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Chapter 1 

 

Introduction 

 

Rhinovirus as a lower respiratory pathogen 

Rhinovirus (RV) is a small, positive-stranded RNA virus of the Picornaviridae 

family, responsible for majority of the common colds.  Respiratory viruses, including 

RV, are responsible for 80% of asthma exacerbations in children and roughly 50% of 

exacerbations in adults (1, 2).  Of these, RV accounts for the most virus induced asthma 

exacerbations (3). There are over 100 serotypes of RV.  The major group serotypes 

(approximately 90%), for example RV14, 16 and 39, bind to intercellular adhesion 

molecule (ICAM)-1 (4).  Minor group viruses, such as RV1B, bind to low density 

lipoprotein family receptors (LDL-R) (5).  Finally, a third group of previously 

unrecognized RVs has been shown to cause respiratory illness in infants (6, 7). 

Upon binding, endocytosis, and endosomal acidification, RV undergoes uncoating 

subsequent release of viral RNA into the cytosol.  The virus RNA dependent RNA 

polymerase 3D then forms the corresponding negative strand which serves as a template 

for synthesizing the positive strand. A full cycle of replication occurs in roughly 8 hours 

at an optimal temperature range from 33º to 35º C, the temperature present in the nasal 

passages.  On this basis, RV was not believed to be a lower respiratory tract pathogen.  

However more recently,  RV RNA was detected in lower airway cells of infected subjects 
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following bronchoalveolar lavage (BAL) (8, 9), and RV capsid was present in bronchial 

biopsies after viral inoculation (10).  Finally RV RNA has been detected in bronchial 

biopsies of asthmatic subjects long after their symptoms of exacerbations had cleared 

(11). These studies suggest that RV may infect the lower airways in vivo and contribute 

to airway inflammation, although the extent of viral replication is not clear.  

 

Asthma and the Th-2 paradigm  

 Asthma is a chronic disease characterized by airway inflammation, mucus 

overproduction, and bronchoconstriction which together result in airflow obstruction 

(12). Roughly 7 % of the US population suffers from asthma, and eleven million asthma 

exacerbations occur each year driving up the costs of hospitalization to over ten billion 

dollars annually.  As noted above, viral infections are the most common triggers of 

asthma exacerbations, though allergens, and environmental irritants can also elicit attacks 

(13).   Classically, asthma is considered a T-helper (h)-2 cluster of differentiation 

(CD)4+ T cell driven allergic airways disease.  Upon contact with an allergen, antigen 

presenting cells (APC), including dendritic cells (DC) and macrophages residing in the 

tissues process the antigen and present its peptide via major histocompatibility complex 

(MHC) II molecules present on the their surface to naive CD4+ T cells in the lymph 

nodes. In the presence of pro-allergic cytokines IL-4 and IL-13, these naïve CD4+ cells 

(To) then differentiate into CD4+ Th-2 cells which secrete more IL-4, IL-13, pro-

eosinophil growth factors IL-5, and granulocyte macrophage colony stimulating factor 

(GM-CSF) (14) (Figure 1-1). IL-13-overexpressing mice show increased airway 

hyperreactivity and Th-2 cytokine production suggesting that IL-13 plays a critical role in 
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exacerbating allergic airway inflammation (15) and hyperresponsiveness.  In humans, IL-

4, IL-5, and IL-13, have been detected in bronchial biopsy specimens from asthmatics 

(16, 17).  Thus chronic asthma is directed in a large part by the Th-2 cell-derived 

cytokines IL-4 and IL-13, which in turn promote eosinophil infiltration, mucus secretion 

(18, 19) and contribute to overall airway inflammation and airflow obstruction.   In the 

absence of IL-4 and IL-13, and the presence of Th-1 cytokines IL-12, naïve CD4+ T cells 

differentiate into CD4+ Th-1 directed cells which have been shown to trigger cell-

mediated immunity via activation of cytotoxic T cells and natural killer cells, reviewed in 

(14).  Finally, neutrophils are also an important feature of asthma and in fact some severe 

asthmatics have predominantly neutrophilic airway inflammation, which is typically 

unresponsive to treatment (20, 21).   

 

 

Eosinophils 

 Figure 1-1. CD4+ T cell differentiation in the lymph nodes  
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Chemokines and their role in inflammation 

Chemokines are a family of secreted cytokines that form a chemotactic gradient 

which triggers the migration of leukocytes including neutrophils, eosinophils, and 

lymphocytes to the site of inflammation or injury.  They are also involved in important 

physiological outcomes including fibrosis, angiogenesis, and hematopoiesis.  

Chemokines are comprised of 70 to 90 amino acids and are 8-12 kDa in molecular 

weight.  They are classified into 4 supergene families based on the arrangements of N-

terminal cysteine repeats and are designated as C, CC, C-X-C, and CX3C.  Chemokines 

play critical roles in the chronic disease conditions including asthma and COPD (22).   

 

Inflammatory cells and chemokines implicated in asthma: Eosinophils and Eotaxin 

Typically, eosinophils, neutrophils, and macrophages are derived from myeloid 

progenitor cells from the bone marrow.  Eosinophils mature in response to growth factors 

including IL-3, IL-5, and GM-CSF (23).   Eosinophil degranulation can lead to the 

release of bronchoconstrictors including cysteinyl leukotriene (CysLTs) and major basic 

protein (MBP) which act on the airways to increase smooth muscle contraction.   CysLTs 

and MBP are upregulated in eosinophils elicited from asthmatics (24, 25).  Eosinophils 

have been closely associated with disease pathology in asthma, reviewed in (23, 26) and 

correlate with decreased airflow (27).   Indeed sputum eosinophil counts have been 

associated with more frequent exacerbations (28) although considerable variability exists 

between the level of eosinophil inflammation in asthmatics.  In addition eosinophils 

themselves can release inflammatory cytokines including IL-4, IL-5, and IL-13 which 

can potentiate airway inflammation (23, 26, 29). Th-2 directed severe eosinophilic 
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asthma is also associated with the presence of airway remodeling due in part to the 

production by eosinophils of transforming growth factor (TGF)-β (20).   

 Chemokines which bind eosinophils and cause migration into the airways include 

eotaxin-1/CCL11, eotaxin-2/CCL24, eotaxin-3/CCL26, macrophage inflammatory 

protein (MIP)-1α, and regulated upon activation normal T-cell expressed and secreted 

(RANTES) (30-32).  Among these, the eotaxins, which bind only the CCR3 receptor on 

eosinophils, are eosinophil-specific chemokines, therefore recruiting a distinct cell 

population.   Furthermore eotaxin-1 levels negatively correlate with lung function in 

patients with asthma (33-35).   

In animal models, eotaxin-1 and eosinophils have been shown to play a role in 

eosinophil recruitment in allergic airway inflammation as well as airway hyperreactivity 

(19, 30, 31, 36).  Recently, eotaxin-1 has been shown to regulate eosinophil accumulation 

in the tissues while eotaxin-2 directs eosinophil accumulation in the airway (37).  Studies 

involving double knockout of both genes show a cooperative regulation of eosinophilic 

inflammation in response to a Th-2 environment (38).   Furthermore targeted siRNA 

interference of the eosinophil growth factor, IL-5, after ovalbumin sensitization and 

challenge reduced airway eosinophilic inflammation, eotaxin levels, and airway 

resistance to methacholine underscoring the relationship between eosinophils and airway 

responses (39).  In addition to migration, eotaxin has also been demonstrated to play a 

role in eosinophil activation and degranulation via activation of mitogen activated protein 

(MAP) kinases (40).  In this study, inhibition of the MAP kinase signaling reduced 

eotaxin-induced release of the cytotoxic mediator eosinophil cationic protein (ECP), 

suggesting that eotaxin may be involved in more direct pathways of cell injury and 
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inflammation than merely chemotaxis. These studies suggest a critical role of eosinophils 

and eotaxin in augmenting airway inflammation and bronchoconstriction.   

 

Neutrophils and C-X-C chemokines  

Non-Th-2 cell types including neutrophils are also found in patients with asthma.  

However the role of neutrophils in the pathogenesis of asthma exacerbations is not 

clearly understood. Neutrophils and their granule products including neutrophil elastase 

(NE) and matrix metalloproteinase (MMP)-9, which can cause damage to the tissues, 

have been found in the lungs of severe asthmatics (20, 21, 41, 42).  In addition, C-X-C 

chemokines including IL-8, which serve as chemotactic factors for neutrophils, are 

increased in the induced sputum of asthmatics (43).  In patients with asthma, neutrophilic 

inflammation has been associated with reductions in pre- and post-bronchodilator forced 

expiratory volume/ 1 second (FEV1) (44) suggesting an important correlation between 

neutrophils and airflow limitations. Murine CXCR2 is widely expressed on neutrophils 

and serves as a receptor for the IL-8 homologs keratinocyte chemoattractant (KC) and 

macrophage inflammatory protein (MIP)/CXCL-2.  In mice, CXCR2 is responsible for 

the recruitment of neutrophils to the lungs in various mouse models of airway 

inflammation (45, 46).  In fact, CXCR2 antagonists have been used in animal models to 

reduce neutrophil influx and mucus hypersecretion, indicating a therapeutic effect of 

CXCR2 blockade (47).  In other studies, CXCR2 has been implicated in respiratory 

syncytial virus (RSV)-induced lung inflammation; although this effect was mediated by 

macrophages, not neutrophils (48). In animal models of Th-17 mediated neutrophilic 

airway inflammation, neutrophils play a causal role in airway hyperreactivity in mice 

 6



exposed to ovalbumin (OVA) and lipopolysaccharide (LPS) (46).  In another study, 

doxycycline-induced overexpression of KC/CXCL-1 caused increased neutrophil influx 

and hyperreactivity in a fungal model of asthma and depletion of neutrophils reduced 

airway responses to methacholine (49).  In addition to releasing tissue-damaging agents, 

neutrophils can also release several pro-inflammatory mediators which promote airway 

inflammation and obstruction, including TNF-α, IL-1β and serine proteases (50-53).  

Many cytokines, including IL-1β and TNF-α are shown to be expressed at higher levels 

in patients with asthma (54, 55).  TNF-α is a potent cytokine that is secreted by 

macrophages, monocytes, lymphocytes and fibroblasts, and it is known inducer of airway 

inflammation (54, 56).  Increased levels of TNF-α are found in the bronchoalveolar 

lavage fluid of patients with asthma, and inhalation of TNF-α has been shown to increase 

airway hyperresponsiveness and sputum neutrophils (54).  In a murine model of Sendai 

virus induced airway inflammation, knockout of the neutrophil-derived protease 

dipeptidyl protease (DPP)-I reduced lung pro-inflammatory cytokine expression of TNF-

α, IL-1β, and MIP-2 (57); reconstitution of DPP-I-sufficient neutrophils via adoptive 

transfer upregulated these cytokines.  Taken together, these studies point towards a causal 

role of neutrophils and neutrophil mediated inflammation  in airway responses in asthma.   

 

Classical and alternative activation of macrophages and their relationship to 

airways disease  

 Macrophages have been long considered to have anti-microbial properties and 

were conventionally regarded as protective in response to invading pathogens (58, 59).    

Classically-activated M1 macrophages, which are stimulated by interferon gamma (IFN-
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γ), express typically anti-bacterial and anti-viral responses by upregulating pro-

inflammatory cytokines including TNF-α, IL-6, IL-12, inducible nitric oxide synthase 

(iNOS) and interferon gamma inducible protein, IP/CXCL-10.  Alternatively, when 

stimulated with Th-2 cytokines IL-4, and IL-13, which can both bind to IL-4Rα, these 

cytokines generate an “anti-inflammatory” or an M2 response by inhibition of the M1 

pathway and augmentation of a “wound-healing” phenotype characterized by induction 

of arginase (Arg)-1, insulin like growth factor (IGF)-1, transforming growth factor 

(TGF)-β, fibronectin (FN) and mannose receptor C (MRC)-1 which can contribute to 

collagen deposition, hypertrophy of the airway smooth muscle, and pro-fibrotic growth 

(Figure 1-2).  

 In recent studies, cluster of differentiation (CD)-68 positive macrophages have 

been seen in bronchial biopsies of subjects with asthma and chronic obstructive 

pulmonary disease (COPD), and associated with long term airway pathology (60-63). M2 

markers, Arg-1 and TGF-β have been detected in airways of asthmatics (20, 64).   In 

COPD smokers, classical activation markers were markedly downregulated whereas 

certain M2 markers including MMP-2 and MMP-7 were induced, suggesting a 

polarization of these cells (60) in disease states.  In animal models, IFN-γR- deficient 

mice infected with herpes simplex virus displayed severe pulmonary fibrosis and the 

presence of alternatively activated macrophages, indicating that inhibition of the M1 

pathway may lead to an M2-directed airways disease (65), and that the balance between 

M1 and M2 states of macrophages is essential for lung immune homeostasis.  M2 

markers including Ym-1, macrophage galactose N-acetyl-galactosamine specific 

lectin (MGL)-1 and (MGL)-2 have also been noted in mouse models of allergic asthma 
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utilizing parasitic infection, and are expressed in response to Th-2 cytokine IL-4 (66, 67).  

In one study, macrophage depletion of chicken egg antigen, ovalbumin (OVA) sensitized 

and challenged mice reduced bronchial hyperresponsiveness (68).  It is therefore 

conceivable that exposure to Th-2 cytokines IL-4 and IL-13 alters macrophage activation 

state so as to induce a shift from M1 to M2, releasing mediators that cause airway 

inflammation and remodeling.  The dichotomy between M1 and M2 pathways, however, 

may not be absolute as, in the same study, neutralization of M1 marker IFN-γ also 

reduced bronchial hyperreactivity, implying that certain M1 mediators may also 

contribute to airway sensitivity.  Finally little is known about macrophage response to 

respiratory viruses in the context of already present allergic inflammation.  Their 

response to stimuli in vitro appears to be contingent on the cytokine milieu in which they 

suspended (69).  For instance, exposure to IL-4 induced more M2 cytokine MCP-1/CCL2 

production than exposure to IL-4 followed by M1 cytokine IFN-γ, revealing complex 

interactions underlying cytokine production within the same cell.    
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CXCR1 and CXCR2 (77-79).  Notably,  in a human bronchial epithelial cell line, 16HBE 

14o-, tumor necrosis factor (TNF)-α, a pro-inflammatory cytokine that is upregulated in 

asthmatics (80) and induced upon experimental RV infection in allergic subjects (81), 

potentiates epithelial cell ICAM-1 expression as well as IL-8 secretion (74).  These 

studies illustrate the cooperative effect of RV and cytokines which may exacerbate 

airway neutrophilia.  Additionally, RV infection of a bronchial epithelial cell line (BEAS-

2B) induces expression and production of the eosinophil specific chemokines eotaxin-

1/CCL11 and eotaxin-2/CCL24, consistent with the notion that the cytokine response to 

RV infection recruits eosinophils to the airways (82).  Accordingly both neutrophils and 

eosinophils have been reported in normal and asthmatic subjects in response to RV 

infection (83, 84) and have been implicated in the pathophysiology of asthma 

exacerbations (20).   

 

RV as a trigger for asthma exacerbations  

RV is responsible for the most virus-induced asthma exacerbations (3).  IL-8 and 

neutrophils are found in the nasal secretions, sputum and bronchoalveolar lavage fluid of 

allergic subjects undergoing experimental RV infection (83-88).  Furthermore, the 

number of neutrophils correlates with the level of IL-8 (86, 88).  After RV16 infection, 

asthmatic patients show increased IL-8 production in nasal lavages which correlates with 

the level of airways responsiveness (85), in contrast to unaffected individuals in whom 

IL-8 does not increase (55).  Thus RV infection of airway epithelial cells may potentiate 

pre-existing inflammation by enhancing the production of neutrophil chemoattractants 

and neutrophilic airway inflammation.  On the other hand, eosinophils, eotaxin, and ECP 
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have also been detected in the airways of subjects following experimental RV infection 

(83, 84, 89, 90).  In asthma patients experimentally inoculated with RV, eosinophils 

recruited in the BAL fluid were significantly higher than normal subjects and correlated 

with decline in lung function (83).  Furthermore, in allergic patients infected with 

respiratory viruses including RV, eosinophils persist in the airways long after the 

infection has cleared (90).   

According to the current theory, chemokines produced by RV-infected airway 

epithelial cells recruit cytokine-producing inflammatory cells, thereby increasing airway 

responses. However, it has recently been shown that mice infected with Sendai virus 

showed IL-13 production in macrophages that was dependent on natural killer (NK)-T 

cell interactions (91). Thus, it is conceivable non-Th-2 cell types, including macrophages, 

produce Th-2 cytokines in response to a viral stimulus, thereby aggravating existing 

allergic inflammation. In Chapter 3, we will explore this new paradigm in order to 

explain poorly-understood viral exacerbations of asthma.     

 

Current animal models of RV infection.   

Species differences in ICAM-1 represented the main challenge in developing an 

animal model of a human major group RV infection.  However, recently we (76) and 

others (92) have shown that minor group serotype RV1B infects C57BL/6 and Balb/c 

mice thereby providing a model to study RV induced airway inflammation.  We have 

shown that human RV1B replicates in mouse lungs, as evidenced by: 1) the presence of 

negative-strand viral RNA in the lungs of inoculated mice; 2) transmissibility of RV 

infection from the lung homogenates of inoculated mice to cultured HeLa cells; and 3) 
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the induction of a robust lung interferon response (76).  Replication-deficient UV-

irradiated virus has none of these effects.  Furthermore, RV infection was accompanied 

by a significant increase in IL-8 homologs KC and MIP-2 as well as an influx of airway 

neutrophils. RV infection caused a moderate increase in airway resistance to 

methacholine, suggesting a role of RV induced airway inflammation in airway 

hyperreactivity.   

The airways response to a major group virus, RV16, was recently studied using a 

transgenic mouse expressing humanized ICAM-1 (92).  Effects of RV16 were 

indistinguishable from those of RV1B.  Further, major and minor group viruses induce 

nearly identical patterns of gene expression in cultured airway epithelial cells (93).  

Finally, recent analysis of all known HRV genomes revealed that HRV1 and HRV16 are 

highly homologous and respond similarly to small-molecule antiviral compounds (94).  

Thus, the distinction between at least some major and minor group strains may not be 

clinically relevant.  We therefore believe that these mouse models of human RV infection 

hold promise for the study of RV-induced exacerbations of chronic airways diseases such 

as asthma.   

 

Significance 

 Asthma exacerbations are characterized by increased airway inflammation 

including neutrophils, eosinophils, and lymphocytes, excessive mucus production, and 

bronchoconstriction which together result in airflow obstruction.  Viral infections cause 

80% of asthma exacerbations in children and roughly 50% of exacerbations in adults (1, 

2).  RV is responsible for the most virus induced asthma exacerbations (3) although the 
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specific mechanisms of RV triggered asthma exacerbations are unknown.  From our 

previous studies we have determined that the primary response to RV infection is the 

infiltration of neutrophils and lymphocytes along with the expression of C-X-C 

chemokines KC and MIP-2.   We hypothesized RV induction of C-X-C ligands, 

augments airway inflammation and hyperresponsiveness by recruiting inflammatory cells 

including neutrophils to the airway.  We further hypothesized that the response to RV 

infection of “asthmatic” mice is qualitatively different from the response to infection in 

naïve mice.  Identification of these differences would help us identify why a common 

cold causes moderate changes in airflow in normal subjects but induces sizeable airflow 

limitations in individuals with asthma.   Thus, we attempted to generate an allergic model 

of Th-2 directed eosinophilic inflammation combined with RV infection.  We sought to 

examine the mechanisms of RV induced airway inflammation in naïve and allergic mice 

via the following specific aims:  

1. Determine the contribution of RV-induced airway neutrophils in airway 

inflammation  and hyperresponsiveness in naïve mice (Chapter 2) 

2. Determine the role of eosinophils in RV inflammation and hyperresponsiveness in 

a mouse model of asthma (Chapter 3).   
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Chapter 2 
 
 

CXCR2 is required for neutrophilic airways inflammation and hyperresponsiveness 

in a mouse model of human rhinovirus infection   

 

Summary 

Human rhinovirus (RV) infection is responsible for the majority of virus-induced asthma 

exacerbations.  Using a mouse model of human RV infection, we sought to determine the 

requirement of CXCR2, the receptor for ELR-positive CXC chemokines, for RV-induced 

airway neutrophilia and hyperresponsiveness.  Wild-type and CXCR2 -/- mice were 

inoculated intranasally with RV1B or sham HeLa cell supernatant.  Following RV1B 

infection, CXCR2 -/- mice showed reduced airway and lung neutrophils and cholinergic 

responsiveness compared to wild-type mice.  Similar results were obtained in mice 

treated with neutralizing antibody to Ly6G, a neutrophil-depleting antibody.  Lungs from 

RV-infected, CXCR2 -/- mice showed significantly reduced production of tumor necrosis 

factor (TNF)-α, MIP-2/CXCL2 and KC/CXCL1, and lower expression of MUC5B, 

compared to RV-treated wild-type mice.  The requirement of TNF-α for RV1B-induced 

airways responses was tested using TNF receptor (TNFR)-1 -/- mice.  TNFR1 -/- mice 

displayed reduced airways responsiveness to RV1B, even when exogenous MIP-2 was 

added to the airways.  We conclude that CXCR2 is required for RV-induced neutrophilic 

inflammation, and that TNF-α release is required for airways hyperresponsiveness.
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Introduction 

 Viral infections trigger 80% of asthma exacerbations in children and nearly 50% 

in adults, with human rhinovirus (RV) being the most common virus identified.  In 

addition, a large number of patients with chronic obstructive pulmonary disease (COPD) 

experience RV-induced exacerbations (1).   Consistent with the notion that RV causes 

exacerbations of asthma, experimental RV infection has been shown to increase airway 

hyperreactivity in asthmatic subjects (2-4).  RV has also been shown to increase maximal 

responses to methacholine in normal subjects (5, 6).   

The major group serotypes, including RV16 and 39 bind to intercellular adhesion 

molecule (ICAM)-1 (7).  Binding of RV to airway epithelial cell ICAM-1 triggers the 

induction of C-X-C chemokines including IL-8, ENA-78/CXCL5 and GRO-α/CXCL1 

(8-11).  Minor group viruses, such as RV1B, bind to low density lipoprotein family 

receptors (12).   Minor group serotypes such as RV1B produce a similar profiles of 

chemokine induction  in vitro (13, 14).  ELR (+) C-X-C chemokines, which cause 

migration of neutrophils to the site of infection, bind to the G protein-coupled seven 

transmembrane receptor CXCR1 and CXCR2. 

Allergic subjects undergoing experimental RV infection experience increased IL-

8 and neutrophils in the nasal secretions, sputum or bronchoalveolar lavage fluid (6, 15-

18) and the level of neutrophil infiltration correlates with the level of IL-8  indicating that 

IL-8 may recruit neutrophils to the airways following inoculation with RV.  (16, 17).  In 

asthmatic patients, RV infection increases IL-8 in nasal lavage fluid which correlates 

with the level of airways responsiveness (3) suggesting that IL-8 may affect airflow 

limitation, possibly via neutrophil chemotaxis.   Together, these data suggest that RV 
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infection of airway epithelial cells may augment already present inflammation by 

enhancing the production of neutrophil chemoattractants and neutrophilic airway 

inflammation. Upon stimulation, activated neutrophils release a variety of pro-

inflammatory mediators including cytokines such as TNF-α and IL-1β, superoxide, 

myeloperoxidase and various proteases which could promote airway inflammation and 

responsiveness (19-23).  Among these, IL-1β and TNF-α are shown to be expressed at 

higher levels in patients with asthma (24, 25).  However, the requirement of IL-8 and 

other CXCR2 ligands, or of airway neutrophils, for RV-induced airway responses has not 

been studied.  

 RV1B, a minor group virus, binds to mouse airway epithelial cells (26).  

Accordingly, a mouse model of human RV1B infection has recently been developed.  We 

have shown in C57BL/6 mice that intranasal inoculation of high-dose RV1B, but not 

sham HeLa cell supernatant or UV-irradiated virus, induces migration of neutrophils and 

lymphocytes to the airways, as well as robust lung cytokine, chemokine and interferon 

production (14).  The influx of inflammatory cells is also accompanied by moderate 

airways hyperresponsiveness to methacholine, which is present both 24 and 96 h post-

infection.  Inoculation with high-dose RV1B but not UV-irradiated virus also induces 

airway inflammation and interferon production in BALB/c mice (27).   In the present 

study, we sought to determine the requirement of CXCR2 ligands for RV-induced airway 

responses, employing a CXCR2 -/- mouse strain that is impaired in neutrophil 

recruitment.  We found that CXCR2 is required for neutrophilic airway inflammation 

following RV infection.  Further, the reduction in airway neutrophils was accompanied 

by a reduction in airway responsiveness 24 h post infection.  Finally, airways 
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responsiveness was also decreased in TNFR -/- mice, suggesting that neutrophil derived 

TNF-α release is contributes to RV-induced airways hyperresponsiveness. 

 

Methods 

Animals  

Wild type and CXCR2-/- BALB/c mice, and TNFR1 -/- C57BL/6 mice, were 

purchased from Jackson Laboratories (Bar Harbor, MA).  Mice were housed in a specific 

pathogen-free area within the animal care facility at the University of Michigan.  All 

mice were 8 wk old females. This study was approved by the Institutional Animal Care 

and Use Committee.   

 

Generation of RV stocks 

RV1B was generated from an infectious cDNA clone, as described (26).  Viral 

stocks were generated as previously described (11). Briefly, HeLa cells were infected 

with RV until 80% of the cells were cytopathic.  HeLa cell lysates were harvested and 

cellular debris pelleted by centrifugation (10, 000 x g for 30 min at 4°C).  RV in HeLa 

cell lysates was concentrated and partially purified by centrifugation with a 100,000 MW 

cutoff Centricon filter (2,000 rpm at 4°C for 8 h;  Millipore, Billerica, MA) (28).  Virus 

was titered by infecting confluent HeLa monolayers with serially diluted RV (range: 

undiluted to 10-9) and assessing cytopathic effect five days after infection.  Fifty percent 

tissue culture infectivity doses (TCID50) values were determined by the Spearman-Karber 

method.   
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RV1B exposure 

 Mice were anesthetized by intraperitoneal injection with ketamine (40 mg/kg) and 

xylazine (5 mg/kg) and intranasally inoculated with 45 μl of 1x108 TCID50/ml RV1B or 

equal volume sham HeLa cell lysate, as previously described (14).  Mice were euthanized 

1 or 4 days post infection.   

 

Bronchoalveolar lavage (BAL) and tissue inflammation  

BAL was performed by exposing and intubating the trachea using a 1.7-mm OD 

polyethylene catheter, and instilling PBS containing 5 mM EDTA in 1-ml aliquots. 

Cytospins prepared from BAL cells and stained with Diff-Quick (Dade Behring, Newark, 

DE) and differential counts were determined by counting 200 cells.  To quantify the 

number of inflammatory cells in the tissues, lung digests were performed by mincing the 

lungs with scissors and suspending the tissue in 30 mg collagenase type IV (Gibco 

Invitrogen, Carlsbad, CA) in 5 ml serum free RPMI for one h.  Cells were isolated by 

straining through a 70 μm nylon mesh (BD Falcon, San Jose, CA), spun at 1500 g, and 

the resultant pellet treated with red blood cell lysis buffer (BD Pharmingen, San Diego, 

CA).  Finally, leukocytes were enriched by spinning the cells through 40% Percoll 

(Sigma-Aldrich, St. Louis, MO), decanting the supernatant and resuspending the pellet in 

PBS (29).  The total cell count was determined on a hemocytometer.   

 

Flow cytometry 

In selected experiments, BAL fluid was examined for the number of TNF-α-

expressing neutrophils.  1x 106 cells were blocked with brefeldin A (3 μg/ml) and 
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incubated in low attachment polystyrene plates for 5-6 hours.  Cells were then stained 

with Pacific Blue-conjugated antibody against the neutrophil cell surface marker LY6G 

(BD Pharmingen) and FITC-labeled anti-TNF-α (E-Bioscience, San Diego, CA).  IgG 

antibodies were used as isotype controls.  Finally, cells were fixed in 1% formaldehyde, 

covered with foil and refrigerated until flow cytometry was performed the following day.   

 

Histology  

Lungs were fixed in 10% formalin overnight, and then transferred to 70% ethanol 

and paraffin embedded. H&E staining was performed on a 5 μm section of each lung.   

 

Cytokine/chemokine expression 

 Lung RNA was extracted using Trizol reagent (Sigma-Aldrich) and analyzed for 

the presence of MIP-2, TNF-α, GM-CSF, MUC5AC and MUC5B by quantitative two-

step real time PCR using specific primers and probes.  Primer probe mixes for TNF-α, 

GM-CSF and MIP-2 expression were purchased from Applied Biosystems (Foster City, 

CA).  MUC5AC and MUC5B primers were from IDT (Coralville, IA) and employed 

FAM as the fluorescent tag and TAMRA as a quencher.  For MUC5AC, the sequences 

were: forward primer, 5’ AAA GAC ACC AGT AGT CAC TCA GCA A 3’; reverse 

primer, 5’ CTG GGA AGT  CAG TGT CAA ACC A/ 3BHQ_1/-3’;  and probe, 5'- /56-

FAM/5’ TCA CAC ACA ACC ACT CAA CCA GTG ACC A /36-TAMSp/ -3.’  For 

MUC5B, the sequences were: forward primer, 5’ GAG CAG TGG CTA TGT GAA AAT 

CAG 3’;  reverse primer, 5’ CAG GGC GCT GTC TTC TTC AT-3’; and Taqman probe, 
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5’-/56-FAM/ ATC CGC, CTA GTC CTC ACC TTC CTG TGG/ 3 BHQ_1/3.’ The signal 

was normalized to GAPDH and expressed as fold-increase over sham.  

 

Cytokine production 

 Lungs were homogenized in 1 ml PBS , spun for 15 minutes at 1500 g, and the 

supernatant assayed for murine homologs of IL-8 including MIP-2/CXCL2, KC/CXCL1, 

and the proinflammatory cytokines TNF-α and GM-CSF by ELISA (R&D systems, 

Minneapolis, MN).   

  

Neutralizing antibody preparation 

  In some experiments, mice were injected intraperitoneally with 30 μg of 

neutralizing antibody to Ly6G (clone mAb RB6-8C5) or an equivalent dose of rat anti-

mouse IgG, inoculated simultaneously with RV1B, and euthanized 24 h post infection.  

Ascites for anti-Ly6G, an anti-mouse granulocyte neutralizing antibody (30), was 

obtained from the University of Michigan Vector Core and stored at -20ºC.  A 20 mL 

volume was then thawed overnight and centrifuged at 3000 rpm for 15 min. Debris was 

removed and the clear suspension transferred to a fresh tube.  The ascites fluid was then 

clarified by ultracentrifugation at 40,000 rpm for 1 h, followed by removal of any lipid 

masses.   Five mL clear ascites was then purified on a Protein G bead column (Millipore) 

at 4ºC.  The ascites was diluted in a 1:2 ratio with binding buffer containing 0.01M 

sodium phosphate and 0.15 M sodium chloride adjusted to pH 7.0, and loaded onto the 

Protein G column.  The eluate was reapplied to the column and washed 3 times with 50 

mL binding buffer to remove any non specific proteins.  Bound IgG was then eluted with 
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20 mL 0.1 M glycine hydrochloride, pH 2.6.  The antibody was then stored in 10 tubes 

containing 0.5 ml 1.0 M Tris-HCL, pH 9.0.  Each of the 10 fractions of eluate was 

measured at A280, and the peak fractions were pooled and dialyzed overnight with 3 

changes of PBS.  The final concentration of the RB6-8C5 antibody was 1.75 mg/mL.  

 

MIP-2 administration 

 In some experiments, wild type C57BL/6 and TNFR1-/- mice were administered 

MIP-2 (1 μg/ml intranasally, R&D Systems) immediately following sham or RV1B 

infection.  Mice were harvested for BAL fluid and airway resistance measured 24 h post-

treatment.   

 

Presence of viral RNA 

 RNA was extracted from lungs of mice using Trizol reagent (Sigma-Aldrich, St. 

Louis, MO) and analyzed for the presence of viral RNA by reverse transcriptase-PCR.  

Quantitative one-step real time PCR for positive-strand viral RNA was conducted using 

RV-specific primers and probes for RV (forward primer: 5'-GTG AAG AGC CSC RTG 

TGC T-3'; reverse primer: 5'-GCT SCA GGG TTA AGG TTA GCC-3’; probe: 5'-FAM-

TGA GTC CTC CGG CCC CTG AAT G-TAMRA-3’ (31).  Copy numbers of positive 

strand viral RNA were normalized to 18S RNA, which was similarly amplified using 

gene-specific primers and probes. 
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Gene arrays 

Lung RNA from sham and RV-treated wild-type and CXCR2 -/- mice was 

subjected to a targeted PCR array examining mouse inflammatory cytokines (SA 

Biosciences, Frederick, MD).     

 

Measurement of respiratory system resistance.  Mice were anesthetized with 

sodium pentobarbital (50 mg/kg mouse, intraperitoneal injection) and intubated via 

cannulation of the trachea with a 20-gauge stub adapter cannula (Becton-Dickinson, 

Sparks, MD).  Mechanical ventilation was performed using a FlexiVent ventilator 

(Scireq, Montreal, Quebec, Canada) at 150 breaths/min with a tidal volume of 10 ml/kg 

body weight.  Airway responsiveness was assessed by measuring respiratory system 

resistance in response to increasing doses of nebulized methacholine, as described (14).    

  

Data analysis 

 SigmaStat computing software (SPSS, Chicago, IL) was used for data analysis.  

Data are represented as mean±SEM.  Statistical significance was assessed by one- or two-

way analysis of variance (ANOVA). Differences identified by ANOVA were pinpointed 

by the Student Newman-Keuls’ multiple range test.  For gene arrays, unpaired t tests 

were used to establish differences between groups.  

   

Results 

RV infection of BALB/c mice 



BALB/c mice were inoculated with 3 x 108 TCID50 RV1B intranasally or sham 

equivalent, and lung digests and BAL performed 24 h and 96 h respectively post-

infection.  The initial (24 h) response to RV infection in BALB/c mice was primarily 

neutrophilic in character (Figures 2-2A,C).  By 96 h, BAL neutrophils were significantly 

reduced (Figure 2-2E).  To further characterize the time course of the neutrophilic 

response, we examined lung neutrophil counts 2, 8, 16 and 24 hours post-infection 

(Figures 2-2 A).  We observed maximum neutrophil infiltration 24 h post-exposure.  

Significant differences in sham- and RV1B-treated mice were noted as early as 8 h after 

infection.    

 

CXCR2 -/- mice exhibit significantly reduced lung neutrophils following RV infection. 

To determine the requirement of ELR (+) CXC chemokines for the observed neutrophilic 

inflammation, we examined the response of CXCR2 -/- mice to RV infection.  CXCR2 

serves as the receptor for the murine chemokines KC/CXCL1 and MIP-2/CXCL2, the 

homologs of human IL-8.  Histological sections demonstrated overall reduced 

inflammation in the CXCR2 -/- mice after RV1B infection (Figure 2-1).  Compared to 

their wild type controls, CXCR2 -/- mice showed a significant reduction in lung 

neutrophils 24 h post RV1B infection (Figure 2-2C).  By 96 h, the neutrophilic response 

was reduced, although RV1B-treated CXCR2 -/- mice still exhibited significantly lower 

BAL neutrophils compared to wild-type mice.  Together, these data imply that the 

CXCR2 ligands are the major neutrophil chemoattractants elaborated following RV 

infection. Surprisingly,  CXCR2 deficient mice displayed significantly increased lung 

lymphocytes at 24 and 96 hours post infection compared to wild type RV infected mice 
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(Figure 2-2D and F), suggesting a compensatory response.  Notably, CXCR2 deficient 

mice did not display reduced infiltration of macrophages in response to RV 24 hours post 

infection compared to wild type mice, indicating that the reduced responsiveness to 

methacholine may have been due to an impairment of neutrophil recruitment.   

 35



A B

C D

 

Figure 2-1.  Hematoxylin and eosin-stained lung sections from RV1B-infected wild-
type BALB/c mice and CXCR2 -/- mice.  A-B Airway inflammation in wild-type mice 
ranged from mild (left panel, A) to severe (right panel, B).  Inflammation was attenuated 
in CXCR2 -/- mice and ranged from minimal (left panel, C) to moderate (right panel, D).  
These results are typical of the five mice studied in each group.  (Original magnification, 
160X.) 
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Figure 2-2.  Effects of CXCR2 knockout on lung inflammatory cells in sham and 
RV-treated mice.  A-D.  Mouse lungs were isolated, minced, and then digested in 
collagenase type IV for 1 h. Leukocytes were enriched following RBC lysis treatment, 
and counted for the presence of neutrophils (A, C) and lymphocytes (B, D).  Panels A 
and  B show the early time course of neutrophil and lymphocyte influx in wild type mice.  
Panels E and F represent BAL neutrophils and lymphocytes in wild type and CXCR2 
deficient mice 96 hours post infection.  (N = 5 mice per group, bars represent 
mean±SEM, *different from respective sham group, p<0.05, ANOVA; †different from 
RV1B-treated wild- type mice, p<0.05, one-way ANOVA.)   
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CXCR2 -/- display significantly reduced lung expression of pro-inflammatory cytokines.   

To determine the induction of pro-inflammatory cytokine and mucin gene 

expression, lungs were homogenized in Trizol reagent, cDNA was synthesized using 

reverse transcriptase, and subjected to quantitative real time PCR employing a Taqman 

probe. Inductions in TNF-α and MUC5B expression following RV infection were 

significantly higher in wild-type mice compared to CXCR2 -/- animals (Figure 4).  

Levels of MIP-2/CXCL2, GM-CSF and MUC5AC expression were comparable in RV-

infected wild type and CXCR2 -/- mice.   

We then subjected lung mRNA samples to gene array analysis focused on 84 

inflammatory cytokines and receptors.  RV infection induced a statistically significant, 

>2-fold increase in the expression of 26 genes, and a significant, >2-fold decrease in the 

expression of 6 genes (Table 2-1).  In addition to TNF-α, genes increasing in expression 

included those encoding KC/CXCL1, ENA-78/CXCL5, IP-10/CXCL10, IL-1α, IL-1β, 

TARC/CCL17 and LARC/CCL20.  We also computed the ratio of gene expression in 

RV1B-treated CXCR2 -/- mice compared to RV1B-treated wild-type BALB/c mice.  

CXCR2 knockout mice demonstrated a statistically significant, >2-fold increase in the 

expression of 11 genes, and a significant, >2-fold decrease in the expression of 8 genes 

(Table 2-2).  In addition to TNF-α, CXCR2 -/- mice inoculated with RV1B showed 

significantly lower expression levels of KC/CXCL1, ENA-78/CXCL5, IL-1α, IL-1β, 

TARC/CCL17, LARC/CCL20 and eotaxin-2/CCL24.  In contrast, RV1B-infected 

CXCR2 -/- mice showed an increase in the lymphocyte chemokine IP-10/CXCL10, 

perhaps explaining the observed increase in lung and BAL lymphocytes 24 and 96 h after 

infection respectively.   
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We measured lung protein levels of TNF-α, GM-CSF and the IL-8 homologs 

MIP-2/CXCL-2 and KC/CXCL-1 in wild type and CXCR2-/- deficient mice and found 

significantly lower levels of TNF-α , MIP-2/CXCL-2 and KC/CXCL-1 (Figure 2-4).  No 

significant difference could be observed in the production of GM-CSF.   
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Figure 2-3.  CXCR2-/- mice show reduced TNF-α and MUC5B mRNA expression 24 h 
post-RV1B exposure.  A-D.  Wild type and CXCR2-/- mouse lungs were homogenized in Trizol 
reagent. RNA was extracted and analyzed for the presence of TNF-α, MIP-2, MUC5B, 
MUC5AC by quantitative two-step real time PCR using specific primers and probes.  (N=4-5 
mice per group, bars represent mean±SEM, *different from respective sham group, p < 0.05, 
†different from wild type-RV1B treated group, p<0.05, one-way ANOVA.)  
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Figure 2-4.  CXCR2-/- mice show deficient cytokine and chemokine responses to 
RV1B infection 24 h post infection.  TNF-α, MIP-2, CXCL-1, levels were significantly 
lower in the knockout mice as opposed to wild type RV1B infected mice. (N=5 mice per 
group, bars represent mean±SEM, *different from respective sham group, p<0.05, 
†different from wild type-RV1B treated group, p < 0.05, one-way ANOVA.)  
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Table 2.1.  Effect of RV infection on the expression of inflammatory cytokines and 
receptors.   RV infection induced a statistically significant, >2-fold increase in the 
expression of 26 genes, and a significant, >2-fold decrease in the expression of 6 genes. 
 
GeneBank Symbol  t-statistic p-value fold change 
NM_011332  Ccl17   7.25  0  14.82 
NM_011333  Ccl2   4.83  0.001  17.50 
NM_016960  Ccl20   4.81  0.001  6.45 
NM_013654  Ccl7   4.81  0.001  12.90 
NM_011338  Ccl9   5.22  0.001  5.42 
NM_008176  Cxcl1   5.07  0.001  13.45 
NM_008361  Il1b   5.4  0.001  9.84 
NM_009137  Ccl22   4.48  0.002  3.43 
NM_009139  Ccl6   4.53  0.002  3.38 
NM_021274  Cxcl10  4.53  0.002  15.56 
NM_009141  Cxcl5   4.6  0.002  13.83 
NM_010554  Il1a   4.52  0.002  3.11 
NM_009778  C3   4.05  0.003  2.15 
NM_019494  Cxcl11  4.11  0.003  10.05 
NM_018866  Cxcl13  4.24  0.003  4.08 
NM_008599  Cxcl9   3.91  0.004  9.18 
NM_013693  Tnf   3.9  0.004  4.95 
NM_011331  Ccl12   3.81  0.005  5.38 
NM_009912  Ccr1   3.69  0.006  3.34 
NM_009917  Ccr5   3.66  0.006  3.03 
NM_010555  Il1r2   3.59  0.007  19.02 
NM_008401  Itgam   3.55  0.007  3.97 
NM_009915  Ccr2   3.49  0.008  2.84 
NM_011337  Ccl3   3.41  0.009  5.42 
NM_009914  Ccr3   2.88  0.02  2.77 
NM_013652  Ccl4   2.39  0.043  3.16 
     
NM_007551  Cxcr5   -4.44  0.002  0.33 
NM_011339  Cxcl15  -3.79  0.005  0.30 
NM_013653  Ccl5   -3.53  0.007  0.27 
NM_008370  Il5ra   -3.59  0.007  0.18 
NM_021704  Cxcl12  -2.9  0.019  0.48 
NM_009913  Ccr9   -2.68  0.027  0.48 
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Table 2-2.  Effect of CXCR2 knockout on the expression of inflammatory cytokines 
and receptors.   CXCR2 -/- mice demonstrated a statistically significant, >2-fold 
increase in the expression of 11 genes, and a significant, >2-fold decrease in the 
expression of 8 genes. 
 

 GeneBank Symbol  t-statistic p-value fold change 

NM_007551  Cxcr5   4.87  0.001  2.81 
NM_013653  Ccl5   3.88  0.004  3.41 
NM_011339  Cxcl15  3.68  0.006  2.73 
NM_008370  Il5ra   3.56  0.007  4.29 
NM_021443  Ccl8   3.5  0.008  3.56 
NM_021274  Cxcl10  3.51  0.008  6.32 
NM_008357  Il15   3.45  0.008  2.79 
NM_013652  Ccl4   3.16  0.013  3.71 
NM_009913  Ccr9   3.13  0.014  2.07 
NM_019494  Cxcl11  2.86  0.02  4.03 
NM_008360  Il18   2.67  0.027  2.55 
     
NM_016960  Ccl20   -5.23  0.001  0.17 
NM_011332  Ccl17   -4.15  0.003  0.26 
NM_010554  Il1a   -4.11  0.003  0.41 
NM_019577  Ccl24   -3.49  0.008  0.27 
NM_008176  Cxcl1   -3.4  0.009  0.22 
NM_009141  Cxcl5   -2.87  0.02  0.24 
NM_013693  Tnf   -2.63  0.029  0.39 
NM_008361  Il1b   -2.51  0.035  0.40 
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CXCR2 -/- mice show reduced airway responsiveness to methacholine 24 h following 

RV1B infection.  

 In order to determine the contribution of neutrophils to RV1B induced airway 

responsiveness, CXCR2 -/- and wild type BALB/c mice were tested for responsiveness to 

the bronchoconstrictor agonist methacholine 24 and 96 h after RV1B or sham treatment.  

Compared to sham-infected mice, RV1B infection was also associated with moderate but 

significant airways cholinergic hyperresponsiveness which persisted up to 96 h after 

treatment (Figure 2-5A). At 24 h, RV-infected CXCR2 -/- mice demonstrated 

significantly lower airways responses than wild-type mice (p<0.001, two-way ANOVA).  

However, RV1B-treated CXCR2 -/- mice still showed a significantly higher maximum 

methacholine response compared to sham-infected CXCR2 -/- mice.  These data suggest 

that CXCR2 and airway neutrophils are required for maximal RV-induced methacholine 

responsiveness, but do not completely account for the RV response.  

At 96 h, the airways responsiveness of RV-infected CXCR2 -/- mice was no 

longer different than RV1B-treated wild type mice (Figure 2-5B).  However, the response 

to RV infection in CXCR2 -/- mice appeared attenuated, as there was no difference in 

airways responsiveness between RV-infected and sham-treated CXCR2 -/- mice.  These 

data suggest that neutrophils play a lesser role in the determination of airway responses at 

later time points.  We therefore focused further experiments on the 24 h time point.  First, 

we examined lung mRNA for viral load.  There was no difference in RV copy number 

between the lungs of infected wild-type and CXCR2 -/- mice (Figure 2-5C).   
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Figure 2-5.  CXCR2-/- mice show reduced airways cholinergic responsiveness 24 h 
post-infection.  Following anesthesia and endotracheal intubation, changes in respiratory 
system resistance to nebulized methacholine were measured using the FlexiVent system 
(Scireq, Montreal, CA).  Mice were studied either 24 h (A) or 96 h post-viral exposure 
(B).  (N=5 mice per group.  Open squares, sham-treated wild-type mice; closed circles, 
RV1B-treated wild-type mice; open triangles, sham-treated CXCR2 -/- mice; closed 
triangles, RV1B-treated CXCR2 -/- mice; error bars represent ±SEM, *different from 
respective sham group, †different from wild type RV1B- treated group, p<0.05, two-way 
ANOVA.)  C.  RV1B-infected CXCR2-/- mice show comparable viral loads compared to 
RV1B-treated wild type mice 24 h post infection.  Wild type and CXCR2-/- mouse lungs 
were homogenized in Trizol reagent 24 h post exposure. RNA was extracted and 
analyzed for the presence of positive strand RV RNA. Viral copy number was normalized 
to the quantity of 18S RNA present in mouse lungs. (N=6 mice per group, bars represent 
geometric mean±SEM.)  
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Anti-Ly6G treated BALB/c mice exhibit reduced airway neutrophils and methacholine 

responsiveness 24 h after RV1B treatment.   

Although CXCR2 is classically expressed on neutrophils (32), it may also be 

expressed on monocytes, macrophages and lymphocytes (33-35).  To confirm that RV-

induced airways hyperresponsiveness was due to the contribution of granulocytes, we 

examined the effect of granulocyte depletion using the RB6-8C5 monoclonal antibody to 

Ly6G, an antigen expressed widely on granulocytes, including neutrophils (30).  Mice 

were injected with 30 μg of neutralizing antibody to mouse Ly6G or the corresponding 

isotype IgG control, and inoculated intranasally with RV1B or sham. Treatment with 

anti-Ly6G significantly attenuated neutrophil numbers 24 h following RV infection 

compared to RV1B/IgG-treated animals (Figure 2-6A).  Finally, depletion of neutrophils 

in the RV1B/anti-LY6G group was associated with a partial but statistically significant 

reduction in maximal methacholine response compared to RV1B/anti-IgG group (Figure 

2-6B).  Neutrophil depletion was also accompanied by a partial but significant reduction 

in lung TNF-α levels (Figure 2-6C).  These data suggest that neutrophils are required for 

maximal airways hyperresponsiveness 24 h post-RV1B infection but do not constitute for 

all of the airway responses   at this time point.    
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Figure 2-6.  Anti-Ly6G treated BALB/c mice exhibit reduced airway granulocytes 
including neutrophils, methacholine responsiveness and lung TNF-α expression 24 h 
after RV1B treatment. Mice were injected intraperitoneally with 75 μg of anti-LY6G 
antibody or isotype conrol anti-IgG antibody.  A. RV1B/ anti-LY6G mice showed a 
significant reduction in BAL neutrophils 24 h post-infection.  (N=5 mice per group, bars 
represent mean±SEM, *different from respective sham group, p<0.05, † different from 
wild-type-RV1B treated group, p<0.05, one-way ANOVA.  B. RV1B/anti-LY6G 
treatment reduced maximal airway responsiveness to methacholine compared to 
RV1B/anti-IgG treated mice.  (N=3-4 mice per group, error bars represent SEM, 
*different from respective sham group, †different from IgG-treated RV1B group, p<0.05, 
two-way ANOVA.  C.   RV1B/anti-LY6G treatment reduced lung TNF-α expression 
compared to RV1B/anti-IgG treated mice. (N=5 mice per group, error bars represent 
SEM, *different from respective sham group, †different from IgG-treated RV1B group, 
p<0.05, one-way ANOVA. 
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TNFR1 -/- mice show reduced airway neutrophils and methacholine responsiveness 

following RV1B infection.   

Based on the reduced TNF-α mRNA expression found in RV1B-infected CXCR2 

-/- mice, we wondered whether neutrophil-derived TNF-α could be responsible for the 

airways cholinergic hyperresponsiveness observed 24 following RV infection.  TNF-α 

has been demonstrated to increase the responsiveness of airway smooth muscle to 

contractile agonists (36-38).  First, we measured the number of TNF-α-expressing 

neutrophils in the BAL of sham and RV1B-inoculated BALB/c mice by flow cytometry.  

RV-infected mice demonstrated a 16-fold increase in the number of LY6G- and TNF-α-

positive cells.  Next, to test the requirement for TNF-α, wild type C57BL/6 mice and 

TNFR1 -/- mice were inoculated with RV1B or sham, and airway inflammation and 

resistance measured 24 h post infection.  RV-treated TNFR1 -/- mice showed a partial but 

significant reduction in methacholine response relative to wild-type RV treated mice 

(Figure 2-7A), consistent with the notion that TNF-α signaling is required for maximum 

RV-induced airway responsiveness.    

 TNFR1 -/- mice also showed a significant reduction in BAL neutrophils after RV 

treatment compared to wild type mice (Figure 2-7B).  It is therefore conceivable that the 

observed reduction in airways responsiveness in TNFR -/- mice is secondary to 

neutrophil diminution, rather than a defect in TNF-α signaling.  To test this, BAL 

neutrophils were restored in RV-treated TNFR1-/- mice by intranasal administration of 

the neutrophil chemokine MIP-2.  MIP-2 administration dramatically increased airway 

neutrophils in sham and RV1B-inoculated TNFR-/- mice (sham, 15.1±5.4 x 105 cells/ml; 

RV1B, 21.7±6.3 x 105 cells/ml, n=5).  However, airway hyperresponsiveness in MIP-2- 
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treated RV1B-infected TNFR1-/- mice was not restored (Figure 2-7C).  Taken together, 

these data demonstrate that CXCR2, airway neutrophils, and intact TNFR1 receptor are 

required for RV1B-induced airways hyperresponsiveness.     
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Figure 2-7.   TNFR1-/- mice show reduced airway responsiveness and BAL 
neutrophils 24 h post-RV1B infection.  TNFR1-/- and wild type C57BL/6 mice were 
inoculated with sham or RV1B and examined 24 h after infection. A.  Changes in 
respiratory system resistance to nebulized methacholine were measured using the 
FlexiVent system.  B.  BAL was performed with 0.9% NaCl containing 5mM EDTA.  C.  
Intranasal administration of MIP-2 fails to restore airways hyperresponsiveness in RV-
infected TNFR1 -/- mice.   (N=6 per group.  Data represent mean±SEM, *different from 
respective sham group, †different from wild type-RV1B treated group, p<0.05, one- or 
two-way ANOVA, as appropriate.)  
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Discussion  

RV is responsible for the majority of the common colds and approximately 50% 

of asthma exacerbations.  We and others have shown that RV1B infects mouse airway 

epithelial cells (14, 26).  Further, infection of C57BL/6 and BALB/c mice induces airway 

neutrophilia and hyperresponsiveness to methacholine challenge 24 h post infection (14, 

27) We therefore sought to determine the contribution of ELR(+) CXC chemokines and 

neutrophils to RV1B-induced airway inflammation and hyperreactivity.  Upon 

stimulation, activated neutrophils release a variety of pro-inflammatory mediators 

including cytokines such as IL-8 and TNF-α, superoxide, myeloperoxidase and various 

proteases which could promote airway inflammation and obstruction (19-22).  

Experimental RV infection has been shown to increase airway neutrophilic inflammation 

in asthmatic subjects (6, 15-18).  Finally, RV infection has been shown to increase airway 

neutrophils (18) and maximal responses to methacholine (5, 6) in normal subjects.    

In addition to ELR (+) CXC chemokines, other neutrophil chemoattractants 

include complement activation products such as C5a, lipid mediators such as leukotriene 

B4 and platelet activating factor, and host derived peptides such as N-acetyl-Pro-Gly-Pro, 

a degradation product of the extracellular matrix (39-41).  To test for the contribution of 

ELR(+) CXC chemokines to RV-induced airways hyperresponsiveness, we employed a 

CXCR2 -/- mouse strain.  CXCR2 serves as the receptor for the neutrophil 

chemoattractants and IL-8 homologs KC/CXCL1, MIP-2/CXCL2 and ENA-78/CXCL5.  

Twenty-four h after infection, CXCR2 -/- mice demonstrated significantly fewer airway 

neutrophils. CXCR2 -/- mice also showed lower lung mRNA and protein levels of the 

neutrophil chemokines KC/CXCL1 and MIP-2/CXCL-2, and lower expression of ENA-
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78/CXCL5 than RV-infected wild-type BALB/c mice. These data demonstrate that 

CXCR2 ligands are the main chemoattractants mediating RV-induced neutrophilic 

airway inflammation.  In addition, they suggest that, in the context of RV infection, lung 

neutrophils intensify granulocyte infiltration of the airways by secreting their own 

chemokines.  Previous studies have demonstrated the ability of neutrophils to express 

pro-inflammatory cytokines and chemokines, including IL-8/CXCL8, ENA-78/CXCL5 

and GRO-α/CXCL1 (23).  Finally, RV-infected CXCR2 -/- mice showed significantly 

reduced methacholine responsiveness compared to wild type RV1B-infected mice, 

consistent with the notion that airway neutrophils contribute to maximal RV-induced 

airways responses.   

As noted above, stimulated neutrophils produce a large number of pro-

inflammatory substances which could promote airway inflammation and obstruction, 

including TNF-α, IL-1β and neutrophil elastase (19-22).  In human airway smooth 

muscle cells loaded with fura 2, TNF-α enhances thrombin- and bradykinin-evoked 

elevations of intracellular Ca2+ (36).  TNF-α increases the Ca2+ sensitivity of 

myofilaments by activating the RhoA signaling pathway, which in turn leads to an 

inhibition of myosin light chain phosphatase and an increase in myosin light chain 

phosphorylation (37).  Recently, TNF-α-enhanced contractile responses in cultured 

airway smooth muscle cells were found to depend on activation of CD38, a 

multifunctional ectoenzyme involved in cell adhesion, signal transduction and calcium 

signaling (38).   

In the present study, we observed a consistent reduction in TNF-α expression in 

CXCR2-deficent mice, as well as mice treated with a granulocyte-depleting antibody, 
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anti-LY6G.  On this basis, we employed TNFR1-/- mice to determine the contribution of 

TNF-α signaling to RV1B-induced airway inflammation and hyperresponsiveness.  

TNFR1-/- mice exhibited a significant reduction in the maximal response to 

methacholine 24 h after RV1B exposure, consistent with the notion that TNF-α is 

required for airways hyperresponsiveness following RV infection.  However, our analysis 

was complicated by a significant reduction in airway neutrophils in TNFR1 -/- mice; 

hence, we could not distinguish the contribution of TNF-α signaling from the previously 

uncovered neutrophil requirement described above.  TNF-α has been shown to mediate 

recruitment of neutrophils to the airways following allergen sensitization and challenge 

(42).  Despite reconstitution of the neutrophil response with exogenous MIP-2, RV-

infected TNFR1-/- mice remained less responsive to methacholine than wild type mice, 

indicating that a functional TNFR1 receptor is required for RV-induced airways 

hyperresponsiveness.  Taken together with our previous results, these data suggest that 

neutrophils, attracted to the airways by CXCR2 ligands, induce a state of 

hyperresponsiveness by elaboration of TNF-α. 

It is possible that other mechanisms play a role in RV-induced airways 

hyperresponsiveness.  For example, neutrophil elastase induces airway constriction and 

hyperresponsiveness, as well as airway mucus production (20, 22).  In our study, 

MUC5B gene expression was highly induced in the wild-type mice 24 h after RV1B 

infection, but not in the CXCR2-/- mice, suggesting that neutrophils play a role in mucin 

gene expression following RV infection.  We also observed a significant reduction in 

airway lymphocytes and the lymphocyte chemotactic factors TARC/CCL17 and 

LARC/CCL20.in CXCR2-/- mice 24 h after RV1B infection.  It is therefore conceivable 
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that lymphocytes also play a role in the observed RV-induced airway 

hyperresponsiveness.  Consistent with this, airway neutrophils are reduced 10-fold at 96 h 

following RV infection, yet airways hyperresponsiveness persists.  However, CXCR2 -/- 

RV-infected mice with attenuated airway cholinergic responses exhibited significantly 

higher airway lymphocytes compared to the wild type mice.  Since phagocytic 

neutrophils are ordinarily briskly recruited to the lung upon infection, the heightened 

lymphocytic infiltration of the airways in CXCR2 -/- animals may represent a 

compensatory response to the functional immunodeficiency of these mice.   

In this study, we did not examine the effect of RV on mice with pre-existing 

airways inflammation.  These initial studies in control animals are necessary to assess the 

disease-specific mechanisms of virus-induced asthma exacerbations.  For example, our 

unpublished data indicate that airway inflammatory and constrictor responses in RV-

infected ovalbumin sensitized- and -challenged mice are qualitatively and quantitatively 

different than those in normal mice.  Also, we did not rule out the possibility that RV 

infection of airway smooth muscle cells directly influences contractile responses.  

However, as far as we are aware, there is no evidence that RV infects airway smooth 

muscle cells in vivo, and immunohistochemical stains of RV1B-infected mice have 

shown infection to be limited to the airway epithelium and perhaps airway inflammatory 

cells (14).   Finally, we did not examine the requirement of CXCR2 for major group RV 

responses.  Recent studies suggest that minor group viruses are more cytotoxic (43) and 

stimulate higher IFN-β production (44) in bronchial epithelial cells.  On the other hand, 

we have shown that major and minor groups viruses stimulate similar levels of IL-8 and 

Akt phosphorylation (11), and major and minor groups viruses have been shown to 
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stimulate nearly identical patterns of mRNA expression in primary human bronchial 

epithelial cells (45).   Also, we (14) and others (27) have found similar effects of RV1B 

and RV16 infection in wild-type and human ICAM-1 transgenic mice, respectively. 

In summary, we have demonstrated that, in naïve mice, CXCR2, neutrophils and 

TNF-α play a causal role in RV-induced airways hyperresponsiveness.  Following RV 

infection, airway neutrophils release factors that regulate neutrophil chemotaxis, mucin 

expression and airway smooth muscle responses.  Further studies using mouse models of 

RV1B infection may elucidate mechanisms underlying exacerbations of asthma, COPD 

and other chronic airways diseases.   
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Chapter 3 

 

 

Rhinovirus infection of allergen-sensitized and -challenged mice induces eotaxin 

release from functionally polarized macrophages   

  

Summary 

Human rhinovirus is responsible for the majority of virus-induced asthma exacerbations.  

To determine the immunologic mechanisms underlying rhinovirus-induced asthma 

exacerbations, we combined mouse models of allergic airways disease and human 

rhinovirus infection.  We inoculated ovalbumin-sensitized and challenged BALB/c mice 

with rhinovirus serotype 1B, a minor group strain capable of infecting mouse cells.  

Compared to sham-infected, ovalbumin-treated mice, virus-infected mice showed 

increased lung infiltration with neutrophils, eosinophils and macrophages, airway 

cholinergic hyperresponsiveness, and increased lung expression of cytokines including 

eotaxin-1/CCL11, IL-4, IL-13 and IFN-γ.  Administration of anti-eotaxin-1 attenuated 

rhinovirus-induced airway eosinophilia and responsiveness.  Immunohistochemistry 

showed eotaxin-1 in the lung macrophages of virus-infected, ovalbumin-treated mice, and 

confocal fluorescence microscopy revealed co-localization of rhinovirus, eotaxin-1 and 

IL-4 in CD68-positive cells.  RV inoculation of lung macrophages from ovalbumin-

treated, but not PBS-treated, mice induced expression of eotaxin-1, IL-4, and IL-13  ex 
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vivo.  Macrophages from ovalbumin-treated mice showed increased expression of 

arginase-1, Ym-1, Mgl-2 and IL-10, indicating a shift in macrophage activation status. 

Depletion of macrophages from ovalbumin-sensitized and -challenged mice reduced 

eosinophilic inflammation and airway hyperreactivity following RV infection. We 

conclude that augmented airway eosinophilic inflammation and hyperresponsiveness in 

RV-infected mice with allergic airways disease is directed in part by eotaxin-1.  Airway 

macrophages from mice with allergic airways disease demonstrate a change in activation 

state characterized in part by altered eotaxin and IL-4 production in response to RV 

infection.  These data provide a new paradigm to explain RV-induced asthma 

exacerbations. 

 

Introduction 

Viral infections trigger 80% of asthma exacerbations in children and nearly 50% 

in adults (1, 2), with human rhinovirus (RV) being the most common virus identified.  

While RV infections were once thought to be restricted to upper airway tissues (3), it is 

now clear that infections of the upper respiratory tract are accompanied by the entry of 

virus into lower respiratory tract cells (4-7), though the quantity of viral replication is not 

known.   

In normal subjects, RV causes airway narrowing in response to methacholine as 

well as increased airway neutrophils and submucosal CD3+ cells (8, 9).  In theory, RV 

infection of airway cells elicits the production of chemokines, subsequently inducing 

recruitment of inflammatory cells to the airways.  Inflammatory cells, in turn, elaborate 

cytokines and mediators capable of increasing airways responsiveness.  This paradigm, 
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however, does not explain why asthmatic subjects experience exacerbations of lower 

airways disease following respiratory tract infection while control subjects do not.   

 Numerous clinical studies suggest a role for interleukin (IL)-8/CXCL8 in the 

pathogenesis of RV-induced asthma exacerbations.  IL-8 and neutrophils are found in the 

nasal secretions, sputum or bronchoalveolar lavage fluid of allergic subjects undergoing 

experimental RV infection (9-14).  After RV16 infection, asthmatic patients show 

increased levels of IL-8 in their nasal lavage which correlates with the level of airways 

responsiveness (11), in contrast to unaffected individuals in whom IL-8 does not increase 

(15).  Eosinophils and eosinophil cationic protein have also been detected in the airways 

following experimental RV infection (10, 14, 16).  Asthmatics undergoing experimental 

RV infection demonstrate greater eosinophilic inflammation than RV-infected control 

subjects (14).  Together, these data suggest that patients with asthma experience a 

different response to viral infection than controls. 

 We recently showed that inoculation of C57BL/6 mice with RV1B, a minor group 

virus which binds to proteins of the highly conserved low-density lipoprotein receptor 

family, induces airway neutrophilic inflammation and methacholine hyperresponsiveness 

(17).  In contrast, replication-deficient UV-irradiated virus did not cause lasting 

hyperresponsiveness. We also found positive and negative-strand viral RNA in the lungs 

up to 4 days after infection, suggesting replication of RV in vivo.  It was recently shown 

that RV infection of BALB/c mice induces similar airway changes (18).  Infection of 

ovalbumin (OVA)-sensitized and -challenged mice increased bronchoalveolar 

neutrophils, eosinophils and lymphocytes compared with allergen-challenged mice 

treated with UV-inactivated virus.  However, the mechanism by which eosinophils are 
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attracted to the airways following RV infection, and the requirement of eosinophils for 

the development of RV-induced airway hyperresponsiveness, were not examined.   

In the present study, we show that, in OVA-sensitized and challenged BALB/c 

mice, RV1B infection increased production of pro-inflammatory cytokines including 

eotaxin-1/CCL11, Th-2 cytokines IL-4, IL-13.   Bronchoalveolar and lung neutrophils, 

eosinophils, and macrophages, as well as airways responsiveness, were elevated in the 

RV-infected, OVA-treated mice.  Neutralization of eotaxin-1/CCL11 blocked both 

airway eosinophilia and hyperresponsiveness.  Eotaxin-1 and IL-4 were localized to RV-

infected airway macrophages. Finally, macrophages from OVA-treated, but not PBS-

treated, mice expressed eotaxin-1, IL-4, IL-13 in response to RV infection ex vivo, as 

well as the alternative activation markers arginase-1, Ym-1, MGL-2, and IL-10.  Finally, 

depletion of macrophages from OVA/RV treated mice significantly decreased eosinophil 

infiltration and airway responses compared to non-depleted controls.   These results 

suggest that allergen sensitization and challenge skews a predominantly neutrophilic RV 

response in naïve mice to a Th-2-dominant eosinophil response that is augmented, at least 

in part, by alternatively activated macrophages.    

 

Methods 

Generation of RV 

RV1B (ATCC, Manassas, VA) was concentrated, purified and titered as described 

previously (19, 20).  Fifty percent tissue culture infectivity doses (TCID50) were 

determined by the Spearman-Karber method.  RV1B was UV-irradiated using a CL-1000 

crosslinker (UVP, Upland, CA). 
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OVA sensitization/challenge and RV exposure 

 This study was approved by the Institutional Animal Care and Use Committee.  

Animal usage followed guidelines set forth in the "Principles of Laboratory Animal Care" 

(National Society for Medical Research).  Female 8 wk-old BALB/c mice (Jackson 

Laboratories, Bar Harbor, MA) were injected intraperitoneally with 200 μl of a 5 mg/ml 

solution of alum and endotoxin-free OVA or PBS (Sigma-Aldrich, St. Louis, MO) on 

days 1 and 7 and treated intranasally with 50 μl of a 20 mg/ml solution of OVA or PBS 

on days 14, 15 and 16.  Immediately following the last OVA or PBS treatment, mice 

were inoculated intranasally with 45 μl of 1x108 TCID50/ml RV1B, UV-irradiated RV or 

an equal volume sham HeLa cell lysate (17).      

 

 Bronchoalveolar inflammatory cells and macrophage culture 

  Bronchoalveolar lavage (BAL) was performed using 1 ml PBS aliquots.  

Cytospins were stained with Diff-Quick (Dade Behring, Newark, DE) and differential 

counts determined from 200 cells.  BAL fluid from PBS- and OVA-treated mice was 

seeded in 12 well plates.  To partially purify macrophages, cells were allowed to adhere 

for 90 min and non-adherent cells removed by suction.  Diff-Quick staining showed 

adherent cells to consist of >90% macrophages, with the rest of the cells being 

neutrophils.  Remaining cells were resuspended in RPMI (Invitrogen, Carlsbad, CA), 

stimulated for 2 h with sham or RV1B (multiplicity of infection, 5.0), and RNA harvested 

8 h after infection.  In selected experiments, cells were pre-treated with 30 ng/ml IL-4 

and IL-13 (Peprotech, Rocky Hill, NJ).   
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Lung inflammation 

To quantify inflammatory cells, lung digests were obtained by mincing the tissue, 

proteolysis in collagenase type IV (Gibco Invitrogen, Carlsbad, CA) and straining 

through a 70 μm nylon mesh (BD Falcon, San Jose, CA), as described (21).  The 

resulting pellet was treated with red blood cell lysis buffer (BD Pharmingen, San Diego, 

CA) and leukocytes were enriched by spinning the cells through 40% Percoll (Sigma-

Aldrich).  Lung leukocyte cytospins were stained and counted as described above.    

 

Cytokine/chemokine expression 

  Lung RNA was extracted with Trizol (Sigma-Aldrich) and analyzed for cytokine 

and mucin gene expression by quantitative real time PCR using specific primers and 

probes.  Signals were normalized to GAPDH and expressed as fold-increase.  In some 

experiments, BAL fluid was spun for 15 min at 1500 g, and the supernatants were 

analyzed for cytokine protein by multiplex immune assay (Biorad, Hercules, CA).   

 

Respiratory system resistance. 

Airway responsiveness was assessed by measuring changes in respiratory system 

resistance in response to increasing doses of nebulized methacholine (17).   

 

Macrophage depletion.   

Depletion of alveolar macrophages was accomplished by intratracheal instillation 

of liposomes containing clodronate (dichloromethylenediphosphonic acid, disodium salt), 

as previously described (22).  PBS-containing liposomes were used for control 
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experiments.  Briefly, 8 mg cholesterol and 86 mg phosphatidylcholine (Avanti Polar 

Lipids, Alabaster, AL) were dissolved in chloroform and slowly evaporated. The filmy 

layer was resuspended in 10 ml of PBS or 0.6 M clodronate. The mixture was exposed to 

N2 gas and incubated for 2 h at room temperature with gentle shaking. The mixture was 

then sonicated and incubated for another 2 h to allow liposome swelling. The solution 

was centrifuged at 10,000 x g for 15 min, and the liposomes were collected and washed 

twice with sterile PBS. Liposomes were kept at 4°C under N2 until use.  Depletion was 

performed 24 h after the last OVA challenge by introducing 60 μl of clodronate- or PBS-

containing liposomes intratracheally.  24 h later, mice were infected with RV1B, as 

described above.  Differential cell counts were performed on lung digests and respiratory 

resistance to methacholine was measured.    

 

Immunohistochemistry and confocal fluorescence microscopy 

 Lungs were fixed with 10% formaldehyde overnight and paraffin embedded.  

Blocks were sectioned at 500 μm  intervals at a thickness of 5 μm and each section was 

deparaffinized, hydrated and stained with goat anti-mouse eotaxin-1 (Santa Cruz 

Biotechnology, Santa Cruz, CA).  For immunohistochemistry, sections were incubated 

with biotinylated secondary goat-IgG, ABC reagent (Vector Laboratories, Burlingame, 

CA), diaminobenzidine (DAB, Sigma-Aldrich) and Gill’s hematoxylin (Fisher Scientific, 

Kalamazoo, MI).  For fluorescence microscopy, slides were incubated with Alexa Fluor 

(AF)-conjugated donkey anti-goat IgG (Molecular Probes, Portland, OR) and rat anti-

mouse CD68 (AbD Serotec, Raleigh, NC) or isotype control IgG.  In selected 

experiments, sections were co-stained with antiserum against RV1B (ATCC).  Antiserum 
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was partially purified by incubation with nitrocellulose-bound HeLa cell proteins and 

passing through an affinity resin containing non-denatured mouse lung protein.  

Repurified antibody was directly conjugated to AF.  Nuclei were stained with Hoescht 

33258.  Images were visualized using a Zeiss LSM 510 confocal microscope and 

Axiovert 100M inverted microscope.  CD68-, eotaxin-1/CCL11-positive cells were 

counted at 500 μm intervals and expressed as the number per field.   

 

Data analysis 

Data are represented as mean±SEM.  Statistical significance assessed by one- or 

two-way analysis of variance (ANOVA), as appropriate.  Differences were pinpointed by 

Student Newman-Keuls’ multiple range test.   

 

Results 

RV infection of OVA-sensitized and -challenged mice further increases airway 

inflammation.   

We previously showed that RV1B infection of naïve C57BL/6 mice induces a 

state of modest airways hyperresponsiveness which lasts at least four days after viral 

inoculation (17).  Hyperresponsiveness was associated with a short-lived increase in 

bronchoalveolar neutrophils.  In the present study, we infected OVA-sensitized and -

challenged BALB/c mice.  Tissue eosinophils, macrophages and neutrophils were 

elevated in OVA-treated mice up to four days after RV inoculation (Figure 3-1), with 

maximal recruitment of macrophages and eosinophils occurring two days post-infection.  

In terms of absolute numbers, macrophages were the cell type most heavily recruited to 
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the tissues.  Lung neutrophil recruitment was a relatively brisk event, with a significant 

increase in OVA/RV mice on day 1 after infection and a dramatic decrease on days 2 and 

4.   Although OVA treatment significantly increased lung lymphocytes compared to 

naïve mice, there was no significant difference in lymphocyte counts between OVA/RV 

and OVA/sham mice. In the BAL, RV infection increased neutrophils, eosinophils and 

lymphocytes in both naïve and OVA-sensitized and -challenged mice (Figure 3-2).  As in 

the lung tissue, the largest absolute increase in BAL inflammatory cells following RV 

infection of OVA-sensitized and -challenged mice was observed in the macrophage line.   
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Figure 3-1.  OVA/RV treated mice show increased tissue eosinophils and 
macrophages in response to RV infection.  Wild type BALB/c mice were sensitized 
intraperitoneally with endotoxin-free OVA and alum on days 1 and 7, and challenged 
intranasally on days 14, 15, and 16 with OVA.  Controls were treated with PBS.  Mice 
were inoculated with RV1B or sham (HeLa cell supernatant) on day 16.  Mouse lungs 
were harvested 1, 2 and 4 after infection. Lungs were digested for 1 h in Type IV 
collagenase in serum free RPMI. Strained cells were treated with RBC lysis buffer, spun 
and enriched for leukocytes with 40% Percoll.  Resulting pellets were resuspended in 
PBS and total cell count determined.  Cytospins of leukocytes were stained with Diff-
Quik and differential cell count determined for 200 cells. Time courses for tissue 
neutrophils (A), lymphocytes (B), eosinophils (C) and macrophages (D) are shown.  
(N=4-5 mice per group, bars represent mean±SEM, *different from respective sham 
group, †different from respective PBS group, P<0.05, one-way ANOVA.)   
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Figure 3-2. OVA-sensitized and -challenged mice show increased airway 
inflammation in response to RV infection 4 days after infection. Bronchoalveolar 
lavage was performed with saline containing 5mM EDTA.  BAL neutrophils (A), 
lymphocytes (B), eosinophils (C) and macrophages (D) are shown.  (N = 4-6 mice per 
group, bars represent mean ± SEM, *different from respective sham group, p<0.05; 
†different from respective PBS group, P<0.05 one-way ANOVA.)    
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Effects of RV infection on lung pro-inflammatory cytokines. 

 In order to determine changes in pro-inflammatory cytokines that might be 

responsible for the observed increase in eosinophilic inflammation, we measured lung 

cytokine levels by multiplex immunoassay.  Compared to OVA-treated mice, OVA/RV 

mice demonstrated significantly higher levels of eotaxin-1/CCL11, IL-4 and IL-13 one 

day after infection (Figures 3-3).  In contrast, there was no effect of RV infection on lung 

IL-5 levels.   On day 4, lungs from RV-infected OVA-treated mice showed a sustained 

increase in eotaxin-1 and IL-4 levels (Figure 3-4). Eotaxin mRNA was elevated in the 

OVA/RV treated groups on day 1, 2, and 4 post infection.   
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Figure 3-3.  RV infection of OVA-sensitized and -challenged mice increases cytokine 
production. Twenty-four h after sham or RV infection, lung BAL fluid was centrifuged 
at 1500g and the resulting supernatant subjected to multiplex immunoassay.  Results are 
shown for eotaxin-1/CCL-11 (A), IL-4 (B), IL-13 (C) and IL-5 (D).  (N=5 mice per 
group, bars represent mean ± SEM, *different from respective sham group, p<0.05; 
†different from respective PBS group, P<0.05 one-way ANOVA.)    
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Figure 3-4.  RV infection of OVA-sensitized and -challenged mice increases cytokine 

 

 

 

 

production four days after infection. Lung BAL fluid was centrifuged at 1500g and the 
resulting supernatant subjected to multiplex immunoassay.  Results are shown for 
eotaxin-1/CCL11 (A and D),  IL-4 (B) and IL-13 (C).  cDNA for eotaxin-1/CCL-11 was 
synthesized using reverse transcriptase and subjected to quantitative real time PCR 
employing a Taqman probe.  (N=5 mice per group, bars represent mean ± SEM, 
*different from respective sham group, p<0.05; †different from respective PBS group, 
P<0.05 one-way ANOVA.) 
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RV infection increases the airways responsiveness of OVA-sensitized and -challenged 

 In order to determine whether the observed airway inflammation was 

functio

otaxin-1 is required for RV-induced eosinophilic airway inflammation and 

nfection increased lung eosinophils (Figure 3-1) and 

the pro

mice.  

nally significant, all groups were tested for responsiveness to a bronchoconstrictor 

agonist four days after sham or RV1B treatment.  Methacholine (0-20 mg/ml) was 

administered by nebulization and total respiratory system resistance values recorded.  As 

expected, OVA treatment increased airway cholinergic responsiveness (Figure 3-5A).  

However, RV-infected OVA mice demonstrated significantly higher airways responses, 

with significant differences noted at methacholine doses of 10 and 20 mg/ml (p < 0.05, 

two-way ANOVA).  In contrast, UV-irradiated, replication-deficient RV had no effect on 

airways responses in OVA-sensitized and -challenged mice.  To determine whether the 

observed elevated airway responses to methacholine were due to a higher viral load, we 

measured lung positive-strand RV RNA. Surprisingly, vRNA levels were significantly 

lower in the OVA/RV treatment group (Figure 3-5B), suggesting that allergen 

sensitization and challenge increases viral clearance.  As shown previously (17), viral 

copy numbers were negligible by four days after infection, consistent with the notion that 

airways hyperresponsiveness persists after viral clearance in this model.    

 

E

hyperresponsiveness in OVA mice.  

 In OVA-treated mice, RV i

tein level of eotaxin-1/CCL11 (Figures 3-3 and 3-4), an eosinophil-specific 

chemokine.  We therefore sought to examine the contribution of eosinophils to RV-
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induced airway responsiveness by administering neutralizing antibody to mouse eotaxin-

1.  To ensure the suppression of augmented eosinophilic inflammation in RV-infected 

mice, a subset of OVA-treated mice was given two systemic injections of rabbit 

antiserum, the first on the day of RV inoculation and the second two days later.   Control 

mice were treated with the isotype control.  We found that, compared to IgG, anti-eotaxin 

treatment significantly reduced lung eosinophils in OVA-treated, RV-infection mice, but 

not OVA-treated, sham-inoculated mice (Figure 3-5C).  Anti-eotaxin-1 neutralizing 

antibody did not reduce the infiltration of neutrophils, macrophages or lymphocytes (data 

not shown), suggesting that the antibody specifically targeted eosinophils.  Further, 

administration of anti-eotaxin to OVA/RV mice significantly reduced responsiveness to 

methacholine compared to IgG (Figure 3-5D), suggesting that eotaxin-1 and eosinophils 

are required for maximal airway responses in RV-infected allergen-sensitized and -

challenged mice.   Anti-eotaxin had no effect on lung vRNA one day post infection (data 

not shown).    
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Figure 3-5.   RV infection of OVA-sensitized and -challenged mice induces eotaxin-
-mediated  airways cholinergic responsiveness.  A.  Mice were anesthetized and 

endotracheally intubated, and changes in respiratory system resistance to nebulized 
1

methacholine measured using the FlexiVent system (Scireq, Montreal, CA).  Four days 
after infection, RV-infected OVA mice demonstrated significantly higher airways 
responses than all other groups at methacholine doses of 10 and 20 mg/ml. B.  
Measurement of viral copy number from lungs of PBS/RV and OVA/RV treated mice 1 
day post infection.  OVA/RV treatment significantly reduced viral copy number by 1 log. 
(N= 5 mice per group, bars represent mean ± SEM, *different from respective sham 
group, p<0.05; †different from respective PBS group, P<0.05 one-way ANOVA.)  C. 
Selected RV-infected, OVA-sensitized and -challenged mice were given two systemic 
injections of rabbit anti-mouse eotaxin-1.  Additional mice were treated with the isotype 
control antibody.   Mice given anti-eotaxin displayed reduced tissue eosinophils 4 days 
after infection.  D. Neutralizing antibody and isotype control-treated mice were 
administered increasing doses of aerosolized methacholine. Treatment with anti-eotaxin-
1 significantly reduced airway cholinergic responsiveness compared to the IgG-treated 
group.  (Bars represent mean ± SEM, *different from respective sham group, †different 
from IgG group, P<0.05, one-way ANOVA.) 
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Eotaxin-1 is mainly localized to CD68-positive macrophages.   

We examined lungs of PBS-and OVA treated mice for eotaxin-1 localization 

-eotaxin-1 and anti-CD68 

showed

                                                

(Figure 3-6 A-D).  Fluorescence confocal microscopy with anti

 intense yellow-orange staining, consistent with colocalization of CD68 and 

eotaxin-1 in lung macrophages1  (Figure 3-6D).   When CD68+/eotaxin-1/CCL11 

positive cells were counted, OVA/RV mice showed a significantly higher number of cells 

per field compared to the other groups (panel E).  Immunohistochemical analysis of lungs 

from RV-infected OVA-treated mice showed abundant eotaxin-1-staining which 

appeared to be localized to airway and submucosal macrophages.  There also appeared to 

be a small number of eotaxin-positive eosinophils as well as limited staining in the 

airway epithelium (Figure 3-7A). We also found colocalization of RV1B in CD68-, 

eotaxin-1/CCL11-positive cells (Figure 3-7, panels B-F), suggesting that RV infection 

initiates cytokine expression and/or secretion in airway macrophages.  Most RV-infected 

macrophages were located in the submucosa of large airways, but others were found in 

the airways and epithelium (Figure 3-8, panel A).  A minor amount of RV1B and eotaxin 

staining was also found in airway epithelial cells. Finally, we found co-localization of 

RV1B, IL-4 and CD68 in the lungs of OVA-treated (Figure 3-8, panels C-G) but not IgG 

antibody treated sections (panel B) or PBS-treated mice (data not shown), indicating that, 

following exposure to an allergic environment, lung macrophages produce Th2 cytokines 

in response to RV infection in vivo.   

 

 

 
 

1 Dr. John Bentley and Marisa Linn assisted with these experiments.   
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Figure 3-6.  Eotaxin-1 is produced by alveolar macrophages from OVA-sensitized 
and -challenged mice, but not cells from PBS-treated mice.  Lungs sections were 
stained with donkey-anti-mouse eotaxin-1 for 30 min and AF488-labeled donkey anti-
goat IgG secondary overnight.  Sections were costained with AF594-conjugated rat anti-

), 
 

 

 

mouse CD68 or isotype control IgG overnight.  Lungs from PBS/sham (A), PBS/RV (B
OVA/sham (C) and OVA/RV (D) mice are shown.  Intense yellow staining is seen in
OVA/RV sections indicating colocalization of CD68 (red) and eotaxin-1 (green), while
OVA/sham lungs show less intense staining.   Sections incubated with secondary 
antibody alone showed no staining.  E. OVA/RV lungs have increased CD68+/eotaxin-1+ 
cells per field compared to all other groups.  (N= 3, bars represent mean ± SEM, 
*different from respective sham group, P<0.05; †different from respective PBS group, 
P<0.05 one-way ANOVA.) 
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Figure 3-7.  RV colocalizes with CD68+ macrophages, eotaxin-1 in OVA-sensitized 
and -challenged mice.  A. Lungs were formaldehyde fixed overnight, paraffin 
mbedded, sectioned at 5 μm and incubated with a 1:2500 dilution of donkey-anti-mouse 
otaxin-1 (Santa Cruz Biotechnology, CA) or isotype control IgG.  Eotaxin was identified 
y DAB staining.  Following OVA/RV treatment, eotaxin-1 localization is noted in 

 

 

e
e
b
macrophages (arrows) and eosinophils (arrowheads) but not in the airway epithelium 
(line segment = 50 μm).  B-E. OVA/RV lung sections were co-stained with antiserum 
against RV1B which was directly conjugated to AF-594 (red), while CD68 was 
conjugated to AF-633 (far red, shown in blue).  Secondary antibody to eotaxin-1 was 
conjugated to AF-488 (green).  Cells with colocalization (white) are designated by arrows 
and a high magnification view is shown in panel F.  Original magnification, 600X. 
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Figure 3-8.  RV colocalizes with CD68+ macrophages, IL-4 in OVA-sensitized and -
challenged mice.  A. RV infection of CD68-positive cells in the airway lumen and 
epithelial layer.  In this panel, RV anti-serum was directly conjugated to AF-594 (red), 

hile CD68 was conjugated to AF488 (green).  Colocalization is yellow.   Colocalization 
in the epithelium suggests infiltration by a macrophage.  B.  Sections incubated with 

condary antibodies alone showed no staining. C-G.  RV co-localizes with IL-4 in 
CD68-positive cells.  RV and CD68 were conjugated with AF-594 (red), and AF-633 

 

 

 

 

 

 

w

se

(shown in blue) respectively. There is some blue background staining of elastin in the 
epithelial basement membrane.  IL-4 was directly conjugated to AF-488 (green).  G. Co-
localization of RV, IL-4, and CD68 is white.  Original magnification, 400X.     
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Macrophages are required for RV-induced eosinophil infiltration and airway 

yperresponsiveness in OVA-sensitized and -challenged mice.   

We delivered clodronate- or PBS-containing liposomes to OVA-treated mice 

tratracheally2.  24 h later, mice were inoculated with sham or RV1B.  As expected, 

te treated mice (Figure 3-

9B).  N

                                                

h

in

clodronate treatment depleted total lung macrophages (Figure 3-9A).  Differential cell 

counts revealed a markedly lower eosinophil influx in clodrona

o significant differences in neutrophil or lymphocyte accumulation were observed 

(Figures 3-9 C-D), OVA/RV mice receiving clodronate liposomes demonstrated a 

strikingly reduced response to methacholine compared to mice receiving PBS liposomes 

(Figure 3-9E).  Finally, we examined the expression of IL-4, IL-5, and IL-13 in the 

liposome treated animals.  Our pilot data shows a significant reduction in IL-13, and 

eotaxin-1 in the OVA/RV/clodronate treated group compared to the OVA/RV/PBS 

liposome treated group (Figure 10, panels A, B).  Together, these data suggest that 

macrophages play an essential role in eosinophil infiltration and airway hyperreactivity in 

RV-infected mice with allergic airways disease.   

 

 

 

 

 

 

 

 
 

2 Dr. John Bentley and Emily Bowman assisted with these experiments 
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Figure 3-9.  Macrophage-depleted OVA-treated mice show reduced airway 
eosinophils and hyperresponsiveness following RV infection.  Clodronate or PBS-
containing liposomes were instilled into the trachea 24 h after the last OVA challenge. 24 
h following macrophage depletion, mice were inoculated with sham or RV and harvested 
24 h after infection.  Lung digests were performed as described in Figure 1.  Differential 
counts were determined.  Cytospins of leukocytes were stained with Diff-Quik and 
differential cell count determined for 200 cells. Macrophages (A), eosinophils (B), 
neutrophils (C) and lymphocytes (D) are shown.  E.  Airway resistance for each group 
was measured following treatment with 0, 10, and 20 mg/ml methacholine.  (N=3-4 mice 
per group, bars represent mean±SEM, *different from respective sham group, †different 
from OVA/RV/ PBS group, P<0.05, one-way ANOVA.)   
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Figure 3-10.  Clodronate treatment of OVA/RV mice decreases eotaxin and IL-13 
expression.  cDNA was synthesized using reverse transcriptase and subjected to 
quantitative real time PCR employing a Taqman probe.  (N=4-5 mice per group, bars 
represent mean ± SEM, *different from clodronate-liposome treated group, p<0.05; 
†different from respective PBS-liposome  group, P<0.05 one-way ANOVA.) 
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OVA sensitization and challenge alters macrophage pro-inflammatory cytokine 

xpression in response to RV and upregulates markers of alternative activation.  

 In order to determine the combined effects of allergen sensitization and RV on 

acrophage responses, adherent BAL cells were studied.  Cells from PBS- or OVA-

nsitized and -challenged mice were then stimulated with sham HeLa cell lysate (sham) 

es from 

control

A mice exposed to RV 8 h post-infection (panel A).  It is conceivable that, in 

contras

e

m

se

or RV1B ex vivo.  8 h after sham or RV exposure, cells were harvested for total RNA.  

Cytokine expression was determined by quantitative real time PCR.  Macrophag

 mice produced no eotaxin-1 ex vivo, either at baseline or in response to RV 

(Figure 3-11).  However, macrophages exposed to an allergic environment in vivo 

expressed eotaxin-1 mRNA, and this level was significantly increased following RV1B 

stimulation.  In addition, RV treatment of macrophages from OVA sensitized mice 

induced expression of IL-4, IL-13, IL-10 and IFN-γ.  UV-irradiation of RV abrogated the 

eotaxin, IL-10 and IFN responses, indicating that expression is dependent on viral 

replication.  mRNA expression of IL-4 and IL-13 appeared to replication-independent.  

Finally, in contrast to the above cytokines, the TNF-α response to RV infection was 

significantly decreased in macrophages isolated from OVA-sensitized and -challenged 

mice.    

We also measured the production of selected cytokines in cell supernatants 

following ex vivo RV stimulation, (Figure 12).  IL-4 production was significantly 

increased in RV-stimulated macrophages from OVA-treated mice (panel B).  We 

detected a small but significant increase in eotaxin-1/CCL11 production in macrophages 

from OV

t to eotaxin mRNA expression, the release of eotaxin-1 requires the coordinated 
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action of other mediators which may not be present in vitro.  In contrast, macrophages 

from OVA-sensitized and -challenged mice showed reduced levels of TNF-α and p70 IL-

12 production after RV stimulation (panels C and D). 
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Figure 3-11.  Macrophages from OVA-sensitized and -challenged mice show 
increased cytokine mRNA expression after RV stimulation ex vivo.   BAL fluid was 
extracted from PBS-treated and OVA-sensitized and -challenged mice and seeded in 12-
well plates. Cells were allowed to adhere to plates for 90 minutes.  Adherent cells were 
subsequently infected with RV1B, or sham or media (controls).  A . Eotaxin-1 expression 
was observed in adherent BAL cells from OVA-treated but not PBS-treated mice.  
Eotaxin-1 significantly increased following RV stimulation.  B.  IL-13.  C.  TNF-α. D. 
IL-4.  E.  IL-10.  F. IFN-γ.  (Ν=3-4, bars represent mean±SEM.  Because some treatment 
conditions yielded no detectable mRNA expression, data were normalized to the 
condition with the lowest detectable mRNA signal.  *different from respective sham 
group, †different from respective UV RV group, §different from respective PBS group, 
P<0.05, one-way ANOVA.)  
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Figure 12. Macrophages from OVA-sensitized and -challenged mice show increased 
cytokine secretion after RV stimulation ex vivo.   Cell supernatants were spun and 
subjected to bioplex immuneassay or ELISA.    A.  Eotaxin-1.  B  IL-4. C. TNF-α. D. IL-
12 p70.  (Ν=3, bars represent mean±SEM, *different from respective sham group, 
†different from respective UV RV group, §different from respective PBS group, P<0.05, 
one-way ANOVA.)   
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Based on the pattern of increased Th2 cytokine expression, we hypothesized that 

allergic sensitization induces macrophages to deviate from their classical pattern of 

activation, and instead exhibit a functionally polarized phenotype.   To test this 

hypothesis, we measured markers of macrophage activation in cells isolated from PBS- 

and OVA-treated mice.  We also found significant upregulation of the M2 polarization 

markers Arg-1, MGL-2, Ym-1 (Figure 3-13A) and, as noted above, IL-10.   

ge alters the 

activati

IL-4 and IL-13 treatment has been shown to shift classically activated M1 

macrophages to an M2 alternative activation phenotype (23-25).  We therefore tested the 

effect of these cytokines on eotaxin mRNA expression in macrophages from naïve mice.  

In vitro exposure of macrophages from PBS-treated mice to the Th2 cytokines IL-4 and 

IL-13 significantly increased RV-induced eotaxin mRNA expression (Figure 3-13B).  

Taken together, these data suggest that allergen sensitization and challen

on state and augments the cytokine response of lung macrophages to RV 

infection, contributing to enhanced recruitment of eosinophils to the airways.   
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Figure 13.   Effect of Th2 environment on macrophage polarization.  A.  OVA 
sensitization and challenge alters the mRNA expression of macrophage activation 
markers.  Data are fold-increase compared to macrophages from PBS-treated mice (Ν=3-
4, bars represent mean±SEM)..  B.  Effect of IL-4/IL-13 incubation on the eotaxin 
response to RV infection in macrophages from PBS-treated naïve mice.  (Ν=3, bars 
represent mean±SEM.of fold increase in mRNA expression compared to control cells, 
mean±SEM, *P<0.05, one-way ANOVA).    
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Discussion 

RV is responsible for majority of the common colds and approximately 50% of 

asthma exacerbations (1, 2).  Previous studies have demonstrated that neutrophils are the 

predominant inflammatory cell in the airways of patients with acute asthma exacerbation 

(26-28).  Experimental RV infection has been shown to increase airway neutrophilic 

inflammation in normal and asthmatic subjects (9-14).  Eosinophils and cationic protein 

have also been detected in the airways following experimental RV infection (10, 14, 16).  

However the precise mechanism of RV-induced asthma exacerbations is not well 

understood.  After experimental RV16 infection, asthmatic patients show increased levels 

of IL-8 in their nasal lavage which correlates with the level of airways responsiveness 

(11), in contrast to unaffected individuals in whom IL-8 does not increase (15).  In a 

recent study, asthmatics undergoing experimental RV infection demonstrated greater 

neutrophilic, lymphocytic and eosinophilic inflammation than RV-infected control 

subjects, though only the number of eosinophils achieved statistical significance (14).  

Together, these data suggest that patients with asthma experience a different response to 

viral infection than control subjects.  

Previously, we showed that RV infection of naïve mice induces airway 

inflammation marked predominantly neutrophils and lymphocytes (17).   RV infection 

also induced moderate airways hyperresponsiveness to methacholine.  In the present 

study, we delineate the response to RV in the context of allergic inflammation.  We found 

that, following RV infection of allergen-sensitized and -challenged mice, the largest 

populations of cells elicited in the BAL fluid were, in fact, eosinophils and macrophages.  
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The inc

us report examining parainfluenza infection of OVA-treated animals (29), and 

suggest

rease in eosinophils was associated with a concomitant rise in expression of the 

eosinophil chemoattractant eotaxin-1/CCL11, which was significantly greater in 

OVA/RV mice in comparison to all other groups.  Eosinophil infiltration was also 

accompanied by a synergistic increase in the Th-2 cytokines IL-4 and IL-13, each of 

which were both significantly higher in the OVA/RV-treated mice compared to all other 

groups.  It is worth noting that RV infection alone failed to significantly increase airway 

eosinophils, eotaxin-1, IL-4, IL-13.  RV infection also enhanced airways responsiveness 

in allergen-sensitized and -challenged mice, with hyperresponsiveness persisting at least 

4 days after infection.  These data confirm and extend a recent report (18), and are 

consistent with the notion that the allergic environment qualitatively alters the response to 

RV.   

We measured viral copy number in the lungs of infected PBS- and OVA-treated 

mice.  Viral load was not increased in allergen-sensitized and -challenged mice, 

demonstrating that the augmented airway inflammation and responsiveness was not due 

to an increase in the susceptibility to RV.  Indeed, RV copy number was unexpectedly 

decreased in mice with allergic airways disease.  These data are consistent with a 

previo

 that inflammatory cells play a role in viral clearance.  More importantly, these 

data demonstrate an uncoupling of viral load and airway inflammation.  While this may 

seem surprising, viral infection may set off a pro-inflammatory cascade that outlasts the 

presence of live virus.   Consistent with this, we previously found that RV-infected, naïve 

mice demonstrate airways hyperresponsiveness four days after RV infection, when viral 

copy number is decreasing (17).  We also found that replication-deficient virus is 
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sufficient to induce moderate neutrophilic inflammation and airways responsiveness one 

day after inoculation.        

In OVA-treated mice, RV infection increased lung eosinophils and expression of 

eotaxin-1/CCL11.  Eosinophils and the eotaxin/CCR3 axis are known to play a critical 

role in chronic experimental allergic airway inflammation (30-32).  To test for the 

requirement of eotaxin-1 for enhanced eosinophilic inflammation and airways 

hyperresponsiveness in allergic, RV-infected mice, we targeted eotaxin-1 production by 

administering an anti-mouse eotaxin-1 neutralizing antibody following the last OVA 

challenge and RV infection.  Anti-eotaxin-1 significantly reduced the number of airway 

eosinophils, but not the neutrophils or lymphocytes, demonstrating that eotaxin-1 is 

required for homing of eosinophils to the airway following RV infection.  Further, 

administration of anti-eotaxin-1 blocked RV-induced airways hyperresponsiveness in 

allergen-sensitized and -challenged mice.  While we did not determine the precise 

mechanism by which eosinophils increase airways responses, eosinophils are a known 

source of bronchoconstrictor agonists including major basic protein (MBP) and cysteinyl 

leukotrienes.  When guinea pigs are sensitized to OVA and subsequently infected with 

parainfluenza, virus-induced hyperresponsiveness and M2 receptor dysfunction are 

blocked by depletion of eosinophils with antibody to IL-5 or antibody to MBP (29).   RV 

infection has also been shown to increase 5-lipoxygenase and cyclooxygenase-2 in 

bronchial biopsy specimens from nonatopic subjects (33).   

To determine the cell(s) responsible for the observed increase in eotaxin-1 

expression in  response to RV, we performed immunohistochemistry on OVA/RV mice.  

Though previous reports demonstrated production of eotaxin-1/CCL11 by RV-infected, 
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cultured airway epithelial cells (34-38), eotaxin-1 was only minimally localized to the 

airway epithelium.  Instead, eotaxin-1 protein abundance was readily apparent in alveolar 

macrophages.  These data are consistent with previous reports showing that, in airway 

inflamm

cted by PCR, is associated 

with a 

atory cells from asthmatic patients, eotaxin-1 immunoreactivity is colocalized 

predominantly to macrophages, with a lesser contribution from eosinophils (39-41). 

Further, macrophages isolated from allergen-sensitized and -challenged mice 

demonstrated a significant eotaxin-1 response to RV stimulation ex vivo, in contrast to 

cells from naïve mice, which showed no response.  RV has previously been shown to 

induce cytokine responses in alveolar macrophages in vitro.  Production of monocyte 

chemoattractant protein (MCP)-1/CCL2 and IP-10/CXCL10 is replication-independent 

(42-45), whereas production of tumor necrosis factor-α may be replication-dependent 

(44). In the present study, we show for the first time that ex vivo macrophage responses to 

RV are augmented following allergen-sensitization and -challenge, and that macrophages 

produce cytokines in response to airway RV infection in vivo.  However, we cannot tell 

from our images whether colocalization represents true replicative infection, endocytosis 

of virus, or phagocytosis of RV1B by airway macrophages.   

Eotaxin production in response to RV infection has not been previously 

demonstrated in vivo.  In the one study of which we aware examining eotaxin-1 

expression in response to natural or experimental RV infection in asthmatic subjects, 

mRNA transcripts for eotaxin-1 were not expressed at consistently detectable levels in 

induced sputum (46).  However, our preliminary studies examining nasal washes from 

asthmatic children show that natural viral infection, as dete

6-fold increase in eotaxin-1 protein abundance compared to virus-negative weeks 
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(T. Lewis, T. Henderson, M. Hershenson, unpublished data).      

In addition to eotaxin-1, we found that the combination of OVA treatment and RV 

infection increased production of IL-4 from alveolar macrophages, both in vivo and ex 

vivo.   Macrophages from OVA-treated mice also expressed higher levels of IL-13 in 

response to RV ex vivo.  The notion that a non-T cell source of Th2 cytokines may also 

act to enhance allergic inflammation by secreting IL-4 or IL-13 has not been well-

studied.  IL-13 production has been noted in lung macrophages from Sendai virus-

infected

classically activated M1 macrophages to an M2 

 C57BL/6J mice (47).  The role of macrophages in the pathogenesis of asthma 

and allergic inflammtion is unresolved.  Macrophage subsets are recruited into the lung 

following OVA sensitization and challenge of Balb/cJ mice, and transfer to naïve mice 

increased airways responsiveness, eosinophilic inflammation and in Th-2 cytokine 

secretion (48).  On the other hand, transfer of alveolar macrophages from OVA-exposed 

Sprague-Dawley rats protects against the development of airways hyperresponsiveness in 

macrophage-depleted OVA-treated Brown-Norway rats (49). In our study, depletion of 

macrophages resulted in a significant amelioration of eosinophil infiltration and airway 

responsiveness, suggesting for the first time that RV-induced asthma exacerbations may 

be directed by lung macrophages.     

Our data demonstrating increased production of eotaxin-1 and IL-4 from alveolar 

macrophages, both in vivo and ex vivo, suggests an alteration in the phenotype of tissue 

macrophages in response to allergen sensitization and RV infection.   In addition, RV 

treatment of macrophages from OVA sensitized mice, but not PBS-treated mice, induced 

expression of IL-13, IL-10 and IFN-γ.   Ιn contrast, TNF-α and p70 IL-12 were 

significantly decreased.  Shift of 
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alternat

ly enhances inflammatory activity (TNF-α, IL-12 

produc

ive activation phenotype, under the influence of the Th2 cytokines IL-4 and IL-

13, has been associated with an altered secretory repertoire and pattern of phagocytic 

receptors (reviewed in (25)).  IL-4 and IL-13 have been shown to induce alternative 

macrophage activation in vitro (23) and in vivo (24).  In the latter study, IL-13-

overexpressing transgenic mice infected with C. neoformans showed the presence of 

alternatively-activated macrophages expressing Arg-1, macrophage mannose receptor 

and Ym-1, as well as lung eosinophilia, goblet cell metaplasia, elevated mucus 

production and enhanced airway hyperreactivity.  Consistent with this, we found 

significant up-regulation of M2 markers in OVA sensitized and challenged mice 

including Arg-1, MGL-2, Ym-1, Fizz-1 and IL-10.  Modulation of Arg-1, Ym-1, Fizz-1, 

MGL-1 and MGL-2 expression was previously noted following OVA sensitization and 

challenge (50).  Upregulation of Arg-1 may be of particular physiologic importance.  In 

patients with asthma, Arg-1 mRNA expression is increased in submucosal inflammatory 

cells (51).  Arginase expression is increased in the lungs of allergen-sensitized and 

challenged mice, and inhibition attenuates methacholine responsiveness in OVA-

sensitized and challenged mice (52).   

In addition to changes in macrophage receptor and cytokine expression typically 

associated with M2 polarization including Arg-1, MGL-2, Ym-1 and IL-10, we also 

found that OVA treatment increased expression of the classical activation marker IFN-γ. 

Patterns of macrophage gene expression may not display a strict dichotomy between type 

1 and type 2 responses.  For example, it has been reported that exposure of macrophages 

to IL-4 prior to LPS stimulation strong

tion) as well as Arg-1 expression (53).  These data suggest the possibility that 
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exposure to a Th2 environment induces a functional phenotypic change in airway 

macrophages which does not strictly fit the M1/M2 model, leading to increased secretion 

of both type I and type II cytokines in response to RV stimulation.   

In cultured macrophages, UV-irradiation of RV abrogated the eotaxin, IL-10 and 

IFN responses.  The reduced cytokine expression following treatment with UV-irradiated 

virus is consistent with the notion that RV causes a replicative infection in macrophages.  

In vitro studies have noted attachment of HRV to peripheral blood monocytes and airway 

macrophages, with subsequent secretion of numerous pro-inflammatory cytokines, 

chemokines and IFNs (42-45, 54, 55).  A small amount of viral replication has been noted 

in HR

ines in the allergic 

V-infected peripheral blood monocyte-derived macrophages, but not in 

bronchoalveolar lavage (BAL)-derived macrophages (42, 44).  (42) 

 In conclusion, we have shown in allergen-sensitized and -challenged mice that 

lung macrophages participate in RV-enhanced airway eosinophilic inflammation and 

hyperreactivity.  Macrophages from allergen-sensitized and -challenged mice, but not 

control animals, produce eotaxin-1 and IL-4 in response to RV infection, both in vivo and 

ex vivo.  The altered response to RV infection is driven by a functional change in 

macrophage polarization state, likely a response to Th2 cytok

environment.  These data provide a new paradigm to explain RV-induced asthma 

exacerbations, and identify the macrophage as a potential therapeutic target for the 

treatment of viral-induced exacerbations of chronic airways disease. 
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     Chapter 4 
        
 
 
 
  Summary, Limitations, and Future Directions  

 

Summary 

RV is responsible for the most virus-induced asthma exacerbations in children 

and at least half of the exacerbations in adults (1, 2).  While RV was until recently 

considered an upper respiratory pathogen, recent studies have revealed RV localization in 

the lower airways, although the extent of replication has not been determined (3-6).   The 

underlying goal of this thesis was to examine why RV causes only a moderate change in 

airway hyperreactivity in normal subjects, while causing severe airflow limitations in 

asthmatic subjects.  In order to achieve these objectives, we first employed a mouse 

model of RV infection which we have developed in our laboratory (7) and examined the 

pro-inflammatory changes observed after RV inoculation in naïve mice.  Next, we 

extended this line of study to a mouse model of asthma characterized by Th-2 driven 

airway inflammation.  We found that, compared to naïve mice, RV infection causes a 

qualitatively different response in mice with allergic airways disease.  Perhaps more 

importantly, our studies identify the CD68-positive lung macrophage as a key player in 

viral-induced airway inflammation, changing the current paradigm explaining viral-

induced asthma exacerbations.  
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RV infection in vitro has been associated with ELR (+) CXC chemokines GRO-

α/CXCL1, ENA-78/CXCL5, and IL-8/CXCL8, and in vivo with murine homologs of IL-

8, KC/CXCL1 and MIP-2/CXCL-2 (7-10).    In addition, experimental RV16 infection of 

normal subjects induces IL-8 release, neutrophil infiltration, and increased airway 

hyperreactivity to bronchoconstrictor agonists (11-15).  In asthmatic patients, RV 

infection increases IL-8 in nasal lavage fluid which correlates with the level of airways 

responsiveness (16) suggesting that IL-8 may affect airflow limitation, possibly via 

neutrophil chemotaxis.  Since CXC chemokines including IL-8 bind to CXCR1 and 

CXCR2 receptors in humans, we hypothesized that CXC chemokines and CXCR2 were 

required for RV induced airway inflammation and hyperreactivity in naïve mice.   We 

observed that, as in C57BL/6 mice, naïve wild type Balb/c mice respond to RV infection 

primarily with increased neutrophils on day 1 post infection along with increased airway 

hyperreactivity.  In addition, CXCR2 -/- mice displayed reduced neutrophil infiltration 

and hyperresponsiveness compared to wild type mice 1 day post infection, suggesting a 

pathological role for CXC chemokines and neutrophils in the early stages of RV induced 

airway inflammation.   Furthermore, CXCR2-/- mice demonstrated reduced pro-

inflammatory cytokine induction including TNF-α and IL-1β, suggesting that CXCR2 

response is required for the production of RV induced cytokines and lung neutrophilia.  

RV infected, neutrophil depleted mice, also showed a significant reduction in airway 

responsiveness to methacholine. 

Finally, the lungs of CXCR2-/- mice showed reductions in expression of TNF-α 

and IL-1β. We therefore hypothesized that RV induced TNF-α expression was required 

for airway responses.  Surprisingly, TNFR1-/- mice showed a marked reduction in both 
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airway neutrophils as well as a complete abrogation of airway hyperreactivity.  

Reconstitution of neutrophils with exogenous MIP-2 failed to restore airways 

responsiveness, demonstrating an absolute requirement of TNFR1 signaling for RV- 

induced airway responses.  It is important to note that there was negligible infiltration of 

eosinophils in response to RV in the naïve mice (data not shown), suggesting that 

neutrophils are the predominant cell types recruited in normal subjects following 

inoculation in normal subjects.   

In our mouse model of allergic inflammation characterized by Th-2 cytokines, RV 

infection of OVA-sensitized and challenged mice caused a pronounced increase in lung 

macrophages, eosinophils, and neutrophils. Both eosinophils and neutrophils have been 

detected in asthmatics following experimental RV16 infection (15).  While the infiltration 

of neutrophils in OVA/RV treated groups was short-lived as in naïve mice, macrophages 

and eosinophils persisted 4 days post infection.  Th-2 cytokines IL-4, IL-13, and eotaxin 

were also elevated in OVA/RV treated groups compared to all other groups, suggesting 

RV exacerbates Th2-driven eosinophilic airway inflammation.  Airway inflammation was 

accompanied by airway hyperresponsiveness.  Neutralization of eotaxin-1/CCL11 

markedly decreased RV induced tissue eosinophils and airway hyperresponsiveness, 

suggesting that eotaxin production and eosinophil chemotaxis are closely associated with 

airway hyperreactivity implicating eosinophils in RV induced exacerbations of asthma.   

 Eotaxin is expressed in epithelial cells in response to RV (17); hence we 

hypothesized that we would find abundant localization in the airway epithelium of 

OVA/RV mice.  Instead, we found co-localization of RV and eotaxin in CD68+ cells and 

our ex vivo studies suggested that lung macrophages were important cellular sources of 
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eotaxin following OVA/RV treatment.  IL-4 was also detected in RV/CD68+ cells 

suggesting that other Th-2 cytokines may also be produced by macrophages in response 

to RV in vivo.  Furthermore our ex vivo studies implicated a functional polarization of 

macrophages such that the priming of these cells in an IL-4/IL-13 environment triggered 

an exacerbated Th-2 cytokine response. Indeed IL-4, IL-13, IL-10, eotaxin expression 

markedly increased in macrophages from OVA mice following RV stimulation.  

Moreover cytokines that are characteristically M1 (TNF-α, IL-12 p40) were down-

regulated in the OVA cells 8 h after RV inoculation.  Finally, we tested the requirement 

of macrophages in RV induced airway inflammation and hyperrreactivity.  We found that 

following OVA -sensitization and -challenge, clodronate depletion of macrophages 

caused significant reductions in RV induced airway hyperresponsivness and lung 

macrophages and eosinophils, compared to PBS liposome treated RV infected animals.  

Reduced expression of eotaxin and IL-13 were also detected in the clodronate treated, RV 

infected animals, implicating a causal role for these cytokines in the pathology of the 

OVA/RV treated mice.    

While some studies have suggested that asthmatics are susceptible to RV due to a 

deficient interferon response in epithelial cells (18, 19), this evidence has not been 

replicated by others  (20) and there is now increasing evidence that RV may in fact infect 

more cell types than just the airway epithelium (21-24). Our observations in OVA-

sensitized and -challenged macrophages could provide an explanation for why RV causes 

exacerbations despite limited and patchy localization in the airway epithelial cells (3).   
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Figure 4-1. Summary of observations in naïve and allergen sensitized and 
challenged mice following RV1B infection 

neutrophil Naive MIP-2 TNF-α, IL-1β  
KC CXC chemokines

 

Limitations and Future Directions 

Mouse model of RV infection   

 We have previously infected C57BL/6 mice with minor groups serotype RV1B 

and shown increased CXC chemokines, increased neutrophils, and moderate changes in 

airway hyperreactivity which were in part abrogated in UVRV (replication deficient 

virus) treated mice (7). In addition, RV inoculation of naïve mice induces a strong 

interferon response pattern which is double-stranded viral RNA dependent.  We have also 

shown that lung homogenates from RV infected mice when overlayed on Hela cell 

monolayers produce cytopathic effects up to 4 days following RV inoculation, consistent 

with the presence of a live virus. We are therefore confident that is minor group RV 

mouse model will be useful in further investigating RV induced airway inflammation in 

vivo.   
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 However, some concerns with our model remain.  First, studies in cultured airway 

epithelial cell lines have noted differences in cell pathology after infection with RV1B, a 

minor group virus which binds to LDL-R, and major group viruses including RV16 and 

RV39 which bind to the receptor to ICAM-1 (25).  However, similar patterns of cytokine 

including CXC chemokine induction have been noted across major and minor group 

serotypes (7, 26, 27). Major and minor group viruses induce nearly identical patterns of 

gene expression in cultured airway epithelial cells (28).  Finally, recent analysis of all 

known HRV genomes revealed that HRV1 and HRV16 are highly homologous and 

respond similarly to small-molecule antiviral compounds (29), implying that the 

distinction between some major and minor group strains may not be clinically relevant.   

 Also, species differences between mouse and human continue to restrict viral 

replication of human RV in mice.  In our model, aside from a shallow peak 18 h after 

infection, viral titer decreases gradually with time.  Hence, our RV model does not 

exactly reproduce human infection, in which viral replication plateaus for several days.  

In future studies we could employ serotype RV1A which is currently being developed as 

a mouse-adapted serotype with a sustainable viral titer in mice (Vincent Raccanielo, 

unpublished data).    

 

RV induced inflammation in naïve and CXCR2 -/-  mice 

RV infection of CXCR2 deficient mice, showed reduced accumulation of 

neutrophils and airway hyperrreactivity compared to naïve mice.  However CXCR2-/- 

mice infected with RV still showed higher airway responses to methacholine compared to 

the sham infected groups, despite minimal neutrophil influx.  In addition RV infected, 

 109



LY6G treated animals showed small but significant reductions in airway hyperreactivity..  

These results indicate that while neutrophils are required for the maximal airway 

responses to RV.  Additional experiments with TNFR1 knockout mice demonstrated the 

requirement of TNF-α for RV-induced airway hyperresponsiveness.  We did not test the 

precise mechanism by which TNF-α causes airway narrowing.  TNF-α has been reported 

to enhance airway smooth muscle contraction both directly, by increasing calcium influx, 

and indirectly by increasing calcium sensitivity  (30-32).  Intra-tracheal delivery of TNF-

α also increases mucus secretion in vivo (33) which could result in airway occlusion.  

 It is also conceivable that other chemokines play a role in RV-induced neutrophil 

chemotaxis and airway hyperresponsiveness.  Our gene array demonstrated that in 

addition to CXC chemokines, cytokines including CCL17, CCL20, and IL-1β were also 

expressed at significantly lower levels in the CXCR2-/- mice infected with RV.  

Antibodies to CCL17 diminish OVA induced airway inflammation in mice (34), while 

CCL20 has been associated with dendritic cell recruitment, allergic airway inflammation  

and airway responses (35).  Overexpression of IL-1β in the lung causes neutrophil and 

macrophage chemotaxis and emphysema-like airway pathology in adult mice (36).  In 

future studies, neutralizing antibodies to the above mediators could help elucidate more 

inflammatory mechanisms which RV infection may trigger in naïve mice.   

 

Differential expression of CXCR2  

Another limitation of this study is that CXCR2 has been detected in more cell 

types than just neutrophils.   For instance, in RSV-induced lung inflammation, CXCR2 

was expressed on macrophages, not neutrophils, in response to infection (37).  Future 
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studies could involve clodronate depletion of macrophages in naïve mice to examine 

whether macrophages constitute part of the inflammatory response to RV.  CXCR2 is 

also expressed on smooth muscle cells (38), thus it is conceivable that the RV induced 

methacholine responsiveness is due to the activation of CXCR2 and initiation of 

contraction signaling.  In this regard, in vitro studies have shown that major group RV16 

can increase airway smooth muscle contractility (39).  Therefore we could perform an in 

vitro study to see if RV induced airway smooth muscle contractility is impaired after 

treatment with CXCR2 antagonist.  However, there has been no evidence in either 

humans or animal models showing that RV infects airway smooth muscle in vivo.   

 

OVA -sensitization and -challenge protocol 

 The most obvious limitation of our allergen -sensitization and -challenge protocol 

is our choice of allergen. While OVA, is a chicken-egg antigen extensively used in 

studies in order to generate a Th-2 environment, it is not a reagent that naturally simulates 

an allergic response in murine lungs, nor does exposure to OVA typically cause asthma 

in humans.  We utilized aluminum hydroxide (alum) as an adjuvant which helps process 

and present the antigen.  Further studies could involve protease-containing cockroach egg 

and dust mite antigens, which do not require adjuvants and which also evoke a robust Th-

2 response.  Secondly our mode of delivery through intranasal treatments do not reflect a 

realistic exposure to airborne allergens which are typically inhaled in humans; thus our 

experimental regimen would be further enhanced by aerosolized delivery of the antigen 

and hence would demonstrate a more natural model of allergen sensitization and 

challenge.  Finally we have employed a large dose of ovalbumin (1 mg/ml) in order to 
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sensitize and challenge the mice.  Humans are exposed to allergens in order of 

micrograms—a far smaller dose than our OVA treatment.  Finally, some patients with 

asthma demonstrate neutrophilic rather than eosinophilic inflammation (see below), 

suggesting the need for a non-allergic model of asthma.  Future studies will entail 

optimizing our experimental regimen to meet these standards.    

 

Strain limitation and translational research 

 The Balb/c strain of mice is particularly skewed towards a Th-2 driven response.  

Thus it is plausible that the changes we see after OVA treatment and RV infection are far 

more robust and physiologically relevant in these mice compared to other strains or even 

humans.  However previous studies in C57BL/6 mice which are not predisposed to 

allergic inflammation, have demonstrated a role for Th-2 derived cytokines, including IL-

13, IL-4, and eotaxin-1, and macrophages, in airway inflammation and lung fibrosis (40-

42).   Our pilot data of inflammatory responses in OVA/RV treated animals, which was 

obtained from C57BL/6 strain (data not shown), also revealed eosinophil infiltration and 

airway hyperresponsiveness to methacholine 4 days post infection compared to all other 

groups, although the extent of inflammation was lower in comparison to the Balb/c strain.  

Further, IL-4, IL-5, IL-13 and eotaxin have been detected in bronchial biopsy specimens 

from human asthmatics (43-46).  RV infection of asthmatic subjects increases BAL 

eosinophils and airway hyperreactivity (15). In the clinical studies performed in our 

laboratory, nasal aspirates from asthmatic children showed a 6-fold increase in eotaxin-1 

protein following respiratory infection (Toby Lewis, Marc Hershenson, unpublished 

data).  Our ex vivo studies on BAL macrophages from asthmatic children also indicate 
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increased expression of  IL-13 and human M2 markers stabilin (47), following RV 

infection compared to non-asthmatic RV stimulated cells (Dina Schneider, Marc 

Hershenson, unpublished data).  Based on these results, we are confident that at least a 

subset of our observations from mice will be retained in human studies.     

 Finally while allergic asthma is characterized by the presence of Th-2 cytokines, a 

significant portion of asthma is not characterized by eosinophils but neutrophils, responds 

poorly to corticosteroids, and correlates with acute and sometimes even fatal asthma (48-

51).  We have not attempted to delineate the role of neutrophils in asthma and the precise 

mechanisms which may be involved.    Furthermore, there is an emerging role of Th-17 

cells which produce IL-17, and stimulate neutrophil infiltration, and exacerbate asthma 

(52).    

   

OVA/RV-induced cytokine responses 

 We focused our experimental design on requirement of eosinophils, and the 

eosinophil-specific chemokine, eotaxin-1.   However, there are other potential therapeutic 

targets.  Any chemokine or cytokine implicated in the initial asthmatic response could 

play a role in viral-induced responses.  Overexpression of IL-13 resulted in airway 

hyperreactivity (53).  Therefore RV induced IL-13 may play a key role in 

bronchoconstriction and would hence be a therapeutic target in itself.   In recent studies, 

IL-5 and eotaxin-2/ CCL24 have also been implicated in eosinophil accumulation and 

airway responses (54, 55).  MIP-1α and IL-17 could also contribute to airway pathology 

(data not shown).  RANTES, MIP-1α and MCP-1 neutralization in allergen sensitized 

and challenged animals show diminished airway hyperreactivity (56).  When  lung 
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homogenates from animals sensitized to schistosome egg allergens are preincubated with 

neutralizing antibodies to MIP-1α and RANTES in vitro, significant reductions in 

eosinophil chemotaxis are observed (57),  thus suggesting that eosinophil accumulation 

and degranulation may be related to the actions of more CC chemokines than just 

eotaxins.  IL-17 has been implicated in airway responses to methacholine in animals- 

sensitized and -challenged with OVA containing a low dose of LPS (58).  Each of these 

cytokines could potentially provoke exacerbations in response to RV.   

 To address the contribution of other cytokines and chemokines to RV-induced 

airway inflammation and hyperresponsiveness, we have performed focused gene arrays 

on lungs from OVA/RV mice.  Our preliminary studies indicate increases in MCP-

1/CCL2, MCP-3/CCL7, MIP-3β/CCL19, GRO-α/CXCL1, MIP-3α/CCL20 and MIP-

1β/CCL4 are increased in OVA/RV mice compared to OVA/sham mice.  Future studies 

utilizing neutralizing antibodies or CCR antagonists could shed light on their role after 

allergen challenge and RV infection.    

 

Macrophage profiles of naïve and OVA-treated mice, and potential contribution of 

dendritic cells 

 Along with the overall change in macrophage activation state observed after 

allergen sensitization and challenge, we also found that BAL macrophages from PBS- 

and OVA-sensitized mice underwent a phenotypic switch from CD11c high/CD11b low to a 

CD11c low /CD11bhigh  population, as detected via flow cytometric analysis.  Consistent 

with this, asthmatic alveolar macrophages also have shown to express a high CD11b 

population compared to non-asthmatics (59, 60).  On this basis, we could perform FACS 
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sorting of these CD11c low /CD11bhigh cells from OVA mice and transfer them to naïve 

mice after RV infection and determine whether they are sufficient for IL-4, IL-13 and 

eotaxin-1 induction.    

 On the other hand it is conceivable that dendritic cell populations, key effector 

cells in asthma, also contribute to HRV responses in allergic mice.  First, while 

clodronate treatment, a widely-used method for depleting macrophages (40, 61, 62), 

reduced eosinophilic inflammation and airways responsiveness, clodronate treatment may 

also affect certain dendritic cell populations (63).  Additionally, though we identified our 

macrophage populations via CD68 labeling, CD68 is also expressed on certain subsets of  

dendritic cells (reviewed in (64)). Adoptive transfer experiments with macrophages 

(described above) using CD11b as a marker could lend confirmation to our findings, as 

dendritic cells express high levels of CD11c (Rudd BD, et al. Type I Interferon Regulates 

Respiratory Virus Infected Dendritic Cell Maturation and Cytokine Production. Viral 

Immunology 2007).  Currently there is little information about dendritic cell involvement 

in response to RV infection.  Eosinophils, when co-cultured with dendritic cells and 

lymphocytes, produced robost eosinophil peroxidase when infected with RV in vitro (65). 

Thymic stromal lymphopoetin (TSLP), a product of epithelial cells stimulates dendritic 

cells to induce Th-2 cytokine production and has been shown to be upregulated after RV 

16 infection (66).  On the other hand, HRV14 induces type-1 interferon production but 

fails to induces maturation of monocyte-derived dendritic cells (67).    Thus there is a 

need to quantify and characterize dendritic cell populations after OVA/RV treatment  in 

order to understand their relevance to RV induced asthma exacerbations.    
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Combined effects of viral infections and allergic inflammation: Effects of allergen 

sensitization on viral load, and potential deleterious effects of the interferon response on 

airway function 

 We have found that allergic inflammation qualitatively alters the response of lung 

macrophages to RV infection.  But what about the effect of allergic inflammation on viral 

replication and clearance?  We found a significant reduction in positive strand viral RNA 

in the allergen-sensitized and -challenged mice after RV infection, as well as increased 

interferon gamma production.  Reduced viral load has been previously noted in 

parainfluenza-infected allergic guinea pigs {Adamko, 1999 #14326}.  Further, 

macrophages from OVA mice expressed greater mRNA levels of IFN-γ after RV 

infection ex vivo.  This seems to be in contrast to the current dogma of RV infection 

triggering inflammation and airway hyperreactivity possibly due to deficient interferon 

response patterns (15, 18, 19).  Our results indicate that viral load and inflammatory 

mechanisms may not be directly coupled.  In fact our data suggests that the presence of 

an allergic environment may confer an evolutionary advantage to the host which aids in 

alleviating viral binding or alternatively increases viral clearance possibly via increased 

interferon production.  For example, eosinophils may have antiviral effects.  

 However, the production of interferons may also trigger the recruitment of other 

inflammatory cells to the airway which could reduce airflow.  Pneumovirus-infected IFN-

αβR null mice show fewer BAL leukocytes and prolonged survival despite increased 

virus titers {Garvey, 2005 #14974}.  Dendritic cells from norovirus-infected MDA-5 null 

mice show reduced levels of IFN-α, IL-6, MCP-1 and TNF-α {McCartney, 2008 

#14975}. Lungs from Sendai virus-infected MDA-5 null mice with reduced levels of 
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IFNs-α2, -β, -γ and λ3 also show reduced expression of TNF-α {Gitlin, 2010 #14977}.  

Together, these data suggest that the IFN response to viral infection is pro-, not anti-

inflammatory.  Indeed, our unpublished data from MDA5 -/- mice with reduced IFN 

levels show reduced airway neutrophils, C-X-C chemokines and airway responses to 

methacholine in response to RV infection (Q. Wang, M. Hershenson, unpublished data).  

Increased mucus production observed in the OVA mice and aggravated by RV infection 

(data not shown) may obstruct binding of virus to the ICAM or LDLR.  Thus while the 

sustenance of the virus may be reduced in the allergic environment, the exacerbations of 

asthma may be more directly related to the inflammatory cascades in response to the 

virus rather than the viability of the virus in the lungs.   

 

Physiological Relevance and Significance 

  RV accounts for the most virus induced asthma exacerbations (1), although the 

precise mechanisms are not well known.  Much of the current understanding revolves 

around epithelial cell cytokine production after RV exposure (7-10).  However, this 

paradigm fails to explain differences in the pathological role of RV in normal individuals 

and asthmatics (15).   It is essential therefore to examine both the quantity as well as the 

quality of RV infection in naïve and asthmatic subjects in order to address potential 

therapeutic strategies.  We have shown that RV infection of naïve mice causes CXCR2 

mediated neutrophil infiltration and airway hyperresponsiveness.  We have also shown 

that TNFR1 is required for RV induced airway neutrophils and responses to 

methacholine.  Furthermore, we demonstrate that RV infection of allergen sensitized and 

challenged mice switches the immune reaction from a predominantly neutrophilic to a 
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predominantly Th-2 driven inflammatory response which is characterized by macrophage 

mediated production of eotaxin-1, recruitment of eosinophils, and airway hyperreactivity.  

In contrast to naïve mice, macrophages from OVA treated animals display a functionally 

polarized phenotype which is exacerbated by RV.  Thus for the first time, we have shown 

that macrophage response to RV can be regulated by its cytokine milieu.  Unlike normal 

individuals, a viral exposure may drive “Th-2 primed” macrophages from asthmatics to a 

pro-Th-2, pro-eosinophilic response which ultimately leads to bronchoconstriction.  The 

above observations provide a novel paradigm to explain RV induced asthma and if held 

true in humans will in the future identify intervention techniques that could provide 

significant relief to asthmatics.   
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