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ABSTRACT

A method is presented with which transmission-line type L-C low-pass ladder
filters having maximally-flat transfer characteristics can be designed. The method
is applicable to an arbitrary source-to-load resistance ratio and an arbitrary number
of inductors and capacitors. All quantities are calculated from closed-form expressions.

Also given are general closed-form expressions for the element values of L-C
ladder networks of the transmission-line type calculable from the numerical input
a&ﬁittance expression.

Finally, relations giving the optimum mismatch required to realize maximum

gain-bandwidth type products are derived.

1. INTRODUCTION

Constant-k L-C ledder filters are widely used today, even though they are
not too satisfactory for many aﬁplications, primarily because they are simple to design.
A networks specialist is mnot likely to employ constant-k methods because it is within
his ability to design filters having more desirable transfer characteristics, e.g.,
maximally flgt, Tchebycheff, linear phase, etc. However, because only a small per-

centage of electronics engineers have the background needed to design other than
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classical filters, more modern and efficient structures are not likely to be utilized
on a widespread scale until simple and direct design methods are developed.

The purpose of this paper is to set down (in the next section) a simple
and direct method for designing transmission-line type L-C low-pass ladder filters of
arbitrary complexity (e.g., number of elements) and with any desired source-to-load
resistance ratio.

The procedure developed here is not applicable to m-derived filters where
there exist zeros of transmission in the stop band.

By restricting interest to the maximally-flat function, considerable
mathematical simplifications result which, in several respects, give rise to a more
practical design procedure, because all calculations can be made from closed-form
equations. In addition, the maximally-flat function is perhaps the most representive
single function to consider because it has characteristics (and pole locations)
midway between those applicable to high-efficiency Tchebycheff functions and low
transient-distortion linear-phase functions. In any event, should the numerical form
of the input admittance applicable to a Tchebycheff or linear-phase function be
available, and should the admittance be realizable with a simple L-C ladder, formulas
derived here can be used to find the required network.

A set of design relations applicable to the transmission-line type of filter
has been worked out by Green (Ref. 1). His method is essentially that of matching

coefficients,which is not the same as that presented here.

2. DESIGN PROCEDURE

The lossless filters shown in Figs. 1 (with all element values finite) have .
transfer functions that can be made maximally flat with a relative half-power bandwidth
of unity such that
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Ro/(Ry + Rg) (2)
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where n is the total number of inductors and capacitors. The coefficients Bj are given

by 1
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where 0 = n/2n and where the polynomial in the denominator of Eq 1 is symmetric such
that B _; =By, B , = Bp, and so forth.

The input admittance Yl(p) of the networks of Figs. 1 is given in general by
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Yl(P) = (4)
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Specifically for the maximally-flat function,
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Yl(P) = Gy

Rl - Rp
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and where the positive sign in the numerator and the negative sign in the denominator

where r =

of Eq. 5 are used for Ry > Ryyand conversely for Ry < Rp.
A special case of Eq. 5 is the matched one where Rl = R2 =R, Thenr =0

and
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Another special case is that resulting when R;-»=00 (and Ry = R) such that
the source is an ideal current source with a current proportional to the voltage e;.
Then
n n-1
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The element values Cl’ Ly, C3, ... are given by
cl = &n
bn--l
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8n-2 - C1Py.3
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Denominato; of Lk-l
Ck = - -
Denominator of Cy o Denominator of I _;
with the subscript -Ly_1 | ¥ith the subscript
| numbers decreased by 2 _numbers decreased by 2
Denominator of C
Ly = J-1
[ Denominator of L rDenominator of C.
-2 j-
with the subscrigt -C with the subscript
numbers decresased J=1 | numbers decreased
| by 2 | by 2

It should be noted that the coefficients a, , and b, _, are zero for k > n.
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The design of a filter is carried out as follows:

(a) After selecting a suitable filter complexity n, calculate the By from
Egs. 3. (This could be done in tabular form once and for all).

(b) Select some desired r from Eq. 6.

(c) Calculate the coefficients aj and bj using the results of steps
(a) and (b) from Egs. 5, 7, or 8, whichever is applicable.

(d) Calculate element values from Eqs. 9 (When R; = Ro and for n odd, only
half the element values need be determined because the network is
physically symmetric).

If a radian relative half-power bandwidth B is desired rather than a radian

bandwidth of unity, all the L's and C's resulting from step (d) must be divided by B.

Reciprocity may be employed in the usual manner by turning the network end
for end. Also, frequency transformations mey be employed to convert the low-pass filter
to a high-pass filter, a band-pass filter, or a band-eliminating filter. Of course,
the dual of a filter may be obtained after its design is complete. The networks of
Figs. 1, plus their duals, cover all the usual structural possibilities.

It must be pointed out that when a low-pass filter is designed for Rl ﬁ Ry,
the source and load are not matched for maximum power transfer. When a conjugate match
at band center is desired, then the filter should always be designed with Rl = Ry.
Ideal transformers (which can only be approximated physically) can be introduced to
transform the impedance level as desired. Determinant manipulation for effecting an
impedance transformation is applicable to equivalent band-pass and band-elimination
filters, but not to the low-pass structure.

One sometimes important advantage of maximally-flat filters over other types
is that the input impedance of a low-pass filter can be made complimentary to its
high-pass equivalent, the cross-over frequency being the relative half-power frequency.
However, only filters designed for R;*00 and Ry = R can be made complimentery in this

manner. For example, Z; + Zo can be made equal to R for all frequencies if Y; is
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given by Eq. 8 and Y, by Eq. 8 with p replaced by 1/p. The dual low-pass and high-
pass networks have Y; + Yé equal to the conductance G rather than Z; + 22 equal to the
resistance R.

A brief discussion relating to the origins of the various relations given in
this section follows:

Equations 1 and 2 are standard relations yielding the maximally-flat n-pole
transfer function where all the zeros are at infinity. Equations 3, which give the
coefficients of the powers of p in Eq. 1, can be worked out by studying the properties
of the poles of the transfer function (which lie with equal angular spacing on the
unit circle). These relations will be found in Ref. 1.

The derivation of the various input admittance expressions, Egs. 5, 7, and 8,
will be found in Ref. 2. The capacitance C; is a maximum: in deriving the general
input admittance expression, the zeros of the input reflection coefficient, like the
poles, are all taken in the left half-plane.

The closed-form expressions for the element values will be derived in the
following section. It should be pointed out that these particular relations are general.
As long as an L-C ladder network exists and as long as all the element values are finite,

Eqs. 9 can be employed to determine the element values from the coefficients of the

powers of p of the input admittance expression.

3. ELEMENT VALUES

It will be assumed that networks such as those of Figs. 1 as described by
Eq. 4 exist with all element values positive and greater than zero. Then, the physically

significant continued-fraction expression must exist, and we may form the following:
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and so forth.

In Eqs. 10, the functioral dependence denoted bﬁ(%—}})sigmﬁes that the
numerator of the function is of highest degree n-i in p and £hat of the denominator is
of highest degree n-j. This must be true if the continued-fraction expansion is to
result in & network having the structural form assumed.

Specifically, consider the expression for Z,. The numerator is of highest
degree n-1 because the coefficient b, _; of Eq. L is finite. The denominator, A-pCyB =
(agp™ + ...) - pCl(bn_lpn"l + ...), appears to be of highest degree n. This cannot
be if the leading term of the continued-fraction eXpénSion of Zy is to give the element
L,. We therefore conclude that the coefficient of p" in the denominator must be zero.
Similarly, the coefficient of p -1 must be zero. It is not possible for similar factors
in numerator and denominator to cancel else the highest power of p in the numerator
will be too small.

The above argument applies step by step to the immittances Y3, 2y, YB, oo 3
leading to the conclusion that all of the coefficients of p in the numerator and
denominator of an expression for an immittance that are of higher degree than indicated
in Eqs. 10 must be zero.

The first few relations of Egqs. 9 have been obtained by collecting the

coefficients of the highest permissible powers of p in a given immittance expression.



-8 -

The denominator of Cl 1s the same as the numerator of L,. Similarly, the denominator
of L2 is the same as the numerator of C3. The general rule for forming the various
expressions is then evident and the general expression for Lj and Cx can be written.

One calculates each higher numbered element value making use of the known
coefficients a; and bj and the previously determined element values. The process
is not at all difficult or tedious compared to the usual continued-fraction expansion
(although it is in some respects equivalent).

It should be mentioned that since a number of the coefficients of the powers
of p are zero, one can obtain alternate equations for the element values. These in
turn yield a set of relations connecting the coefficients a; and b,. That such
relations exist is not surprising because the poles and zeros of an input immittance
are not independent but must be related such that the real part of the input immittance
is positive. In addition, these extra relations must be satisfied in order that the
input immittance be given by a simple L-C network terminated in a resistance.

Finally, Eqs. 9 simplify considerably for any rractical n-pole filter because
all the coefficients aj and bJ for j<O are zero. The most complicated expressions

will be those giving the elements near the physical center of the network.

4., BANDWIDTH OPTIMIZATION

When the bandwidth of a filter is limited by the capacitance Cl’ an intentional
mismatch may yield appreciable improvements in factors analogous to a gain-bandwidth
product. The development of equations from which the optimum mismatch can be determined
is the subject of this section (see Ref. 2).

The capacitance C; is given by

2G
c, = L (11)

B,.1(1F pt/m)

vhere the negative sign applies for R1}> R2 and the positive sign for R < Ry. This

value of capacitance applies for a relative half-power bandwidth of unity. For a
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general radian bandwidth B, the product R)C1B can be formed. Multiplying this product

by TX and expressing p in terms of T, we get

RiCBTE = el (12)

where LR.R
172
T = — 2 (13)

(R, + Ry

is the ratio of the maximum possible to actual power dissipation in the load R2 at
®w =0,

For finite T, Eq. 12 is larger using the negative sign than the positive sign.
Thus, the meximum possible value of the product will occur for Ry> R,. However,
unless the weighting k on T (which specifies the relative importance of having a high
transmission efficiency at @ = 0) is made larger than unity, no unique maximum value
for finite T exists; rather, the ideal current-generator type of network for which Ry»@
will be indicated as best.

The derivative of Eq. 12 can be taken in the usual manner to give the optimum

value of T, Ty, from

k>1
e L A (ab)

(l - To

1+ ______EQ__
2nk (l—To)

For k = 2 and n = 2, 4, 10, and 40, values of T, are 0.8, 0.76, 0.73, and 0.70.
In all cases, the maximum of Eq. 12 appears to be quite broad; hence, precision in
determining T, is not required.

Other optimization relations using the relative half-power bandwidth can be
derived in an analogous manner, for example, the products REClBTk and (Rlcl + RQCn)BTk
where Cp is the shunt capacitance at the output of the filter for n odd (which is
given by Eq. 1l with the positive sign).

Another class of optimization relations can be derived .on the basis of a

tolerance bandwidth B'. The equation
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2 L (15)
- n
P20 l+o
gives the ratio of the power dissipated in the load R_at @ = O to that at a frequency

2
®. A tolerance bandwidth B' can be defined as the frequency where the value of Eq. 15

falls below a prescribed number f. Then
B' = (T/B-l)l/an s, B<LT (16)

When the bandwidth B' is used in Eq. 12 in place of the relative half-power

bandwidth B, the relevent optimization relation becomes

)1/2’1 - 1 N P<T
' k30 (a7

Rl> Ra

(1-T0
To - B

1+ :
(1 - To)[enk(l - B/T,) + 1]

One final optimization, similar in some respects to the preceding one, is that
vhere the area B'f under the curve of Eq. 15 is maximized,B' is the tolerance bandwidth

and B is the tolerable value of py/ppy. We thus have

_ B'T
P L o

Differentiating this expression with respect to B' (where P is assumed to

be a prescribed number) there is obtained

1.
B! = ——
o1 (19)

Using this value for the tolerance bandwidth in Eq. 18, the optimum

value of T is found to be |
2n
T, = 5(.__) (2d)
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