions.  Results for HDVs differed in that work zone 

congestion was associated with the highest emissions of HC, CO and CO2, as well as the 

highest fuel consumption, while NOx emission rates were similar under the different 

traffic conditions.  However, considering aggregated or link-based emissions, the 

emission density estimates expressed as g mi-1 s-1 show rush hours had the highest rates of 

HC, CO and CO2 emissions, as well as fuel consumption.  The differences between 

congestion and free-flow conditions highlight the importance of accounting for 

 56



congestion in emission, exposure and health risk evaluations, as well as transportation 

planning. 

3. 2 Keywords  
Air quality; CMEM; Congestion; Fuel consumption; Vehicle emissions; Work zone.   

3.3 Introduction  
 Increased traffic in urban transportation networks in recent years has led to 

widespread traffic congestion, which has now become nearly ubiquitous in many urban 

areas (Schrank and Lomax, 2007; World Bank, 2006).  Since 1980, for example, urban 

vehicle-miles traveled (VMT) in the U.S. grew 40% faster than urban capacity (BTS, 

2006).  Such growth in traffic demand and the congestion that results not only affects the 

mobility of travelers, but also increases vehicle emissions of carbon monoxide (CO), 

carbon dioxide (CO2), volatile organic compounds (VOCs) or hydrocarbons (HCs), 

nitrogen oxides (NOx), and particulate matter (PM).  Emissions increase as vehicles 

spend more time in congestion, idling or crawling, and undergoing numerous acceleration 

and deceleration events.  While vehicle emission data are available in emission 

inventories and other datasets that have been compiled for many areas, these data are 

usually based on models that do not explicitly account for congestion.  Information 

regarding emissions, as well as near-road concentrations, exposures and health risks that 

pertain to congestion, is very limited.   

Vehicles are the dominant source of many air pollutant emissions in urban areas 

(TRB, 2002), and congestion has the potential to significantly worsen ambient air quality, 

particularly near major roadways.  Impacts due to vehicle emissions have been receiving 

increasing attention, and many recent epidemiological studies show elevated risks of non-

allergic respiratory morbidity, cardiovascular morbidity, cancer, allergic illnesses, 

adverse pregnancy and birth outcomes, and diminished male fertility for drivers, 

commuters and individuals living near roadways (WHO, 2005).  For a typical working 

adult, we have previously estimated that a 30 min day-1 travel delay accounts for 21 ± 

12% of the total daily benzene exposure and 14 ± 8% of PM2.5 exposure (Zhang and 

Batterman, 2009).  Means to reduce congestion-related impacts on exposures and health 

risks are being investigated, including congestion pricing and traffic controls.  As 
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examples: in Stockholm, congestion pricing in the center city is estimated to avoid 20-25 

deaths annually in the inner city and 25-30 deaths annually in the metropolitan area 

(Eliasson et al., 2009); and in London, congestion pricing is predicted to gain 183 years 

of life per 100,000 population in the congestion charging zone, and 1,888 years of life in 

the greater London area (Tonne et al., 2008).   

The aim of this paper is to investigate effects of congestion on vehicle emissions 

and fuel consumption.  We present results of a field study that measured second-by-

second speed on a highway segment in which congestion events were caused by both 

work zone and rush hour activities.  After providing some background on traffic 

congestion and vehicle emissions, we describe field study design, emission models, and 

data analysis methods.  The results and discussion present the measured speed and 

acceleration data, predicted emission rates from CMEM as well as a standard constant-

speed emission model, the application of these models in several case studies, and a 

sensitivity analysis.  The conclusions summarize results and suggest further research 

needs.   

3.4 Background  

3.4.1 Traffic congestion and emissions 

Traffic congestion occurs when vehicle volume exceeds road capacity, which 

slows vehicle speeds, sometimes to a crawl or stop.  The primary causes of congestion 

include physical bottlenecks (40% of cases in the U.S.), traffic incidents (25%), work 

zones (10%), weather (15%), traffic control devices (5%), special events (5%), and 

fluctuations in normal traffic (CAMSYS and TTI, 2005).   

Pollutant emissions in congestion, especially in work zones, have received only a 

limited amount of attention, although a few experimental studies have been conducted.  

Sjodin et al. (1998) showed an up to 4-fold increase in CO emissions, a 3-fold increase in 

HC emissions, and a 2-fold increases of NOx emissions with congestion (average speed, 

13 mph) compared to uncongested conditions (average speed, 38-44 mph).  De Vlieger et 

al. (2000) indicated that CO, HC and NOx emissions and fuel consumption of passenger 

cars in rush hour increased 10%, 10%, 20% and 10%, respectively, compared to smooth 

conditions, and the changes in emissions and fuel consumption varied by vehicle and 
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road type.  Frey et al. (2001) used on-board measurements of CO, NO and HC, and found 

that emissions increased by 50% in congestion.  Using dynamometer tests and a driving 

cycle with more acceleration and a higher average speed than the U.S. EPA’s standard 

Federal Test Procedure (FTP), CO, HC and NOx emissions exceeded FTP results by 

factors of 4, 2 and 2, respectively (Department of Transport and Regional Services, 2001).  

Anderson et al. (1996) found that congestion increased CO, HC and NOx emissions by 

71%, 53% and 4% respectively, compared to free-flow conditions.  Bushman et al. (2008) 

estimated CO, NOx and HC emissions rates for cars and trucks due to travel delay caused 

by a work zone.  Kendall (2004) and Zhang (2009) used a traffic model (the Kentucky 

User Cost Program version 1.0, KyUCP) to estimate the average speed in work zones, 

which then was used to estimate emissions using the Motor Vehicle Emissions Factor 

Model version 6.2 (MOBILE6.2).  However, both the idling emission factors provided by 

EPA and the MOBILE6.2-derived emission factors used incompletely represented work 

zone conditions, which included periods of acceleration, deceleration, and idling, as well 

as some medium speeds.  Overall, these studies suggest that congestion elevates vehicle 

emissions, but that there is considerable uncertainty in quantifying changes due in part to 

the specific test vehicles tested and differences in traffic conditions. 

Emission models based on average speeds do not explicitly account for 

congestion since they do not incorporate input parameters that describe the presence or 

nature of congestion (Smit et al., 2008).  In contrast, driving pattern-based emission 

models can account for congestion by specifying instantaneous speed and 

acceleration/deceleration profiles as model inputs.  Such models require extensive input 

data and are not yet widely used.  Details of both modeling approaches are described in 

the following emission modeling section.   

The lack of information regarding congestion-related emissions is an important 

gap in our understanding of vehicle emissions, especially given the growing frequency 

and severity of congestion.  The relationship between congestion and vehicle emissions is 

complex (TRB, 2002) and the studies discussed previously show considerable variability.  

It is clear that improvements in both fuels and vehicle technology, such as low sulfur 

fuels and 3-way catalytic converters, have substantially reduced emissions on an 

individual vehicle basis.  However, overall emissions may increase due to rapid growth in 
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vehicle miles traveled (VMT) and congestion (Nam et al., 2002; Panis et al., 2006; Smit, 

2006).  Emission rates depend on vehicle characteristics (e.g., model year, engine, fuel 

type, and maintenance) and the distributions of speed and acceleration, which in turn 

depend on road type, traffic flow and other factors (TRB, 2002).  In congestion, driving 

patterns are altered, and the norm in stop-and-go traffic is frequent acceleration and 

deceleration (Cappiello, 2002; Smit, 2006; TRB, 2002).  Acceleration increases the load 

on engines, and engines operated under load in a fuel-rich and high emission mode can 

overload catalytic converters (TRB, 1995), which increases CO and HC emissions.  NOx 

emissions are less likely affected since these are maximized under high temperatures and 

fuel-lean modes (TRB, 1995).  In addition, PM and HC emissions can increase under 

deceleration due to the presence of unburned fuel (Cappiello, 2002).   

3.4.2 Emission modeling 

Vehicle emissions are commonly estimated using so-called “macroscopic” 

emission models, such as MOBILE6.2 that are based on standardized driving cycles 

intended to represent typical driving patterns along major types of roads (e.g., freeways, 

arterials, ramps, and local roads; EPA, 2003; Pierce et al., 2008).  Pollutant emissions are 

estimated from measurements on test vehicles subjected to specific driving cycles as 

simulated on a chassis dynamometer.  Emissions associated with specific traffic 

conditions are then derived by accounting for differences between the desired average 

traffic speed and other environmental parameters and those associated with the 

standardized driving cycle.  MOBILE6.2 and other macroscopic models are widely used 

in emission inventory and other regional applications.  However, the use of such models 

to estimate emissions for specific roadways has been criticized.  These models do not 

consider the full range of driving patterns that may be encountered (Joumard et al., 2000).  

Since emissions are based on an average speed in fixed driving cycles, there is only 

limited ability to consider alternate driving patterns.  While different driving cycles can 

produce identical average speeds, emissions depend strongly on the specific acceleration 

and deceleration patterns.  Actual emissions can thus be significantly underestimated 

since acceleration, deceleration and aggressive driving patterns are not fully represented 

(Joumard et al., 2000).  In addition, idling emissions in MOBILE6 are not based on idle 

testing, but rather on emission rates measured at a speed of 2.5 mph.  Overall, 
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macroscopic models may inaccurately estimate emissions associated with congestion for 

specific road segments and traffic conditions (Smit et al., 2008).  

“Microscopic” models provide an alternative and in some ways ideal approach to 

estimate vehicle emissions in congestion and other driving conditions.  Models such as 

the Comprehensive Modal Emissions Model (CMEM; Scora et al., 2006) and the new 

EPA Motor Vehicle Emission Simulator (MOVES; EPA, 2009) can estimate emissions 

for temporal scales ranging from second to hours, and for specific vehicles to vehicle 

fleets.  Microscopic models explicitly account for idling, accelerating, cruising and 

decelerating engine operating conditions, and then they simulate second-by-second speed 

and power fluctuations of vehicles on a road network.  Temporal and vehicular 

aggregations are necessary since these models are designed to predict emissions for 

vehicle categories (Scora et al., 2006).  On the downside, microscopic models tend to be 

data and computationally intensive (Cappiello, 2002).   

3.5 Methods  

3.5.1 Field study  

Instantaneous traffic speed and position data were collected on a 5 mile segment 

of Interstate 94 in Ann Arbor, Michigan, selected for both convenience and because it 

had a nearby permanent traffic recorder (PTR) operated by the Michigan Department of 

Transportation (MDOT; Figure 3-1).  The portion of the segment west of US-23 had two 

lanes in each direction; the segment east of US-23 had three lanes in each direction.  The 

east- and west-bound annual average daily traffic (AADT) and volumes for these 

segments were 78,300 and 91,300 vehicles day-1, respectively; the commercial average 

daily traffic (CADT) volumes were 8,000 and 8,900 vehicles day-1 (MDOT, 2008).  

Heavy diesel trucks accounted for nearly 10% of the total traffic.  The east-bound traffic 

volumes measured during the field study averaged 3099, 2153 and 4040 vehicles hr-1 

(vph) during morning, midday and evening periods, respectively (work zone period 

excluded). A 70 mph speed limit is posted for passenger cars on the freeway segment, 

and 60 mph for trucks.  On two study days (Sept. 24 and 25, 2008), one east-bound lane 

was closed from 9 am to 3 pm for road maintenance, leaving two lanes merging to one on 

the east-bound direction, and three lanes merging to two on the east-bound direction.  The 
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resulting work zone congestion lowered average speeds from 70 mph for cars and 63 mph 

for trucks to 21 mph; east-bound traffic volumes decreased only slightly, from 2153 to 

1961 vph.  

Data were collected on Tuesdays, Wednesdays and Thursdays to better reflect 

weekday traffic patterns and to avoid weekend effects on three consecutive weeks in fall 

2008:  September 16-18, September 23-25, and September 30-October 2.  Data were 

collected during morning (7:00-9:00) and evening rush hour periods (16:00-18:00), and a 

mid-day comparison period (11:00-13:00).  Speed and acceleration data were collected 

by repeatedly driving a vehicle back and forth on the freeway segment using the floating 

car technique.  This technique, frequently used in traffic studies, is designed to 

characterize average vehicle speed and acceleration profiles (Dion, 2007).  This protocol 

involves passing as many vehicles as those that passed the test vehicle.  Given that 

behaviors of cars and (large) trucks can differ significantly, separate profiles were 

obtained for cars and trucks by following them separately.  In each 2-hr study period, the 

test vehicle typically made 5 to 9 runs along the segment and covered 34 to 63 miles, 

depending on the time of day and the amount of congestion encountered.   

 Two test cars were used: a 2001 Ford Taurus with 25,000 miles (weeks 1 and 2); 

and a 2005 Ford Taurus four-door sedan with 40,000 miles (week 3).  Both cars were 

rented from the University of Michigan’s fleet and were in good operating condition.  

Vehicle speed and location were determined every 1 s using a GPS unit  (GPS18 USB 

receiver, Garmin Inc., Olathe, Kansas, US) placed on the car’s roof to improve signal 

quality.  The receiver was linked to a laptop via Garmin nRoute software, which stored 

speed profiles and location information on a second-by-second basis.   

3.5.2 CMEM emission modeling and response surface analyses 

The microscopic model used in this research, the Comprehensive Modal Emissions 

Model (CMEM), is a physically-based, power-demand model (Scora et al., 2006).  The 

latest version of the model (version 3.0) predicts fuel consumption and emissions of CO, 

HC, NOx and CO2 in different modes of vehicle operation, e.g., idle, cruise, acceleration 

and deceleration, and includes two similarly structured sub-models for light-duty vehicles 

(LDVs) and heavy-duty diesel vehicles (HDVs).  Each submodel is composed of six 

modules: engine power demand, engine speed, air/fuel ratio for LDVs or engine control 
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unit for HDVs, fuel rate, engine-out emissions, and catalyst pass fraction for LDVs or 

after-treatment pass fraction for HDVs.  CMEM has been calibrated using data from the 

National Cooperative Highway Research Program, which includes both engine-out and 

tailpipe emissions of CO, HC, NOx and CO2 for over 400 vehicles in 35 

vehicle/technology categories.  The model’s inputs include traffic composition, vehicle 

and operation variables, e.g., speed, acceleration, and road grade, and model-calibrated 

parameters, e.g., cold start coefficients and engine friction.     

To show the sensitivity of CMEM to inputs, CMEM predictions for all possible 

speed and acceleration combinations were visualized using a response surface analysis 

(also called emission map).  Emissions were predicted over an evenly spaced grid of 80 

speed categories (1 to 80 mph, every 1 mph) and 81 deceleration/acceleration classes (-4 

to 4 mph s-1, every 0.1 mph s-1).  Contour plots of the resulting emission factors were 

generated using R 2.7.2 (RFSC, 2008) and Matlab 7.8 (R2009a, MathWorks, Inc., Natick, 

MA).   

3.5.3 Emission estimates for the case study 

Link-based emissions, defined as emissions per distance traveled, were estimated 

for cruise, congestion and other traffic flow conditions using the second-by-second field 

data.  This analysis was restricted to the 147 east-bound trips conducted on I-94 because 

only trips in this direction experienced both work zone and rush hour congestion.  

Estimating emissions involved the following steps: (1) Vehicle speed and position data 

collected on the initial and the final 800 m portions of the segment were excluded to 

avoid ramp effects given that our primary goal was to capture speed/acceleration profiles 

on the freeway.  (2) Speed and position data were checked to identify errors and outliers 

using criteria proposed by Dion (2007), which defined valid ranges for acceleration or 

deceleration for various speed intervals, and any errors or outliers detected were replaced 

by linear interpolations.  (3) Observed speeds were smoothed using three second equal-

weight moving averages (Dion, 2007), a step taken because GPS data can includes errors, 

e.g., signal loss and poor electrical contact between the receiver and the laptop.  (4) 

Acceleration/deceleration was calculated as the difference between adjacent speed values 

in successive one-second intervals.  (5) Speed/acceleration profiles for each trip were 

aggregated for analysis.  Initially, profiles were grouped by trip average speed, followed 
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vehicle type (LDV or HDV), and time of day (morning, midday, afternoon), giving 21 

categories (shown in Table S3-1).  We analyzed emission rates for each speed bin, and 

then, according to the variations among different speed bins, we further aggregated 

results by vehicle type and four traffic conditions, primarily indicated by trip average 

speed:  speeds exceeding the speed threshold (65 mph for LDV, 60 mph for HDV) were 

considered as free-flow conditions;  speeds just below the speed threshold (60 to 65 mph 

for LDVs, 55 to 60 mph for HDVs) were considered as transitional conditions;  speeds 

well below the speed threshold (50 to 60 mph for LDVs, 39 to 55 mph for HDVs) and 

occurring during peak commuting times were considered as rush hour congestion; and 

lane closures resulting in low speeds (15 to 25 mph for both LDVs and HDVs) were 

considered as work zone congestion.  (6) Descriptive statistics of speed and acceleration 

were calculated for each grouping.  (7) Emissions for each category were calculated using 

CMEM simulations of the second-by-second speed and acceleration data.  

For further analysis of the speed/acceleration profiles, we calculated and plotted 

the joint probability distribution of the second-by-second speed and acceleration data 

using 1 mph speed bins (0 to 80 mph) and 0.1 mph s-1 acceleration bins (-4 to 4 mph s-1) 

in seven groups: LDVs and HDVs in the morning, midday and evening periods, and work 

zone periods.  We also evaluated an alternative and possibly simpler approach to estimate 

emissions, which also provided insight into the speed/acceleration – emissions 

relationship.  Emissions were estimated using the joint probability matrix representing the 

speed and acceleration data, which was multiplied by the CMEM response surface matrix 

representing CMEM outputs, and then divided by total travel miles.  This approach is 

demonstrated for selected scenarios, e.g., 70 - 75 mph speed range for LDVs at midday.   

A sensitivity analysis was conducted to examine the effect of averaging time (or 

smoothing) for the speed/acceleration data.  This analysis simulated emissions for LDVs 

for two speed ranges (20-25 and 70-75 mph, both at midday), and for HDVs using similar 

speed ranges (20-25 and 60-65 mph, again at midday).  Running averages using 1, 2, 3, 5, 

10, 50, 100 and 500 second intervals were derived from the cleaned data and imputed 

data, but without smoothing.  Emissions were estimated using CMEM simulations at each 

averaging time. 
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The link-based emission density (g mi-1 s-1), an indicator of emission intensity 

relevant to predicting near-road concentrations, was estimated using CMEM estimates for 

free-flow, rush hour and work zone conditions as the product of the emission factor (g mi-

1 vehicle-1) and the traffic volume (vehicles s-1).  We grouped both transitional and rush 

hour congestion periods into the rush hour period to obtain values typical of rush hour 

periods, e.g., 4 to 6 pm.  The calculation used estimated emission rates for LDVs and 

HDVs in this study and the time-specific east-bound traffic composition, namely, 8% 

HDVs and 92% LDVs at rush hour and 15% HDVs and 85% LDVs at midday, based on 

PTR counts in October, 2007.  (Classification data for the same period in 2008 were 

unavailable).  Traffic volumes used measurements for the segment corresponding to the 

same periods.   

3.5.4 Comparative analyses between CMEM and MOBILE6.2   

Emission estimates were calculated for LDVs and HDVs using CMEM and 

MOBILE6.2 assuming a constant average speed.  For MOBILE6.2, annual average 

emission factors were estimated using the average vehicle speed, the average of summer 

and winter emission factors, local estimates of vehicle age distributions, fuel sulfur and 

oxygenate contents (SEMCOG, 2006), and two vehicle categories (light duty gasoline 

vehicle, LDGV; and heavy duty diesel vehicle, HDDV).  CMEM’s vehicles categories, 

which differ from those in MOBILE6.2, use 26 categories for LDVs, broken down by 

vehicle technology, model year and mileage, weight and fuel (Scora et al., 2006).  Total 

LDV emissions were estimated using eight of these categories and the weights in Table 

3-1, which were based on local vehicle age distribution (SEMCOG, 2006) and the Tier 1 

and Tier 2 phase-in implementation schedules (1994 – 1997 for Tier 1 and 2004 – 2009 

for Tier 2) (EPA, 2000a, 2000b).  CMEM did not include HDVs produced after the 2002 

model year, and thus we chose the 1998-2002 HDV category, thus both older and newer 

trucks were not considered.  These LDV and HDV categories were assumed to be 

roughly equivalent to the LDGV and HDDV categories used in MOBILE6.2.   

The acceleration noise, defined as the standard deviation of 

acceleration/deceleration, is a composite indicator of traffic congestion (Smit, 2006).  

Acceleration noise was calculated for the field study and compared to that derived for the 

LDV driving patterns in MOBILE6.2 (Smit et al., 2008).   

 65



Kruskal-Wallis and Wilcoxon tests were used to investigate differences in trip-

based speeds and accelerations, and acceleration noise.  Analyses used R 2.7.2 (RFSC, 

2008) and Matlab 7.8.   

3.6 Results and discussion  

3.6.1 Speed and acceleration measurements in congestion and free-flow conditions 

 Table 3-2 summarizes the speed and acceleration data, showing the mean and 

standard deviation for each parameter among trips for each traffic condition.  (Additional 

statistics are shown in Table S3-1.)  Trip-based speeds and accelerations differed by 

traffic conditions (p<0.01) and vehicle class (LDV vs. HDV) for most conditions, e.g., 

free-flow conditions (p<0.01).  Generally, acceleration, deceleration and acceleration 

noise increased as traffic conditions changed from free-flow, transitional period, and then 

to congested conditions.  As expected, vehicles were driven faster and more smoothly 

under free-flow conditions than under work zone and rush hours, and trucks were driven 

more smoothly and more slowly than cars.   

 The lane closure significantly altered traffic patterns.  Work zone speeds were low 

and acceleration noise was high relative to other periods.  (Figure S3-1 shows joint 

distributions of speed and acceleration/deceleration, stratified by time of a day, vehicle 

category and traffic conditions.)   

3.6.2 CMEM response surface 

CO emission and fuel consumption rates response surfaces for LDVs and HDVs 

are shown in Figure 3-2.  Emission rates are shown on a g s-1 basis, not the more common 

g mi-1 basis, because this more clearly shows changes in emission rates resulting from 

short term acceleration and deceleration events.  The CO response surface is fairly typical 

of the other pollutants, which are shown in Supplemental Figure 3-2.  Although the 

mechanisms that generate emissions differ for each pollutant, as noted in the introduction, 

the general pattern is similar.  Under acceleration, emissions (in terms of g s-1) increase 

with vehicle speed, and there is a sharp boundary or “jump” where emissions rapidly 

increase.  This boundary is more compressed at high speeds for LDVs, a result of engine 

characteristics, fuel content and catalytic converter performance.  Some of the results, 

especially for HDVs at high speed and high acceleration, may extend via extrapolations 
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to infeasible regions.  With deceleration, emissions are constant and speed-invariant, a 

result of an unloaded, essentially idling, engine.   

The CMEM response surfaces represent smoothed outputs because this model’s 

parameters were calibrated using regression or optimization across multiple vehicles and 

vehicle classes (Scora et al., 2006).  The jiggles on the contour lines in Figure 3-2 result 

from discretization or contour smoothing artifacts.  More significantly, the response 

pattern for an actual vehicle would depend on many factors, e.g., vehicle type, year, 

condition and maintenance, fuel type, etc.   

3.6.3 Emission estimates for congestion and free-flow conditions  

 Table 3-2 shows emission rates expressed as g mi-1 for the two vehicle classes and 

the four traffic conditions.  For LDVs, emissions under transitional and rush hour 

congestion periods were 1 to 16% higher than under free-flow conditions, with CO 

showing the greatest difference.  The variability among the trips within each congestion 

condition was large, especially for the transitional condition where fairly large speed and 

acceleration fluctuations occurred among different trips, and where the higher speeds 

tended to increase the sensitivity of emission and fuel consumption rates to acceleration.  

Compared to free flow conditions, work zone congestion decreased emission rates of HC, 

CO and NOx by 47, 69 and 38%, respectively, while CO2 emission and fuel consumption 

rates increased by 13 and 17%.  These trends can be explained by effects of speed, 

acceleration/deceleration, and travel time.  Acceleration can greatly increase emissions of 

some pollutants, especially at high speeds when the engine and emission control systems 

are highly loaded, however, since acceleration periods tend to brief, impacts on fuel 

consumption rates over the segment may not be large.  A decelerating vehicle has 

emission and fuel consumption rates that are largely independent of speed.  The slower 

speeds occurring in work zones considerably increase travel time and fuel consumption, 

for which CO2 serves as an indicator, but emissions of other pollutants are well controlled 

in modern gasoline engines under such light loads. 

For HDVs, rush hour and work zone congestion gave the highest emissions of HC 

and CO; differences among the transitional period and free-flow conditions were small.  

Emission and fuel consumption rates under rush hour congestion increased by 5 to 11% 

compared to free-flow conditions.  Fuel consumption rates and HC and CO increased 
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sharply with increasing traffic and decreasing speed, differing from the LDV pattern.  

The highest emission and fuel consumption rates were associated with work zone 

congestion emissions when HC, CO, NOx and CO2 emission rates increased by 159, 90, 5 

and 65% compared to free-flow conditions.  Generally, HDVs demonstrated smaller 

differences between low and high speeds than LDVs.  

The predictions for HDVs are largely consistent with the literature, including 

Sjodin et al. (1998) and De Vlieger et al. (2000).  However, the lower emissions found 

for LDVs at low speeds differ from several reports (e.g., Sjodin et al. 1998; De Vlieger et 

al. 2000; DoTRS 2001; and Frey et al. 2001).  For example, Sjodin et al. (1998) showed 

emission factors for CO, HC and NOx for the 19-25 mph speed range that were 200%, 

200% and 40% higher, respectively, than at 44 mph (the largest speed evaluated).  These 

differences might be due to several reasons:  First, results from tunnel or on-board 

measurements can differ systematically from the data used in CMEM.  Older studies 

using field experiments may be disproportionately affected by vehicles using non-

reformulated gasoline, and by older and high emitting vehicles.  In contrast, our modeling 

study was based on newer vehicles (e.g., ultra low emitting vehicles) and reflected the 

use of reformulated gasoline and newer emission standards.  Second, emission factors in 

these studies were either fleet-based (e.g., Sjodin et al. 1998) or individual vehicle-based 

(De Vlieger et al. 2000; DoTRS 2001; and Frey et al. 2001),  Fleet-based rates in the 

tunnel study (Sjodin et al., 1998) might differ from real world due to erroneous dilution 

assumptions (Jones and Harrison, 2006).  The on-board studies used only a few vehicles 

and might not represent typical conditions.  Third, vehicle mix, driving patterns and road 

type differs among these studies, e.g., the case study reflects relatively young vehicles.  

Differences in road features and regional driving habits may also contribute to the 

observed differences. 

 Often, a small region in the response surface – typically at both high speed and 

acceleration – accounts for disproportionate fraction of pollutant emissions and fuel 

consumption.  For example, the region defined by speeds between 71 and 75 mph and 

accelerations between 0.4 to 1.5 mph s-1 accounted for 13% of the time in the free-flow 

condition during midday, it accounts for 20%, 33%, 28%, 19% and 19% of HC, CO, NOx, 
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CO2 emissions and fuel consumption, respectively.  Figure S3-3 shows emissions 

contributed by each speed/acceleration (or deceleration) combination.   

 We estimated emissions as the product of the response surface and the 

speed/acceleration probability field.  For CO, CO2, and fuel consumption, these closely 

matched rates based on CMEM simulations (errors less than 1%).  However, errors for 

HC and NOx were 10% and 29%, respectively, suggesting that finer bins are needed to 

avoid discretization errors for these pollutants due to sharp gradients in the emission 

factor response surfaces.  

3.6.4 Comparison of emission rates for instantaneous- and average-speed conditions  

Table 3-3 compares three emission factor estimates for each vehicle type and 

congestion condition:  (1) the instantaneous-speed CMEM simulation presented earlier, 

derived using the observed speed/acceleration profiles; (2) the average-speed CMEM 

results for a constant average speed; and (3) the MOBILE6.2 results for the same average 

speed.  For LDVs, the average-speed CMEM results show that emissions decrease at 

lower speeds, and all emission rates are much lower than the instantaneous-speed CMEM 

rates.  The average-speed CMEM emission rates do not account for road-specific driving 

behaviors.  Similarly, MOBILE6.2 results do not account for road-specific behaviors, but 

these predictions greatly exceed the instantaneous-speed CMEM estimates.  The 

MOBILE6.2 predictions of HC and CO are relatively insensitive to speed (or congestion 

condition).    

The three model applications gave emission factors that were more similar for 

HDV than those just discussed for LDVs (Table 3-3).  In particular, HC and CO emission 

rates for instantaneous- and average-speed CMEM simulations were similar; NOx 

emission rates for the instantaneous-speed mode were considerably higher (59 to 94%) 

than the average-speed rates.  Compared to the CMEM simulation, MOBILE6.2 emission 

factors for HC were higher by 2-fold, but CO and NOx emission factors were lower by 2-

fold.   

CMEM and MOBILE6.2 discussed above have many differences, and many 

factors can explain the discrepancies seen in Table 3-3.  First, as demonstrated below, the 

CMEM simulation is very sensitive to smoothing of the speed and acceleration data, and 

differences between CMEM and MOBILE6.2 predictions were significantly using 1 s 
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smoothing (3 s smoothing was used in the Table 3-2).  Second, the models used different 

vehicle classification schemes, and the weights used for vehicle-mapping (Table 3-1) 

could bias results.  Specifically, CMEM used 8 car and 1 truck categories.  Moreover, 

MOBILE6.2 used the local vehicle age distribution, which included vehicles from 1 to 25 

years old.  MOBILE6.2 is a widely used regulatory emission model for which key 

auxiliary information, such as vehicle age and vehicle category distributions, have been 

established nationally and in many cases regionally, thus MOBILE6.2 is a better model to 

estimate average-speed emission estimates from an application perspective. Third, the 

models use different approaches for estimating emissions, and calibrations used different 

databases, e.g., CMEM used a relatively small number of California vehicles (Scora et al., 

2006).  Finally, MOBILE6.2 does not account for the observed speed/acceleration 

profiles.   

Despite the differences between the emission models, the CMEM simulations 

suggest that driving behaviors represented by the speed/acceleration profiles can greatly 

affect emission rates, especially for LDVs.  The model-to-model comparisons show the 

influence of the many assumptions and parameters used in these models, such as driving 

cycle and the underlying databases, and suggest that the uncertainties are high.  

3.6.5 Sensitivity to smoothing and averaging time 

Figure 3-3 shows the effect of smoothing the speed/acceleration data on CMEM 

emission estimates for LDVs and HDVs, free flow and work zone conditions, and the 

four pollutants.  Generally, emission factors decrease with increased averaging time, and 

changes for LDVs were particularly large, reflecting the sharp boundary shown in the 

emission response surface (Figure S3-2).  The largest changes are seen at short (1 to 10 s) 

averaging times.  At longer averaging times, extreme acceleration and deceleration events 

are “averaged out,” and at very long times, emission rates will ultimately converge to that 

predicted using the average speed.   The CMEM results shown earlier used a 3 s 

averaging time, which might be a reasonable compromise between minimizing potential 

GPS errors and underestimating real emissions rate.  However, the use of a 1 or 2 s 

averaging time significantly increased CMEM predictions, though they still fall below 

MOBILE6.2’s estimates.  Clearly, smoothing is a critical factor for instantaneous 

emission models such as CMEM and MOVES.  
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3.6.6 Acceleration noise comparison 

Figure 3-4 contrasts acceleration noise in the case study runs with those in the 

driving patterns used in MOBILE6.2’s development.  At low speeds, the noise used in 

MOBILE6.2 exceeded that in the case study, a different pattern of congestion.  In the 

case study, the low speed runs were due to work zone congestion, specifically, traffic 

narrowing from two to one and then from one to two lanes in the east-bound direction, 

and the flow was relatively smooth, and not representative of low average speed 

congestion patterns on freeways.  At high speeds, MOBILE6.2’s noise was similar to that 

in the case study.  Our results demonstrate considerable variability of acceleration noise, 

e.g., for speeds above 60 mph, the noise ranged from 0.35 to 1.13 mph s-1, compared to 

0.68 (mph s-1) used in MOBILE6.2.  The noise under four traffic conditions statistically 

differed (Kruskal-Wallis, p<0.01). 

3.6.7 Emission intensity and air quality impacts   

 Emission density estimates (g mi-1 s-1) for the case study freeway segment under 

the three traffic conditions are shown in Table 3-4.  For rush hour congestion, emission 

densities for HC, CO and CO2 exceeded those in free-flow periods by 1.5 to 2 times;  the 

NOx emission density was largely unchanged (4% lower).  For work zone conditions, 

emission densities decreased from free flow conditions, particularly for HC and CO; CO2 

increased as discussed earlier.  These changes result from multiple factors:  vehicle 

volume and travel time, which determines the “packing” or spacing between vehicles;  

changes in vehicle emission factors;  and changes in the vehicle mix.  For the study 

segment, this analysis suggests that rush hour concentrations of CO and HC will increase 

near and on the road, while NOx concentrations will be similar.  Most of this effect is due 

to higher traffic volumes during rush hour, which increased by 66% compared to free 

flow, and a smaller fraction of HDVs during rush hour, which account for 83% of the 

NOx emissions.  Elevated concentrations of HC and CO, and likely other pollutants not 

modeled by CMEM, e.g., PM2.5, would lead to high exposures of commuters who also 

endure longer travel times during congestion, as well as individuals living or working 

near major roads.   
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3.6.8 Evaluation of the approach  

Emission estimates are typically derived using macroscopic emission models, 

such as MOBILE 6.2, in combination with static traffic models, such as TransCAD (a 

transportation planning software), to predict regional emissions for conformity analyses 

and other air quality planning purposes.  It is clear that models used in such applications 

may not accurately represent emissions for specific road links and times.  Recently, 

efforts have been made to combine micro-simulation traffic models, such as VISSIM, to 

instantaneous emission models (like CMEM) and air quality dispersion models (Barth, 

1998; Cappiello, 2002; Chevallier, 2005; Fellendorf, 1999; Kim et al., 2006; Malcom et 

al., 2001; Nam et al., 2002; Niittymaki et al., 2001; Park et al., 2001).  By modeling the 

movements of individual vehicles on a second-by-second basis, or even shorter intervals, 

micro-simulation models can simulate many of the complex driver behaviors that are 

observed in real networks.  Because driving behavior varies with location, time of day, 

and day of week, such simulations require data and calibrations for vehicle speed and 

acceleration/deceleration distributions, as well as parameters related to car-following, 

lane-changing, and driver aggressiveness.  With appropriate input data, micro-simulation 

models can simulate the wide range of vehicle behaviors found on roads.  However, full 

integration of micro-simulation traffic and instantaneous emission models is extremely 

computationally intensive, and thus has not yet been attempted for large road networks.  

Instead, such simulations remain limited to simple road networks (Stevanovic et al., 

2009).   

The integration of speed-acceleration probabilities and response-surface analyses 

for instantaneous emission models like CMEM represents a simple and fast way to derive 

emission factors tailored to local driving behavior, including the stop-and-go transients 

encountered in congestion.  The speed-acceleration data obtained using the car-floating or 

potentially other technique obviates the need to calibrate and run computationally and 

parameter-intensive micro-simulation models.   The approach is highly amenable to 

sensitivity and other analyses.  However, estimated emission rates might be 

underestimated because the observed speed profiles tend to represent the fleet average, 

e.g., aggressive driving behaviors might be underrepresented.   
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3.6.9 Study limitations 

 This study has several limitations.  First, due to model limitations, we did not 

estimate emissions of particle matter, ultrafine particles, and black carbon that are emitted 

primarily by HDVs and that are associated with high health risks (WHO, 2005).  Second, 

as mentioned, the speed/acceleration profiles developed using the car-floating technique 

tend to represent an average profile among vehicles on the road, and because we followed 

a limited number of vehicles, results may not necessarily represent the full range of 

conditions.   This would tend to underestimate actual emissions.  Third, the mapping 

between CMEM and MOBILE 6.2 categories was based on the southeast Michigan 

vehicle age distribution data, not the actual vehicle age distribution on the study segment.  

Fourth, the vehicle categories in CMEM were calibrated using mainly vehicles before the 

year 2000.  As a result, we could not consider gas-electric hybrid and biofuel-based 

vehicles.  Moreover, we did not consider the newest vehicle emission standards for diesel 

trucks (EPA’s standards for 2004 and 2007 year and later vehicles; EPA, 2002), thus 

CMEM emissions may be overestimated.  Biases may be smaller for LDVs because the 

super ultra low emission vehicle (SULEV) category used is roughly equivalent to the 

current EPA Tier 2 emission standards.  Fifth, we did not use site-specific monitoring to 

validate the modeling and the model intercomparison.  Sixth, we demonstrated that 

smoothing of the field study data affect results, but we had no independent test to 

evaluate the appropriate degree of smoothing.  Finally, we examined a single freeway 

link and further study is needed to be able to generalize findings. 

3.7 Conclusions 
 This study appears to be the first in the literature to examine pollutant emission 

and fuel consumption rates under free-flow conditions, work zone and rush hour 

congestion conditions.  In the freeway case study, the transitional period was associated 

with highest emission rates of CO, HC and NOx compared to free-flow and low speed 

work zone congestion.  A different pattern was seen for HDVs where work zone 

congestion was associated with the highest emissions of CO, HC, NOx and CO2.  

Considering the combined effect of driving behavior, vehicle volume and mix, and 

emission factors, on- and near-road concentrations of CO, HC, and NOx are expected to 

nearly double during rush hour periods as compared to free-flow periods given similar 
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dispersion.  Clearly, link-specific emissions depend on the degree and type of congestion.  

While only a few congestion conditions were analyzed, the results highlight the 

importance of congestion, and the findings are relevant to emission, exposure and health 

risk evaluations, as well as conformity analysis in transportation planning.  
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Table 3-1. Weights of CMEM vehicle categories for comparison with the MOBILE6.2 categories.   
MOBILE6.2 Category CMEM Category Weight

Ultra low emitting vehicle (ULEV) 0.13
Super ultra low emitting vehicle (SULEV) 0.13
Tier 1 < 50k, low ratio 0.10
Tier 1 < 50k, high ratio 0.10
Tier 1 > 50k, low ratio 0.12
Tier 1 > 50k, high ratio 0.12
3-way catalyst, fuel injected, > 50k miles low 0.15
3-way catalyst, fuel injected, > 50k miles high 0.15

LDGV
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Table 3-2.  Summary of speed/acceleration profiles, emission factors and fuel consumption rates for LDV and HDV grouped by traffic 
condition.   

HC CO NOx CO2

(mph) (mph s-1) (mph s-1) (mph s-1) (g mi-1) (g mi-1) (g mi-1) (g mi-1) (g mi-1)
Free flow conditions 51 70 ± 3 a 0.22 ± 0.36 -0.20 ± 0.30 0.55 ± 0.12 0.13 ± 0.03 6.81 ± 2.47 0.34 ± 0.05 289 ± 16 95 ± 7
Transitional period 10 63 ± 8 0.32 ± 0.53 -0.20 ± 0.38 0.75 ± 0.21 0.14 ± 0.06 8.17 ± 4.06 0.35 ± 0.10 293 ± 28 97 ± 15
Rush hour congestion 10 56 ± 14 0.39 ± 0.56 -0.23 ± 0.45 0.82 ± 0.14 0.13 ± 0.02 6.99 ± 1.64 0.35 ± 0.04 279 ± 26 92 ± 11
Work zone 11 21 ± 19 0.32 ± 0.51 -0.25 ± 0.50 0.82 ± 0.20 0.07 ± 0.01 2.12 ± 0.63 0.21 ± 0.02 339 ± 15 107 ± 19
Free flow conditions 41 63 ± 3 0.17 ± 0.28 -0.16 ± 0.25 0.45 ± 0.09 0.10 ± 0.00 3.57 ± 0.28 19.64 ± 1.16 1651 ± 163 516 ± 51
Transitional period 7 58 ± 6 0.24 ± 0.37 -0.15 ± 0.28 0.54 ± 0.08 0.11 ± 0.00 3.98 ± 0.36 20.74 ± 1.29 1859 ± 202 581 ± 63
Rush hour congestion 6 48 ± 16 0.31 ± 0.46 -0.17 ± 0.32 0.64 ± 0.12 0.13 ± 0.01 4.61 ± 0.26 18.09 ± 1.19 2122 ± 126 663 ± 39
Work zone 11 21 ± 19 0.32 ± 0.51 -0.25 ± 0.50 0.82 ± 0.20 0.26 ± 0.02 6.78 ± 0.89 20.56 ± 2.22 2722 ± 449 848 ± 139

Fuel
consumption

Emission factors
Category Traffic conditions No. of

Trips Speed Acceleration Deceleration
Acceleration

noise b

LDV

HDV

 
a. Standard deviation reflects variations between runs; 76

b. The acceleration noise is defined as the standard deviation of acceleration/deceleration. 

 



Table 3-3.  Vehicle emission factors derived from CMEM and MOBILE6.2 for LDVs and HDVs by traffic condition (unit: g mi-1). 

CMEMa CMEMc MOBILE6.2 CMEMa CMEMc MOBILE6.2 CMEMa CMEMc MOBILE6.2
Free flow conditions 0.13 ± 0.03b 0.08 0.66 6.81 ± 2.47 1.84 16.69 0.34 ± 0.05 0.15 0.75
Transitional period 0.14 ± 0.06 0.06 0.66 8.17 ± 4.06 1.40 16.48 0.35 ± 0.10 0.10 0.74
Rush hour congestion 0.13 ± 0.02 0.04 0.68 6.99 ± 1.64 1.03 15.89 0.35 ± 0.04 0.07 0.72
Work zone 0.07 ± 0.01 0.03 0.87 2.12 ± 0.63 0.56 14.00 0.21 ± 0.02 0.02 0.66
Free flow conditions 0.10 ± 0.00 0.10 0.28 3.57 ± 0.28 3.54 1.81 19.64 ± 1.16 11.11 13.63
Transitional period 0.11 ± 0.00 0.10 0.28 3.98 ± 0.36 3.41 1.62 20.74 ± 1.29 10.66 11.45
Rush hour congestion 0.13 ± 0.01 0.12 0.31 4.61 ± 0.26 3.46 1.51 18.09 ± 1.19 10.75 9.05
Work zone 0.26 ± 0.02 0.25 0.57 6.78 ± 0.89 5.13 2.76 20.56 ± 2.22 12.94 8.54

Category Traffic conditions

LDV

HDV

HC  emission factors CO  emission factors NOx  emission factors

 
a. Emission factors estimated using CMEM and observed speed profiles.  
b. Standard deviation reflects variability between runs;  
c. Emission factors estimated using CMEM and average speeds; 77

 



Table 3-4.  Estimated emission density and fuel consumption density for traffic on the I-94 segment.   

HC CO NOx CO2

(g mi-1 s-1) (g mi-1 s-1) (g mi-1 s-1) (g mi-1 s-1) (g mi-1 s-1)
Free flow conditions 0.07 ± 0.02 3.78 ± 1.28 1.93 ± 0.13 295 ± 23 94 ± 8
Rush hours 0.13 ± 0.04 7.25 ± 2.62 1.86 ± 0.16 419 ± 38 135 ± 16

Work zone 0.05 ± 0.01 1.53 ± 0.36 1.78 ± 0.19 379 ± 44 119 ± 20

Fuel consumption
density

Emission density
Traffic conditions
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Table S3-1. Summary of speed (mph), acceleration and deceleration (mph s-1) measured 
for different traffic conditions and vehicle categories.   
Variable Period Traffic

conditions Speed bin
No. of

Recordsa
No. of
Trips Mean SDb Minc P25d Median P75e Maxf

Car following 60_65 428 2 64.28 9.91 32.50 59.17 64.90 72.24 77.29
65_70 2610 13 68.56 3.75 52.50 66.46 68.75 71.04 77.40
70_75 952 5 72.30 3.07 63.13 70.11 72.71 74.38 82.29

Truck following 60_65 1958 9 63.25 2.75 55.63 61.67 62.97 64.79 75.63
65_70 416 2 66.23 2.35 57.29 65.21 66.04 67.24 72.71

Car following 65_70 1413 7 68.16 4.77 42.92 65.63 68.13 71.67 77.29
70_75 2858 15 71.33 3.01 59.38 69.17 71.25 73.33 80.21

Truck following 60_65 4376 20 62.82 2.68 50.42 61.04 62.92 64.58 71.46
Work zone 15_20 2154 3 19.09 17.86 0.00 5.83 12.29 26.88 64.79

20_25 5008 8 22.00 19.07 0.00 7.08 14.79 33.96 64.58

Car following 50_55 522 2 52.99 20.57 4.79 44.38 60.83 68.96 74.38
55_60 1958 8 56.47 13.17 14.79 48.13 60.42 65.63 78.54
60_65 1757 8 62.73 7.77 28.96 59.38 63.96 68.13 75.63
65_70 1820 9 68.20 3.52 53.54 66.04 68.33 70.42 82.08
70_75 390 2 70.75 3.15 61.46 68.96 70.94 73.13 77.50

Truck following 39_44 666 2 41.53 17.14 11.25 27.71 41.67 56.88 68.54
50_55 1068 4 51.80 15.04 8.96 40.11 58.54 63.13 67.92
55_60 1666 7 58.24 6.64 26.67 54.79 59.17 62.71 71.25
60_65 2231 10 61.76 4.34 40.63 59.79 62.50 64.58 73.13

Car following 60_65 200 2 0.71 0.56 0.21 0.21 0.63 0.83 3.33
65_70 1055 13 0.54 0.44 0.10 0.21 0.42 0.63 4.38
70_75 356 5 0.60 0.40 0.21 0.21 0.42 0.83 2.29

Truck following 60_65 725 9 0.43 0.29 0.10 0.21 0.42 0.63 2.08
65_70 168 2 0.48 0.34 0.10 0.21 0.42 0.63 1.88

Car following 65_70 563 7 0.61 0.46 0.10 0.21 0.42 0.83 2.50
70_75 1135 15 0.48 0.32 0.10 0.21 0.42 0.63 1.88

Truck following 60_65 1646 20 0.41 0.27 0.07 0.21 0.42 0.42 2.29
Work zone 15_20 938 3 0.79 0.63 0.21 0.21 0.63 1.04 4.17

20_25 2186 8 0.72 0.54 0.10 0.21 0.63 1.04 4.38

Car following 50_55 273 2 0.84 0.74 0.10 0.21 0.63 1.25 3.33
55_60 995 8 0.74 0.55 0.10 0.42 0.63 1.04 3.54
60_65 834 8 0.67 0.62 0.07 0.21 0.42 0.83 7.92
65_70 753 9 0.56 0.44 0.10 0.21 0.42 0.73 4.38
70_75 166 2 0.50 0.38 0.10 0.21 0.42 0.63 2.29

Truck following 39_44 316 2 0.66 0.52 0.21 0.21 0.42 0.83 2.92
50_55 533 4 0.61 0.48 0.10 0.21 0.42 0.83 2.71
55_60 755 7 0.54 0.39 0.10 0.21 0.42 0.83 2.29
60_65 939 10 0.51 0.39 0.10 0.21 0.42 0.63 2.92

Car following 60_65 166 2 -0.60 0.65 -4.79 -0.63 -0.42 -0.21 -0.10
65_70 1118 13 -0.48 0.32 -3.13 -0.63 -0.42 -0.21 -0.10
70_75 423 5 -0.50 0.32 -2.71 -0.63 -0.42 -0.21 -0.10

Truck following 60_65 821 9 -0.40 0.23 -1.67 -0.42 -0.42 -0.21 -0.10
65_70 160 2 -0.43 0.27 -1.87 -0.63 -0.42 -0.21 -0.10

Car following 65_70 639 7 -0.49 0.32 -2.71 -0.63 -0.42 -0.21 -0.10
70_75 1139 15 -0.42 0.25 -1.88 -0.63 -0.42 -0.21 -0.10

Truck following 60_65 1800 20 -0.37 0.22 -1.88 -0.42 -0.21 -0.21 -0.07
Work zone 15_20 743 3 -0.82 0.80 -4.38 -1.04 -0.42 -0.21 -0.10

20_25 1794 8 -0.66 0.63 -5.63 -0.83 -0.42 -0.21 -0.10

Car following 50_55 181 2 -0.78 0.88 -5.21 -0.83 -0.42 -0.21 -0.21
55_60 710 8 -0.62 0.74 -7.08 -0.63 -0.42 -0.21 -0.10
60_65 661 8 -0.52 0.52 -7.71 -0.63 -0.42 -0.21 -0.10
65_70 751 9 -0.52 0.38 -4.38 -0.63 -0.42 -0.21 -0.10
70_75 154 2 -0.45 0.29 -1.88 -0.63 -0.42 -0.21 -0.21

Truck following 39_44 248 2 -0.54 0.42 -2.29 -0.63 -0.42 -0.21 -0.21
50_55 353 4 -0.45 0.39 -2.92 -0.42 -0.42 -0.21 -0.21
55_60 576 7 -0.44 0.33 -3.54 -0.63 -0.42 -0.21 -0.10
60_65 876 10 -0.46 0.36 -3.54 -0.63 -0.42 -0.21 -0.10

Midday      (11-1PM)

Afternoon  (4-6PM)

Acceleration

Morning      (7-9AM)

Midday      (11-1PM)

Afternoon  (4-6PM)

Speed

Morning      (7-9AM)

Deceleration

Morning      (7-9AM)

Midday      (11-1PM)

Afternoon  (4-6PM)

 
a. Number of second-by-second speed records; b. Standard deviation; c. minimum values; 
d. 25th percentile values; e. 75th percentile values; f. Maximum values. 
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Figure 3-1.  Map of study area and study segment for field study, shown in red. 
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Figure 3-2.  Response surface for CO emission rates (g s-1) and fuel consumption rates (g 
s-1) for LDVs and HDVs.   
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Figure 3-3.  Sensitivity analysis for smoothing (averaging time) of speed/acceleration 
data, showing emission rates for LDVs with two speed ranges (20-25 and 70-75 mph, 
both at midday) and for HDVs using similar speed ranges (20-25 and 60-65 mph, again at 
midday). 
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Figure 3-4.  Comparison of acceleration noise on using measurements for the I-94 field 
study and MOBILE6.2 LDV driving patterns.   
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Figure S3-1.  Joint distribution of speed and acceleration/deceleration, grouped by time 
period, vehicle category and traffic conditions.  
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Figure S3-2.  Emission response surface for LDVs and HDVs (g s-1).
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Figure S3-3. Plots of frequency, emissions and fuel consumption for 70 – 75 mph trip 
average measurements at midday (normalized frequency = frequency / number of trips). 
Pollutants and fuel consumption rates in g s-1. 
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Chapter 4 
Near-Road Air Pollutant Concentrations of CO and PM2.5:  
A Comparison of MOBILE6.2/CALINE4 and Generalized 

Additive Models 
 

4.1 Abstract  
The contribution of vehicular traffic to air pollutant concentrations is often 

difficult to establish.  This chapter utilizes both time-series and simulation models to 

estimate vehicle contributions to pollutant levels near roadways.  The time-series model 

used generalized additive models (GAMs) and fitted pollutant observations to traffic 

counts and meteorological variables.  A one year period (2004) was analyzed on a 

seasonal basis using hourly measurements of carbon monoxide (CO) and particulate 

matter less than 2.5 μm in diameter (PM2.5) monitored near a major highway in Detroit, 

Michigan, along with hourly traffic counts and local meteorological data.  Traffic counts 

showed statistically significant and approximately linear relationships with CO 

concentrations in fall, and piecewise linear relationships in spring, summer and winter.  

The same period was simulated using emission and dispersion models (Motor Vehicle 

Emissions Factor Model/MOBILE6.2; California Line Source Dispersion 

Model/CALINE4).  CO emissions derived from the GAM were similar, on average, to 

those estimated by MOBILE6.2.  The same analyses for PM2.5 showed that GAM 

emission estimates were much higher (by 4 to 5 times) than the dispersion model results, 

and that the traffic-PM2.5 relationship varied seasonally.  This analysis suggests that the 

simulation model performed reasonably well for CO, but it significantly underestimated 

PM2.5 concentrations, a likely result of underestimating PM2.5 emission factors.  

Comparisons between statistical and simulation models can help identify model 

deficiencies and improve estimates of vehicle emissions and near-road air quality.   
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4. 2Keywords  
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dispersion modeling  

4.3 Introduction  
Attention has been increasing regarding the effects of vehicle traffic on pollutant 

concentrations and health outcomes.  In many cities, air quality problems are caused 

mainly by vehicle emissions, and recent epidemiological studies have shown excess 

morbidity and mortality for individuals living near roadways (WHO, 2005).  The 

relationship between air quality, traffic and meteorological conditions is complex and not 

well understood (WHO, 2005).  Air quality impacts from traffic can be estimated using 

simulation models that represent emission and dispersion of pollutants, geospatial or 

“land-use regression” models, statistically-based “receptor” models for source 

apportionment, time series models, and other techniques.  All of these approaches have 

limitations.  To date, few studies have integrated or compared simulation and statistical 

approaches or have developed hybrid approaches that potentially can yield more accurate 

predictions.   

This study compares simulation and statistical models with the goal of improving 

near-road air pollutant predictions.  It focuses on the effect of traffic volume on short-

term (hourly) and near-road concentrations.  Vehicle emissions and pollutant dispersion 

are simulated using the Motor Vehicle Emissions Factor Model version 6.2 (MOBILE6.2) 

and California Line Source Dispersion model version 4 (CALINE4).  A time series 

analysis of historical data is conducted using generalized additive models (GAM) and 

LOESS (local polynomial regression fitting) smoothers.  A synthesis of these 

independent approaches is used to identify uncertain model parameters, specifically 

emission factors, and to derive site-specific parameters that improve model predictions. 

4.3.1 Emission and dispersion models for traffic pollutants 

Many models have been developed to estimate traffic emissions and predict 

concentrations of carbon monoxide (CO), nitrogen dioxide (NO2), particulate matter 

(PM), and other pollutants.  Emissions are most commonly estimated using 

“macroscopic” emission models, such as MOBILE6.2 developed by the U.S. 
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Environmental Protection Agency, and the Emission Factor Model (EMFAC) developed 

by the California Air Resources Board.  These models are based on laboratory tests of 

vehicle emissions measured during standardized driving cycles designed to represent 

typical driving patterns on freeways, arterials, ramps and local roads (Pierce et al., 2008).  

Outputs from these models are used as inputs to air quality dispersion models, along with 

information representing traffic volume, the configuration of a road network, and 

meteorology.  CALINE4 is an example of a dispersion model designed for road networks.  

This model extends the standard Gaussian plume formulation using a line source 

configuration and mixing zone that accounts for traffic-induced heat flux and mechanical 

turbulence (Benson, 1989).   

While very flexible, simulation models have several limitations.  First, 

macroscopic emission models generally underestimate emission rates since they do not 

directly account for link-specific conditions, such as acceleration, deceleration, 

aggressive driving, and high-emitting vehicles (Joumard et al., 2000).  Second, these 

models include only the local (road) sources, and “background” and “regional” pollutant 

levels must be handled separately, e.g., on the basis of upwind measurements or other 

modeling.  Third, plume-type models typically do not perform well or are inappropriate 

for representing dispersion in street canyons and under certain meteorological conditions, 

e.g., low wind speeds (Benson, 1992). 

4.3.2 Statistical models for traffic pollutants 

Statistical approaches used to predict impacts of traffic on air quality can be 

classified as (1) “spatial” or “land-use” regression models and (2) “non-spatial” models.  

Spatial models predict traffic’s contribution to long-term or average pollutant 

concentrations using environmental variables, e.g., land use, traffic intensity, and distance 

to freeway, and most have used geographic information systems (GIS) to derive and 

integrate these variables (WHO, 2005).  These models are not considered further in this 

paper given our focus on short-term air quality impacts.   

Non-spatial statistical models use a variety of statistical techniques to link 

roadway pollutants to traffic counts, meteorological conditions, and/or traffic 

composition.  Levy at al. (2003) used linear mixed models to predict concentrations of 

PM2.5 (particulate matter ≤2.5 μm in dia), polycyclic aromatic hydrocarbons (PAHs) and 
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ultrafine particles with traffic counts, GIS-based traffic density scores, the percentage of 

vehicles with diesel engines, wind direction, and distance from the road; these models 

also accounted for autocorrelation.  Abu-Allaban et al. (2003) used multi-linear 

regression to predict PM10 (≤10 μm dia) and PM2.5 using traffic volume broken down into 

vehicle classes, i.e., cars, light-duty trucks, and heavy-duty trucks.  deCastro et al. (2008) 

examined traffic’s contribution to black carbon concentrations in Baltimore and 

accounted for auto-correlated errors using autoregressive models.  Aldrin and Haff (2005) 

used generalized additive models (GAM) to link PM size fractions, NO2 and nitric oxide 

(NO) concentrations to traffic counts, temperature, wind speed, wind direction, 

precipitation, relative humidity and snow cover.  Carslaw et al. (2007) modeled traffic-

related gaseous pollutants (nitrogen oxide - NOx, NO2, CO, benzene and 1,3-butadiene) 

using GAM and generalized additive mixed models (GAMM).   

GAM models have become popular due to their power, flexibility and 

interpretability, e.g., Schlink et al. (2003) has suggested that GAM (and neural network 

approaches) yield the best performance because they account for non-linear relationships 

and differences between sites.  GAMs characterize non-linear relationships by estimating 

non-parametric functions of covariate variables using kernel or spline smoothers (Hastie 

and Tibshirani, 1990).  Their additive structure helps to make results interpretable since 

each predictor variable enters the model separately (Hastie and Tibshirani, 1990).  While 

GAM and other statistical models can incorporate site-specific information, these models 

have the disadvantage that results cannot necessarily be generalized to other sites.   

Comparing simulation and statistical models is challenging because these models utilize 

independent data sets and different assumptions, but this offers the potential to improve 

results (Solomon et al., 2008).  Differences can help to highlight model deficiencies, and 

lead to approaches that use models in a complementary or confirmatory manner.  As 

examples, GAM and other “observational” models have the advantages that few 

assumptions are needed and portray real world behavior, while simulation models are 

more generalizable and can be used in a predictive manner.   

4.4 Methods  
We compared simulation and statistical models for hourly CO and PM2.5 

concentrations monitored near an interstate highway in Detroit, Michigan.  Vehicle 
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emissions were estimated using MOBILE6.2, and CALINE4 was used to predict 

concentrations.  GAMs were used to explore and quantify empirical associations between 

traffic counts and pollutant concentrations in models adjusted for meteorological and 

temporal factors.   

4.4.1 Data sources 

The dataset included hourly pollutant (CO, PM2.5) and meteorological (wind 

direction, wind speed, temperature, pressure, relative humidity) measurements for 2004 at 

the Allen Park monitoring site, which is 150 m SE of Interstate I-75 in flat field largely 

free of trees (Figure 4-1).  CO is monitored using U.S. EPA approved instrumentation 

(DASIBI 3008 CO analyzer); PM2.5 is monitored using a tapered element oscillating 

microbalance (TEOM; Rupprecht and Patashnick Model 1400A including the Filter 

Dynamics Measurement System).  The dataset also included hourly traffic counts 

monitored at a permanent traffic recorder (PTR) 3.5 km from the Allen Park site.  The 

estimated annual average daily traffic (AADT) at this site was 101 000 vehicles day-1, 

and the commercial average daily traffic (CADT) was 13 500 vehicles day-1.  To account 

for the egress of vehicles prior to the Allen Park location, PTR measurements were 

lowered by 6% (MDOT, 2006).   

4.4.2 Data cleaning and exploratory analyses 

PM2.5 and CO values were confirmed with MDEQ reports (2005).  Most 

meteorological (99.6%) and PM2.5 (98.6%) observations were available.  Data availability 

was lower for relative humidity (92.2%), CO (94.7%), and traffic counts (74.3%).  A total 

of 5678 hours had complete meteorological, traffic and PM2.5 records;  5477 hours were 

complete for CO.  Pollutant observations with zero values were replaced by one-half of 

the method detection limit (MDL; 0.5 µg m-3 for PM2.5; 0.05 ppm for CO).  Exploratory 

analyses included wind and pollution roses; these excluded periods with wind speeds 

below 1 m s-1.   

4.4.3 Simulation modeling 

MOBILE6.2 and CALINE4, models recommended by U.S. EPA (1999), were 

used to predict hourly PM2.5 and CO concentrations at the Allen Park site.  Emission 

factors were calculated using the local vehicle age distribution and fleet mix (8% heavy 
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duty diesel truck) for 2004 (SEMCOG, 2006), and typical vehicle speeds (cars and trucks 

at 65 and 60 mph, respectively).  Emission factors across the vehicle fleet averaged 11.4, 

16.8 and 22.2 g mi-1 for CO, and 0.031, 0.032 and 0.033 g mi-1 for PM2.5, for summer, 

spring/fall, and winter, respectively.  For modeling purposes, the traffic volume was set 

to 1000 vehicles hr-1 (an arbitrary value since sensitivity analyses showed near-linear 

relationships between predicted concentrations and traffic volume), and hourly 

concentrations were predicted by scaling CALINE4 predictions by hourly traffic counts.  

Because CALINE4 was designed to predict 1 and 8 hr concentrations of CO, PM and 

NOx for roadways (Benson, 1989), we modified the modeling approach in order to 

process hourly data for a full year.  Pollutant concentrations were predicted for 16 wind 

sectors, each subtending 22.5o, and 12 wind speed classes, which spanned the reported 

range (0.4 to 0.5 m s-1, 0.5 to 1.5 m s-1, 1.5 to 2.5 m s-1, …, 10.5 to 11.1 m s-1).  Following 

sensitivity analyses showing that mixing height and atmospheric stability classes had 

only minor effects on predicted concentrations, consistent with Benson (1989), mixing 

height was set to 1000 m, and atmospheric stability was set to neutral stability.  Seasonal 

average concentrations were derived as the sum of predictions weighted by the 

probability of each wind sector/wind speed class occurring in 2004.  Because the highest 

predictions occurred at low wind speeds, we conducted a limited sensitivity analysis of 

wind speed by considering three cases:  omitting hours with calm winds, which was 

considered the nominal case; simulating calm winds by setting wind speed to 0.5 m s-1; 

and omitting hours with wind speed below 1.5 m s-1.  

4.4.4 Statistical modeling  

GAM was selected due to its ability to describe non-linear relationships and its 

additive structure.  CO and PM2.5 were analyzed separately using the following model:  

Pt = β0 + β1 X1,t + …+ β6 X6,t +β7 X7,t + S1(Z1,t) + ... + S8(Z8,t)          (1) 

where Pt = pollutant concentration at time t; X1,t … X6,t = indicator variables for days 

Tuesday to Sunday (Monday is the reference); X7,t = indicator variable for precipitation 

occurring during last three hours; S is a smoother (a non-linear function); Z1,t = traffic 

counts (vehicles hr-1); Z2,t =wind direction (degrees); Z3,t = wind speed (m s-1); Z4,t = 

ambient temperature (degree centigrade); Z5,t = pressure (mm Hg); Z6,t = relative 

humidity (percent); Z7,t = Julian day (1 to 366); and Z8,t = hour of the day (1 to 24).  
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These variables were selected based on the literature (Benson, 1989; Dominici et al., 

2002; Aldrin and Haff, 2005).  Traffic parameters were estimated using both smoothed 

(nonlinear) and parametric linear forms, that is, replacing the smoothed term S1(Z1,t) by a 

linear term Z1,t, in order to derive emission factors for comparison with simulation model 

results.  LOESS smoothers, which combine the robustness of linear regression and the 

local fitting of kernel methods (Faraway, 2006), were applied to the continuous variables 

(Z1,t to Z8,t).  Smoothing parameters were selected using the automatic and efficient 

generalized cross-validation (GCV) method (Hastie and Tibshirani, 1990).  Partial plots 

of each smoothed component were constructed to visualize effects of traffic volume and 

other predictor variables on pollutant levels. 

GAM models were fitted for CO and PM2.5 using monitored observations.  GAM 

models were also fitted to PM2.5 adjusted for “background levels” by subtracting the 

hourly PM2.5 concentration measurements at an “urban background” site located 40 km 

west in Ypsilanti.  In contrast to CO, which is dominated by local sources including 

traffic, many sources contribute to PM2.5 levels, and this adjustment was thought to 

possibly isolate the contribution from local traffic.  We also conducted a sensitivity 

analysis to investigate effects of calm and low winds, as described earlier.  

The fraction of ambient CO and PM2.5 concentrations attributable to traffic were 

estimated by dividing predicted concentration (the product of the linearized traffic count 

coefficient multiplied by the seasonal average hourly traffic count) by the observed 

seasonal average concentration.     

An exploratory analysis examined interactions among predictor variables, which 

can degrade GAM predictions (Aldrin and Haff, 2005; Faraway, 2006).  These variables 

showed only moderate correlation, e.g., the maximum Pearson correlation coefficient, 

r=0.40, was between traffic counts and hour of the day, and did not indicate a serious 

problem for the analysis.  We also stratified analyses by season to reduce interactions and 

enhance interpretation.  

Model fit was evaluated by the fraction of explained deviance, defined as 1 – 

Dmodel/Dnull, where Dmodel and Dnull are deviances for fitted and null models, respectively.  

Deviance is a measure of fit that is defined as likelihood ratio statistic , where )(2 SL ll −
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Ll and denote log-likelihoods for larger and smaller models, respectively (Faraway, 

2006).  Statistical analyses used SAS (version 9.1, SAS Institute Inc., Cary, NC, USA).  

Sl

4.5 Results and discussion  

4.5.1 CO predictions 

Table 4-1 summarizes the pollutant, meteorological and traffic data.  CO levels 

were low, averaging 0.3 ppm and reaching an hourly peak of only 3.6 ppm, far below the 

national 8-h standard of 9 ppm.  Concentrations varied seasonally, averaging 0.29, 0.34, 

0.45 and 0.28 ppm for spring, summer, fall and winter, respectively.  The annual wind 

direction rose for the morning rush hour period (6-9 am) shows prevailing winds from the 

SW and W directions (Figure 4-2A).  However, winds varied considerably by season 

(supplemental Figures 1A-D).  Higher CO concentrations sometimes were seen with SW 

and N winds, suggesting moderate impacts from highway traffic, although the 

relationship was not strong (Figure 4-2B).   

Dispersion model predictions of CO at the Allen Park receptor were small (Table 

4-2), as has been observed in other analyses (WHO, 2005).  Higher concentrations were 

predicted under some conditions, e.g., CO levels of 0.3 ppm were attained with low wind 

speeds (≤2 m s-1) and winds parallel to the highway.  Like other Gaussian plume models, 

CALINE4 predicts no contribution from traffic when the receptor site is upwind of the 

highway.  Periods with low wind speeds yielded the highest predictions and contributed 

most to long term averages, e.g., periods with speeds <3 m s-1 accounted for 71, 94, 88 

and 70% of the average CO levels in spring, summer, fall and winter, respectively.  (The 

seasonal probabilities of such wind periods were 64%, 89%, 78% and 58%, respectively.)  

Despite the low concentrations, the GAM analysis found statistically significant 

traffic–CO relationships that were approximately linear in fall, and piecewise linear in 

spring, summer and winter.  Figure 4-3 shows the derived relationship (before 

linearization), including point estimates and the 95% confidence intervals.  (Figures S4-2 

to S4-5 show all variables on a seasonal basis using centered pollutant levels and the 

same y scale to facilitate comparisons, as well as the degrees of freedom and p-values.)  

The piecewise linear traffic–CO relationships, especially in winter (Figure 4-3D) might 

result from more frequent temperature inversions that increased CO concentrations 
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during relatively low traffic flows.  To facilitate comparisons with the CALINE4 

predictions, the GAM models were rerun using a linear term for traffic volume, and the 

resulting coefficients show the covariate-adjusted change in CO concentrations for each 

1,000 additional vehicles hr-1.  These coefficients range from 0.02 to 0.06 ppm per 1000 

vehicles hr-1 (Table 4-2), and represent traffic contributions from 24 to 46% of the 

seasonal CO average.  GAM predictions of CO were highest in fall, consistent with 

observed levels.  While traffic explained a large share of observed CO levels, 

concentrations were low, reflecting the monitor-highway distance and the rapid fall-off in 

CO levels observed with distance from highways.  For example, Zhu et al. (2002) showed 

CO concentrations in Los Angeles dropped from 2.3 ppm at 17 m distance to 0.4 ppm at 

150 m.  On a seasonal basis, the GAM models explained 63 to 75% of the null deviance 

(Table 4-3).   

The meteorological and time variables in the GAM models were statistically 

significant (p<0.05) and largely consistent with earlier work (Aldrin and Haff, 2005).  

Wind speed and temperature had a large influence on pollutant concentrations, and 

impacts varied seasonally.  Faster winds have been shown to dilute CO concentrations 

(Benson, 1989).  Temperature’s large impact on CO is likely due to poorer control 

efficiencies that result in higher emissions in winter, as well as poorer dispersion 

conditions.  Other meteorological variables (relative humidity, wind direction, pressure 

and precipitation) had weaker effects and, in cases, varied by season.  Precipitation had 

only small effects (Table S4-1), not surprisingly since CO is relatively insoluble and 

inefficiently scavenged.  Day-of-week variables (indicator variables X1 to X6) were 

designed to capture changes in traffic volume and vehicle mix (including weekday and 

weekend effects); their values and significance varied by season (Table S4-1).  The Julian 

day affected CO to a large extent, possibly reflecting vehicle mix, background pollutant 

levels, and other factors not captured by other variables in eq. (1).  The hour-of-day 

variable, designed to account for the diurnal pattern of traffic volume, vehicle mix and/or 

dispersion, showed small effects that varied by season, generally lower concentrations 

around noon and higher concentrations at night.   

The overall agreement between CALINE4 and GAM predictions for CO was 

remarkably close, within 4% based on the ratio between GAM and CALINE4 predictions 
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defined as Cg/Cc = 0.96, although differences were slightly larger on a seasonal basis 

(Table 4-2).  Results changed little when calm winds were included (Cg/Cc = 0.97), or if 

wind speeds below 1.5 m s-1 were omitted (Cg/Cc = 1.14). 

Differences between dispersion and statistical models can occur for many reasons.  

First, MOBILE6.2 does not directly account for local conditions, including acceleration 

and deceleration (Joumard et al., 2000), which can cause high emissions at both low 

speeds, e.g., due to frequent acceleration/deceleration in congestion, and at high speeds, 

e.g., due to rapid acceleration, lane-changing and bypassing behavior (TRB, 2002).  

Instead, MOBILE6.2 emission rates are based on dynamometer tests and standard driving 

cycles, and emission rates vary by speed, as shown in Figure 4-4.  Second, while we had 

information regarding the vehicle mix, a large fraction (61%) of the classification data 

was missing, and segment-specific information regarding fleet speed, vehicle age and 

high-emitting vehicles was unavailable.  Instead, regional data were used.  Third, 

dispersion models are known to perform poorly under low wind speed conditions, which 

were predicted to cause the highest concentrations at the study site.  Still, validation 

studies have shown that CALINE4 predictions for CO near freeways generally fall within 

a factor-of-two of measured concentrations (Benson, 1989).  The overall agreement 

between simulation and statistical models in most seasons, however, suggests that errors 

for CO are small. 

4.5.2 PM2.5 predictions 

PM2.5 levels at the Allen Park site averaged 16.8 µg m-3, exceeding the annual 

National Ambient Air Quality Standard of 15 µg m-3 (Table 4-1).  The PM2.5 pollutant 

rose for the morning rush hour period (6 to 9 am) suggests that emissions from the local 

highway are not a significant contributor (Figure 4-2C).  While the pollutant rose shows 

some directionality, the highest levels occurred with S, SW and SE winds, probably due 

to long range transport of sulfate and other aerosols from the Ohio River valley.  

CALINE4 predictions of PM2.5 at the Allen Park receptor were small, no more than 0.5 

µg m-3 (Table 4-4), consistent with previous studies (WHO, 2005).  The highest PM2.5 

predictions occurred for low winds that were parallel to the highway, like the CO 

modeling discussed earlier, since the only difference between the CO and PM2.5 

simulations were emission factors.  

 101



The GAM estimates without the background adjustment showed traffic-PM2.5 

relationships that differed by season (Figure 4-5).  Relationships were piecewise linear in 

spring and linear in summer, but sigmoidal in fall and decreasing in winter. (Figures S4-6 

to S4-9 show estimates for all smoothed variables and each season.)  Spring, summer and 

fall traffic terms were replaced by linear terms, and covariate-adjusted coefficients 

representing the change in PM2.5 levels for each 1 000 vehicles hr-1 were estimated.  In 

these three seasons, GAM indicates that traffic accounted for 5 to 8% of observed PM2.5 

(Table 4-4), and the models accounted for 74 to 89% of the null deviance (Table 4-3).  

Most strikingly, GAM predictions were considerably higher than dispersion model 

predictions; the Cg/Cc ratio was 4.2 when calm winds were excluded (Table 4-4).  This 

ratio was similar, 4.0, when calm winds were included, but increased dramatically to 8.5 

when the winds speeds below 1.5 m s-1 were excluded, mainly a result of changes in 

CALINE4 predictions.  The background adjustment had only a small effect, e.g., 

linearized spring, summer and fall emission factors were 0.389 ± 0.103, 0.549 ± 0.132 

and 0.263 ± 0.082 μg m-3 per 1,000 vehicles, and the winter relationship remained 

negative, similar to results in Table 4-4.  Overall, the background adjustment did not 

enhance performance, possibly because the Ypsilanti site was too far away and 

influenced by local sources.    

The inconsistent results for winter and the variation across seasons can result from 

many factors, including the lack of counts for diesel-powered vehicles, a significant 

PM2.5 source, the small PM2.5 increment from traffic at the monitor site, and poorly 

controlled meteorological factors.  The other study using GAM to examine traffic and 

PM2.5 found a concave relationship between traffic counts and PM2.5 levels at a site very 

near (<10 m) to the road, possibly due to nonlinear effects of vehicle speed, acceleration 

and deceleration (Aldrin and Haff, 2005).  Traffic’s contributions to PM2.5 may vary 

seasonally, as shown in Cincinnati where contributions at two sites (including one also 

near I-75) were the lowest in winter (Hu et al., 2006).  Traffic’s smaller impact in winter 

may explain GAM’s inconsistent results.  In other seasons, GAM and CALINE4 showed 

similar trends.   

The strong effect of wind speed can be explained by several factors.  First, the 

two model types handle wind speed differently, i.e., wind speed is in the denominator of 
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the Gaussian plume equation, but it is an additive term in GAM.  Second, we observed 

some association between wind speed and direction, e.g., some of the lowest wind speeds 

occurred when the monitoring site was upwind, rather than downwind of the highway.   

Daily and seasonal changes in vehicle mix, age distribution, and meteorology also affect 

the traffic–PM2.5 association.  In particular, truckers tend to avoid rush hour periods and 

the percentage of heavy duty diesel vehicles (HDDVs), which emit much more PM2.5 

than cars, increases at night.  Based on the I75-9799 PTR 2004 classification (Whiteside, 

2006), HDDVs comprised 8 - 10% of the vehicles during the morning rush hour, 11 - 

13% from 9:00 to 14:00, 6 - 7% from 16:00 to 19:00 evening rush hour, 10 - 12% from 

20:00 to 24:00, and 17 - 23% from 1:00 to 5:00.  Based on MOBILE6.2, PM2.5 emissions 

with these HDDV fractions changed significantly (0.032 to 0.078 g mi-1 for annual 

averages) for the range of HDDV fractions at Allen Park (Figure 4-6).  The PTR data also 

show some seasonal variation in the HDDV fraction, which averaged 12, 10, 13 and 11% 

in spring, summer, fall and winter, respectively.  We re-estimated PM2.5 levels using the 

seasonal average HDDV fractions, which reduced the Cg/Cc ratio to about 3;  differences 

approached a factor of two with the maximum HDDV fraction (23%).  Ideally, HDDV 

counts rather than total traffic counts would be used to predict PM2.5 emissions.  

Unfortunately, over half (61%) of the vehicle classification data were missing, thus this 

analysis was not attempted.   

Meteorological variables strongly affected GAM results for PM2.5.  Higher wind 

speeds tended to decrease concentrations, consistent with modeling and experimental 

findings (Benson, 1989; Levy et al., 2003; Aldrin and Haff, 2005).  Higher temperatures 

were associated with higher PM2.5 concentrations, especially in spring and summer 

(Figures S4-6 to S4-9).  Higher temperatures can hasten the production of secondary 

aerosols, but also can evaporate ammonium nitrate and organic aerosols (Dawson et al., 

2007).  Morishita et al. (2006) reported that coal combustion/secondary sulfate aerosol, 

including local and regional sources, was the largest source of ambient PM2.5 in SE 

Michigan.  Relative humidity was positively correlated with PM2.5, possibly due to 

absorption of water on PM2.5 at high humidity (CCPA, 2001).  Precipitation tended to 

drop PM2.5 levels by 1 to 3 µg m-3 (Table S4-1).  Most of the precipitation fell in summer 

(15 in), compared to the other seasons (6 – 11 in).  Precipitation was included in the 
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model as an indicator variable, which may not have adequately the scavenging processes.  

Wind direction had only a small effect.  Higher barometric pressure was usually 

associated with higher concentrations, probably because it is associated with stable air 

conditions, subsidence inversions, and slower wind speeds, all of which decrease 

pollutant dispersion.   

Of the time variables, day-of-week variables had relatively large impacts that 

depended on season (Table S4-1).  Julian day had a large influence on PM2.5, possibly 

due to vehicle mix, regional sources, and other factors not captured in eq. (1).   

Many factors can affect the ability to observe traffic-PM2.5 relationships, and the 

differences between statistical and simulation models.  As discussed earlier, these include 

biases in the emission factors in MOBILE6.2, omission of high-emitting vehicles, errors 

in traffic counts, and the assumed vehicle mix, which is especially important for HDDVs.  

Recent reports (EPA 2006; 2008) show that actual PM2.5 emission factors were 2.3 times 

higher than MOBILE6.2 predictions for HDDVs (classes 6 through 8), and 1.6 times 

higher for light duty gasoline vehicles.  Since PM2.5 arises from many local and regional 

sources, and not uniquely or predominantly from vehicles, concentration gradients near 

roads are small.  As examples:  Roorda-Knape et al. (1998) found that concentrations 

measured 15 m from a major motorway in the Netherlands were only 10% higher than 

those at distances from 260 to 305 m;  Kingham et al. (2000) demonstrated similar results 

in the UK.  In consequence, the “signal” from traffic can be small and difficult to identify 

using statistical models.  Vehicle emissions depend on changes in vehicle speed, 

acceleration and deceleration, factors not indicated by the traffic counts and average 

speed, the key inputs to MOBILE6.2.  This model suggests that fleet speed has only 

minor effects on PM2.5 emissions (Figure 4-4).  However, relationships between speed, 

acceleration and PM2.5 emissions are complex and incompletely established (TRB, 2002).  

Finally, MOBILE6.2 does not account for fine particle re-entrainment, although only 

minor impacts are expected for PM2.5.  

We also note that CALINE4’s capabilities for PM2.5 have not been fully evaluated.  

Yura et al. (2006) used a small dataset (n = 23, three receptors) and found large 

discrepancies in PM2.5 predictions, e.g., only 67% of predictions were within a factor-of-

two of measurements at a site 70 m from the road.  Chen et al. (2008) noted that 
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CALINE4 under-predictions increased at higher PM2.5 concentrations and with complex 

terrain.  The reasonable agreement between simulation and statistical models found in 

this paper for CO, however, suggests that a large share of the problem may be inaccurate 

emission estimates for PM2.5, rather than the dispersion model calculations, at least for 

the simple terrain and other conditions encountered in the case study.  

4.5.3 Comparison between source-oriented and statistical models 

Simulation and statistical models utilize independent data sets and different 

assumptions, thus comparisons can represent a form of validation (Solomon et al., 2008).  

GAM and other “observational” models have the advantage that fewer assumptions are 

needed, and thus they may better represent real world behavior.  In the present 

application, for example, the GAM model did not require MOBILE6.2’s assumptions 

regarding average speed and fixed vehicle mix.  However, simulation models are less 

data intensive, more generalizable, and useful for predictive purposes.   

Our comparisons between the two model types showed generally good agreement 

for CO.  If the dispersion model CALINE4 is unbiased, then this suggests, but does not 

confirm, that the emission factors predicted by MOBILE6.2 are, on average, accurate.  

More generally, agreement between empirical and process-based models is a necessary, 

but not sufficient condition in the performance evaluation of models.  For example, 

emission and dispersion models may have opposite but compensating biases, or both 

empirical and process-based models may be similarly incorrect.  The possibility that the 

inter-model agreement found for CO is spurious seems small, however, given the 

extensive evaluation and validation exercises undertaken for MOBILE6.2 and CALINE4, 

including the use of well-controlled and accurately measured tracer gas releases along 

roadways, the “gold standard” for such exercises.  Our results represent a real-world 

scenario which supports the usefulness of the both emission and dispersion models for 

CO, but it does not constitute a validation of these models.  In contrast, the divergence in 

PM2.5 results suggests systematic biases.  In particular, assuming that the dispersion 

modeling predictions are reasonable, which is supported by our results for CO and 

especially by the just mentioned model validation efforts, our results highlight the need 

for further development of PM2.5 emission factors and vehicle mix.  Further comparison 

between simulation and statistical approaches is also suggested, especially to understand 
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traffic’s impacts on near-road air quality and when more comprehensive emission models 

become available.  

4.5.4 Study limitations 

This study has several limitations.  First, a single monitoring site was emphasized, 

and the site was situated somewhat farther from the highway than desired, thus, traffic’s 

contribution to CO and especially PM2.5 was modest.  Application of similar methods at 

sites with high traffic impacts is suggested.  While we used a (distant) background site, 

simultaneous monitoring at locations upwind and downwind of the highway should 

increase the ability to quantify impacts and account for background concentrations, as 

would the use of pollutants more specific to traffic.  Second, our analysis was performed 

for a mix of vehicle types, and the PM2.5 estimates did not account for fleet speed.  

Consequently, derived emission factors cannot be attributable to specific vehicle types.  

Third, only two pollutants were examined.  It would be helpful to examine other traffic-

related air pollutants, especially those that have greater specificity to vehicle sources and 

smaller background contributions, e.g., NO, ultrafine particles, and black carbon.  (While 

other parameters were measured at Allen Park, they did not use hourly samples, a 

requirement for the statistical analysis.)   Fourth, only one year of data was analyzed, and 

traffic counts included a large fraction of missing data.  Multiyear datasets and effects of 

missing data (which are usually not missing at random) should be examined.  Fifth, the 

performance of GAMs relies on the quality, quantity and characteristics of the data.  

GAM performance might be improved by several factors:  incorporating other traffic 

information, e.g., HDDV proportion and average fleet speed; using different expressions 

for independent variables, e.g., absolute humidity (an unbounded variable compared to 

relative humidity); and accounting for the discontinuities in wind direction (from 359 to 

0o) and time (from 24:00 to 1:00).  Explicitly modeling autocorrelation in the residuals 

might also improve results, although only minor changes are expected (Aldrin and Haff, 

2005; Carslaw et al. 2007).  Sixth, our emission and dispersion modeling was relatively 

basic, and many techniques and models promised enhanced performance, as reviewed 

elsewhere (Solomon et al., 2008).  
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4.6 Conclusions 
We contrasted simulation and statistical models to estimate traffic impacts on CO 

and PM2.5 concentrations near highways.  Using a GAM approach with adjustments for 

weather conditions and time trends, CO concentrations were piecewise linearly or 

linearly related to traffic volume, and the derived emission rates closely matched 

predictions from MOBILE6.2 and CALINE4 in spring and summer.  For PM2.5, traffic-

related emissions accounted for a small faction (less than 8%) of measured concentrations.  

Still, we derived GAM-based emission rates for three seasons (except winter), which 

significantly exceeded MOBILE6.2’s predictions, suggesting that MOBILE6.2 

significantly underestimates PM2.5 emissions.  Seasonal analyses decreased potential 

interactions and increased goodness-of-fit.   

Comparisons between simulation and statistical models are helpful for evaluating 

model performance, identifying potential uncertain model parameters, and improving the 

prediction of near-road pollutant levels. For example, the use of GAM derived emission 

factors and CALINE4 for dispersion could improve near-road concentration predictions. 

This appears to be the first comparison between MOBILE6.2/CALINE4 and GAM to 

examine the impact of traffic on near-road environments, and our approach and findings 

are relevant to emission, exposure, health risk evaluations and epidemiological studies.  
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Table 4-1.  Statistics of pollutants, meteorological variables, and traffic variables used in 
the analysis.  
 

 Variable N Min Max Mean STDa
No of

censored
datab

No of
missing

datac

PM2.5 (µg m-3) 8657 0 68.0 16.8 11.6 328 127
CO (ppm) 8316 0 3.6 0.3 0.3 360 468
Wind speed (m s-1) 8750 0 11.1 2.6 1.6 NA 34
Wind direction (Degrees Compass) 8750 0 359.0 189.6 97.4 NA 34
Temperature (Degrees Centigrade) 8750 -17.4 32.7 10.8 10.7 NA 34
Relative humidity (percent) 8006 23.0 100.0 76.5 17.2 NA 774
Pressure (mm Hg) 8750 725.8 765.7 746.3 5.5 NA 34
Traffic counts (vehicles hr-1) 8040 0 9029.0 3221.3 2469.2 NA 2256  

a.  Standard deviation. 
b.  Observations with zero values due to less than method detection limit (MDL; 0.5 μg 

m-3 for PM2.5; 0.05 ppm for CO). 
c.  Observations not available.
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Table 4-2. Comparison of GAM and CALINE4 predictions of CO concentrations at 150 m due to vehicles. 
 

GAM CALINE4 Ratio (Cg/Cc
a)

ppm per 1000 vph ppm per 1000 vph ppm vph %
Spring 0.025 ± 0.001 0.029 0.86 0.29 2836 24
Summer 0.038 ± 0.002 0.034 1.12 0.34 2630 29
Fall 0.055 ± 0.002 0.039 1.41 0.45 3764 46
Winter 0.020 ± 0.002 0.044 0.45 0.28 3465 25
Average 0.035 0.037 0.96 0.34 3221 31

Average traffic
counts Traffic contribution b

CO predictions
Season

Average CO
levels

 
a. Cg = pollutant levels attributed to traffic derived from GAM, Cc = pollutant levels attributed to traffic predicted by CALINE4. 
b. Estimated traffic contribution based on GAM results = Traffic coefficient × seasonal average traffic counts /seasonal average levels. 
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Table 4-3. Performance statistics for GAM.     
 

Spring Summer Fall Winter Spring Summer Fall Winter
Null deviance 41 33 271 43 152751 96865 278057 187100
Deviance for fitted models 15 11 69 13 34230 24847 42446 20730
Explained deviance by fitted models 26 22 203 30 118521 72018 235611 166370
% Explained deviance by fitted models 63 67 75 71 78 74 85 89

PM2.5CO
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Table 4-4. Comparison of GAM and CALINE4 predictions for PM2.5 concentrations at 150 m due to vehicles.  
 

GAM CALINE4 Ratio (Cg/Cc
b)

µg m-3 per 1000 vph µg m-3 per 1000 vph µg m-3 vph %
Spring 0.250 ± 0.063 0.063 3.97 15.21 2836 5
Summer 0.510 ± 0.100 0.107 4.77 17.68 2630 8
Fall 0.332 ± 0.055 0.085 3.91 19.87 3764 6
Winter -a 0.074 NA 14.30 3465 NA
Average 0.364 0.082 4.21 16.77 3221 6

Traffic contributionc

Season
Average traffic

counts
PM2.5 predictions Average PM2.5

levels

 
a. Smoothing component plot shows traffic effects are negative although it is statistically significant (p=0.03). 
b. Cg = pollutant levels attributed to traffic derived from GAM, Cc = pollutant levels attributed to traffic predicted by CALINE4. 
c. Estimated traffic contribution based on GAM results = Traffic coefficient × seasonal average traffic counts /seasonal average levels. 
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Table S4-1.  GAM coefficient estimates for weekdays, weekends and precipitation in past 
three hours (unit: CO, ppm; PM2.5, µg m-3; bold estimates are statistically significant 
(0.05 level); Monday is the reference day for weekdays and weekends) 
 
Pollutant Season Tuesday Wendesday Thursday Friday Saturday Sunday Precipitation

Spring 0.01 -0.03 -0.02 -0.10 -0.01 -0.09 0.02
Summer 0.09 -0.04 -0.04 -0.05 -0.09 -0.04 -0.01
Fall 0.09 0.21 0.12 0.15 0.13 0.02 -0.11
Winter -0.05 -0.09 -0.04 -0.03 -0.10 -0.02 -0.10
Spring -1.52 5.77 2.48 3.21 2.03 1.16 -1.75
Summer 4.46 -2.87 -8.14 -8.89 -9.45 -4.25 -2.64
Fall 1.72 4.99 -2.00 3.21 -2.07 -1.70 -1.32
Winter 3.82 8.57 9.93 5.23 6.13 6.34 -2.80

CO

PM2.5
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Figure 4-1. I75 Study area in Allen Park, Michigan  
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A. Wind Roses B. CO Roses C. PM2.5 Roses
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Figure 4-2. Wind and pollutant roses based on measurements at the Allen Park 
monitoring site and for morning data (6 - 9 am) in 2004.  A. Wind direction rose showing 
sector probability.  B. CO pollutant rose showing average concentrations in each (22.5o) 
wind sector in ppm;  C. PM2.5 pollutant rose showing concentration in µg m-3.  
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Figure 4-3.  Associations between traffic counts and CO levels after adjusting 
meteorological variables and time trends (x axis: traffic counts, 1 000 vehicle hr-1; y axis: 
centered CO, ppm)    
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Figure 4-4.  CO and PM2.5 emission rates for a freeway segment versus average fleet 
speed.  Derived from MOBILE6.2.  PM2.5 estimates for each season are similar. 
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Figure 4-5.  Associations between traffic counts and PM2.5 levels after adjusting 
meteorological variables and time trends (x axis: traffic counts, 1 000 vehicle hr-1; y axis: 
centered PM2.5, μg m-3)   
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Figure 4-6. CO and PM2.5 emission rates for the freeway segment versus the fleet heavy 
duty diesel truck (HDDV) percentage.  Vertical lines show the range of HDDV vehicles 
in the case study.  Derived from MOBILE6.2.   
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Figure S4-1. Seasonal wind rose in the morning rush hours (6-9am) of 2004 (from left to 
right: wind direction roses,  PM2.5 roses and CO roses; from top to bottom: spring, 
summer, fall and winter; unit:, probability for wind roses, µg m-3 for PM2.5 and ppm for 
CO) 
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Figure S4-2. Smoothing components for CO in spring, 2004 
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Figure S4-3. Smoothing components for CO in summer, 2004 
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Figure S4-4. Smoothing components for CO in Fall, 2004 
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Figure S4-5. Smoothing components for CO in winter, 2004 
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Figure S4-6. Smoothing components for PM2.5 in spring, 2004 
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Figure S4-7. Smoothing components for PM2.5 in summer, 2004 
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Figure S4-8. Smoothing components for PM2.5 dataset in fall, 2004 
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Figure S4-9. Smoothing components for PM2.5 dataset in winter, 2004 
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Chapter 5 
Air pollution and health risks due to traffic and congestion 

 

5.1 Abstract  
Traffic congestion increases vehicle emissions and degrades ambient air quality, 

and recent studies have shown excess morbidity and mortality for drivers, commuters and 

individuals living near roadways.  Presently, our understanding of the air pollution 

impacts from traffic congestion is very limited.  This study demonstrates an approach to 

characterize risks of traffic congestion for on- and near-road populations for freeway and 

arterial scenarios.  Simulation modeling was used to estimate on- and near-road NO2 

concentrations and health risks attributable to traffic for different traffic volumes during 

rush hour periods for both scenarios.  The modeling used emission factors from two 

different models (Comprehensive Modal Emissions Model; Motor Vehicle Emissions 

Factor Model version 6.2), an empirical traffic speed – volume relationship, a 

conventional dispersion model (California Line Source Dispersion Model), an empirical 

NO2/NOx relationship, estimated travel time changes during congestion, and 

concentration-response relationships from the literature giving emergency doctor visits, 

hospital admissions and mortality attributed to NO2 exposure.  An incremental analysis, 

expressing the change in health risks for small increases in traffic volume, showed non-

linear effects.  For freeways, on-road exposures, “U” shaped trends of incremental risks 

were predicted for both on- and near-road populations. For arterial roads, incremental 

risks increased sharply for both on- and near-road populations as traffic increased.  These 

patterns are due mainly to changes in emission factors, the NO2/NOx relationship, travel 

delay for on-road population and the extended duration of rush hour for near-road 

population. This study suggests that health risks from congestion are potentially 

significant, and that the incremental impacts can vary considerably depending on the type 

of road and many other factors.  Further, evaluations of risk associated with congestion 
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must consider travel time, the duration of rush-hour, congestion-specific emission 

estimates, and uncertainties. 

5. 2Keywords  
Air quality; morbidity; mortality; NO2; risk assessment; traffic congestion. 

5.3 Introduction 
Traffic on roads has significantly increased in the U.S. and elsewhere over the 

past 20 years (Schrank and Lomax, 2007), and vehicle emissions have become the 

dominant source of many air pollutants in urban areas, including carbon monoxide (CO), 

carbon dioxide (CO2), volatile organic compounds (VOCs) or hydrocarbons (HCs), 

nitrogen oxides (NOx), and particulate matter (PM) (TRB, 2002).  The increasing severity 

and duration of traffic congestion have the potential to greatly increase pollutant 

emissions and to further degrade air quality, particularly near major roadways.  These 

emissions contribute to risks of morbidity and mortality for drivers, commuters and 

individuals living near roadways, as shown by numerous epidemiological studies (WHO, 

2005; HEI, 2010), evaluations of proposed vehicle emission standards, and 

environmental impact assessments for specific road projects. 

It is useful to separate traffic-associated pollutant impacts and risks into two 

categories.  First, “congestion-free” impacts refer to effects of traffic at volumes below 

the level that produces significant congestion.  In these cases, each additional vehicle 

added to the road does not substantially alter traffic patterns, e.g., speed or travel time of 

other vehicles is not affected.  Thus, vehicle emission factors are constant, unrelated to 

traffic volume, and the marginal impact of an additional vehicle is equal to the average 

impact.  The second category, “congestion” impacts, incorporates the effects that can 

occur with congestion, e.g., when traffic volumes exceed levels mentioned above.  In this 

case, average speeds are lowered, which causes additional travel time and increased 

exposure on a per vehicle basis, a result of longer emission and exposure periods.  For 

example, the average annual travel delay for a traveler making rush hour trips in the U.S. 

was 38 h in 2005, based on 437 urban areas (Schrank and Lomax, 2007).  A second effect 

is diminished dispersion of vehicle related pollutants as vehicle-induced turbulence 

depends on vehicle speed (Benson, 1989).  Decreased dispersion during congestion will 
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increase pollutant concentrations.  A third effect of congestion is a change of vehicle 

driving patterns, e.g., increasing the frequency of speedups, slowdowns, stops and starts.  

These changes can increase emissions compared to “cruise” conditions, especially with 

high power acceleration.  For example, Sjodin et al. (1998) showed up to 4-fold, 3-fold 

and 2-fold increases in CO, HC and NOx emissions, respectively, with congestion 

(average speed, 13 mph) compared to uncongested conditions (average speed, 38-44 

mph).  It is important to separate congestion-free and congestion impacts because 

emissions, impacts and risks may differ considerably, and because such analyses might 

inform the evaluation of congestion management strategies, including mitigation and 

impact assessments. 

There have been a very few evaluations of congestion-related impacts, and the 

available studies have combined congestion and non-congestion related impacts.  Tonne 

et al. (2008) predicted that the congestion charging zone in London, where drivers must 

pay fees when their vehicles enter this area, would gain 183 years-of-life per 100,000 

population in the congestion charging zone, and a total of 1,888 years-of-life in the 

greater London area.  Eliasson et al. (2009) estimated that the congestion pricing zone in 

Stockholm will avoid 20-25 deaths annually due to traffic-related air pollution in the 

inner city and 25-30 deaths annually in the metropolitan area, which contains 1.4 million 

inhabitants.  These studies indicate that congestion pricing is beneficial in reducing 

traffic-related health impacts, but congestion-free and congestion related impacts were 

not separated.  These European studies focused on congestion charging zones, which are 

difficult to generalize. Also, the vehicle mix and fleet emission characteristics may differ 

substantially from those in the U.S.  Using a very different approach that used estimated 

time activity shifts due to travel delays and literature values of exposure concentrations in 

different microenvironments, we estimated that a 30 min day-1 travel delay accounted for 

21 ± 12% of exposures to benzene and 14 ± 8% of PM2.5 exposures for a typical working 

adult on weekdays (Zhang and Batterman, 2009).  These results suggest that congestion 

poses a substantial share of exposure to drivers/commuters.  To our knowledge, no other 

study has evaluated congestion-related risks, including the effect of rush hour congestion.    

The objective of this study is to investigate the magnitude of air pollution impacts 

and health risks of on- and near-road population that might occur due in recurring 
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congestion, e.g., occurring at rush hour in major urban areas.  Recurring congestion is 

expected to result in repeated and chronic exposures, and an increase in long term health 

risks.  Incident congestion caused by an accident or disabled vehicle is not addressed, 

although such events may also be important for certain acute health outcomes, e.g., 

asthma exacerbation.  This chapter utilizes predictive risk assessment techniques, 

simulation models for traffic, emissions, pollutant dispersion and risk, and an incremental 

analysis that evaluates congestion-free and congestion-related impacts.  In the methods 

section, we describe the modeling approach and two example scenarios.  In the results 

section, air pollution impacts and risks are presented, including a sensitivity analysis of 

critical assumptions.  The discussion elaborates on these and other possible approaches to 

estimate the impacts of congestion, and discusses study limitations.  Conclusions 

summarize the results.   

5.4 Methods  

5.4.1 Approach 

This study uses risk assessment methods to estimate health risks due to traffic for 

two scenarios.  An overview of the approach used is shown in Figure 5-1.  In brief, 

vehicle emissions are used as an input to a dispersion model to estimate concentrations, 

which are then multiplied by exposure time and the concentration-response relationship.  

Exposure time includes delays due to traffic congestion.  An incremental analysis is used 

to estimate the marginal impacts of increases in traffic volume.  Such analyses are widely 

used in economic models to examine effects of small changes of an input on outcomes of 

interest;  they also represent one of the classical “sensitivity analysis” techniques used to 

identify key variables in modeling systems (Trueman, 2007).  One difference here, 

however, is that a wide range of traffic flows is examined over which relationships are 

expected to vary considerably.   

5.4.2 Scenarios 

Two scenarios were developed to examine the associations between traffic 

volume, exposures and health risks.  These two scenarios represented a freeway and an 

arterial road.   
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The freeway scenario used the I-94 segment (8 km long, shown in Figure 5-2), 

selected for that a field study was conducted on this segment to model instantaneous 

emission rates.  This segment had a permanent traffic recorder (PTR) operated by the 

Michigan Department of Transportation (MDOT).  The portion of the segment west of 

US-23 had two lanes in each direction; the segment east of US-23 had three lanes in each 

direction. The annual average daily traffic (AADT) volumes for these two segments were 

78,300 and 91,300 vehicles day-1, respectively (MDOT, 2008).  During a field study 

described in Chapter 3, traffic volumes were 3099 and 4040 vph in morning rush hour 

and afternoon rush hour, respectively.  Vehicle mix (8% heavy duty trucks and 92% light 

duty vehicles) in rush hours was obtained based on the records from the PTR on this 

studied segment in October, 2007.  Southeast Michigan vehicle age distribution was 

assumed to represent the fleet on this studied segment.  Traffic volume in the incremental 

analysis was allowed to vary from 1000 to 10, 000 vph (about 120% of road capacity; 

designed capacity is 2000 vehicles hr-1 lane-1 for a freeway; Dowling, 1997).  Besides the 

freeway scenario with an incremental analysis, a scenario using real traffic volumes on I-

94 in rush hour was conducted to demonstrate the spatial-temporal patterns of predicted 

pollutant levels.  

The arterial scenario used the Grand River (M-5) segment in Detroit (Figure 5-3).  

It is an 8.5 km long arterial road, and includes two lanes per direction and a central 

turning lane.  The annual average daily traffic (AADT) for the segment west of M-39 and 

that east of M-39 were 23,800 and 19,200 vehicles day-1, respectively (MDOT, 2009).  

Regional vehicle mix in rush hours was used, that is, still 8% heavy duty trucks and 92% 

light duty vehicles (SEMCOG, 2006). Again, southeast Michigan vehicle age distribution 

was also used.  Traffic volume ranged from 1000 to 4000 vph (about 120% of road 

capacity; designed capacity is 825 vehicles hr-1 lane-1 for an arterial road; Dowling, 1997).  

Exposures of drivers and commuters were estimated based on several assumptions 

about their behavior, traffic and in-vehicle concentrations.  A driver or commuter was 

assumed to travel on the segments under a constant traffic volume in both morning and 

afternoon rush hours every weekday per year.  Vehicle mix and age distribution were 

assumed to be constant with varying traffic volume during rush hours.  Their exposed in-

vehicle concentrations are assumed to the equal to predicted on-road concentrations.  
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Exposures of near-road residents were derived using similar assumptions.  A 

uniform population density was assumed on both sides of a road.  A resident was 

assumed to stay at home during rush hour every weekday, which are exactly at a receptor 

with 100 m to a road.  In the real world, this distance varies with a relative large range 

(e.g., 10- 500 m), rather than a fixed number.  For the purposes of demonstration, we 

used the 100 m distance as an example.  Average concentrations at both upwind and 

downwind receptors with 100 m distance were used since the uniform population density 

at both road sides was assumed.  A few studies indicated that indoor NO2 concentrations 

in homes without indoor sources were about 50% of outdoor concentrations (HEI, 2010), 

and thus the exposed indoor concentrations in this study were assumed to be half of the 

predicted concentrations at 100 m receptors.  Vehicle mix in rush hours was assumed to 

be constant for each weekday.   

5.4.3 Emission modeling 

Two emission models were used to estimate emission factors for a vehicle fleet 

traveling at different speeds.  These included the Comprehensive Modal Emissions 

Model (CMEM) and the Motor Vehicle Emissions Factor Model version 6.2 

(MOBILE6.2).  In this study, we estimated emissions for NOx since traffic is its major 

source, and both models can predict NOx while adjusting for speed effects.  There are 

other important traffic-related pollutants, e.g., PM2.5 is also an important, however, 

CMEM cannot estimate PM2.5, and MOBILE6.2 does not account for speed’s effects on 

PM2.5.   

CMEM is a physically-based instantaneous model, and can predict fuel 

consumption and emissions of CO, HC, NOx and CO2 on a finer time scale, e.g., second-

by-second basis (Scora et al., 2006), as detailed in Chapter 3.  CMEM was only used in 

the freeway scenario because we have only collected driving patterns for this freeway 

segment.  CMEM estimates obtained from the Chapter 3 were only based on the east-

bound direction.  These estimates are assumed to apply to both directions.   

MOBILE6.2 is a widely used regulatory emission model in the US (Pierce et al., 

2008).  It can estimate emissions of HC, CO, NOx, PM and air toxics (e.g., benzene), on 

the basis of chassis dynamometer measurements and driving cycles designed for four 

road types: freeway, arterial, ramp and local road (EPA, 2003; Pierce et al., 2008).  

 137



Emission factors in summer and winter were estimated using MOBILE6.2 based on fleet 

mix, vehicle age distribution and typical daily temperature under different vehicle speeds.  

Annual average emission factors were approximated as the average of those in summer 

and winter.   

For both emission models, emission factors are a function of fleet speed, and 

speed is a function of traffic volume.  Speeds corresponding to given traffic volumes 

were derived using one of the Bureau of Public Road (BPR) formulae (Dowling, 1997):  

])/(1/[ b
f cvass +=                       (1) 

where s = predicted mean speed; sf= free-flow speed; v = volume; c = practical capacity, 

estimated locally as 2000 vehicles hr-1 lane-1 for freeways and 825 vehicles hr-1 lane-1 for 

urban arterials (SEMCOG 2004); a = scalar coefficient ranging from 0.05 to 1; and b = 

power coefficient ranging from 4 to 11.  These two coefficients were obtained from a 

case study conducted in Detroit, which estimated α = 0.1226 for the freeway, α = 1.00 for 

the arterial, and β = 4.688 (Batterman et al., 2010)    

5.4.4 Dispersion modeling 

CALINE4 is a dispersion model developed by California Department of 

Transportation to estimate roadway pollutant concentrations.  It uses a Gaussian-plume 

type model for a line source of finite length (Benson, 1989).  This model employs a 

mixing zone concept to characterize thermal and mechanical turbulence (e.g., vehicle 

wake effects), which is defined as the region over the roadway (traffic lanes, not 

shoulders) plus 3 m on each side (Benson, 1989).  Emissions and turbulence in the 

mixing zone are assumed to be uniformly distributed.  Concentrations beyond this zone 

decay following an empirical Gaussian line source equation (Benson, 1989).  Although 

dispersion parameters are a function of traffic volume, sensitivity analyses show it had 

minor effects.   

CALINE4 was used to estimate NOx concentrations attributable to traffic.  This 

model requires inputs that include emission factors, traffic flows, meteorological data, 

and receptor locations.  Emissions were modeled for different traffic volumes, as 

discussed above.  Hourly surface meteorological data during morning/afternoon rush 

hours (7-9 am and 4-6 pm) in 2005 from the Detroit Metropolitan Airport (southwest of 

Detroit) were used in scenarios.  A simplified modeling approach was implemented 
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because CALINE4 was not designed to process hourly data for a full year (Zhang and 

Batterman, 2010).  Pollutant concentrations were predicted for 16 wind sectors (each 

spanning 22.5o) and some wind speed classes (1 m s-1 for each bin, e.g., 0.5 to 1.5, 1.5 to 

2.5, …).  Annual average concentrations at receptors were estimated as the sum of these 

predictions weighted by the probability of each wind sector/wind speed category in 2005.  

Receptors were placed at 0, 25, 50, 75, 100 and 150 m on both sides of a transect 

perpendicular to the center of the studied road segments.   

Predicted NOx concentrations were converted into NO2 levels in order to utilize 

NO2 based concentration-response relationships.  Nitric oxide (NO) emissions usually 

account for 90–95% of NOx emissions in traffic (WHO, 2005).  Such NO is converted 

into NO2 rapidly by reaction with ozone and OH- radicals.  Ambient concentrations of 

NO and NO2 vary with distance from traffic and other factors (e.g., background ozone 

and NO2 concentrations, sunlight and dispersion conditions) (HEI, 2010).  In this study, 

NO2 concentrations were derived from CALINE4 predicted NOx concentrations 

according to an empirical method recommended by the Department for Environment, 

Food and Rural Affairs of UK (2003), defined as:  

         )()()()(2 )53.0))ln(068.0(( roadxbackgroundxroadxroad NONONONO ×++×−=         (2) 
where  = the annual mean NO2 concentration attributable to the road; = 

the annual mean NOx concentration attributable to the road; = the annual 

mean background NOx concentration.  This equation implies NO2 to NOx ratios from 

0.25 at low NOx levels to 0.12 at high NOx concentrations.  Although this formula was 

developed for long-term NO2/NOx relationships, it was assumed to hold for short term 

relationships in this study.  Brown et al. (2007) reported an average 28.7 µg m-3 

background level in 2004 and 2005, based on East 7 Mile monitor (northeast of Detroit).  

Equation (2) and background level were used in both scenarios of this study.   

)(2 roadNO )(roadxNO

)(backgroundxNO

5.4.5 Exposure assessment  

Daily and annual NO2 exposures of on-road population were calculated as follows 

                                                                   (3) 24/1××= − TCE roadond

                                                                         (4) 365/255×= da EE
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where =adjusted daily exposures to NO2 (µg m-3 day-1); =adjusted annual 

exposures to NO2 (µg m-3 year-1); = predicted on-road concentrations (µg m-3); 

dE aE

roadonC − T = 

travel time (hr), calculated by dividing the segment length over vehicle speed;  

daily adjusted coefficient (hrs-1 day-1), a reciprocal of 24 hrs per day; this 

coefficient distributes in-vehicle exposures during travel on a daily basis in order to be 

compatible with daily-average-based concentration-response relationships; 255/365= 

annual adjusted coefficient; 255 = total weekdays of a year, 365 = total days of a year; 

this coefficient distributes short-term exposures over a yearly basis to be comparable with 

annual-average-based concentrations-response relationships.   

=24/1

Exposures for near-road population were derived in a similar way.  In eqs. (3) and 

(4), on-road concentrations were replaced by one half near-road concentrations, and 

travel time was replaced by rush hour duration, defined in eq. (5):  

                                                                         (5) ssT fhourrush /2×=−

where = actual duration of rush hour; 2 = baseline of rush hour duration (either 

morning or afternoon rush hour) without congestion; = free-flow speed (mph); = 

speed (mph).  The duration of rush hour is extended due to increased traffic volume. A 

resident was assumed to be at home during rush hours every weekday.   

hourrushT −

fs s

5.4.6 Risk characterization  

Health risks were calculated by linking the estimated exposures to the relevant 

concentration-response relationships in the literature.  We assumed that the 

concentration-response relationships between the traffic-related air pollutants caused by 

congestion and health outcomes are the same with those for “total” (congestion and 

congestion-free) traffic-related air pollutants.  This can be justified if the pollutant 

mixtures associated with overall traffic and congestion are similar.  Health outcomes of 

interest and available in the literature include short term morbidity and long term 

mortality.  Morbidity estimates represent emergency doctor visits and hospital admissions 

(EDA).  Both short- and long-term endpoints were selected based on the strongest 

evidence shown by epidemiological and toxicological studies (EPA, 2008).   

Health risks were estimated using long term exposures and dose-response 

relationships in the literature summarized by EPA (2008) and shown in Table 5-1.  The 
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intervals in Table 5-1 represent the ranges of the mean estimates from different studies, 

and not the statistical confidence interval derived from a meta-analysis.  EPA states that 

confidence intervals cannot be established since the underlying studies used different 

models, e.g., single and multi-pollutant models, different covariates, as well as different 

cohorts, e.g., some studies only consider one age group, among other differences (EPA, 

2008).   

The increased incremental risks between nearby traffic volume were derived by 

dividing the differences of the risks corresponding to nearby traffic volumes by the 

differences of these traffic volumes.  They represented an increased risk for an individual 

per additional vehicle at different traffic volume.  Incremental risks reflected a marginal 

risk between individuals and traffic volume.  

5.4.7 Sensitivity analysis  

A limited sensitivity analyses was conducted to examine the impacts of key 

factors on the predicted incremental risk, including speed, emission factors, and the 

NO2/NOx ratio.  This analysis predicted the incremental risks for mortality for the on-

road population in morning rush hour in the freeway scenario under different conditions: 

speed used 50, 55, 60, 65 and 70 mph with the constant emission factor (2.7 g mi-1) and 

NO2/NOx ratio (0.16); emission rates used 1.9, 2.1, 2.3, 2.5 and 2.7 g mi-1 given the 

constant speed (70 mph) and NO2/NOx ratio (0.16); the NO2/NOx ratio used 0.12, 0.15, 

0.18, 0.22 and 0.25 given the constant emission factor (2.7 g mi-1) and the constant speed 

(70 mph).  Emission estimates were derived from MOBILE6.2.  

5.5 Results  

5.5.1 Spatial-temporal patterns of predicted NO2 levels 

Figure 5-4 shows that the predicted NO2 levels vary with receptor locations, and 

that they decrease quickly with distance from I-94, consistent with previous studies 

(WHO, 2005).  Although traffic volume in afternoon rush hour was 30% higher 

compared to morning rush hour, concentrations in morning rush hour were close to those 

in afternoon rush hour given the same upwind/downwind directions, depending on 

receptor locations, mainly due to poor dispersion conditions in morning rush hour, e.g., 

more frequent low wind speeds.   
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5.5.2 Air pollution impacts 

Figure 5-5 shows the associations between traffic volume, speed and NOx 

emission factors for the freeway scenario.  Speeds were constant up to volume of 

approximately 4400 vph, at which point speeds begin to decreases.  Emission factors 

from both CMEM and MOBILE6.2 are also constant at low volumes;  at high volumes, 

CMEM estimates slightly increase while MOBILE6.2 estimates slightly decrease.  As 

noted in Chapter 3, these models have many differences, and specifically the CMEM 

rates simulated segment-specific driving behaviors using second-by-second 

speed/acceleration profiles obtained from a field study conducted on the I-94 segment.  

Additionally, MOBILE6.2 estimates systematically exceed those for CMEM, possibly 

due to smoothing of speed profiles, the CMEM vehicle category scheme, and other 

factors discussed in Chapter 3.   

For the arterial (Figures 5-6), speed is constant at low traffic volumes, and drops 

quickly after around 2000 vph.  Emission factors are nearly constant at low volumes, and 

increase after around 2500 vph when vehicle speeds are low.  

Figure 5-7 shows NO2 concentrations predicted for various emission estimates, 

traffic volume and rush hour periods in the freeway scenario. Concentrations based on 

CMEM estimates are near-linearly associated with traffic volume (Figures 5-7A and 5-

7B), while those based on MOBILE6.2 increase exponentially with traffic volume to 

about 7000 vph, and then gradually level off (Figures 5-7C and 5-7D).  These trends are 

mainly determined by emission factors and the empirical NO2/NOx relationship.  

MOBILE6.2 has slightly decreased emission factors at high volumes, and thus NO2 

concentrations increase slowly at high volumes.  Additionally, given the same traffic 

volume, predicted concentrations in morning rush hour are 30-50 % higher than those in 

afternoon rush hour, mainly because of more frequent lower speeds and poor dispersion 

conditions. 

Figure 5-8 shows predicted NO2 concentrations in the arterial scenario.  NO2 

levels increase near linearly to about 3000 vph, and then increase sharply. This can be 

explained by emission factors that are approximately constant at low volumes, thus, 

traffic volume dominates the trend of concentrations; at high volumes, increased emission 

factors make NO2 levels increase more sharply.   
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5.5.3 Health risk impacts 

Tables 5-2 and 5-3 list predicted short- and long-term health risks for the freeway 

scenario using CMEM and MOBILE6.2 emission estimates and traffic volumes from 

1000 to 10, 000 vph.  Traffic during the morning rush hour increases health risks by 20 to 

40% compared to afternoon rush hour for the same traffic volume, mainly due to poorer 

dispersion conditions discussed above.  Given the same traffic volume, differences in 

health risks for an individual between on- and near-road receptors are proportional to the 

concentrations differences.  Differences between Table 5-2 and Table 5-3 are mainly 

determined by the differences from two emission estimates and the empirical NO2/NOx 

equation.  

Table 5-4 shows predicted health risks for the arterial scenario.  As shown for the 

freeway, the arterial scenario also shows higher risks are associated with morning rush 

hour compared to afternoon rush hour.   

5.5.4 Incremental health risk analysis 

Figures 5-9 show incremental risks (increased risk for an individual per an 

additional vehicle) for the upper bound mortality outcomes in the freeway scenario. 

(Figures S5-1 and S5- 2 show incremental risks for EDA using both CMEM and 

MOBILE6.2 emission estimates since incremental risks for EDA are proportional to 

those for mortality.)    The incremental risks for the on-road population in the morning 

rush hour period are about 20 to 45% higher than those in afternoon rush hours.  These 

patterns are mainly driven by travel time (for the on-road population), emission estimates 

and the empirical NO2/NOx relationship.  CMEM-based incremental risks were taken as 

an example to explain how these factors affect general trends: Figures 5-9A and 5-9B 

show U-shape curves: for 1000 – 4000 vph, the trends were determined by the NO2/NOx 

empirical relationship because speed and emission factors are constant, while the 

proportion of NO2 to NOx slightly decreases from 0.3 to 0.22 with increased volume. 

Thus, incremental risks decrease slightly;  for 5000 – 7000 vph, emission factors are still 

constant. But speed slows down, and results in longer travel time. Also, the ratio of NO2 

to NOx slightly decreases from 0.21 to 0.19.  These two factors result in slightly increased 

incremental risks;  for volume > 8000 vph, longer travel delay, increased emission factors, 

and slightly decreased NO2/NOx ratio cause increased incremental risks.  Similarly, 
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Figures 5-9C and 5-9D show the same “U” shaped trends for the same reasons discussed 

above.  In general, the fluctuations of incremental risks at high volumes for both 

scenarios suggest incremental risks in real world are variable and complicated because 

these small changes are easily altered by specific driving patterns. 

Incremental risks based on MOBILE6.2 (shown in Figures 5-9) also show U-

shape patterns for both on- and near-road populations, but the increases at high volumes 

after 7000 vph are small.  The two emission models produce different patterns:  

MOBILE6.2-derived emission rates drop when speeds slows from free flow conditions, 

while CMEM-derived estimates slightly increase with decreased speed in the freeway 

scenario.   

The incremental analysis shows the effect of each additional vehicle.  The U-

shape trend seen for both on- and near-road populations indicates that congestion-related 

health impacts could be much higher than congestion-free impacts.  The “U” shaped 

trends of incremental risks are a novel finding of this research.   

Figures 5-10 show incremental risks for the arterial scenario.  Substantial 

increased trends of incremental risks are seen for both on- and near-road populations.  In 

this scenario, speeds decrease substantially (from 35 to 10 mph), and emission factors 

increase markedly at high traffic volume (from 1.7 to 2.3 g mi-1).  These findings suggest 

that congestion could pose risks to commuters on and residents near arterial roads that are 

greater than the congestion risks associated with freeways, possibly because lower speed 

might be associated more acceleration/deceleration events than higher speed, and low 

speed reduces dispersion conditions as discussed in the introduction section.  

5.5.5 Sensitivity analysis 

Figures 5-11 show the effects of speed, emission factors and the NO2/NOx ratio 

on incremental mortality risks.  Generally, incremental risks decrease with increased 

speed (or decreased traffic volume), but increase with increased emission factors and 

NO2/NOx ratio.  The NO2/NOx ratio has largest impact on incremental risks compared to 

speed and emission factors because its relative sensitivity is one order higher than 

emission factors, and two orders higher than speed’s.   
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5.6 Discussion  
This study demonstrates an analysis of health risks for traffic and congestion can 

be somewhat analyzed using a marginal analysis, specifically on the basis of incremental 

increases in traffic volume.  The two scenarios indicate that the patterns of incremental 

risks are primarily determined by emission rates, the empirical NO2/NOx relationship and 

travel delay (for the on-road population).  In particular, emission rates control the 

direction of these patterns at high traffic volumes, which are usually associated with 

congestion.  For example, for the near-road population in the freeway scenario, CMEM 

estimates result in up and down patterns at high traffic volumes, while MOBILE6.2 

estimates produce decreasing trends.  This suggests that emission estimates, especially 

those in congestion, play a critical role.  Many factors influence results, as described next.  

5.6.1 Relevance of the scenario 

The scenario analysis is based on two simplified and somewhat hypothetical 

scenarios.  The volumes assumed for the study segments may not be realistic, e.g., the 

traffic volume was 4040 vph in afternoon rush hour for the freeway scenario, less than 

half of the highest volume (10,000 vph) simulated.  Second, results are expected to vary 

with roads with different orientation, road topography, as well as some factors discussed 

above such as meteorological conditions and near-road population density.  Third, this 

analysis only examined NO2, and it would be helpful to examine other traffic-related 

pollutants such as PM2.5 and black carbon. 

5.6.2 Uncertainties in emissions 

Smit (2006) suggested that the emission models based on average speeds (e.g., 

MOBILE6.2) do not explicitly account for congestion since they do not incorporate input 

parameters representing congestion levels (Smit et al., 2008), although these models 

might consider congestion levels in a model development process.  In contrast, driving 

pattern-based emission models can predict emission in congestion by specifying 

instantaneous speed and acceleration/deceleration profiles as model inputs.  However, the 

emission estimates in congestion derived from such models have not yet been fully 

validated (Smit, 2006).  Emissions contributed by traffic congestion can be estimated 

using MOBILE6.2 to some extent.  MOBILE6.2 implicitly accounts for congestion 
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because some urban driving patterns used in the MOBILE6.2 development process are 

somewhat associated with congestion, but it does not explicitly include any input 

parameters representing the levels of congestion (Smit et al., 2008).  Therefore, we 

implicitly assumed two scenarios discussed above had the exact congestion levels 

reflected in the MOBILE6.2 model development.   

The emission models have several sources of uncertainty.  For CMEM, key 

uncertainties result from the speed-profiles smoothing and the car-floating technique.  It 

seems likely that the approach used reduces the differences between emissions predicted 

for congested and free-flow conditions since actual acceleration/deceleration is 

underestimated.  Additional uncertainties result from the mapping between CMEM and 

traffic vehicle categories.  The assumption of CMEM estimates (derived from the east-

bound direction) representing two road directions also bring some uncertainties.  For 

MOBILE6.2, a key uncertainty is whether the embedded driving cycles and speed 

adjustments reflect those in the scenarios.  MOBILE6.2 ability to predict congestion-

related emissions for specific roads is limited, as discussed above.  Other uncertainties 

include a lack of segment-specific vehicle age distribution, and the performance of the 

BPR describing the relationships between traffic flow and speed for the studied segments.  

Moreover, both CMEM and MOBILE6.2 are deterministic models and thus results do not 

reflect model uncertainty.   

There are several alternate ways to estimate emissions.  First, the new EPA Motor 

Vehicle Emission Simulator (MOVES; EPA, 2009) might be used.  This model has been 

calibrated using a larger database than CMEM, and it can account explicitly for 

congestion by considering user-specified driving patterns (EPA, 2009).   It also provides 

PM2.5 estimates, which are omitted in CMEM and which is speed-invariant in 

MOBILE6.2.  A second way to estimate emissions might be to use on-board 

measurements or near-road emission/concentration measurements.  On-board 

measurements for an individual vehicle are expensive and results can vary dramatically 

from vehicle to vehicle, although they can directly link transient emissions to transient 

speed, acceleration and deceleration, and thus can capture emissions that are typical of 

stop-and-go congestion.  Another disadvantage is that emission measurements are 

difficult to generalize to the whole fleet.  Near-road measurements can be difficult to 
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couple to transient driving parameters due to instrumental limitations, changes in 

meteorological conditions and dispersion delays, among other reasons, although such 

measurements can reflect congestion’s contribution to pollutant levels over a suitably 

long period.   

5.6.3 Dispersion modeling 

Concentration estimates involve several uncertainties and limitations, the largest 

of which might arise from the use of the empirical NO2 - NOx relationship.  This 

relationship was derived from a UK study, whereas the traffic composition, vehicle 

technologies, and emission models were all US-based.   The actual NO2 - NOx 

relationship depends on many factors, including background levels of NO, NO2, and O3, 

and the meteorological conditions (Stedman et al., 2001).  The empirical relationship was 

derived for long-term relationships;  here it was used for short-term concentrations.  The 

background NOx levels used might not reflect levels around the studied roads.  The 

meteorological data used were obtained from largely unrestricted airport stations.  

Conditions near roads might be affected by buildings, trees and other factors (Greco et al., 

2007) that might reduce winds and increase turbulence.  Because concentrations rapidly 

decrease at distances over about 150 m from the road, we considered only near-road 

receptors.  This does not account for background concentrations that can be attributed to 

traffic.  The dispersion model estimates also do not include model uncertainty since 

CALINE4 is a deterministic model.  Other limitations of CALINE4, e.g., poor 

performance at low wind speeds, were discussed in Chapter 4.  

5.6.4 Exposure assessment limitations 

Assumptions in deriving exposure estimates for two scenarios limit results to 

generalize to real world.  First, commuters usually travel for longer trips than the studied 

segments:  US commuters average 81 min day-1 in vehicles in 2001according to US travel 

surveys (HEI, 2010).  Such trips might include both congestion-free and congestion 

periods, and both freeway and arterial roads.  Second, this study only examined 

exposures in vehicles for the on-road population and in homes for the near-road 

population, did not  examined daily total exposures, taking into consideration dynamic 

adjustments to time activity patterns due to travel delay, discussed in Chapter 2.  Third, 

concentrations in the vehicle cabin may differ from those on the road, as predicted by 
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CALINE4.  Cabin concentrations are affected opening the car windows, the air intake, 

the air conditioning system, and other factors.  The same applies for indoor 

concentrations for near-road residents. 

5.6.5 Risk characterization  

The risk characterization has important qualifications.  First, congestion-specific 

concentration-response relationships are unavailable.  The concentration-response 

relationships in the literature may not represent those needed to understand risks related 

to congestion.  Exposures due to congestion are short (typically less than several hours), 

however, concentration-response relationships in the literature are based on daily average 

or annual average concentrations.  It is unclear how the aggregation method used in this 

study affects true risks, i.e., our approach simply calculated long term exposure based on 

weighting short-term exposures to NO2 by their exposure time.  On the other hand, the 

available NO2 concentration-response relationships might be reasonable for use because 

congestion does not generate new pollutants, but simply changes the magnitude of 

common traffic-related pollutants.   

A second key point is that NO2 is being used as a surrogate measure of pollutant 

exposure in that the NO2 concentration-response relationship represents not only the 

effects of NO2, but also that of other traffic related pollutants, e.g., PM2.5.  This can be 

justified due to the high correlation between NO2 and co-pollutants (EPA, 2008; Tonne et 

al., 2008).   

A third limitation is that risk calculations were performed for several receptor 

locations, which did not account for the population distribution around the road.  

Considering spatial patterns of traffic-related air pollutant near a road, total health risks 

due to congestion for an area are driven by the near-road population density.  However, 

considering that the purpose of this work was to develop and demonstrate the 

methodology to estimate exposures and health risks from rush hour congestion, the real 

near-road population density were not applied in this study. Additionally, as Tonne et al. 

(2008) pointed out that there might be a working population near roads, this population 

has not yet considered in this study due to inadequate information.  
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5.6.6 Other approaches for estimating congestion-related health risks  

It may be possible to estimate the health risks from congestion using 

epidemiological studies that include indicators for congestion.  Such studies might 

provide tailored dose-response relationships to use in the risk assessment.  For example, 

congestion indicators such as time spent in congestion for commuters, might be linked to 

health outcomes directly.  This would avoid the sequence of model used in the present 

analysis, e.g., the complicated emission and dispersion modeling and the incremental 

analysis.  

5.7 Conclusions 
This study used an incremental analysis tool to estimate pollution impacts and 

characterize health risks caused by congestion, which appears to be the first such analysis 

in the literature.  Congestion increased risks for individuals driving/commuting on 

freeway or arterial roads.    Increased risks depend on time of a day (morning rush hours 

vs. afternoon rush hours) and distance to highways.  While health risks from congestion 

can be predicted and are potentially significant for both on-road and nearby residential 

populations, uncertainties are high.  Thus, these results are considered preliminary and 

additional information is needed, especially related to PM2.5, to confirm results.   Still, the 

study suggests that many factors affect risks, that the marginal risks of additional vehicle 

vary nonlinearly, and that key variables include emission factors in congestion, NO2/NOx 

relationships, travel time changes, and the scenario itself, e.g., road type and receptor 

location.  These factors require further research.  
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Table 5-1. Concentration-response relationships between NO2 and health outcomes 
(Range of NO2 risk estimates among different studies; EPA, 2008). 
   

Outcome Air
pollutants

Increased risk for 10 µg m-3

concentration increase
ED visits and hospital admissions (short term) NO2 0.5-5.3%
Total mortality (long term) NO2 0 - 14.8%  
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Table 5-2. Predicted short- and long-term health risks for selected receptors in the freeway scenario for different traffic volume using 
CMEM emission estimates (EDA , emergency doctor visit or hospital admissions; unit: probability×10-6 day-1 person-1 for EDA and 
probability×10-6 year-1 person-1 for mortality) 

 

Volume

EDAa Mortality EDA Mortality EDA Mortality EDA Mortality
1000 6-67 0-130 5-50 0-98 20-208 0-406 14-145 0-283 
2000 12-123 0-241 9-95 0-184 38-407 0-794 27-286 0-558 
3000 16-174 0-339 13-135 0-262 56-598 0-1168 40-423 0-825 
4000 21-220 0-429 16-172 0-335 74-785 0-1532 53-557 0-1087 
5000 25-264 0-515 20-208 0-405 92-972 0-1896 65-693 0-1352 
6000 29-308 0-602 23-244 0-477 110-1167 0-2277 79-836 0-1630 
7000 34-357 0-696 27-284 0-554 130-1383 0-2698 94-994 0-1939 
8000 41-433 0-844 33-347 0-678 164-1734 0-3382 118-1253 0-2444 
9000 47-501 0-977 38-404 0-788 193-2043 0-3986 140-1481 0-2889 

10000 57-609 0-1189 47-494 0-965 240-2549 0-4973 175-1855 0-3618 

On-road population
Morning rush hours Afternoon rush hours

Near-road populationb

Morning rush hours Afternoon rush hours

 
a. Emergency doctor visit or hospital admissions; 
b. Near-road population represents individuals living at 100 m to freeways here. 
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Table 5-3. Predicted short- and long-term health risks for selected receptors in the freeway scenario using MOBILE6.2 emission 
estimates (unit: probability×10-6 day-1 person-1 for EDA and probability×10-6 year-1 person-1 for mortality) 
 

Volume

EDAa Mortality EDA Mortality EDA Mortality EDA Mortality
1000 9-94 0-183 7-71 0-139 20-208 0-406 14-145 0-283 
2000 16-170 0-331 12-131 0-256 38-407 0-794 27-286 0-558 
3000 22-235 0-459 17-184 0-360 56-598 0-1168 40-423 0-825 
4000 28-294 0-574 22-233 0-455 74-785 0-1532 53-557 0-1087 
5000 33-350 0-682 26-279 0-545 92-972 0-1896 65-693 0-1352 
6000 38-405 0-790 31-326 0-635 110-1167 0-2277 79-836 0-1630 
7000 44-465 0-906 35-376 0-734 130-1383 0-2698 94-994 0-1939 
8000 48-513 0-1001 39-416 0-813 164-1734 0-3382 118-1253 0-2444 
9000 54-568 0-1108 44-462 0-901 193-2043 0-3986 140-1481 0-2889 

10000 62-652 0-1273 50-532 0-1038 240-2549 0-4973 175-1855 0-3618 

On-road population Near-road populationb

Morning rush hours Afternoon rush hours Morning rush hours Afternoon rush hours
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a. Emergency doctor visit or hospital admissions; 
b. Near-road population represents individuals living at 100 m to freeways here. 
 

 



Table 5-4. Predicted short- and long-term health risks for selected receptors in the arterial scenario using MOBILE6.2 emission 
estimates (unit: probability×10-6 day-1 person-1 for EDA and probability×10-6 year-1 person-1 for mortality) 
 

Volume

EDAa Mortality EDA Mortality EDA Mortality EDA Mortality
1000 9-96 0-187 7-73 0-142 13-136 0-266 6-67 0-131 
1500 13-143 0-278 10-109 0-212 20-207 0-404 10-102 0-200 
2000 19-198 0-387 14-152 0-296 28-294 0-573 14-146 0-284 
2500 27-284 0-554 21-219 0-427 41-429 0-838 20-214 0-417 
3000 43-451 0-880 33-350 0-682 66-698 0-1362 33-349 0-681 
3500 74-787 0-1536 58-614 0-1198 118-1251 0-2441 59-629 0-1227 
4000 138-1461 0-2851 108-1148 0-2240 226-2397 0-4677 115-1214 0-2368 

On-road population Near-road populationb

Morning rush hours Afternoon rush hours Morning rush hours Afternoon rush hours

 
a. Emergency doctor visit or hospital admissions; 153 b. Near-road population represents individuals living at 100 m to freeways here. 

 



 
 
Figure 5-1. Diagram for modeling health risks due to traffic and congestion (CMEM, the 
Comprehensive Modal Emissions Model; MOBILE6.2, the Motor Vehicle Emissions 
Factor Model version 6.2; TAP, time activity pattern). 
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Figure 5-2. Map of study area and study segment for the freeway scenario, shown in 
orange.
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Figure 5-3. Map of study area and study segment for the arterial scenario, shown in 
orange.
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Figure 5-4. Predicted NO2 concentrations versus distance to the freeway (assuming fixed 
NOx background level; traffic volume, 3099 and 4040 vph for morning and afternoon 
rush hours).
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A. Freeway: Speed vs. Traffic volume
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Figure 5-5. Predicted speed and NOx emission factors for range of traffic volumes in the 
freeway scenario. 
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A. Arterial: Speed vs. Traffic volume
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Figure 5-6. Predicted speed and NOx emission factors for range of traffic volumes in the 
arterial scenario. 
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A. Freeway (CMEM): NO2 levels in morning rush hour
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B. Freeway (CMEM): NO2 levels in afternoon rush hour
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C. Freeway (MOBILE6.2): NO2 levels in morning rush hour
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D. Freeway (MOBILE6.2) NO2 levels in afternoon rush hour
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Figure 5-7. Predicted NO2 concentrations versus traffic volume in the freeway scenario  
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A. Arterial (MOBILE6.2): NO2 levels in morning rush hour
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Figure 5-8. Predicted NO2 concentrations versus traffic volume in the arterial scenario  
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A. Freeway: On-road population in morning rush hour
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B. Freeway: On-road population in afternoon rush hour
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C. Freeway: Near-road population in morning rush hour
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D. Freeway: Near-road population in afternoon rush hour
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Figure 5-9. Predicted incremental risks per vehicle versus traffic volume for upper bound mortality in the freeway scenario (CMEM, 
estimated based on CMEM estimates; MOBILE6.2, estimated based on MOBILE6.2 estimates; near-road representing individuals 
living at 100 m to a highway.) 
 

 



 A. Arterial: On-road population in morning rush hour
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B. Arterial: On-road population in afternoon rush hour
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C. Arterial: Near-road population in morning rush hour
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D. Arterial: Near-road population in afternoon rush hour
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Figure 5-10. Predicted incremental risks per vehicle versus traffic volume for upper bound mortality in the arterial scenario (‘U’, 
upper bound; ‘V’, traffic volume; near-road representing individuals living at 100 m to a highway.) 
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Figure 5-11.  Sensitivity analysis for speed, emission factors and NO2/NOx ratio (Incremental risks of mortality upper bound for the 
on-road population as a normal case; ‘U’, upper bound; V, speed; EF, emission factor; R, ratio) 
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B. Freeway: On-road population in afternoon rush hour
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C. Freeway: Near-road population in morning rush hour
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D. Freeway: Near-road population in afternoon rush hour

0.0E+00

3.0E-07

6.0E-07

9.0E-07

1.2E-06

0 2000 4000 6000 8000 10000 12000
Volume (vph)

In
cr

ea
se

d 
ris

k 
ve

hi
cl

e-1
. ΔEDA/ΔV_L

ΔEDA/ΔV_U
ΔMortality/ΔV_U

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

165

 
 
 
 
 
 
 
Figure S5-1. Predicted incremental risks per vehicle versus traffic volume for the freeway scenario using CMEM emission estimates 
(‘L’, lower bound; ‘U’, upper bound; lower bound of incremental mortality risk is zero and thus is not shown in the plots; near-road 
representing individuals living at 100 m to a highway.)   
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B. Freeway: On-road population in afternoon rush hour
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Figure S5-2. Predicted incremental risks per vehicle versus traffic volume for the freeway scenario using MOBILE6.2 emission 
estimates (‘L’, lower bound; ‘U’, upper bound; lower bound of incremental mortality risk is zero and thus is not shown in the plots; 
near-road representing individuals living at 100 m to a highway.)   
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B. Arterial: On-road population in afternoon rush hour
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D. Arterial: Near-road population in afternoon rush hour
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Figure S5-3. Predicted incremental risks per vehicle versus traffic volume for the arterial scenario using MOBILE6.2 emission 
estimates (‘L’, lower bound; ‘U’, upper bound; lower bound of incremental mortality risk is zero and thus is not shown in the plots; 
near-road representing individuals living at 100 m to a highway.)   
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Chapter 6
Conclusion 

 

The goal of this research was to characterize exposures and health risks due to 

traffic-related air pollutants, including an analysis with and without traffic congestion.   

Four specific aims were defined:  (1) the trade-offs between time spent in vehicles and 

eight other microenvironments due to traffic congestion were investigated using robust 

regression and the National Human Activity Pattern Survey (NHAPS) data; (2) vehicle 

emissions under work zone and rush hour congestion were estimated and compared to 

emissions under free-flow conditions by conducting a field and modeling study on a local 

freeway segment and using vehicle emission models; (3) process- and statistically-based 

models for predicting near-road concentrations were compared with pollutant 

concentrations monitored near an interstate freeway in Detroit, MI; (4) a methodology to 

explore air quality and health risks due to congestion was developed and demonstrated 

using for freeway and arterial roads.  

This concluding chapter discusses key findings, implications and significance of 

this research.  The limitations of the study are summarized, and recommendations for 

further research are suggested.  

6.1 Key findings  
In this research, a research framework has been proposed that addresses exposures 

and health risks due to traffic-related air pollutants generated during congestion.  The 

framework uses a systems perspective and highlights the importance of accounting for 

human behavior, emissions, pollutant concentrations and other factors that affect 

exposures and health risks. This section summarizes key findings from previous chapters, 

and formulates overall conclusions.  
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6.1.1 Time allocation shifts  

Chapter 2 investigated how traffic congestion affected time allocations among six 

indoor and two outdoor microenvironments, and investigated changes in exposures of 

individuals to benzene and PM2.5, two traffic-related air pollutants.   Data obtained from 

the National Human Activity Pattern Survey (NHAPS) were stratified by age, 

employment status and day type (weekday vs. weekend). Robust regressions were 

conducted to deal with outliers and influential points.   Results showed that for children 

and the elderly, congestion primarily reduced the time spent at home and, for older 

children and working adults, congestion affected the time spent at home as well as time in 

schools, public buildings, and other indoor environments.  The estimated time shifts were 

used to estimate changes in benzene and PM2.5 exposures for scenarios representing 9 and 

30 min day-1 travel delays. A Monte Carlo simulation was used to represent variability, 

and exposures among the major microenvironments were apportioned. Concentrations in 

typical microenvironments were obtained from a review of the recent literature.  This 

analysis showed that congestion represented a significant contribution of the total 

benzene and PM2.5 exposures, and changes in exposures depend on the duration of the 

congestion and the pollutant.  

This chapter makes two primary contributions in exposure science. It represents 

the first exposure assessment study to investigate dynamic trade-offs in time allocations 

among different microenvironments, and specifically those caused by traffic congestion.  

The research methodology and findings are important for understanding time budgets, 

behavioral changes, and pollutant exposures.  Second, it appears to be the first study to 

separate traffic-related exposures into free flow and congestion modes, and it examines 

the effect of congestion on the total exposure.  Its findings are helpful in understanding 

the significance of traffic and congestion to an individual's total exposure.   

The two scenarios discussed in Chapter 2 showed that exposures were mainly 

driven by the concentrations occurring in several of the microenvironments affected by 

congestion, namely, in-vehicle and near-road.   Chapters 3 and 4 address some of the 

factors affecting these concentration in an examination of roadway emissions and near-

road concentrations.    
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6.1.2 Emissions under congestion  

Chapter 3 estimated vehicle emissions for light-duty vehicles (LDVs) and heavy-

duty vehicles (HDVs) under work zones, rush hours and free-flow traffic conditions.  

Field experiments collected second-by-second vehicle speed profiles on typical weekdays 

for three weeks along a segment of an interstate freeway in Ann Arbor, Michigan.   The 

collected data were smoothed and then entered into the Comprehensive Modal Emissions 

Model (CMEM) to generate vehicle emissions, expressed as g mi-1. For LDVs, the 

transitional period between free-flow and congestion conditions and rush hour 

congestions was associated with highest emission rates of CO, HC and NOx, and the 

lowest emission rates were associated with low-speed work zone congestion.  A different 

trend was seen for fuel consumption and CO2: work zone congestion consumed the most 

fuel and produced the most CO2.  For HDVs, work zone congestion was associated with 

the highest emission rates of HC, CO and CO2, as well as the highest fuel consumption; 

NOx emission rates were similar under the different traffic conditions. These results show 

that emission rates depend on vehicle type, and the degree and type of congestion.  A 

sensitivity analysis conducted for the averaging time for smoothing speed profiles 

suggests smoothing has large impacts in predicted emissions. Instantaneous-speed based 

CMEM emission rates were shown to be significantly greater than average-speed based 

CMEM rates for LDVs, but similar for HDVs.  However, instantaneous-speed based 

CMEM emission rates were systematically lower than those predicted by the Motor 

Vehicle Emissions Factor Model version 6.2 (MOBILE6.2), possibly due to smoothing, 

different model mechanisms, and different calibrations of the models.  

This study appears to be the first to examine pollutant emissions and fuel 

consumptions under free-flow, work zone and rush hour congestion conditions.  Its 

results fill a gap in the literature and have important implications for congestion, 

especially work zone congestion, which accounts for 10% of total traffic congestion 

(CAMSYS and TTI, 2005).  The degree of smoothing applied to the vehicle speed and 

acceleration data appears to be a critical factor for instantaneous emission models, such 

as CMEM and MOVES (EPA, 2009), and there are substantial uncertainties in model 

predictions, as discussed later.  Still, the results in this chapter highlight the importance of 
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congestion, and are relevant to emission, exposure and health risk evaluations, as well as 

transportation planning.   

6.1.3 Comparison of process- and statistically-based models  

Chapter 4 used simulation and statistical models to estimate traffic’s contributions 

to near-road concentrations of carbon monoxide (CO) and PM2.5 (particulate matter less 

than 2.5 μm in dia), and to compare these two types of models.  The analysis used hourly 

measurements of CO and PM2.5 monitored near a major freeway in Detroit, Michigan for 

a one year period, along with local meteorological data and hourly traffic counts obtained 

from the Michigan Department of Environmental Quality (MDEQ) and the Michigan 

Department of Transportation (MDOT).  The data were stratified by season to account for 

seasonal effects.  The simulation model was implemented by linking MOBILE6.2 to the 

California Line Source Dispersion Model version 4 (CALINE4).  The statistical model 

used generalized additive models (GAMs) with LOESS smoothers to fit pollutant 

observations to traffic counts, meteorological variables and time trend variables.  Traffic 

counts showed statistically significant and approximately linear relationships with CO 

concentrations in fall, and piecewise linear relationships in spring, summer and winter.  

The average CO emissions derived from the GAM were similar to those estimated by 

MOBILE6.2/CALINE4.  The same analyses for PM2.5 showed that GAM emission 

estimates were much higher (by 4 to 5 times) than the dispersion model results, and that 

the traffic-PM2.5 relationship varied seasonally.  Overall, these comparisons indicated that 

the CO emission factors derived from MOBILE6.2 were unbiased, but PM2.5 emission 

factors were significantly underestimated, a likely result of underestimating PM2.5 

emission factors.  This is supported by recent reports indicating that the actual PM2.5 

emission factors are two to three times higher than those predicted using MOBILE6.2 

(EPA 2006; 2008).  The discrepancy in PM2.5 emissions could be reduced using the 

seasonal average heavy truck fraction as measured at a nearby traffic monitor, but large 

differences remained.  

This analysis demonstrates that comparisons between simulation models like 

MOBILE6.2/CALINE4 and statistical models like GAM have a role in evaluating the 

performance of models used to predict air quality impacts.  Because these models are 

based on different mechanisms and assumptions, such comparisons can help to improve 
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predictions.  Agreement between the models suggests that their assumptions and 

parameters are reasonable; discrepancies show areas that require improvements.  Overall, 

the statistical models require fewer assumptions, and thus may be more realistic, but 

these models may not be generalizable to other locations.  One approach is to combine 

empirical emission factors, e.g., as derived by GAM, using process-based dispersion 

model, e.g., CALINE4, to improve model predictions.  This approach may be more 

generalizable and accurate than the use of either type of model alone.   

6.1.4 Health risks due to congestion 

Chapter 5 used a predictive risk assessment in an incremental analysis mode to 

explore the health risks associated with traffic and congestion.  This chapter used the 

emission and dispersion models and some of the results discussed in Chapters 3 and 4. 

Simulation modeling was used to estimate on- and near-road NO2 concentrations 

attributable to traffic for two scenarios representing on- and near-road exposures on a 

freeway and an arterial segment.  The modeling including emission factors predicted 

using MOBILE6.2; dispersion modeling to predict pollutant concentrations using 

CALINE4 and local meteorological conditions; traffic density predictions using the 

Bureau of Public Road (BPR) formula;   estimates of emergency department visits, 

hospital admissions, and mortality based on concentration-response relationships in the 

literature.  In the incremental analyses, health risks were expressed on the basis of 

marginal increases in traffic volume.  The incremental analysis showed very different 

patterns for the two types of roads.  Key results are the “U” shaped trends for incremental 

risks for freeways, indicating higher incremental risks at both high and low levels of 

congestion, and the sharply increasing incremental risks with congestion on arterial roads.  

These patterns are due mainly to changes in emission factors, the NO2/NOx relationship, 

and travel time/duration of rush hour.  

This analysis shows that health risks from congestion can be predicted by 

combining the relevant models, and that risk are potentially significant for the on- and 

near-road residential population.  While uncertainties are high, especially for the 

emission estimates and the dose-response characterization, the analysis suggests the 

importance of accounting for congestion in emissions, exposure and health risk 

evaluations, as well as transportation planning. 
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6.1.5 Overall conclusions 

This research suggests that periods of congestion can have significant impacts on 

exposures to traffic-related air pollutants, which increase the associated health risks for 

the on-road population.  This novel finding has been demonstrated by investigating the 

dynamic adjustments of time activity patterns as well as the separation between normal 

traffic and congestion periods.  Additionally, the dependence of exposures on shifts in 

time allocations caused by congestions highlights the importance of a dynamic 

perspective in exposure assessment.  This finding, which has not been previously 

reported, is a novel contribution to exposure science methodology. 

This research improves the understanding of congestion, emissions and air quality 

and demonstrates analyses that use both mechanistic and empirical methodologies. As 

noted in Chapter 1, the relationships between congestion, emissions and air quality are 

complicated.  This research appears to the first one to indicate that the type of congestion 

has important impacts on emissions, at least for the congestion occurring in work zones 

and rush hour.  Moreover, the GAM discussed in Chapter 4 has the potential to identify 

what levels of near-road concentrations are due to traffic and congestion.  Unfortunately, 

the type of traffic congestion was not available for the analysis in Chapter 4, which was 

one of the original motivations for this work.  

This research identifies a number of challenges in estimating exposures and health 

risks due to traffic congestion using models that link emissions, dispersion, and 

concentration-response relationships. As shown in Chapter 5, the models are complex; 

they involve many assumptions and uncertainties; and it is difficult to assess the 

reliability of results. Additionally, congestion is affected by many local factors, such as 

segment-specific driving patterns and road type, and this can makes it difficult to 

generalize the impact of congestion across large urban areas.   The dynamic behavior of 

the on- and near-road populations add yet more complexity, due to time shifts, travel 

patterns that cross several types of road segments, including those with congestion, and 

other reasons.  Finally, it is not clear where and how near-road residents spend time 

during rush hour.    
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6.2 Study limitations 
The trade-off analysis of time allocations in Chapter 2 is recognized to have a 

number of limitations. First, time shifts due to congestion were derived using travel time 

and time allocation in typical microenvironments indirectly, and were not estimated 

based on time specifically spent in congestion. This appears to be reasonable for short 

congestion, which corresponds to a small increase in travel time. Second, time shifts were 

estimated based on a cross-sectional analysis, not a longitudinal or panel survey.  

Therefore, results represented shifts at a population level, not at an individual level. Third, 

limited information was available regarding pollutant concentrations in vehicles and other 

microenvironments, and the scenario analysis was driven by the selected typical 

concentrations in different microenvironments.   Thus, these factors may limit the 

generalizability of the results.  

The study on examining emissions during congestion in Chapter 3 includes 

several limitations.  First, this study did not examine air pollutants such as fine particles, 

ultrafine particles, and black carbon which have large impacts on human health (WHO, 

2005; HEI, 2010).  Second, the car-floating technique used tended to represent the 

average of the speed profiles of on-road individual vehicles, and a limited number of 

vehicle-following trips did not necessarily represent the full range of traffic conditions.  

This would likely underestimate actual emissions.  Third, large uncertainties existed in 

the mapping between CMEM and MOBILE 6.2 categories because they categorized 

vehicles differently.  Fourth, smoothing of the speed profiles had a large impact on 

emission results, but an independent dataset to evaluate the appropriate degree of 

smoothing was lacking.  Finally, predicted emissions were not validated using field 

measurements.   

The comparison study between process- and statistically-based models in Chapter 

4 has several limitations.  First, the data was taken from a single monitoring site situated 

somewhat farther from the freeway, and thus traffic’s contribution to CO and especially 

PM2.5 was modest.  Second, this analysis used total traffic counts, not vehicle-type 

specific counts and did not take speed into account.  This information has the potential to 

improve GAM’s performance on discovering traffic’s influence on near-road pollutant 

concentrations.    Third, this study did not examine other traffic-related air pollutants (e.g., 

 177



NO2, ultrafine particles, and black carbon) that have significant increased health risks 

(WHO, 2005; HEI, 2010).  These pollutants are primarily emitted from vehicles, 

especially heavy trucks, and can improve model fitting.  

The analysis of health risks due to congestion in Chapter 5 was designed as a 

preliminary investigation to demonstrate a methodology, and results have considerable 

uncertainty and many limitations. As discussed previously in this dissertation, the 

MOBILE6.2 emission model does not explicitly simulate traffic and vehicle driving 

cycles during congestion. The coefficients in the BPR method used to predict average 

speed require calibration for specific study road segments. Large uncertainties might be 

caused by the relationship assumed between NO2 and NOx concentrations.  No 

concentration-response relationship is available for congestion and health outcomes, and 

the analysis considered only NO2, which was used as surrogate for other pollutants.  It 

would be helpful to examine other traffic-related pollutants, e.g., PM2.5 and black carbon.  

All of the models used are deterministic, and they do not reflect variability and 

uncertainty.  This analysis is based on two simple scenarios with many assumptions, and 

the results can be affected by many factors, e.g., road orientation, number of lanes, road 

topography, meteorological conditions, and the near-road population density.  These 

factors were not explored.   

Perhaps the most important limitations of this research are that the data used in 

each chapter were obtained from difference sources, rather than from one integrated and 

comprehensive study, and that direct measures of traffic-related emissions, exposures and 

risks are not available, thus it is difficult to both link all of the elements of this work 

together, and to directly evaluate the accuracy and reliability of the models.   In particular, 

the data in Chapter 4 did not include potential congestion information, which makes it 

impossible to investigate the relationships between congestion and near-road pollutant 

concentrations. However, GAM is expected to characterize the congestion-concentration 

relationships if information that indicates congestion, e.g., traffic density and speed at 

fine time scales, is available. While emission models such as MOBILE6.2 and CMEM 

have some ability to characterize emissions in congestion, these models were not 

designed for these applications and their predictions did not agree.  As examples, 

MOBILE6.2 cannot incorporate segment-specific acceleration/deceleration, thus limiting 
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its use in congestion applications, while CMEM vehicle category scheme differs from 

that used in MOBILE6.2, and it has been calibrated using a modestly-sized vehicle 

database.  At this point, this research cannot recommend one of these models over the 

other, but can only suggest that the large magnitudes of uncertainties when modeling 

impacts of congestion.  Comparisons to the new MOVES model would be warranted, as 

discussed below in recommendations for further study.  

The empirical and process-based approaches have different strengths and 

limitations. GAM might be more useful to improve understanding of congestion-

emission-concentration relationships. Congestion is a short-term event, and is location-

specific. GAM is a data-driven approach, and it requires fewer assumptions compared to 

the process-based approach. Thus, GAM may better identify and characterize congestion-

emission-concentration relationships.  Knowledge of these relationships, empirically 

determined, might guide the application of simulation models for the emission and 

dispersion processes, which tend to be more generalizable and less data-intensive than 

statistical models.  Additionally, the use of simulation models might be more helpful in 

regulatory actions and other policy applications, e.g., congestion-mitigation evaluations, 

since results are predictive in nature and uniform in many respects, and these models do 

not require the collection of much additional data. However, better emission models are 

needed to characterize emissions during congestion periods.  

6.3 Recommendations for further study 
Further research is needed to improve the trade-off analysis of time allocations.   

First, studies specifically investigating congestion would help to improve the estimation 

of time-shifts and validate our results.  Second, longitudinal surveys and other analyses 

are needed to extend the travel trade-offs derived here at a population level to be useful at 

an individual level.  Emerging technologies such as global positioning systems (GPS) and 

cellular phones with GPS functions would be useful for tracking the location and travel 

behavior of a large number of individuals. Third, the time trade-off and exposure models 

should be validated by collecting and analyzing simultaneous personal exposure and time 

activity data in order to monitor and quantify the impacts of both congestion and non-

congestion periods. Improved results would be helpful to decision makers.  Finally, in 

terms of examining exposures and apportioning the contribution of traffic and congestion, 

 179



it would be worthwhile to examine other pollutants, including ultrafine particles and 

black carbon, both of which are toxic and strongly associated with traffic.   

Research is clearly needed to improve and validate predictions of vehicle 

emissions in traffic. New instantaneous emission models are needed because the vehicle 

categories used in CMEM are old and different from those used in the Federal Highway 

Administration (FHWA) and MOBILE6.2 classifications.  Field studies are needed to 

improve and validate emission models.  Models should be extended to predict 

instantaneous emissions of additional pollutants, including PM2.5, black carbon and 

ultrafine particles, pollutants that are traffic-related and potentially very significant in 

terms of their health effects. Simultaneous upwind and downwind measurements would 

be helpful to validate the models.   

Research to improve model comparison can take several forms.  First, 

simultaneous monitoring at locations both upwind and downwind of the highway could 

be used to diminish the impact of “background” or regional concentrations.  Second, 

local measurements of vehicle speed, category types, and traffic density at finer time 

scale (e.g., 5 min) would be useful for quantifying congestion’s impacts on near-road air 

quality and for better understanding temporal variation.  Third, considering both multiple 

years and multiple pollutants might help improve model performance.  It might also help 

to identify the relationships between traffic and pollutants such as ultrafine particles and 

black carbon.   

Further research is needed to improve the risk evaluation of exposures and health 

risks attributable to traffic congestion and to reduce uncertainties. First, concentration-

response relationships between direct congestion indicators, such as time spent in 

congestion or congestion levels, and health outcomes are needed since the previous 

epidemiological studies have used aggregated traffic indicators, e.g., daily traffic volume 

or traffic density within a buffer zone.  Such indicators do not represent congestion levels.  

Second, emission models that directly account for congestion are needed.  The 

application of EPA’s new Motor Vehicle Emission Simulator model (MOVES) might be 

useful in this context;  this will also require the development of representative 

congestion-oriented driving patterns. Third, it is important to understand the population 

 180



density for individuals living near roads at fine distance scale since air pollutant 

concentrations produced by traffic decrease quickly with distance.   
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