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ABSTRACT 
 

Determination of Soil Grain Size Distribution by  
Soil Sedimentation and Image Processing 

 
by 
 

Yongsub Jung 
 
 
 

Chair: Roman D. Hryciw 
 
 

Over the last decades, advances in digital imaging have moved many industries to 

adopt digital image processing (DIP) to determine the grain size distribution of their 

products. However, despite of the fact that image-based soil grain size assessment 

methods have advantages over traditional sieve testing, they have lagged behind due to 

the inability of single camera-lens systems to capture the wide range of soil grain sizes.  

Since no DIP technique exists for determination of grain size distribution of 3-

dimensional soil assemblies of non-uniform sized particles, an eight foot long glass 

sedimentation column was constructed to rapidly segregate particles by size prior to 

imaging. Following sedimentation through the water-filled column a camera is used to 

collect digital images of the segregated soil sediment. Image sections with a height of 256 

pixels, which contain relatively uniform sized particles, are image-processed for soil 

grain size to obtain a volume-based soil grain size distribution. With this approach,
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the need for determining soil grain sizes from images of non-uniform sized grains is 

eliminated. The method is termed ‘Sedimaging’.  

To determine soil grain size at each image section, statistical DIP methods based 

on wavelet decomposition, pattern spectrum, and edge pixel density were developed. 

They utilize a ‘wavelet index’ (CA), the ‘edge pixel density’ (EPD), and a ‘structuring 

element size at peak of pattern spectrum’ (SP) calibrated against the soil grain size in 

units of pixels per diameter. 

The effects of effective stress and soil grain size on void ratio in a sedimented soil 

column were studied to address the influence of void ratio variations on soil grain size 

distribution by Sedimaging. Void ratio variations developed in the soil sediment were 

found to be so small that no correction to the image-based grain size distribution is 

necessary. 

Soil grain size distribution by Sedimaging fairly well mimics the sieve-based 

grain size distribution. In particular, the wavelet decomposition and pattern spectrum 

methods demonstrated their suitability to Sedimaging. However, the edge pixel density 

method’s implementation into Sedimaging was not as successful as the other two 

methods mainly due to the sensitivity of EPD to grain size uniformity. 
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CHAPTER I 

Introduction 
 

 

 

Soil is a material which human beings have lived with and which is prevalent 

everywhere on the surface of the Earth. In ancient times, its familiarity and easy 

accessibility allowed human beings to use the material for the purpose of self protection 

from external threats, such as weather, natural disasters, and predatory creatures. Now 

days, the purpose of using soil is not much different from that in ancient times. However, 

much larger and more stable soil structures are built with a better understanding of soil 

engineering properties and mechanical behavior. One of the most fundamental and 

important soil properties is its grain size distribution. 

Soil grain size distribution is used for soil classification and thus serves as the first 

estimator of almost every mechanical and hydrologic soil behavior including 

compressibility, shear strength, hydraulic conductivity, and water-soil interaction. The 

most widely used methods for soil grain size distribution determination are sieve and 

hydrometer tests. In spite of the fact that these standard test methods are physically 

cumbersome, noisy, dusty, and somewhat inaccurate, geotechnical engineers and soil 

scientists have remained inextricably tied to them due to the large range of soil particle 
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sizes found in nature and the large number of grains typically required for a specimen to 

be statistically representative. 

With advances in high speed computers and high resolution digital cameras, 

geotechnical engineers and soil scientists have been attracted to the potential of digital 

imaging technologies for determining soil grain size. The use of digital imaging 

technologies for soil grain size analysis involves obtaining digital soil images, which are 

basically two dimensional signals, and digitally processing them. Successful application 

of digital imaging technologies to soil grain size analysis would make numerous positive 

impacts. Compared to sieve and hydrometer tests, image based grain size distributions are 

much more reliable as they eliminate human errors. They are consistent and independent 

of operators’ skills and experiences. Digital image based tests are faster and simpler so 

that a greater number of tests could be performed per unit of time. This also ensures a 

cost saving per test. Since more soil samples can be collected and analyzed, better and 

more statistically valid results would be achieved. 

Many researchers have attempted grain size analysis of various sizes of soil 

particles from gravel to clay using digital imaging technologies. An early approach 

evaluated the sizes of only non-contacting and non-overlapping soil grains in two 

dimensions (Rao et al., 2001; Brzezicki and Kapserkiewicz, 1999; Park et al., 2008; 

Raschke and Hryciw, 1997; Ghalib and Hryciw, 1999). Since individual grains were not 

touching, simple image processing techniques such as thresholding were used to digitally 

delineate soil gains from the image background. The sizes of the non-contacting soil 

grains could be determined by counting the number of pixels that lay within the grain 

boundaries.  



 

 3 

For preparing samples of non-contacting and non-overlapping soil grains, the 

particles are laid out on a flat plate and vibrated or chemically treated (when soil grains 

are very small) to disperse them. However, it takes a great deal of time, space, and effort 

to prepare and take statistically representative images. Also, as soil grain size gets down 

to fine sand, physical separation becomes very difficult. 

The limitations in the soil grain size analysis with non-contacting and non-

overlapping soil led researchers to move toward seeking size distributions of three 

dimensional soil grain assemblies, or contacting soil grains without physical separation 

(Dahl and Esbensen, 2007; Graham et al., 2005; Maragos et al., 2004; Ghalib and Hryciw, 

1999). The advantage of this approach is that much less effort is needed to prepare soil 

specimens than that required for non-contacting soil grain analysis. Now, instead of 

simple image thresholding methods and pixel counting, advanced image processing 

techniques are needed for digital separation of contacting grains and completion of 

missing edges. However, the performance of such techniques is greatly influenced by 

operator skills and thus would not produce consistent reliable results.  

Aside from the difficulties of developing image processing techniques for the 

analysis of images of three dimensional soil assemblies, it is important for images to 

contain all sizes of grains that are present in the soil while maintaining statistical validity. 

However, small soil grains fall through the pore spaces between larger grains and thus, 

are often hidden or occluded by the larger grains. This is one of the biggest downsides 

found in the mining industry when images are taken of soil aggregate on a conveyor belt 

for quality control (Maerz and Zhou, 1998; Yen, Lin, and Miller, 1998). 
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In spite of the great potentials of imaging technologies as a powerful tool for soil 

grain size analysis and the efforts by many researchers, soil grain size analysis by 

imaging technologies is still in its infant stage while other disciplines and industries 

including pharmaceuticals, medical research and diagnosis, manufacturing and food 

processing have successfully applied imaging technologies to the evaluation of their 

respective products or features of study. The difficulty in soil grain size analysis using 

image technologies comes from the fact that a large range of soil grain sizes are found in 

nature and a large number of grains are required for statistical validity of specimens. 

Due to the difficulty mentioned above, efforts were taken to determine size of 

assemblies of uniform soil grains using texture analyses (Ghalib et al., 1998; Shin and 

Hryciw, 2004). Since image texture of assemblies of uniform grains is largely dictated by 

soil grain size, size assessment of uniform grains based on image texture became feasible 

by developing a textural index and establishing its calibration model for various soil grain 

sizes. If soil grains could be quickly segregated by size so that the grains could be sorted 

into areas of somewhat uniform sized soil grains, digital image processing could be 

applied to image sections containing uniform sized soil assemblies. This would eliminate 

the need for digitally separating soil grain assemblies into individual grains. 

In this study, due to the fact that no ideal method has yet been developed for 

determination of grain size distribution from images of three dimensional soil assemblies 

of non-uniform grain size, efforts were focused on finding a technique to physically 

segregate grains by size prior to imaging. The solution was to use a long glass 

sedimentation column filled with water. A soil specimen is released into the top of the 

column and allowed to settle to the bottom. Digital images of the segregated soil 
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sediment are taken and followed by image processing to determine soil grain size 

incrementally but continuously with height in the column. With this “Sedimaging”, 

approach for determining soil grain sizes from images of non-uniform sized grains is 

eliminated. The computer vision system and experiment setup for Sedimaging and test 

procedure are presented in Chapter III.  

Since a soil sediment in the sedimentation column contains voids as well as soil 

solids and Sedimaging produces a volume based soil grain size distribution contrary to 

other image based soil grain size analyses, which seek a soil grain surface area based 

grain size distribution, the influence of void ratio variations in soil sediments on soil 

grain size distribution should be studied. To address void ratio variation in the soil 

sediment, the effect of effective stress, soil grain size, and elapsed time after deposition 

on void ratio is studied in Chapter IV.  

In this study, three different techniques are used to determine soil grain size from 

three dimensional soil assemblies of uniform grain size. The first technique, developed by 

Shin and Hryciw (2004), utilizes the Haar (1910) wavelet transform and the amount of 

energy contained at each wavelet decomposition level. The energy at each wavelet 

decomposition level depends on the soil grain size in the images. The energy distribution 

among the decomposition levels is used to compute wavelet index, CA which correlates 

well with the diameter measured in units of image pixels. Initially, CA was calculated 

from images of dry uniform grained solids of various sizes to establish the relationship 

between CA and soil grain diameter. Then, the effect of water on CA was studied to allow 

its implementation to Sedimaging. This method is presented in Chapter V. The second 

image processing method uses Canny edge detection (Canny 1986) followed by the 
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removal of internal false edges to detect only soil grain boundaries. By observation, the 

number and length of edges of soil grains in a Canny edge map decreases with increasing 

soil grain size. So, the ratio of edge pixels to the total number of pixels in an image is 

termed the Edge Pixel Density (EPD). Chapter VI presents this method. The last image 

processing technique for Sedimaging uses mathematical morphology operation 

(Matheron. 1975; Serra, 1982), called Opening which is Dilation followed by Erosion, to 

construct a pattern spectrum. In a binary image where objects are not touching each 

others, opening removes objects smaller than a certain size defined by a structuring 

element while preserving objects larger than the structuring element. By repeating the 

opening operation and using sequentially larger structuring elements a pattern spectrum is 

developed. The resulting pattern spectrum from the binary image represents a histogram 

of object size in an image. However, the pattern spectra of a gray scale image of three 

dimensional assemblies of soil grains are not an exact size histogram but do reflect the 

distribution of grain sizes somewhat. Pattern spectrum as an approach for determining 

average soil grain size from three dimensional assemblies of relatively uniform sized 

grains is presented in Chapter VII. 

In Chapter 8, Sedimaging tests with sand sized soils are performed and the 

resulting soil grain size distribution curves obtained using the three different image 

processing techniques are presented and compared to the results by sieve analysis. Also, 

Three Point Imaging (TPI) is presented for AASHTO soil classification. 
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CHAPTER II 

State of Art, Literature Reviews, and Shortcoming of 
Existing Soil Grain Size Analysis 

 

 

 

2.1   Introduction 

 

This chapter reviews existing soil grain size analysis methods. Standard test 

methods for grain size distribution, sieve test and hydrometer test, and other test methods 

not related to imaging technologies are presented with a discussion of their major 

shortcomings. Imaging systems and image processing techniques developed for the 

quantification of soil grain properties, especially focusing on soil grain size distribution, 

are then reviewed. 

 

2.2   Traditional Test Methods for Soil Grain Size Analysis 

 

The standard test method used for determining size distribution of coarse grained 

soil fraction (soil grains larger than 0.075 mm) is the mechanical sieve test in accordance 

with ASTM D-422 and ASTM E-11. Sieving uses a stack of sieves placed in order of 

decreasing screen opening size from top to bottom. A soil specimen is poured into the top 
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sieve and the stack is shaken in vertical and horizontal directions to facilitate soil grain 

passage through the stack. In sieving, soil grain shape influences sieving results since soil 

grain sizes are determined by their shortest length. The sizing mechanism leads to 

inaccurate measurement when soil grain shape is elliptical rather than spherical.  

Furthermore, sieving can produce erroneous soil grain size distributions because: 

1. When a soil is poorly graded, a large amount of material is retained on one or two 

sieves, thus, the sieve openings tend to become clogged thereby preventing finer grains 

from easily passing through the openings. Even a soil whose size is relatively well 

distributed clogs the sieve openings. Also, overloading a sieve can distort the sieve 

openings. 2. Sieve test results depend on the duration and method of shaking. 3. More 

mechanical energy is required to make smaller soil gains pass through small sieve 

openings because of the surface attraction between the soil grains and between the soil 

grains and sieve openings. This can underestimate percentage of smaller particles. 4. 

Sieving results could depend on which and how many sieves are used.  

For size distribution of fine grained soil (soil grains smaller than 0.075 mm), a 

hydrometer test (ASTM D-422 and ASTM E-100) is most widely used. The two 

principles on which the hydrometer test is based are : 1. Different soil grain sizes fall 

with different settling velocities in water. With a knowledge of the distance and time of 

fall, the settling velocity is determined. Then, the size of the soil grain is computed using 

Stokes’ law, which relates the settling velocity of a sphere to its diameter.  2. The 

hydrometer is used to determine the density of the soil suspension, which enables the 

percent finer than a certain soil grain size to be calculated. The hydrometer test suffers 

from inherent difficulties. One problem arises from the use of Stokes’ law which is based 
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on settlement of spherical objects. So, calculating soil grain size based on Stokes’ law 

involves uncertainties since soil grains, especially fine grained particles are not spherical. 

Even if all of the soil grains were ideal spheres the insertion and removal of the 

hydrometer from the soil-water mixture disturbs the path of the falling soil grains and 

changes their settling velocities. Also, the concentration of soil grains is high so that they 

are not settling independently of each other, which results in questionable soil grain size 

computation by Stokes’ law. 

There are other methods that are based on settling velocity of soil grains in 

calculating soil grain size, such as the pipette method (Krumbein, 1932), the “diver” 

method (Berg, 1940), the closed manometer method (Heywood, 1938), the photometric 

method (Atherton, 1952), and the photoextinction method (Simmons ,1959). All these 

methods are subject to the same problems as the hydrometer test in terms of calculation 

of soil grain size because they all determine soil gain size based on Stokes’ law. 

Laser diffraction method has been used in other disciplines but is relatively new 

to geotechnical engineering applications (Buurman et al., 1997; Isbell, 1996; Liozeau et 

al., 1994). Laser diffraction method is by shooting laser light into a suspension of soil 

grains and measuring the scattered light angle and intensity. The laser diffraction method 

uses the fact that grains with different sizes scatter laser light at different ranges of angle 

and intensity. With the known intrinsic range of the light scattering angles and intensities 

of various particle sizes, Mie light scattering theory (Mie, 1908; Stratton, 1941) allows 

determination of scattered light intensity distribution from a known grain size distribution. 

The total scattered light intensity distribution with regard to scattered angles is 

deconvoluted to identify the contribution of each grain size to the intensity distribution. 
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Then, the contribution of each grain size is converted into a grain size distribution. This 

test method works well for perfect spheres like glass beads (Stuut 2001, Xu and Di 2003) 

and for non-spherical but uniform object shape by introduction of appropriate correction 

factors. However, for grain size analysis of soil which has various shapes and surface 

angularities, the laser diffraction method is not reliable and repeatable since the Mie light 

scattering theory assumes that the objects in suspension are perfect spheres. Many studies 

have shown the weaknesses and inaccuracies of the laser diffraction method for 

determination of soil grain size distribution. Campbell (2003) reported overestimation of 

the coarse-grained soil fractions while Loizeau et al. (1994), Buurman et al. (1997), 

Konert and Vandenberghe (1997), and Beuselinck et al. (1998) showed that laser 

diffraction method consistently underestimates the fine-grained soil fractions. 

 

2.3   Digital Image Processing for Soil Grain Size Analysis 

 

A digital image is an expression of a physical scene in two dimensional electronic 

form by discretization of the physical image into small regions called pixels, which are 

the smallest units of a digital image, each being assigned a numerical value as shown in 

Figure 2.1. For monochrome image, gray scale values represent the brightness of the area 

represented by a pixel. The gray scale value ranges from 0 (black) to 255 (white) for an 8 

bit image. With the capture of physical scenes to digital images, it becames possible to 

digitally change, alter, and rearrange a physical image to extract information of interest. 
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Figure 2.1   Physical image and its digitalization. 
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Image processing is the digital (computer-based) analysis and modification of 

digital images to extract desired information. Many techniques of digital image 

processing were developed in the 1960s for application to satellite imagery and medical 

imaging. However, due to the high cost of digital image processing, it was not widely 

applied to other disciplines and industries until the 1990s when inexpensive personal 

computers and digital cameras became available. Since then, digital image processing 

techniques have been adapted to many civil and geotechnical engineering applications to 

quantitatively analyze soil properties. One of the earliest applications of digital image 

processing to geotechnical engineering discipline was in evaluation of the shape of 

individual soil grains. It is important to see how soil grain shape analysis by digital image 

processing has been developed because many soil grain size analysis methods are an 

extension of soil grain shape analysis. 

 

2.3.1   Soil Grain Shape Analysis 
 

The standard shape evaluation method (ASTM D4791, 1995) consists of manual 

measurement of the longest dimensions of particles in three orthogonal directions and 

determination of two indices, the ratio of length to width (elongation index) and the ratio 

of width to height (flakiness index). The method provides very rough characterization, 

regular or irregular, based on the indices. Furthermore, roundness of soil grains (or 

conversely, the angularity) is determined qualitatively by visual observation. Since the 

manual method is labor intensive, tedious, and costly, often times, an insufficient number 

of tests are performed to produce statistically valid shape indices.  With digital image 

processing, the disadvantages of the manual measurement and visual observation could 
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be overcome and quantitative results are obtainable (Yudhbir and Abedinzadeh, 1991; Li 

et al., 1993; Warner, 1995; Kuo et al., 1996; Brezezicki and Kasperkiewicz, 1999; 

Hubner et al., 2001; Darboux and Huang, 2003; Maerz, 2004; Al-Rousan et al., 2007). 

Many image acquisition systems for soil grain shape analysis require that each 

individual soil grain be physically placed where it can be photographed. Brzezicki and 

Kasperkiewicz (1999) developed an imaging system, called ‘fragment of cylindrical 

surface with a system of parallel indentations’, which uses one camera and two light 

sources to get the projections of individual soil grains. Maerz and Lusher (2000) used two 

orthogonally mounted cameras to picture side and overhead views of soil grains moving 

on a conveyor belt. Rao et al. (2001) used three cameras to capture views in three 

orthogonal directions. Also, three dimensional imaging systems such as X-ray 

tomography (Wang et al., 2002; Garboczi, 2002; Garboczi and Bullard, 2004; 

Matsushima, 2009) and laser triangulation (Tolppanen et al., 1999; Lanaro and 

Tolppanen, 2002; Lee et al., 2007), were developed to obtain a three dimensional view of 

soil grains. 

The majority of image processing techniques used for soil grain shape analysis 

rely on pixel counting methods. The method directly measures length, perimeter, and area 

of individual soil grains by counting the number of image pixels that lie within or on 

projected grain boundaries to quantify the relatively simple shape indices, such as 

elongation and flakiness (Yudhbir and Abedinzadeh, 1991; Li et al., 1993; Kuo et al., 

1996; Brzezicki and Kasperkiewicz, 1999; Maerz and Zhou, 1999; Kuo and Freeman, 

2000; Wang and Lai, 1998). Before counting the number of image pixels, soil images are 

binarized to discriminate soil grains from their background. Provided the background is 
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sufficiently darker or lighter than the particle, the image binarization can be performed by 

simply applying a “threshold” to the image. By image binarization, the background and 

soil grains can be expressed by black and white pixels, respectively.  When the local 

curvature (angularity) is pursued, other image processing techniques rather than the pixel 

counting method were used. Image processing techniques for this category include the 

Hough transform (Wilson and Klotz, 1996), wavelet transform (Kim et al., 2002), fast 

Fourier transform (Penumadu and wettimuny, 2004), Fourier morphological analysis 

(Wang et al., 2005), and mathematical morphology (Lee et al., 2007). 

 

2.3.2   Soil Grain Size Analysis 

Soil grain size analysis of non-contacting particles 
 

An approach taken from the early stage of soil grain size analysis by digital image 

processing is that soil grains are mechanically dispersed by vibration to separate particles 

(Raschke and Hryciw, 1997a; Mora et al., 1998; Ghalib and Hryciw, 1999; Raco et al., 

2001), Some studies utilized chemical treatment to ensure soil grain separation (Park et 

al., 2008). Also, soil thin section where individual soil grains are separated by artificial 

binder materials has been used to obtain images of non-contacting soil grains (Pareschi et 

al., 1990; van den Berg et al., 2002; Marinoni et al., 2005; Mertens and Elsen, 2006). 

Many researchers used a single camera magnification level and utilized similar approach 

to mosaic imaging (Ghalib and Hryciw, 1999), wherein numerous images acquired at a 

single high magnification level are digitally stitched to obtain a large composite image 

that contains a large number of grains for statistical validity. Alternatively, rather than 

using a single magnification, a multiple magnification level procedure was used by 
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Raschke and Hryciw (1997). In the approach, the grain size distribution of well-graded 

soils can be pieced together using successive magnification levels. Statistical corrections 

are made for particles found on image boundaries. At each level, only grains within a 

specified size range are counted.  

Image processing techniques used for analyzing non-contacting soil grains are 

relatively simple and similar to those for soil grain shape analysis. The procedure consists 

of two main steps: 1. Digital soil grain separation from the background using a threshold 

value. 2. Counting number of pixels that lie within soil grain boundaries. It should be 

noted that the selection of optimal threshold value is easy since soil grains are easily 

distinguished from a uniform background color. 

The approach for non-contacting soil grains is straightforward and produces 

reliable results for fairly uniform soil grains. However, this approach has little practical 

benefit for very well graded soils since it requires a huge sample size and consequently a 

great number of images before a statistically representative sample is achieved. It is very 

tedious and time consuming to prepare non-contacting soil grains when the grain sizes 

are very small. 

 

Contacting soil grain size analysis 
 

For soils containing a wide range of grain sizes, contact between grains is 

unavoidable. Therefore, a search began for advanced digital image processing techniques 

that digitally separate the contacting grains and complete missing edges at grain contacts.  

Such techniques utilize edge detection and image segmentation methods such as active 

contouring (Kass et al., 1987; Hryciw et al., 1998), region growing (Pavlidis and Liow, 
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1990; Zhou et al., 2004), and watershed analysis (Beucher and Meyer, 1990; Ghalib and 

Hryciw, 1999; van den Berg et al., 2002; Graham et al., 2005; Sofou et al, 2005). These 

techniques were promising for relatively uniform soil samples whose grains are laid out 

on a flat surface, that is, for two dimensional soil grain assemblies. The procedure for size 

distribution of two dimensional soil grain assemblies consists of four steps; 1. Digital soil 

grain separation from the background, 2. Digital separation of grains from each other, 3. 

Missing edge completion, and 4. Counting the number of pixels that lie within each soil 

grain boundary. However, when a soil sample contains various shapes and colors of 

grains the techniques do not produce consistent, repeatable and reliable results. That is 

because edge detection and image segmentation methods involve image thresholding 

which is used to maintain the desired feature (soil grain boundaries) while removing the 

undesired features (internal textures within soil grain boundaries). The selection of a 

proper image threshold value is difficult when soil grains are contacting each other. 

Practically, there is no one unique optimal image threshold value applicable to all soil 

grains in an image due to the large variation of gray scale pixel values caused by different 

particles, colors, and internal textures. For example, when a specific image thresholding 

value is used for edge detection or segmentation of contacting soil grains, digital 

breakdown of a large grain into smaller grains and fusion of small grains can not be 

completely avoided. So, soil grain size analyses that use edge detection and image 

segmentation are inevitably dependent on the skills of the operators. 

It is much more difficult to analyze images of real three dimensional soil 

assemblies. In real three dimensional soil assemblies, some grains are hidden behind 

others. Thus, the percentage of missing edges is much larger and edge detection and 
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image segmentation methods fail to provide adequate edge completion. Furthermore, 

some smaller soil grains fall into pore spaces and are hidden by larger grains. This will 

cause the larger soil grains to be more exposed to the camera’s line of sight, which results 

in an apparent grain size distribution coarser than its actual size distribution. In the end, 

while successful in a limited number of idealized cases, the computational demands, the 

limitation to two dimensional assemblies, and the soil segregation problem make such 

deterministic methods nearly impossible for determining grain size distribution of multi-

sized three dimensional assemblies of soil grains. 

 

Statistical soil grain size analysis 
 

Recognizing that deterministic pixel counting methods for sizing individual grains 

in images of three dimensional soil assemblies are too difficult, statistical methods based 

on “soil image texture” were investigated. Image texture implies spatial variation of gray 

scale pixel values in an image. It is known that variations in gray scale pixel values 

generate edges in the edge map of an image. Therefore, with the knowledge that edges in 

the edge map of soil image correspond mostly to soil grain boundaries, image texture can 

be used to determine soil grain size. Unlike deterministic soil grain size determination 

methods, statistical methods based on image texture do not directly measure soil grain 

size. Rather, they compute textural indices of various images containing different soil 

grain sizes and establish a unique relationship (calibration) between the indices and soil 

grain size. Then, using the pre-established relationships, the soil grain size in other 

images may be determined from their textural indices. 
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Image scale (magnification) is a controlling factor for soil grain size analysis with 

image texture indices. Depending on the image scale and soil grain sizes, the image 

texture drastically change. For example, boulders photographed from an airplane may 

appear similar and produce identical textures as would silt observed under a microscope. 

Thus, computed image texture indices cannot be correlated directly to physical grain size. 

So, Ghalib et al. (1998) proposed using Pixels Per Diameter (PPD) as illustrated in 

Figure 2.2 to represent the perceived soil grain size in images rather than the actual grain 

size for correlation to the image texture indices. 

Haralick et al. (1973) defined 14 textural indices for images. With the 

development of the pixel per diameter (PPD) concept, Ghalib et al. (1998) developed the 

relationships between Haralick’s textural indices (Angular second moment, Contrast, 

Correlation, and Variance) and PPD for uniform sized three dimensional soil assemblies 

and also established a neural network model to determine average soil grain size on the 

basis of several of Haralick’s textural indices.  Unfortunately, Shin and Hryciw (2004) 

found that a single calibration between the textural indices and PPD does not exist 

because the indices are also dependent on the degree of illumination on the soil specimen 

and on the soil grain color. Given the failure to develop a universal calibration for 

uniform soils, no attempts were made to extend the research to non-uniform sized 

particles. 

The problem of illumination intensity and grain color was overcome by Shin and 

Hryciw (2004) using wavelet transform analysis.  The result of an image decomposition 

using a Harr (1910) wavelet transform can be used to plot a Normalized Energy vs. 

Decomposition Level for images of uniform grained soils of various PPD.  Hryciw et al. 
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Figure 2.2   Pixels Per Diameter (PPD) and calculation of actual soil grain size (Hryciw et al., 2006). 
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(2006) showed that the Center of the Area (CA) beneath the normalized energy plots is 

related to PPD. This relationship is universal for all uniform grained soils while being 

unaffected by soil color, soil color uniformity, soil translucence and illumination intensity. 

Having established the relationship between CA and PPD for assemblies of uniform 

grains, normalized energy plots were developed for mixtures of two grain sizes.  The 

results were disappointing; the CA of mixtures always reflected the CA of the more 

abundant grain size.  Thus, while the dominant grain size was revealed, the percentages 

of the particles by size were not. 

Barnard et al. (2007) used an autocorrelation algorithm for statistically 

determining grain size of uniform sized soil. Autocorrelation is a measurement of spatial 

similarity between a given image and a spatially lagged version of itself over successive 

pixel intervals. The idea of using autocorrelation algorithm for soil grain size analysis 

came from the observation that the plot of autocorrelation value versus pixel intervals for 

a fixed PPD is unique and different from those of other PPD. When a pixel interval is 

zero (when the two same images are stacked on each other without any offset) the 

autocorrelation value is ‘one’. As a pixel interval increases and approaches the soil grain 

diameter, the autocorrelation value drops sharply toward ‘zero’. After the pixel interval 

exceeds the soil grain diameter the autocorrelation becomes stable at around ‘zero’. This 

method showed promising test results for uniform sized soil. However, it had the same 

problem in analyzing non-uniform sized soil as wavelet transform analysis did. 
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2.3.3   Significance of Volume Based Soil Grain Size Analysis by Image Processing 
 

Most imaging methods for determining soil grain size distribution use only the 

surface area information of soil grains without evaluating the third dimension of soil 

solids. Since many natural soil grains are elliptical rather than spherical, the true soil 

grain size distribution based on volume can not be correctly estimated by using soil grain 

surface area information. Nevertheless, exclusion of the volume of soil grains in the 

methods was inevitable due to the difficulty of having 3-dimensional images of numerous 

soil grains. 

Rao et al. (2001) developed the “University of Illinois Aggregate Image 

Analyzer” (UI-AIA) to analyze soil grains in three dimensions. Three cameras located in 

three orthogonal directions are used to stereoscopically delineate individual soil grains 

which are carried by a conveyor belt. As discussed previously, the downside of this 

method is that it is time consuming to prepare and image a statistically representative soil 

specimen. Fernlund et al. (2007) took a different approach. Instead of getting the actual 

volume of soil grains, they introduced a conversion factor to convert the surface area 

based soil grain size distribution by an image processing technique to a volume based one. 

The conversion factor was determined based on the minimum-bounding square around 

the minimum projected area of soil grains. Cunningham (1996) tried to convert surface 

based size to volume based size of soil grains with an assumption for grain shape. The 

conversion from surface area to volume based soil grain size distribution by either the 

conversion factor or assumption of soil grain shape, however, may not apply to situations 

other than those from which they were derived. 
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CHAPTER III 

Sedimaging 
 

 

 

3.1   Introduction 

 

In the previous chapter it was indicated that grain size determination by 

deterministic analysis (pixel counting) on images of three dimensional soil assemblies 

containing non-uniform grains may be infeasible. That is not only because no image 

processing technique has been developed or found for digital separation of individual 

contacting soil grains, but also because of the highly irregular soil grain shapes, colors, 

and textures in a typical soil. Moreover, finer soil grains hide behind larger ones making 

the deterministic approach impractical for grain size evaluation from images of three 

dimensional soil assemblies. Size analysis of non-contacting soil grains is not even 

considered here because of the impracticality as explained in the previous chapter. On the 

other hand, statistical soil grain size was shown by Shin and Hryciw (2004) to produce 

reliable size information of three dimensional soil assemblies of uniform grains even if it 

is inapplicable to three dimensional soil assemblies of non-uniform grains. 

Having said that, if a technique could be found to rapidly segregate soil grains by 

size prior to capturing sequential images, statistical soil grain size analysis could be 
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performed sequentially on images (or area in an image) containing reasonably uniform 

sized particles. The results could then be used to assemble the grain size distribution 

curve piece-wise. The solution to the rapid segregation is a long square-sided glass 

sedimentation column. Following soil sedimentation through the water-filled column, a 

camera is used to collect digital images of the segregated soil deposit in which the largest 

soil grains are deposited at the bottom of the column and soil grain size gradually 

decreases toward the top of the deposit. Since the soil grains at any elevation in the 

segregated soil deposit are fairly uniform in size, statistical soil grain size analysis can 

determine the soil grain size at every elevation. The segregation method combined with 

statistical soil grain size analysis is termed “Sedimaging”. 

Sedimaging uses the projected surface area of soil grains to determine their size. 

Nevertheless, Sedimaging is practically a volume based method for the following two 

reasons: 1. The size of soil grains at each elevation is uniform and thus, the size of the 

soil grains seen through the flat-sided glass sedimentation column at an elevation is 

presumably the same as that of soil grains hidden behind other grains at the same 

elevation. 2. The percent of the total soil specimen volume contained in a layer of the 

deposit is equal to the ratio of the layer thickness to the total height of the deposit. It 

should be noted that the second statement holds only if the void ratio is constant along the 

entire soil deposit. Otherwise, void ratio variation in the deposit should be evaluated for 

correct percent volume. The effect of void ratio variation in the soil deposit on the 

percent volume in a layer will be presented in Chapter IV. 

This chapter presents the computer vision system, a detailed description of the 

soil sedimentation apparatus, and the Sedimaging test procedure. 
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3.2   Soil Sedimentation System 

 

At the beginning of the study, a prototype of the soil sedimentation apparatus as 

shown in Figure 3.1 was constructed to demonstrate the concept and to perform pilot tests. 

The column was a 2 inch by 2 inch by 48 inch glass tube with 1/8 inch thick walls. Near 

the bottom of the column, a square porous stone rests on an internal pedestal contained in 

an enlarged base. The porous stone is used for water drainage and is separable from the 

column to easily clean the column. Silicon rubber is applied to the sides of the square 

porous. The silicon rubber ensures that soil grains do not to fall through the gap between 

the column and the porous stone. The silicon rubber also helps the porous stone to be 

removed from the column without scratching the glass column surface. The square tube 

transitions into a circular section below the porous stone. The circular section is clamped 

through a rubber O-ring seal to a circular base. A valve in the base permits water 

drainage from the system. A support tower was built to hold the glass column safely and 

maintain its verticality. 

It was expected that two design features would ensure uniform and adequate 

exposure of soil for imaging. In the pilot tests, uneven introduction of soil specimen into 

the column initially produced irregular horizontal surfaces. To resolve this, a soil release 

box containing 16 ½ inch by ½ inch by 5 inch vertical chutes with hinged trap doors for 

instantaneous soil release was constructed as shown in Figure 3.2. The box is placed over 

the top of the glass column and the trap doors are opened to instantaneously release the 

soil grains. Secondly, a 14 inch tall and 1 inch wide prismatic separator was installed at 

the bottom of the column as shown in Figure 3.1. This separator channels the falling 
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Figure 3.1   Preliminary soil sedimentation column with vision system. 
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Figure 3.2   Soil release box.  
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grains into two opposite facing 2 inch by ½ inch column. The separator decreases the 

volume of soil needed for grain size analysis by 50 percent. Unfortunately, the length of 

the column was not long enough to facilitate segregation of soil grains by size during 

sedimentation through water. 

To improve segregation, two changes were made to the prototype. First, a longer, 

96 inch sedimentation column with the same cross sectional area was employed as shown 

in Figure 3.3. The falling mass of soil initially enters the water as a plug with a high 

concentration of solids. This creates a turbulent boiling condition by the water being 

displaced upward by the falling soil mass. The upward flow enhances particle segregation 

by fluidizing the finest particle most. As the largest particles escape from the plug the 

upward seepage diminishes slightly allowing the next grain size to overcome the upward 

seepage. The battle between upward seepage and gravitational deposition is “settled” one 

particle size at a time. In the end, the finest particles will have travelled up, down, and 

around over a distance many times the length of the column. This phenomenon eliminates 

the need for an excessively long column and greatly enhances the segregation of particles 

by size at the bottom of the column. 

The second change made to the sedimentation system is that the prismatic 

separator was removed from the original design. It was shown that the separator disturbs 

the flow of the falling grains by increasing the falling distance of the soil grains because 

they bounce off the separator. The small change in the falling distance has an 

insignificant effect on segregation of small soil grains but has a significant effect on 
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Figure 3.3   92 inch long soil sedimentation column with a motorized X-Z positioning 

camera stand. 

Soil release box 

96” 

Porous 
stone 

Clamp 

Drain 

          

         

 

  

 

      

      

      

2
 

Support 
tower 

Motorized 
camera stand
(Bislide)

Soil image
on computer
screen

CCD camera

Sedimented soil



 

 29 

larger grains. This is because the travel time difference between similar sizes of soil 

grains is fairly small and thus soil grain segregation can be greatly affected by any 

obstacle in the pathway of falling grains. 

 

3.3   Computer Vision System 

 

For capturing images of the soil sediment, a high quality industrial monochrome 

CCD camera (Pulnix model TM-7CN) with a ½ inch interline transfer imager is used. 

The CCD camera provides 480 pixel by 752 pixel resolution with 8 bits, 256 gray scale 

values from 0 to 255. The pixel aspect ratio is 1.18 to 1.  Since the range of soil grain size 

is large, a macro lens (Canon FD 50mm/f 3.5) is used to achieve wide range of 

magnification levels with a maximum magnification level of about 60 pixels/mm. The 

camera produces standard RS-170 analog video signals. The analog video signals are 

digitized and then, the digitized video signals’ frames are grabbed to obtain digital 

images for image processing using a high performance image digitizing board (PIXCI 

model SV5). Another camera, a commercial digital camera (Nikon D300) with a macro 

lens (AF-S Micro NIKKOR 60mm 1:2.8 G) was also used for calibrating the image soil 

grain size index versus PPD. The Nikon camera has a square pixel aspect ratio (1 to 1). 

For easy access to the digital camera and remote control from a personal computer, 

software NKRemote 1.2 by Breeze System was used. 

The CCD camera does not have high enough pixel resolution to capture the entire 

sedimented column which is typically 110 mm tall. So, a camera stand, which allows the 

CCD camera to move vertically to capture images of the soil sediment incrementally with 
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height, is used as seen in Figure 3.1. This system is manually operated. Later, for remote 

positioning of the camera from a personal computer, an X-Z positioning system (Velmex, 

Inc model Bislide) shown in Figure 3.3 replaced the manually operated positioning 

system. The camera can move up and down, back and forth to collect soil sediment 

images at all elevations continuously. Finally, widely used commercial software (Adobe 

Photoshop) was used to stitch the soil images taken at different elevations to produce one 

single image of the entire sedimented soil column. 

 

3.4   Sedimaging Test Procedure 

 

The procedure for determination of the soil grain size distribution by Sedimaging 

is illustrated in Figure 3.4. The testing begins with filling the soil release box (Figure 3.2) 

with approximately the same amount of soil in each of the 16 ½” by ½” chutes. The soil 

is instantaneously released into the water-filled sedimentation column by opening two 

hinged trap doors at the bottom of the box. As previously discussed, the soil grains 

segregate by size en route to the bottom of the glass column. Starting from the bottom, 

the deposited soil is then scanned continuously by the CCD camera to produce a 

complete soil column image. Statistical soil grain size analysis (to be presented in 

Chapter V, VI, and VII) is applied to vertical 256 pixel increments in the image to 

compute various soil grain size indices. Next, the soil grain size indices are converted 

into PPD using a pre-established relationship between PPD and the soil grain size indices. 

The actual soil grain size (mm/diameter) in each increment is then determined by 

dividing PPD (pixel/diameter) by the camera magnification (pixel/mm). Finally, with the 
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Figure 3.4   Sedimaging procedure. 
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known volume of soil solids in each 256 pixel increment of the soil column image, a 

complete soil grain size distribution curve is constructed. 
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CHAPTER IV 

Void Ratio Variations in Soil Sediment 
 

 

 

4.1   Introduction 

 

The determination of soil grain size distribution by Sedimaging consists of three 

tasks: 

1. Physical equipment must be developed to rapidly and thoroughly segregate a 

specimen’s soil grains by size, obviously without sieving; (discussed in Chapter 

III) 

2. An accounting has to be made for possible variations in soil void ratio in the 

sedimented soil column; 

3. Appropriate soil image processing algorithms must be adopted for obtaining grain 

size from images of the segregated specimen. 

The second task is addressed in this chapter.  

Sedimaging pursues the determination of soil gain size distribution by volume of 

soil solids. Non-uniform void ratios (e) develop in the segregated soil column for two 

reasons.  First, soil particles will obviously (and fortuitously for segregation) settle 

through water with different terminal velocities.  According to Stokes’ law, a 1 mm 
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particle will fall at 800 mm/s while a 0.1 mm grain will sediment at only 8 mm/sec in 

water.  Accordingly, the velocities at impact will be significantly larger for soils arriving 

at the bottom of the column earlier than those arriving later.  Thus, larger particles should 

exhibit lower void ratios in the segregated soil column. 

Secondly, vertical effective stress increases with depth.  While the vertical 

effective stresses, σv’ are very small in a short 5 to 8 inch laboratory soil column, the 

changes from top to bottom are large on a percent basis. The soil column experiences 

self-weight consolidation with time after deposition due to the soil’s relatively low 

density. It is important to note how the void ratio is distributed with depth due to the 

increasing effective stress with depth. It is also important to see if the void ratio 

distribution may change with time after deposition. 

The significance of a variable void ratio distribution with depth is illustrated in 

Figure 4.1. Assuming a linearly increasing particle diameter, but a constant void ratio 

with depth as shown on the right side of Figure 4.1, will produce the correct linear grain 

size distribution shown by the dashed line in the center of the figure.  By contrast, if the 

void ratio decreases as shown on the left, the actual grain diameters shown by the data 

points at each elevation will be slightly smaller than they would be in the case of a 

constant e.   If the average void ratio ( e ) in both cases is the same, the maximum 

difference between the grain size distributions would occur at the depth where e = e . 

Given that a decreasing e is more likely than a constant e, a quantitative 

assessment of this effect on the resulting grain size distribution curve must be made.   If 

the effects are significant, corrections would have to be applied to the image based soil 

grain size distributions. 
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Figure 4.1   Effect of variable void ratio on perception of grain size distribution. 
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4.2   Effect of Effective Stress on Void Ratio of Soil Sediment 

4.2.1   Relationship between Void Ratio and Effective Stress in Soil Sediment 
 

Referring to Figure 4.2, with a known weight of soil solids (Ws) and the height of 

soil sediment (H), the average void ratio, e , of the soil sediment column can be obtained 

by: 

 

1w s

s

HA Ge
W
γ

= −                                                           (4.1) 

 

where A is the cross sectional area of the column, γw is the unit weight of water and Gs is 

specific gravity of soil solids. With known average void ratio, the height of solids is: 

 

e
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                                                               (4.2) 

 

If 256 rows of pixels in an image correspond to an actual height increment of hi as shown 

in Figure 4.2, the height of solids in the ith increment is: 
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Figure 4.2   Consideration of void ratio variations to Sedimaging procedure. 
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where ei is the ith increment’s void ratio. Dividing Equation 4.3 by Equation 4.2 yields an 

expression for the fraction of the total soil sample solids that are contained in the ith 

increment: 

 

)1(
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+
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=                                                        (4.4) 

 

As shown in Figure 4.2, Equation 4.4 provides the distance along the ordinate, 

incremented from the previous (i-1) ordinate at which the grain size di for ith increment is 

plotted. 

The data reduction procedure hinges on the knowledge of the void ratio 

distribution with depth. The development of void ratio calibration models would not be 

necessary, if e were constant with height. That is, 

 

H
h

H
h i

s

si =     when    eei =                                              (4.5) 

 

Unfortunately, it is believed that this is unlikely to be the case. Actually, e will decrease 

with depth due to the increase in σ’ under the weight of the finer overlying grains. 

Models for void ratio distribution in recently deposited sediments have generally been of 

the form: 

 

bae −= 'σ                                                            (4.6) 
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where σ’ is the vertical effective stress while a and b are empirical constants (Somogyi, 

1979). Carrier et al. (1983) presented e - log σ’ data for various dredged soils. The data 

reveals a ranging from 2.2 to 34.0 and b correspondingly ranging from 0.16 to 0.23 (for 

σ’ expressed in psf). A best fit through many sets of data for dredged soils finds a = 7.0 

and b = 0.18. However, these values are typical of fine-grained silts, clays and silt/clay 

mixtures and may not be applicable to coarser sediments. They may also be inappropriate 

for very near-surface deposits. Nevertheless, the form of the e - σ’ relationship appears to 

be correct for any soil grain size and the corresponding effective stress profile would be 

as shown in Figure 4.2. 

Since Ws is known, the effective stress at the base of the sediment column, σb’ can 

be computed as follows: 

AG
GW

s

ss
b

)1(' −
=σ                                                   (4.7) 

 

With σb’ known, Equation 4.6 can be written in a normalized form: 

 

BAe −= ζζ )(                                                     (4.8) 

 

where ζ = σ’ / σb’ , while A and B are new empirical constants. The average void ratio in 

the sedimentation column would then be as follows: 
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where 

 

)1( BeA −=                                               (4.10) 

 

Inserting Equation 4.10 into Equation 4.8 yields: 

 

BBee −−= ζ)1(                                          (4.11) 

 

where the average void ratio, e , is known from Equation 4.1. Thus, the relationship 

between e and σ’, despite being non-linear requires only one empirical constant (B) to be 

experimentally determined. With B determined for a given soil sample, ei values for 

Equation 4.4 can be computed and the grain size distribution can be determined. 

 

4.2.2   Void Ratio Model Calibration 
 

To calibrate the e versus σ’ model, that is, to determine the constant B for 

Equation 4.11, void ratio distribution with depth in the sedimentation column was 

determined experimentally using “incremental deposition” as follows. Referring to Figure 

4.3, equal weights of soil were deposited in stages A, B, C, D, etc. Each new lift will 

initially be under the same effective stress condition and therefore, initially have the same 

depositional height as the preceding lift originally had. Meanwhile, earlier lifts compress 

under the increasing overburden pressure. With each new soil placement, the overall 

height of the soil column is measured, providing heights, HA, HB, HC, HD, etc as 
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Figure 4.3   Staged deposition to determine effects of overburden on void ratio. 
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shown in Figure 4.3. It can be shown that the void ratios of the lifts beginning from the 

top will be: 

 

1111 −=−= KHKhe A                                                  (4.12a) 

 

1)(122 −−=−= KHHKhe AB                                          (4.12b) 

 

1)(133 −−=−= KHHKhe BC                                          (4.12c) 

 

1)(144 −−=−= KHHKhe CD                                          (4.12d) 

 

where  
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=                                                            (4.13) 

 

The corresponding depths to the mid-heights of the lifts are: 

 

)(5.01 AHz =                                                    (4.14a) 

 

)(5.02 BA HHz +=                                             (4.14b) 

 

)(5.03 CB HHz +=                                              (4.14c) 
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)(5.04 DC HHz +=                                              (4.14d) 

 

From the ei values computed by Equations 4.12 and with known Gs, the corresponding 

effective stresses at depths z1, z2 etc. can be determined and the (σi’, ei) pairs can be used 

to best-fit Equation 4.11 for B. 

 

4.2.3   Results 
 

Two 500g sample of fairly uniformly sized soil which is from a glacial deposit in 

Ann Arbor, MI were used for the experiment. Each soil was retained between No. 70 and 

No. 80 and between No. 170 and No. 200, respectively. Ten 50g depositions from each 

soil were prepared. Water was filled up to 93 inches from the bottom of the sedimentation 

column and then, each 50 g of soil is introduced into the sedimentation column. 

Immediately after complete deposition of the first 50 g of soil, void ratio of the first 

incremental soil deposit was measured. Then, after the ith  incremental soil deposition, 

void ratio of ith  deposit and the void ratio change in the previous soil incremental 

deposits were measured.  

For the evaluation of void ratio and the change in void ratio with effective stress, 

images of soil incremental deposits are taken before and after new addition of 50g of soil 

using the CCD camera fixed to the camera stand and the camera magnification level of 

21 pixel/mm. Then, incremental deposit height is measured by counting the number of 

pixels in the incremental deposit height with one pixel representing 0.048 mm (one pixel 

divided by 21 pixel/mm). Also, the vertical movements of many individual soil grains are 
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traced by comparing the images taken before and after new soil incremental deposition to 

accurately deal with the small change in void ratio. The camera magnification level 

chosen for measuring the change in the incremental deposit height is considered good 

enough in that, in the soil sedimentation column, void ratio associated with 50 g of the 

soil (Gs = 2.71) due to the error in reading soil deposit height by one pixel (0.048 mm) 

changes by only 0.007.  

The largest void ratio change in the first incremental soil deposit was expected 

due to the largest effective stress. However, the results of these tests were unanticipated.  

Using 500 g of uniform 70/80 and 170/200 sand with 10 lifts of 50 g each showed no 

perceptible compression of the underlying previously deposited sand.   No motions of 

individual soil grains in vertical direction were observed by the CCD camera. Therefore, 

B in Equation 4.11 is set to 0, which leads back to Equation 4.5. 

A supporting test to the result of the void ratio calibration model was performed. 

The tests were performed by preparing separate specimens being retained between No. 70 

and 80 sieves and having dry weights of 50g, 100g, 200g, 300g and 400g. The heights of 

the sedimented soil columns were almost perfectly and linearly correlated to the 

respective dry weights as shown in Figure 4.4, which implies the influence of effective 

stress on void ratio distribution is insignificant in producing variations in void ratio with 

depth in the 2 in. x 2 in. glass column.   It is believed that sidewall friction may be 

limiting the effective stress increase with depth.  The friction is also providing some 

resistance to settlement of soil grains at the glass wall. 
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Figure 4.4   Sediment height vs. weight of solids. 

 
4.3   Effect of Soil Grain Size on Void Ratio in the Sedimented 

Soil Column 
 

According to Stoke’ law, the terminal velocity of a solid spherical object falling 

through a liquid is proportional to the square of its diameter. In addition, as discussed in 

Section 3.2, finer grains are much more susceptible than larger grains to the upward 

seepage as water is displaced by falling soil grains. Therefore, effective settling velocity 

of the coarsest grains could be several orders of magnitude higher than that of the finest 
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grains. Thus, the impact of the coarsest grains when they hit the bottom of the 

sedimentation column is considerably larger than that of the finest grains which leads to 

the hypothesis that void ratios in the soil column will vary with grain size. 

The effect of grain size on void ratio distribution was studied by sedimenting nine 

400g soil specimens of different but uniform size ranging from 1.00 mm (No. 18 US 

Standard sieve) to 0.075 mm (No. 200 US Standard sieve).  All of the specimens were 

collected by sieving glacial till found on the College of Engineering Campus of the 

University of Michigan in Ann Arbor, MI. 

The actual original grain size distribution of the soil is irrelevant but its shape can 

be described as subrounded and its specific gravity is virtually constant at 2.71 for all size 

ranges.The size ranges of the nine specimens, their computed terminal velocities based on 

the central grain size in each increment, the sedimented specimen heights and the 

computed void ratios are provided in Table 4.1. 

 

Table 4.1: Soil data for studying effect of grain size on sedimented void ratio. 

US Sieve 
No. 

Max. 
diam 
(mm) 

Mid-size 
diam. 
(mm) 

Min. 
diam. 
(mm) 

Velocity 
(mm/s) 

Soil  
mass 
(g) 

Specific 
gravity 

Height of 
deposit 
(mm) 

Void 
ratio 

18/20 1.000 0.925 0.850 672 400 2.71 109.0 0.878 
20/30 0.850 0.725 0.600 413 400 2.71 109.0 0.878 
30/40 0.600 0.513 0.425 206 400 2.71 108.0 0.861 
40/50 0.425 0.363 0.300 103 400 2.71 109.0 0.878 
50/60 0.300 0.275 0.250 59 400 2.71 111.0 0.912 
70/80 0.212 0.196 0.180 30 400 2.71 110.5 0.904 
80/100 0.180 0.165 0.150 21 400 2.71 112.0 0.903 
100/140 0.150 0.128 0.106 13 400 2.72 114.0 0.964 
170/200 0.090 0.083 0.075 5 400 2.71 116.5 1.007 
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Figure 4.5   Observed depositional void ratios for various grain sizes. 

 

In Figure 4.5, the observed void ratios are plotted vs. grain diameter.  The vertical 

error bars correspond to the above described uncertainty in the measured height of 

specimen while the horizontal error bars represent the range between two sieve openings 

that were used to prepare the specimens.  As expected, the finer particles exhibited a 

higher void ratio than coarser particles with the void ratio decreasing significantly as the 

size increased from 0.083 mm to about 0.35.  Somewhat more surprising is that grains 

larger than about 0.35 mm settled at a common void ratio of about 0.88.   This may be 

attributed at least partially to a smaller variation (as a percentage) in the depositional 

velocities in the coarser particle range.  In the finer range (0.083 mm to 0.35 mm) the 

velocity changes by a factor of about 20.  In the coarser range (0.35 mm to 1.0 mm) it 

changes only by a factor of about 7. 
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The sedimentology and hydrodynamics research communities have studied the 

relationships between sediment porosity, grain size and settling velocity (Wu and Wang, 

2006).  However, the reported data is generally for non-uniform soils yet uses only a 

single grain size parameter, d50.   Not surprisingly, these studies predict significantly 

lower void ratios than observed in this study.  The only porosity data found for uniform 

sediment was by Han et al. (1981) as reported by Wu and Wang (2006). Their curve, 

shown Figure 4.5, agrees well with the data from the present study for fine sand but 

diverges by a void ratio difference of about 0.035 for coarser material.  Any number of 

reasons could explain this small divergence including particle shape, roughness, 

mineralogy, uniformity, and the sedimentation apparatus. 

 

4.4   Effect of Elapsed Time after Deposition on Void Ratio 

 

Since there is a delay between the time when a soil specimen settles at the bottom 

of the sedimentation column and the time when digital images of the soil sediment are 

taken, the void ratio of the soil sediment as a function of time should be known for the 

determination of correct soil grain size distribution by Sedimaging. If the vertical strains, 

are not constant at all depths with time, void ratio variations will develop that should be 

taken into consideration in the analysis. Conversely, if the vertical strain at all elevations 

is zero or constant with time, then no consideration for varying void ratio is needed. 

The change in void ratio with depth at various elapsed times after soil deposition 

was studied by depositing 521 g of fairly uniform soil, which was retained between the 

No. 70 and 80 sieves, into the sedimentation column. The water surface level in the 
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column was kept the same as in the experiments for the effect of effective stress and soil 

grain size. The initial height of the sediment was 142 mm at zero time. “Zero” time is 

designed as the moment at which all of the soil grains have come to rest in the 

sedimentation column. The vertical movements of a number of individual soil grains at 

various depths were traced and recorded with time as shown in Figure 4.6 using the CCD 

camera. Total 1.05 mm of vertical settlement at the top of the deposition occurred after 

84 hours, which corresponds to a void ratio decrease of only 0.014. From Figure 4.6, it 

can be observed that the vertical settlement is nearly linear relationship with depth at all 

measurement times. This indicates that the vertical strain is nearly constant with depth 

and thus, so is the change in void ratio with depth. 

It should be noted that no movement was even observed before at least 10 minutes 

of elapsed time. The complete set of soil images for soil grain size analysis can be easily 

acquired within this time frame. 

Two additional tests, using soil grain sizes (retained between No. 40 and 50 sieves 

and between No. 80 and 100 sieves) conducted for shorter periods of time, produced 

similar results. Therefore, it was concluded that there is no significant effect of elapsed 

time on void ratio variations in the sedimented soil column, even though the void ratio 

itself changes slightly. 

 

4.5   Evaluation of the Significance of Void Ratio Variations 

 

Having found that the effect of effective stress on void ratio in the soil sediment is 

very minor and having established the relationship between void ratio and grain diameter  
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Figure 4.6   Vertical displacement of soil column at various elevations with time. 

 

in sedimented soil as shown in Figure 4.5, a grain size distribution obtained by imaging 

could be corrected to account for the decreasing void ratio with increasing grain size. In 

order to gauge the magnitude and significance of this correction, a soil with a known 

grain size distribution was hypothetically “sedimented” through water.   It was assumed 

that the soil would find itself at void ratios ranging linearly from 0.80 at the bottom to 

1.05 from at the top of the column. In order to evaluate a worst case scenario, this 

assumed range is significantly larger than is actually observed in Figure 4.5. 
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The resulting grain size distribution curve is shown in Figure 4.7 where it is 

compared to the actual known grain size distribution. While the differences are 

discernable, they are very small and for practical consideration, can be considered 

negligible. Thus, in most cases, the variations in void ratio that would develop in the 

sedimented soil specimen due to the combined effects of increasing effective vertical 

stress and increasing grain size with depth can be ignored. 

 

 

Figure 4.7   Grain size distributions compared for constant void ratio and void ratio  
                   decreasing with depth. 
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relatively uniform particle sizes. A long sedimentation column achieves this segregation 

quickly and effectively. A possible problem arises due to a decreasing void ratio with 

depth in the column. The decrease was hypothesized to occur due to increasing 

overburden pressure with depth and the fact that larger grains settle at higher velocities 

and thus impact the already sedimented particles column with more energy and 

momentum. Laboratory tests showed that uniform soils do not exhibit significant 

variation with depth in a 2 in. x 2 in. (50.8 mm x 50.8 mm) sedimentation column. 

However, the void ratios were observed to decrease somewhat with increase in grain size. 

While corrections can easily be applied to the image-based grain size distributions to 

obtain better agreement with the actual grain size distribution, the corrections are small 

and can be neglected for practical purposes. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 53 

 

 

CHAPTER V 

Soil Grain Size by Wavelet Analysis 
 

 

 

5.1    Introduction 

 

For images of three dimensional soil assemblies of uniform grains as shown in 

Figure 5.1, the frequency content of the gray scale pattern is the key to determination of 

the soil grain size. More concretely, the dominant frequency in such soil images is related 

to the size of the soil grains. This is because the soil grain boundaries are the most 

consistently repeating feature in the image pattern. By contrast, internal textures within a 

soil grain appear quite randomly. Qualitatively, it can be said that when the soil grain size 

is large, the dominant frequency in the image is relatively low and vice versa. However, 

such qualitative frequency information is not useful in determining soil grain size. 

Mathematical transformations which process digital images to extract the 

dominant frequency information could statistically determine soil grain size 

quantitatively. Among a number of mathematical transformations, Fourier transformation 

is most often used in many disciplines to obtain the frequency information. Equation 5.1 

shows the mathematical expression for the two dimensional Fast Fourier Transform 

(FFT). 
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Figure 5.1   480 pixel by 752 pixel image of three dimensional soil assemblies of uniform grains  
      retained between No. 18 and 20 sieves (average sieve opening = 0.925mm). 
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where f(x,y) is the image gray scale matrix, u = 0, 1, 2, …, M – 1, v = 0, 1, 2, …, N – 1, 

and M and N are the number of pixels in the horizontal and vertical directions. The FFT 

provides a frequency spectrum, F(u,v) that indicates dominant frequencies in the image 

by their respective amplitudes in the spectrum. 

In images of three dimensional soil assemblies of uniform grains, soil grain 

boundaries are the only features that exhibit a consistent pattern throughout the image. 

Therefore, the soil grain boundaries produce the dominant frequency in the spectrum. 

Theoretically, this dominant frequency should be the lowest frequency in the spectrum 

since there are no other larger and more distinct features in the soil image. However, this 

is unfortunately not the case because the FFT is also very sensitive to low frequencies 

caused by uneven illumination and gray scale distributions over regions of the image. The 

amplitudes of such low frequencies in the Fourier frequency spectrum could be very large 

and could obscure the frequency response of the soil grain boundaries. Consequently, 

extraction of the range of frequency components corresponding to the soil grain 

boundaries from the frequency spectrum is practically unachievable. 

In the real world, many time varying signals have high frequency components for 

short durations and low frequency components over long durations. The same thing 

happens in images of three dimensional soil assemblies of uniform grains. Internal 

textures within the soil grains have relatively high frequency components over small 

areas while the soil grain boundaries have relatively low frequency components over the 
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entire image area. The internal texture is the most undesirable feature in the soil grain 

images for purposes of size analysis. They yield false grain size information by 

generating internal boundaries within a soil grain that has similar characteristics to real 

soil grain boundaries. As a result, the actual soil grain size will be underestimated.  

There is an effective method called Multi Resolution Analysis (MRA) for 

analyzing images which have high and low frequencies for short and long durations, 

respectively. Unlike the FFT that resolves all frequencies in the frequency spectrum with 

similar resolution, MRA analyzes images at different frequencies with different 

resolutions. Specifically, the MRA gives poor resolution at high frequencies and good 

resolution at low frequencies. In other words, lower frequency components are better 

resolved than higher frequency components, which implies that lower frequency 

components are detected with better accuracy. This feature is particularly well suited to 

soil grain size analysis since soil grains have the lowest frequency components in an 

image of uniform soil grain size while undesirable noise and textures have the highest 

frequency components. A mathematical transformation that follows the MRA approach is 

discrete wavelet transformation. 

In this chapter, a statistical soil grain size analysis utilizing discrete wavelet 

transformation is presented. Initially, Shin and Hryciw (2004) developed a wavelet soil 

grain size index for dry soil. For the purpose of using this soil grain size index for 

Sedimaging, the effect of water on the index is studied and a new wavelet soil grain size 

calibration chart for saturated soil is presented. Also, the effect of pixel aspect ratio on 

the index is studied. 
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5.2   Continuous Wavelet Transforms 

 

Wavelet transformation is defined as the representation (decomposition) of a 

signal or image by basis functions. Before the Discrete Wavelet Transform (DWT) is 

introduced, the Continuous Wavelet Transforms (CWT) is presented and its meaning is 

discussed to provide a better understanding of the wavelet transformation concept. 

The one dimensional CWT of a signal, f(x), is mathematically defined as: 

 

∫
∞

∞−
= dxxxftsW tsf )()(),( ,ψ                                                                                          (5.2) 

 

where Wf(s,t) is the CWT coefficient of f(x) while ψs,t(x) is the basis function, referred to 

as a wavelet, which is generated by scaling a mother wavelet, ψ(x), by s and translating it 

by t. As shown by Equation 5.2, the transformed signal (CWT coefficient) is obtained by 

taking the inner product of f(x) with the wavelet. Just as with Fourier transforms 

amplitude (coefficient), the CWT coefficient is a value that indicates the degree of 

similarity of a signal to the chosen wavelet. If a signal is similar to the wavelet, the CWT 

coefficient is higher than that of a signal which is not similar to the wavelet. Unlike 

Fourier transformation basis functions that have infinite-length and consist of sines and 

cosines, wavelet transformation basis functions (wavelets), ψs,t(x), are finite in length and 

are generated by scaling and shifting a mother wavelet, ψ(x), which is a real number 

function obeying the zero mean condition: 
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and the admissibility condition: 
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where Ψ(ω) is the Fourier transforms of ψ(x). From the two conditions, a mother wavelet 

forms a function that has a finite-length and a fast-decaying oscillating waveform. The 

basis function of the wavelet transformation is defined as: 
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where s > 0 and t is a real number. t, is a translational factor that allows a mother wavelet 

to move onto a specific location in a signal. As seen in Equation 5.5, the basis functions 

do not include a frequency parameter. Instead, there is a scaling factor, s. The scaling 

factor in wavelet transformation is related to the frequency of the wavelet by: 

 

f
s 1

=                                                                                                                             (5.6) 

 

where f is frequency. Since the scaling factor is the inverse of frequency it serves as a 

parameter which changes the wavelegnth of wavelets. The implication of a scaling factor 

in a mother wavelet is that wavelet transformation has the ability to analyze a signal’s 
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different frequencies at different resolutions. This is one of the most important 

advantages of wavelet transformation over Fourier transformation in terms of the 

determination of soil grain size of relatively uniform sized particles. 

It should be noted that the basis functions of wavelet transformation are localized 

not only in the frequency domain but also in the spatial domain, which means that the 

spatial information (location) of a frequency component is known, while those of Fourier 

transforms are sinusoidal and therefore, are located only in the frequency domain. Having 

said this, the spatial information is not of particular interest in this research since only the 

soil grain size of a uniformly sized soil mass is being pursued. 

 

5.3   Discrete Wavelet Transforms 

 

The basis functions (wavelets) of CWT are generated by continuously scaling and 

translating a mother wavelet and thus, there can be an infinite number of basis functions. 

This leads to a huge amount of redundant wavelet transformation coefficients and 

requires substantial computation. On the other hand, the basis functions of Discrete 

Wavelet Transformation (DWT) for analyzing digital signals are generated in a dyadic 

grid. In other words, the basis functions are generated by binary scaling and dyadic 

translation of a mother wavelet as shown in Figure 5.2. “Binary scaling” means scaling of 

a signal by a factor of 2 and “dyadic translation” is the shifting of a signal by the signal’s 

scale, that is, its width. By using the DWT, the number of basis functions and wavelet 

transformation coefficients is significantly reduced. This also removes the redundancy of 

the CWT. In Figure 5.2, it should be noted that the frequency resolution gets poorer and  
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Figure 5.2   Binary scaling and dyadic translating of a mother wavelet. 

 

the spatial resolution gets better as frequency increases and that the coverage of each 

basis function (the product of space and frequency resolution) in the frequency-space 

plane is constant. This implies that DWT obeys Heisenberg’s uncertainty principle 

(Heisenberg, 1927). The Heisenberg’s uncertainty principle says that it is impossible to 

have a function that is perfectly located in both the frequency and spatial domains at the 

same time.  
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The DWT is essentially same as the CWT. They are only different in how they are 

implemented. DWT with dyadic grid sampling is considered as half band sub-band 

coding, which is designed to decompose a signal into a narrow frequency band, using a 

filter bank which consists of a half band low-pass filter and high-pass filter. The low-pass 

filter is a filter that retains lower frequencies than a cut-off frequency and attenuates 

higher frequencies. The cut-off frequency used in the half band low-pass filter is half the 

highest frequency that exists in a signal. A high-pass filter does exactly the opposite. Half 

band low-pass filters and high-pass filters are the scaling functions and wavelets, 

respectively. 

At the first level of the DWT decomposition, an original signal is filtered with 

both a half band low-pass filter and high-pass filter. Filtering is the same as mathematical 

convolution and is expressed as: 

 

∑ −=∗
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where x(n) is a signal and h(n) and g(n) are half band low-pass filter and high-pass filter, 

respectively. In Equation 5.7 and 5.8, the symbol, *, represents mathematical convolution. 

The filtering produces two signals with halved bandwidths, the lower half band signal 

and the upper half band signal. After filtering, half of pixels (samples) in the two signals 

are redundant. So, half of pixels from both the lower half band signal and the upper half 

band signal are down-sampled by a factor of 2, which can be performed by simply 

eliminating every other sample. The lower half band signal is called an approximation 
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signal or average signal and the upper half band signal as the wavelet transformation 

coefficient of the first decomposition level. Filtering followed by down-sampling by a 

factor of 2 is expressed as: 

 

∑ −=
k

h khknxny )()2()(                                                                                                (5.9) 

∑ −=
k

g kgknxny )()2()(                                                                                             (5.10) 

 

This completes the first level of DWT decomposition. It should be noted that after the 

first level of decomposition the frequency resolution is doubled and the number of pixels 

is halved. For the second level of decomposition, the approximation signal generated in 

the first decomposition level is once again subjected to half band sub-band coding. The 

approximation signal is filtered with the same half band low-pass filter and high-pass 

filter and down-sampled by a factor of 2. The second half band sub-band coding 

generates an approximation signal and wavelet transformation coefficient of the second 

level decomposition whose size is a quarter of the original signal. Half band sub-band 

coding continues with decomposing approximation signals at each decomposition level 

while retaining wavelet transformation coefficients until only one pixel remains in an 

approximation signal. The complete half band sub-band coding of a signal can be 

expressed as: 

 

∑ −= −
−

k

j
jj khknxnX )()2()( 1

1                                                                                    (5.11) 

∑ −= −
−

k

j
jj kgknxnCoeff )()2()( 1

1                                                                              (5.12) 
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where Xj and Coeffj are approximation signals and wavelet transformation coefficient at 

the j-th DWT decomposition level. The maximum possible number of decomposition 

levels depends on the number of pixels in a signal. In binary scaling, up to j levels of 

DWT decomposition can be performed when the number of pixels in a signal is 2j. Figure 

5.3 illustrates complete half band sub-band coding. 

It is instructive to see what serves as the mother wavelet and the basis functions 

(wavelets) in DWT with half band sub-band coding. The half band high-pass filter is the 

mother wavelet. Convolution and half band low-pass filtering with downscaling, which 

are considered as translating and scaling the mother wavelet, respectively, generate the 

basis functions. Strictly speaking, half band low-pass filtering with downscaling does not 

actually scale the mother wavelet. Instead, it offers the effect of scaling the mother 

wavelet by filtering and downscaling an original signal or approximation signal. This is 

an efficient move in terms of computation time rather than actually generating large scale 

basis functions. 

 

5.3.1   One Dimensional Haar Wavelet Transforms 
 

DWT basis functions can be of any form as long as they satisfy Equations 5.3 and 

5.4. In this study, the Haar basis functions (Haar, 1910) are used. The Haar half band 

low-pass and high-pass filters are shown in Figure 5.4. Unlike other basis functions that 

attenuate smoothly, Haar basis functions have discontinuities. Generally speaking, 

discontinuities in basis functions may not be a desired feature in other signal or image 

processing applications. However, for soil images where gray scale pixel values change 

sharply at soil grain boundaries while being relatively constant within a grain, the Haar 
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Figure 5.3   The scheme of half band subband coding for one dimensional signal using Haar wavelets. 
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Figure 5.4   Haar basis functions: a) Haar half band low-pass filter and b) Haar half band 
                    high pass-filter. 
 

basis function is an excellent choice since its discontinuities resonate with the soil grain 

boundaries. 

To illustrate the computation of one dimensional Haar wavelet transformation 

through sub-band coding, Figure 5.5 is provided. The signal (one dimensional image) 

used in Figure 5.5 has a total of 8 (= 23) pixels. So, up to three levels of wavelet 

decomposition can be performed. First, the original signal is filtered (convolved) with the 

low-pass, h(k), and high-pass filter, g(k). It generates the two signals, the upper and lower 

half band signals. Since the two filtered signal now have only half the original signal’s 

frequency information while they have same number of pixels as the original signal, half 

the pixels are redundant. To remove the redundancy, the upper and lower half band 

signals are “sub-sampled by 2” by eliminating every other pixel. Such sub-sampling does 

not result in any loss of information. After sub-sampling, one approximation signal and 

one set of four wavelet transformation coefficients of the 1st decomposition level are 

obtained. The ultimate result of the DWT is shown in the bottom of Figure 5.5. Haar 
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Figure 5.5   One dimensional Haar wavelet transforms. 
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wavelet transformation can be simplified by eliminating sub-sampling steps and filtering 

every two samples as shown in Figure 5.6. 

 

5.3.2   Two Dimensional Haar Wavelet Transforms 
 

The one dimensional Haar wavelet transformation algorithm can be easily 

extended to two dimensions in which the basis functions are applied to each row and 

column of pixels separately. After the first level of decomposition of an N by N image, 

one N/2 by N/2 approximation signal (capprox) and three N/2 by N/2 wavelet 

transformation coefficients in three directions, horizontal (cH), vertical (cV), and 

diagonal(cD) are generated. Then, after the second level, the size of the approximation 

signal and three wavelet transforms reduces to N/4 by N/4. Figure 5.7 shows how the size 

of capprox, cH, cV, and cD changes with each decomposition level as an image is 

decomposed by DWT. Figure 5.8 illustrates the scheme for two dimensional Haar 

wavelet transformation using the simplified method without showing the sub-sampling 

step. Using a 4 pixel by 4 pixel image, an example implementation of the two 

dimensional Haar wavelet transformation is shown in Figure 5.9. 

 

5.4    Energy in Wavelet Decomposition Levels and Wavelet 
Soil Grain size index 

 
 

In Haar wavelet transformation, the values of cH1, cV1, and cD1, which are the 

responses of basis functions to an original image (or capprox), represent the gray scale 
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Figure 5.6   Simplified one dimensional Haar wavelet transforms. 
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Figure 5.7   Approximation signal and three wavelet transforms coefficients (cH, cV, and  
                   cD) of two dimensional wavelet transforms. a) original image, b) first wavelet 
                   decomposition, c) second wavelet decomposition, d) third wavelet 
                   decomposition. 
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Figure 5.8   The scheme of half band subband coding for two dimensional Haar wavelet transforms. 
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Figure 5.9   Two dimensional Haar wavelet transforms using a 4 pixel by 4 pixel image. 
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differences between two adjacent pixels of an original image in the horizontal, vertical, 

and diagonal directions respectively. Similarly, the values of cH2, cV2, and cD2 are gray 

scale differences between two adjacent pixels of capprox1 in the three directions. The 

magnitudes of the responses depend on the location of two adjacent pixels in the image 

(or capprox). If the two adjacent pixels are located within a soil grain, the response will be 

low or close to zero since gray scale pixel values are relatively constant within a grain. 

The opposite happens at soil grain boundaries because such boundaries are characterized 

by sudden change in gray scales. Therefore, the responses in cH1, cV1, and cD1 contain 

soil grain boundary information (or size information) of the original image in the three 

directions. Figure 5.10 shows Haar wavelet transformation performed on a soil image up 

to the second level of decomposition. The responses in cH, cV, and cD are scaled to the 

range from 0 to 255. Zero is expressed as black and 255 as white. It is clearly seen from 

Figure 5.10 that responses are low within a soil grain and high at the boundaries. 

In an image of uniform small sized soil grains, more responses at low levels of 

wavelet decomposition are observed than in an image of uniform large sized soil grains 

because the soil grain boundaries are more prevalent. Figure 5.11 shows the first wavelet 

decomposition level of two soil images having different PPD. The image on the left is of 

soil grains retained between the No. 50 and No. 60 sieves taken with a magnification of 

22 pixel/mm. The corresponding PPD is 6.6. Soil grains retained between the No. 18 and 

No. 20 sieves are shown on the right image at a magnification of 33 pixel/mm, 

corresponding to PPD = 30.5 The size of both images is 256 pixel by 256 pixel. It can be 

reasonably predicted that the image on the right will exhibit greater response at higher 

levels of decomposition since soil grain boundaries in low PPD image become less 
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distinctive or disappear at higher levels’ capprox while those in high PPD image remain 

well defined. 

Figure 5.12 is provided to better show how the response of different 

decomposition level changes depending on PPD. Objects in the upper three images have 

the same shape of black and white squares but differ in size. The left image consists of 1 

by 1 pixel squares representing PPD = 1. The central and left images contain 2 pixel by 2 

pixel and 4 pixel by 4 pixel squares, respectively, representing PPD = 2 and PPD = 4. 

Each image was decomposed up to the third decomposition level. The lower three images 

show the results. The left, central, and right images have response only at the first, second, 

and third decomposition levels, respectively. This clearly shows that as PPD increases 

the response shifts to higher decomposition levels. It should be noted that if an object 

shape is not an ideal square all decomposition levels will carry some response but 

generally, one particular decomposition level will contain the largest response depending 

on PPD. This of course assumes that the objects are nearly uniform in size. 

Having said the above, the distribution of response by wavelet decomposition 

level contains the key information for determining soil grain size. Thus, a simple image 

index that would characterize the response distribution was sought. Shin and Hryciw 

(2004) used Energy (E) to quantify the magnitude of the response at each decomposition 

level. This energy at each wavelet decomposition level can be calculated by: 
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Figure 5.10   Two dimensional Haar wavelet transforms of a 256 pixel by 256 pixel soil image. cH1, cV1, and cD1  
contain soil grain size information in horizontal, vertical diagonal direction respectively. 
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Figure 5.11   First wavelet decomposition levels for two different PPD, a) PPD = 6.6 and b) PPD = 30.5. 
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Figure 5.12   Three images containing ideal black and white square objects with different sizes and two dimensional wavelet 
                      transforms of them. The size of the objects in a), b), and c) is 1 by 1, 2 by 2, and 4 by 4 pixel respectively.  
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where the subscript i represents the decomposition level. The energy distribution obtained 

by Equation 5.13 has a shortcoming as universal soil grain size index. When two identical 

soils are photographed under different illumination conditions the energy distribution of 

the two images is not the same because the total energy of an image is influenced by 

illumination intensity. The total energy is the sum of the energies at all decomposition 

levels. So, Shin and Hryciw (2004) further introduced the Normalized Energy (Enormailzed) 

to eliminate the undesirable effect of the illumination intensity. Enormailzed is computed by 

dividing E of each decomposition level by total energy. 
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EEEE
E                                                                            (5.14) 

 

Figure 5.13 shows the normalized energy distribution versus wavelet 

decomposition level for soil images of various PPD, from 1 to 125. The size of the soil 

images used to get the normalized energy distribution for various PPD is 256 pixel by 

256 pixel. As PPD increases, the normalized energy profile is observed to shift to higher 

decomposition levels as previously discussed. This behavior of the normalized energy is 

logical in that as PPD increases, the soil grain boundaries in an image become sparser, 

which leads to low frequency of soil grain boundary in the image, and high 

decomposition levels carry low frequency signal information. A 256 pixel by 256 pixel 

image can be decomposed up to eighth decomposition level but only first seven 

decomposition levels are used. That is because the basis function of the eighth 

decomposition level has too low frequency width, 256 pixels, which covers the entire 256 

pixel by 256 pixel soil image, so that the eighth level includes undesirable information,  
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Figure 5.13   Normalized energy versus decomposition level for select soil images of 
                   various PPD. 
 

such as uneven illumination distribution (if such exists) and color distribution rather soil 

grain size information. 

Shin and Hryciw (2004) brought the behavior of the normalized energy governed 

by PPD to one single index, Center of area (CA) beneath the normalized energy profiles 

(first moment with regard to the ordinate). Initially, 256 pixel by 256 pixel images of two 

different dry soils placed on a flat surface (multi-colored soil retained between No. 40 

and No. 50, and uniform colored soil between No. 40 and No. 60) were collected using a 

CCD camera (Pulnix model TM-7CN) with various magnifications to calculate the CA at 

a wide range of PPD from 2 to 50. Figure 5.14 shows the calibration chart of CA versus 

PPD. The vertical bars indicate 1 standard deviation in the data spread. Later, laboratory 

tests by Hryciw et al. (2006) extended the range in both directions to values as low as 
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PPD = 0.26 and as high as PPD = 110 as shown in Figure 5.14. Each data point in Figure 

5.14 represents the average of at least 20 images of the same soil at the same 

magnification (i.e. same PPD). However, different soils were also used ranging in grain 

size from silt (0.038 mm) to almost coarse sand (1.19 mm) and the magnifications were 

varied by more than a factor of 5. Both single color and multi-colored grains were 

investigated. 

It was shown that wavelet transformation produces low resolution in the high 

frequency range (low decomposition levels) and high resolution in the low frequency 

range (high decomposition levels). This results in larger deviations in CA at small PPD 

than at large PPD. However, as seen in Figure 5.14, the CA at small PPD shows less 

scatter than that at large PPD. This is mainly because of three reasons: 

1. As PPD increases the number of soil grains in an image becomes small relative 

to the 256 pixel by 256 pixel image and thus more statistical deviation is 

observed in a normalized energy profile. 

2. For calibration, the PPD was pre-determined from the known magnification and 

the average soil grain size.The average grain size was determined by taking the 

average of two successive sieve opening sizes. So, the PPD in the calibration 

chart reflect or represent a range at each PPD as shown in Figure 5.15. It should 

be noted that the possible PPD range at large PPD is much larger than at small 

PPD on an absolute basis, but not a percentage basis. 

3. At small PPD, internal textures within a grain would not be distinguishable 

since they are averaged into a few pixels. So, variations in gray scale within a 

grain are not discernible when the PPD is small. On the other hand, at large  
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Figure 5.14   Center of area (CA) versus pixel per diameter (PPD) for PPD ranging from 0.27 to 110. 
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Figure 5.15   Center of area (CA) versus pixel per diameter (PPD) with a possible PPD range. 
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 PPD, internal textures are well seen. So, they can be recognized as false small 

soil gains and generate undesirable energy at low frequencies. 

It can be observed that the scatter in CA for PPD less than 1 increases drastically 

as PPD decreases. Also, CA for PPD less than 1 tends to approach 2.2 asymptotically. 

These phenomena are explainable with digital merging effect of soil grains. When PPD is 

smaller than 1, say 0.5 PPD, there should be approximately 4 soil grains whose gray 

scales are averaged into one pixel. Then, the majority of soil grain boundaries are lost, 

and the merged four grains appear as one single grain. Rather than soil grain boundaries, 

color variation and distribution of individual soil grains controls the normalized energy 

profile. 

 

5.5   Wavelet Soil Grain Size Index of Saturated Soils 

 

Since soil in a sedimentation column is fully saturated, the relationship between 

CA and PPD described in the previous section and shown in Figure 5.14 must be verified 

for saturated soil conditions. 

To simulate saturated soil conditions and see the effect of water on CA, the Vision 

Cone Penetrometer (VisCPT), which was originally developed by Raschke and Hryciw 

(1997a) to capture continuous soil images with depth for in-situ soil grain size analysis 

and delineation of site stratigraphy (Ghalib et al., 2000), is used as shown in Figure 5.16. 

VisCPT can largely be divided into two parts, vision part and cone penetrometer (CPT) 

part.  The latter is the regular CPT used to measure tip resistance, friction ratio, and pore  
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Figure 5.16   Vision Cone Penetrometer (VisCPT). 

 

water pressure. The former consists of a camera housing, sapphire window, and camera 

behind sapphire window. The camera in the VisCPT housing is a CCD camera (ELMO 

MN-30) with a ¼ inch imager that has the same pixel resolution (480 pixel by 752 pixel) 

and pixel aspect ratio (1 to 1.17) as the laboratory CCD camera with a ½ inch imager 
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(Pulnix model TM-7CN). A double ring soil saturator (DRSS) was designed and 

constructed as shown schematically in Figure 5.17 a). The device is placed over the 

VisCPT sapphire window as shown in Figure 5.17 b). A thin bed of vacuum grease is 

applied to the perimeter of the DRSS/VisCPT contact to immobilize the DRSS and to 

ensure a tight water seal. The central area of the double ring saturator is filled with dry 

soil and a VisCPT image is taken. Water is then introduced into the annular area between 

the inner and outer rings of the DRSS.  It flows into the soil through 3 pinholes at the 

base of the inner ring thereby saturating the soil specimen from below.  Full saturation is 

guaranteed by introducing the water very slowly to ensure a vertically rising horizontal 

wetting front. Slow saturation also ensures that the soil skeleton remains undisturbed, 

even without application of a vertical surcharge on the specimen. The saturation process 

is monitored by the VisCPT camera output to a computer monitor where the image is 

greatly magnified. 

Images of the same highly uniform (0.71 mm – 0.80 mm) sand under dry and 

saturated conditions are shown in Figure 5.18. Since all other conditions including 

lighting, magnification, soil skeleton, etc. are identical; the only difference between the 

specimens is the presence of water in the pore space. Thus, measured differences in the 

wavelet index, CA are entirely due to water effects. 

Using 256 pixel by 256 pixel images, Figure 5.19 shows the relationship between 

CA and PPD for dry and saturated soil.  Twelve different uniform grain sizes, obtained 

by sieving, were used to produce the various PPD at a fixed VisCPT magnification of 50 

pixels/mm. Each data point in the chart represents the average of 10 CA values at a given 

PPD. The vertical bars at each data point show the 1 standard deviation in the CA values. 
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Figure 5.17   a) Double ring soil saturator schematic. b) Double ring soil saturator placed 
                      over sapphire window.  
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Figure 5.18   Image of the same soil (a) dry and (b) saturated. 
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Figure 5.19  Comparison of CA for dry and saturated soils at various PPD  (with standard 
                    deviation bars).  
 

The difference in CA between saturated soil and dry soil is clear; saturated soil images 

produce consistently higher CA at all PPD. 

The reason for the increase in CA in saturated soil conditions is the magnifying 

effect of water.  Water appears to make the sand grains look larger in the images. Another 

reason for the increase in CA can be explained by the apparent blurring of internal 

textures within individual soil grains. So, the internal textures become muted and even 

disappear as can be seen in Figure 5.18. The disappearances of the internal textures 

reduce the energy at low decomposition levels, which leads to the increase in CA. The 

fundamental reason for the variations in image appearance and the resulting differences 

in CA can probably be explained by variations in the refraction indices of the pore fluid 

and the viewing window. 
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In Figure 5.20, the relationship between CA and PPD using saturated soil images 

collected by the VisCPT is compared with that using saturated soil images by the 

laboratory CCD camera (Pulnix model TM-7CN). In the latter case, the soil was 

deposited through water in the sedimentation glass column that has the approximately 

same thickness as the sapphire VisCPT window. The excellent agreement indicates that 

the effect of water on the CA versus PPD calibration developed with the CCD camera 

and the soil sedimentation column is the same as the effect of water on the CA versus 

PPD calibration by VisCPT. Also, it should be noted from Figure 5.20 that CA is 

independent of lighting since the lighting sources for the two sets of data in Figure 5.20 

were different. While no special lighting system was used with the laboratory CCD 

camera (Pulnix model TM-7CN) the VisCPT camera has twelve built-in white LED 

lights. 

 

Figure 5.20   Comparison of CA from lab camera images with CA from VisCPT camera 
                      images. 
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Figure 5.21 compares two different CA versus PPD calibration charts obtained by 

various soils. The two calibration charts are developed using the laboratory CCD camera 

under two different conditions, saturated soil condition behind sedimentation glass 

column (Figure 5.20) and exposed dry soil condition (Figure 5.14). Finally, for the easy 

calculation of soil grain size from the wavelet index, CA, a best-fit model to the CA 

versus PPD calibrations was developed: 

 









=

1

loglog
CA
CAAPPD                                                                                                 (5.15) 

 

where CA1 is the CA corresponding to PPD = 1.0 and A is an empirical constant equal to 

5.5 +/- 0.4. The lower limit of A ≈ 5.1 was observed when soil was saturated and behind 

the glass. 

It should be noted that the CA values were computed using only the red image 

layer of the RGB image. It should also be noted that the differences between CA values 

computed from the three image layers were negligible. 

 

5.6   Pixel Aspect Ratio with Wavelet Index 

 

The pixel aspect ratio is the ratio of the width of a pixel to its height. If an object 

is photographed by an imaging system which has the aspect ratio of 1 to 1, the object 

appearing in the image will preserve its shape when shown on a computer monitor having 
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Figure 5.21   CA versus PPD soil grain size calibration charts for saturated and dry soil.  
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square pixel aspect ratio (1 to 1). Contrarily, if the pixel aspect ratio is not 1 to 1 the 

object on the computer monitor is rather distorted or enlarged in horizontal or vertical 

direction. Therefore, it is important to identify pixel aspect ratio of an image in using 

image processing techniques to determine size of an object appearing in digital images.  

Many video imagers, such as CCD and CMOS, have non-square pixel aspect 

ratios. That is because when video engineers in 1990s’ standardized 480i and 576i digital 

electrical standards they decided to use non-square pixel due to the technical difficulty in 

sampling analog signals to get square pixels. The cameras (ELMO MN-30 and Pulnix 

TM-7CN) used for establishing the relationship between CA and PPD have pixel aspect 

ratios of 1 to 1.17. So, when shown on a computer monitor having square pixel aspect 

ratio, soil grains appearing in the image taken with the cameras is 17 percent larger in 

horizontal direction than those in the image taken with a camera with square pixel aspect 

ratio. 

In soil grain size analysis with statistical approaches based on soil images textures, 

there is nothing wrong to develop soil grain size calibration charts using a camera with 

non-square pixel as long as the image textural indices are obtained from images taken by 

a camera that has the same non-square pixel aspect ratio. However, as high resolution 

digital cameras with square pixel become widely available, establishing a CA versus PPD 

calibration chart with a camera having square pixel aspect ratio is essential. Also, it is 

important to see how pixel aspect ratio influences CA. 

Figure 5.22 shows two normalized energy profiles of a soil image taken with the 

laboratory CCD camera having 1 to 1.17 pixel aspect ratio. PPD of the soil image is 9.5 

in the vertical direction. Each normalized energy profile with solid and dot line was 



 

 92 

obtained by using only horizontal and vertical wavelet transforms coefficients (cH and 

cV) respectively. As clearly seen in Figure 5.22, the normalized energy profile obtained 

from cH has more energy in higher decomposition levels than that obtained from cV. This 

is because cH contains only horizontal soil grain size information and soil grains in the 

image are stretched in the horizontal direction. The soil image used for Figure 5.22 was 

digitally compressed in the horizontal direction by 17 percent so that the soil grains in the 

compressed image appear to be same as those in the image taken from a camera having 

square pixel aspect ratio. Figure 5.23 shows the resulting normalized energy profiles 

obtained from cH and cV. They are very similar to each other and have almost the same 

center of area beneath them (CA). 

 

 

Figure 5.22   Normalized energy profiles of cH and cV using 1 to 1.17 pixel aspect ratio. 
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Figure 5.23   Normalized energy profiles of cH and cV using 1 to 1 pixel aspect ratio. 

 

Figure 5.24   Effect of different pixel aspect ratio on CA values. 
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From the observation, it can be expected that all CA values in Figure 5.21 will 

decrease a bit when the soil images used for Figure 5.21 are digitally compressed in the 

horizontal direction by 17 percent. Figure 5.24 validates the expectation by comparing 

CA versus PPD calibration chart from the digitally compressed images with the 

calibration chart in Figure 5.21. 

Using a commercial digital camera (Nikon D300) that has square pixel aspect 

ratio, CA versus PPD calibration was developed and shown in Figure 5.25. It shows 

excellent agreement with the CA versus PPD calibration of the digitally compressed soil 

images shown in Figure 5.24. The result indicates that CA value is independent of camera  

 

Figure 5.25   The relationship between CA and PPD obtained from 1 to 1 pixel aspect 
                      ratio images.  Two different camera systems with 1 to 1 and 1 to 1.17 pixel 
                     aspect ratio were used. The images from the camera with 1 to 1.17 pixel 
                     aspect ratio were digitally compressed to have 1 to 1 aspect ratio. 
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manufacturers and thus, can be used by any laboratory image capturing systems as long 

as the pixel aspect ratio is kept consistent by either digitally compressing digital images 

or by using camera systems that produce same pixel aspect ratio. 

 

5.7   Conclusions 

 

Wavelet decomposition provides a consistent and reliable method for 

determination of the average soil grain size. A wavelet soil grain size index, CA, 

correlates very well with soil grain size as defined by the average number of pixels per 

grain diameter (PPD). Also, by normalizing the Energy at each wavelet decomposition 

level by the total energy, the undesirable illumination effect was eliminated.  

The CA versus PPD calibration for dry soil condition was developed by Shin and 

Hryciw (2004) under laboratory conditions using a variable magnification camera. 

Initially, the calibration was available for a PPD range of 2 to 50. In this study, the 

calibration is extended to the range from 0.2 to 110 PPD. It was shown that CA for PPD 

less than 1 does not carry any useful soil grain size information not only because of wide 

statistical spread but also because of the merging effect of soil grains into one pixel.  

To adopt the wavelet soil grain size index to Sedimaging, the effect of water on 

the index was studied using the Vision Cone Penetrometer (VisCPT) and the double ring 

soil saturator (DRSS). It was shown that water blurs the internal textures within 

individual soil grains and thus decreases CA. A new CA versus PPD calibration for 

saturated soil condition was therefore developed. 
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The CA versus PPD calibrations for dry and saturated soil condition were 

developed by using soil images taken by a CCD camera having pixel aspect ratio of 1.17 

to 1. As digital cameras with square pixel aspect ratio become widely available and 

replace CCD cameras for image analysis, establishing a CA versus PPD calibration chart 

with a camera having square pixel aspect ratio is essential. After digitally shrinking the 

images taken by the CCD camera by 17 percent in the horizontal direction, the CA versus 

PPD calibration had very good agreement with the calibration obtained by images taken 

by a digital camera having square aspect ratio. 
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CHAPTER VI 

Mathematical Morphology for Soil Grain Size Analysis 
 

 

 

6.1   Introduction 

 

Determination of particle size from images of three dimensional soil assemblies 

of uniform grains by wavelet decomposition method has one weakness for use in 

Sedimaging. The weakness comes from having to use 256 pixels in the vertical direction 

and the same number of pixels in the horizontal direction. Considering that the number of 

pixels in the horizontal direction of a soil column image used for Sedimaging is at least 

twice as large as 256 pixels, the wavelet decomposition method for statistical soil grain 

size analysis uses only half of the available soil grain size information. This could result 

in wide statistical spreading in wavelet soil grain size index (CA) since the less soil grain 

size information is used for the statistical analysis, the poorer its statistical validity is. In 

fact, this weakness can be overcome by more vertical pixel lines. For example, 512 pixel 

by 512 pixel image area can be used to compute CA to utilize most of available 

information and increase statistical validity. However, in such a case, resolution of soil 

grain size distribution curve by Sedimaging will be poor, which is not desired. 

Furthermore, the 512 pixel by 512 pixel image area is likely to include several different 
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soil grain sizes, which wavelet decomposition method can not deal with. So, using 

mathematical morphology, a more robust and flexible statistical soil grain size analysis 

method which does not restrict the size of images is presented in this chapter. 

The most common applications of mathematical morphology are in removal of 

unwanted objects or noise from digital images or for enhancement of important details 

such as the outlines of objects. The use of mathematical morphology for granulometry 

(object size and object size distribution determination) was suggested and investigated by 

Matheron in the 1960’s after the introduction of two basic morphological operators, 

erosion and dilation. Subsequent work such as by Matheron (1975) and Serra (1982) was 

limited mainly to binary images of non-contacting objects. Attempts were made to 

determine pore size in rocks from binary images of thin sections (Serra, 1982). However, 

this can only be effective if the pores are disconnected and have a gray scale distinct from 

the rock minerals. 

Since then, mathematical morphology has been used to determine the size and 

shape of a variety of simple non-contacting and non-geologic materials including steel 

marbles and ground pea kernels (Devaux et al., 1997), cellular structure of bread crumbs 

(Lassoued et al., 2007) pore size and structure of sodium chloride tablets (Wu et al., 

2007); and synapses in cultured cells (Prodanov et al., 2006). 

Recently, mathematical morphology for characterization of geologic materials has 

begun to attract new attention. Horgan (1998) presented the application of mathematical 

morphology to study pore size distribution of soil structures and the lengths and 

geometric patterns of cracks in drying soil. Masad and Button (2000) used it to quantify 

the texture and angularity of soil aggregates.  Balagurunathan and Dougherty (2002) 
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suggested using mathematical morphology as a tool to measure soil surface roughness. 

For the determination of soil grain size distribution, Maragos et al. (2004) and Lira et al. 

(2009) applied mathematical morphology but their works were limited to non-contacting 

soil grains or digitally segmented individual soil grains. However, mathematical 

morphology is not known to have been used for soil grain size analysis of three 

dimensional soil assemblies. 

In this chapter, mathematical morphology is studied for determining size of three 

dimensional soil assemblies of uniform grains by taking a statistical rather than a 

deterministic approach. The latter has been used by many researchers to extract 

geometric properties of their products. To this end, a pattern spectrum of soil images is 

used for statistical soil grain size analysis which does not require digital segmentation of 

the soil grains. 

 

6.2  Basic Morphological Operations and Structuring Elements 

 

Mathematical morphology for image processing uses a filter called a structuring 

element. The structuring element is typically a regular geometric shape such as a square 

or diamond of any size but much smaller than the image. For example, a square 

structuring element may be 3 pixels by 3 pixels, 15 pixels by 15 pixels, or n pixels by n 

pixels where n is commonly an odd number in order to have a “central pixel” and thus, to 

maintain operational symmetry. There are two basic morphological operators: dilation 

and erosion. To dilate or erode an image, the structuring element “moves” across the 

image stopping with its center over each pixel to perform a specific operation. Operation 
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of the two basic mathematical morphological operators on binary images will be covered 

in detail first. The extension of the operation to gray scale images will be presented next. 

 

6.2.1   Dilation and Erosion of Binary Image 
 

The dilation of objects (or foreground) in a binary image, A, by the structuring 

element, B, is defined as: 

 

( ){ }φ≠∩=+ ABxBA x
s|                                                                                             (6.1) 

 

where (B)x is translation of B by x (Bs) is the reflection (or symmetric) of B about its 

origin. If a structuring element is symmetric about its center in the horizontal, vertical, 

and diagonal directions and its origin is set as the center of the structuring element (this is 

the only case considered in this study) Equation 6.1 becomes: 

 

( ){ }φ≠∩=⊕ ABxBA x|           (Dilation)                                                                   (6.2) 

 

Equation 6.2 simply means that the structuring element, B, is translated by x over the 

binary image and then, all x such that the intersection of B translated by x with A forms 

the resulting dilation. Thus, dilation of A by B expands the boundary of A. 

More explicitly speaking, dilation of a binary image is the process by which 

objects (foreground) in the image are expanded by first, placing the center (origin) of a 
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structuring element on object pixels (foreground pixels) and then, turning all of the image 

pixels beneath the structuring element into object pixels. Of course, the image pixel 

beneath the center of the structuring element must be an original foreground pixel and not 

have become foreground as a result of dilation. Figure 6.1 shows step by step how 

dilation works on one-dimensional binary image. Object pixels (foreground pixels) and 

non-object pixels (background pixels) are presented as 1 and 0 respectively in the binary 

image.  It should be noticed from Figure 6.1, that the dilation will completely remove any 

runs of zeros smaller than the length of the structuring element. Figure 6.2 shows an 

example of dilation of objects in an image using a 3 pixel by 3 pixel square structuring 

element. In Figure 6.2, the foreground and background consists of black and white pixels, 

respectively. 

Erosion is the opposite of dilation. The erosion of objects (foreground) in a binary 

image, A, by the structuring element, B, can be expressed as: 

 

( ){ }ABxBA x ⊆=Θ |              (Erosion)                                                                        (6.3) 

 

which means that erosion of A by B is all x such that translated B by x is included inside 

of A. So, erosion is the process by which objects in an image are shrunk by placing the 

center (origin) of a structuring element on foreground pixels and keeping only those 

pixels that allow the structuring element to fit fully inside the objects. Figure 6.3 shows  
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Figure 6.1   Morphological dilation on one dimensional binary image. 
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Figure 6.2   Graphical illustration of morphological dilation on a binary image by 3 by 3 square structuring element. 
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Figure 6.3   Morphological erosion on one dimensional binary image. 
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Figure 6.4   Graphical illustration of morphological erosion on a binary image by 3 by 3 square structuring element. 
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how erosion works on a one dimensional binary image. It removes any runs of ‘1’s less 

than the length of the structuring element. The erosion of the binary image in Figure 6.2 

is shown in Figure 6.4. As shown, the foreground is shrunk by the diameter of the 

structuring element and any objects smaller than or the same as the structuring element is 

removed by the erosion operator. So, when objects smaller than a certain size require 

elimination from an image, erosion can be used. While erosion is easier to visualize as 

“erasing”, it should be noted that eroding the black foreground pixels is equivalent to 

dilating the white background pixels. 

 

6.2.2   Dilation and Erosion of Gray Scale Image 
 

While dilation and erosion are easier to explain and understand for binary images, 

the operations are essentially the same for gray scale images. Dilation and erosion of 

gray scale image, A, by a structuring element with gray scale value, B, is defined as: 

 

( )
( )

( ) ( ){ }jiBjyixAyxBA
Bji

,,, max
,

+−−=⊕
∈

          (Dilation of gray scale image)      (6.4) 

( )
( )

( ) ( ){ }jiBjyixAyxBA
Bji

,,, min
,

−−−=Θ
∈

            (Erosion of gray scale image)       (6.5) 

 

A flat structuring element is one in which all of the element’s pixels have the same gray 

scale value. That is, B(i, j) is constant for all i and j. When a flat structuring element with 

B(i,j) = 0 is chosen, Equation 6.4 and 6.5 can be simplified to: 
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( )
( )

( ){ } ( )AjyixAyxBA
BBji

maxmax ,,
,

=−−=⊕
∈

       (Dilation by flat S.E.)               (6.6) 

( )
( )

( ){ } ( )AjyixAyxBA
BBji

minmin ,,
,

=−−=Θ
∈

           (Erosion by flat S.E.)                (6.7) 

 

This means that, for dilation of gray scale images by a flat structuring element, the center 

of the structuring element is sequentially placed over each image pixel and each pixel is 

replaced by the maximum original gray scale value of all pixels covered by the structuring 

element. Conversely, for erosion of gray scale images, the pixel beneath the center of the 

structuring element takes the minimum original gray scale value of all the pixels covered 

by the structuring element. Figure 6.5 numerically illustrates the dilation and erosion 

operations on the same gray scale image. 

It is important to note the implications of dilation and erosion of a gray scale 

image of a three dimensional soil particle assembly. Pixels on soil grain boundaries have 

low gray scale values due to lower exposure to ambient illumination and thus, can be 

considered as background pixels. So, erosion of a three dimensional soil image by a flat 

structuring element has the effect of widening soil grain boundaries while dilation makes 

them thinner or even make them disappear. 

 

6.3   Morphological Opening and Closing 

 

Dilation and erosion are often used sequentially on an image.  If dilation is 

followed by erosion the operation is called closing.  Conversely, if erosion is followed by  
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Figure 6.5   Numerical illustration of dilation and erosion on gray sale image at two 

                   locations by 3 by 3 flat square structuring element. (Note: 0 = black, 255 = 

                   white) 

 

dilation the operation is termed opening. Equation 6.8 and Equation 6.9 represent closing 

and opening in terms of the two basic morphological operators. 

 

( ) BBABA Θ⊕=•                                                                                                         (6.8) 
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( ) BBABA ⊕Θ=                                                                                                         (6.9) 

 

where A is an image and B is a structuring element. It is the opening morphological 

operation that will be employed in this study while closing needs no further discussion. 

Erosion used alone removes objects and undesirable anomalies (noise) smaller 

than a structuring element. It also reduces the size of all objects in an image. Opening 

removes any object smaller than a structuring element like erosion does but still preserves 

the size of the larger remaining objects. Figure 6.6 illustrates the effect of opening on a 

binary image. Figure 6.6 a) shows various sizes of white roundish objects foreground and 

Figure 6.6 b) and c) show the morphologically eroded and opened images by the 

structuring element shown in a square box at the upper right. 

Through the morphological opening, the number (or percentage) of objects 

smaller than the structuring element can be counted. By repeating the opening operation 

using sequentially larger structuring elements, the distribution of sizes can be developed. 

Most significantly to this study, opening removes small objects from images even 

when they are in contact with larger ones. In Figure 6.6, several large grains are shown 

originally in contact with smaller grains. They appear as single “bumpy” objects. After 

opening, the smaller contacting grains disappear. This is because morphological opening 

treats the smaller round objects contacting the larger ones as distinctive objects. Thus, 

determination of grain size distributions from images of contacting grain assemblies 

becomes feasible. 
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Figure 6.6   Morphological opening on a binary image. 

 

In binary images, it should be noted that irregularly shaped particles and rough 

surfaced soil grains are truly “bumpy” objects. Removal of such “bumps” is not desirable 

as it implies that the soil is finer- grained than it really is. In gray scale images of three 

dimensional soil assemblies, morphological opening does not actually remove soil grains 

smaller than a structuring element. Instead, high gray scale valued pixels (lighter color), 
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which lie just inside soil grain boundaries, are replaced by the lower gray scale valued 

pixels (darker color) of the boundaries. This blurs the distinction between actual 

boundary pixels and interior pixels. The degree of this blurring depends on the size of 

structuring element. It results in soil grains smaller than a structuring element being faded 

out. 

 

6.4   Pattern Spectrum 

 

For simple binary images of non-contacting grains spread out on a flat surface, 

opening is not even needed and a histogram showing the number of grains removed 

versus the structuring element size (SES) used for erosion is effectively the grain size 

distribution. For gray scale images of three dimensional assemblies of soil grains, the 

procedure results in histograms that will require considerably greater interpretation. If 

individual soil grains could be identified from a three dimensional soil assembly, soil 

grain size distribution can easily be determined. However, as mentioned in the previous 

chapters, it is very difficult to develop a segmentation algorithm universally applicable to 

overlapping and contacting soil grains. 

Matheron (1975) proposed the use of a pattern spectrum in which spectral values 

are plotted versus structuring element size. The pattern spectrum can be defined as 

response distribution of an image to morphological opening with sequentially increasing 

structuring element size. In this study, the structuring element size (SES) is defined as the 

number of pixels along the diagonal (pixel row) of a diamond structuring element. Figure 
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6.7 shows various sizes of diamond structuring elements used in this study. The pattern 

spectral value shown versus a structuring element of size SES is the summation of all 

pixel values in an image obtained by opening the original image using a structuring 

element of size SES minus the summation of all pixels in an image obtained by opening 

the original image using a structuring element of size SES+2. Mathematically, the pattern 

spectral value (PSV) at SES can be expressed as: 

 

( ) ( ){ }∑
∈

+−=
imagewholey

SESSESSES BABAPSV
 

2                                                                     (6.10) 

 

where the ‘-’ sign denotes pixelwise difference. A is the original image and B is a 

structuring element. Since opening removes objects smaller than a SES, the pattern 

spectral value indicates the proportion of grains of size SES in the original image. The 

entire pattern spectrum then reflects the grain size distribution, particularly when the 

image is a binary image of non-contacting particles. 

 

 

Figure 6.7   Various sizes of diamond shaped structuring element. The sizes of the 
structuring elements are 1, 3, 5, 7, 9 from left to right. 
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6.5   Determination of Uniform Soil Grain Size by Pattern 
Spectrum 

 

When a binary image contains only detached objects all having exactly the same 

size and same shape, the pattern spectrum would display a single vertical spike at the 

corresponding SES. An example of determining the size of objects which have the same 

shape (square) and size is shown in Figure 6.8. In the example, a square structuring 

element is used to match the shape and size of the objects. Images produced by opening 

with SES of 7, 8, and 9 do not remove any objects because the size of the square objects 

in the original image is larger than the structuring elements. Opening with SES = 10 

causes all of the squares to disappear because they are smaller than the SES. Nothing 

remains to be removed by SES = 11 and 12. Images used for computing PSV at SES of 8, 

9, and 10 are shown in Figure 6.8 h) to j) which were obtained by having pixelwise 

difference between Figure 6.8 c) and d), between Figure 6.8 d) and e), and between 

Figure 6.8 e) and f), respectively. Only the image used for computing PSV at SES = 9 

shows a response. Therefore, the size of squares in the original image is 9 pixel by 9 pixel. 

Unlike such ideal binary images, an image of three dimensional soil assemblies of 

uniform grains would display some spread in the pattern spectrum, possibly with a peak 

at SES corresponding to the PPD. That is because real soils, even if they are “uniform”, 

contain soil grains of various shapes and some size variations. Furthermore, real soil 

images are not binary, but gray scale. Depending on the mineral composition, the grains 

themselves can be similar in gray scale or exhibit vastly different gray scales. Lastly, 
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since the assemblies are three-dimensional, many grains will be hidden behind 

foreground grains and will thus appear to be smaller than they really are. 

Figure 6.9 a) shows a very uniform soil consisting of grains passing the No.18 

standard US sieve but retained on a No. 20 sieve. The average opening of these two 

sieves is 0.925 mm. The image was taken at a camera magnification of 12.8 pixel/mm. 

The PPD is thus computed to be 11.6 pixels. The image was opened using a diamond 

structuring element with SES ranging from 1 pixel to 59 pixel. The resulting pattern 

spectrum is shown in Figure 6.9 b). The pattern spectral value peaks at SES of 13 

showing fairly good agreement with the PPD. This suggests that the SES corresponding 

to the peak of the pattern spectrum is an indicator of soil grain size provided that the 

particles are uniform in size. 

Additional images were taken of the same soil at various magnifications 

corresponding to PPD values from 9.9 to 30.5. Figure 6.10 shows the corresponding 

pattern spectrum with one new twist. Plotted on the ordinate is a normalized pattern 

spectral value defined as the pattern spectrum value normalized by the sum of all pattern 

spectral values.  For PPD below about 20, the SES values corresponding to the peak 

normalized spectral values match well with PPD. However, for PPD above about 20 

there are noticeable differences between the SES at peak and PPD. This divergence with 

increasing SES is easily explainable. When magnification, PPD, and SES are all low, the 

difference between a diamond structuring element and the soil grains in terms of pixels is 

low. As the magnification, PPD, and SES increase, the difference in the number of pixels 

between a diamond structuring element and more rounded soil grains increases. The 

diamond structuring element is almost always smaller than a soil grain having the same 
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Figure 6.8   Determination of size of object having same shape and size by opening operation with sequentially increasing structuring 

                    elements. 
 

(a) Original image (b) Opening by SES of 7  (c)  Opening by SES of  8 (d)  Opening by SES of  9

(e)  Opening by SES of 10 (f)  Opening by SES of 11 (g)  Opening by SES of 12

(h)  Image for computing 
PSV

at  SES of 8

(i)  Image for computing 
PSV

at  SES of 9

(j)  Image for computing 
PSV

at  SES of 10
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Figure 6.9   a) Image of the No.18-No.20 sand, average sieve opening = 0.925 mm, magnification = 12.5 pixel/mm,  PPD = 11.6 
                         b) Corresponding pattern response spectra. 
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Figure 6.10   Normalized pattern spectrum for various PPD. 

 

diameter. As such, the SES corresponding to the peak of the pattern spectrum will be 

larger than the PPD. 

 

6.6   Soil Grain Size Calibration Chart by Pattern Spectrum 

 

As just discussed, due to the inherent difference in shape between real soil grains 

and diamond structuring elements, the SES at peak of the normalized pattern spectrum 

can not be used as a direct indication of PPD. So, a relationship between the SES at peak 
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and PPD needs to be established so that the SES at peak can be converted into actual soil 

grain size and thus, can be implemented for Sedimaging. 

Figure 6.11 shows the soil grain size calibration chart, SES at Peak (SP) versus 

PPD with a dot line representing when SP is equal to PPD. Only red image layer was 

used to obtain SP. Each data points in Figure 6.11 is the average of 10 SP of 10 images 

having same PPD and vertical bar represents one standard deviation in data spread. The 

size of each image is 480 pixel by 644 pixel. 

The difference in size between the smallest and largest soil grains in a “uniform” 

soil becomes more pronounced as a magnification (PPD) increases. This is partly 

contributed to the large statistical spread at high PPD. However, a major reason for the 

large spread is that, with a fixed size of images, the number of soil grains in each image 

decreases with increasing PPD. Therefore, when bigger images are used for computing 

PSV, the statistical spread of SES at Peak will be reduced. 

Finally by performing a linear regression analysis on all the data points in SES at 

the Peak (SP) versus PPD calibration chart, a unique relationship between SP and PPD 

was revealed as: 

 

598.0916.0 −= SPPPD                                                                                             (6.11) 
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Figure 6.11   Soil grain size calibration, SES at Peak (SP) versus PPD. 
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6.7   Conclusions 

An image processing method based on mathematical morphology was developed 

to determine the average size from images of three dimensional soil assemblies of 

uniform grains. The method takes a statistical approach by calculating the pattern 

spectrum of digital soil images as opposed to other image processing methods which seek 

geometric features of soil deterministically using mathematical morphology. The 

statistical aspect of the soil grain size determination method eliminates the necessity of 

preprocessing, such as image binarization and segmentation of individual soil grains 

whose result is greatly influenced by the operator skills. 

Structuring element size (SES) corresponding to the peak of pattern spectrum of a 

soil image was expected to be soil grain size. However, due to the fact that the inherent 

difference in shape and size between real soil grains and diamond shaped structuring 

elements increases with PPD, noticeable differences between SES at peak and PPD were 

observed at high PPD. So, the soil grain size calibration chart, SES at Peak versus PPD, 

was established to determine the average size from images of three dimensional soil 

assemblies of uniform soil grains. SES at Peak obtained from pattern spectrum of a soil 

image is converted into PPD through the calibration chart. With known magnification 

level, actual soil grain size can be found. 
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CHAPTER VII 

Image Edge Pixel Density Model for Soil Grain Size 
 
 

 

7.1   Introduction 

 

Soil grain size analyses methods such as Haralick’s 14 textural indices, wavelet 

decomposition (Shin and Hryciw, 2004), and mathematical morphology that use image 

textures for assessing grain size generally do not recognize the significant effect of 

intragranular textures on test results. Such internal differences in gray scales arise from 

natural color variations and non uniform light reflections from rough surfaces. For image 

processing to provide a reliable index of grain size, the information must come from the 

particle boundaries and not from textural variations within the soil grains. The clarity of 

such internal texture in an image increases with the size of particles relative to the image 

pixel size. In other words, the higher the magnification or the larger the grains, the more 

likely the image is to reveal the internal surface features. With significant internal 

textures, a single relatively large grain will often be interpreted as several smaller grains. 

Thus, the overall particle sizes in the image are underpredicted. The results of wavelet 

decomposition and mathematical morphology, which were discussed in Chapter V and VI 

respectively, are naturally and undesirably affected by internal textures. 
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In this chapter, one of the most fundamental image processing techniques, edge 

detection, is utilized on images of contacting uniform-sized soil grains to delineate soil 

grain boundaries.  Most importantly, undesirable internal edges are removed from soil 

edge maps using two methods, one based on the number of connecting pixels of each 

edge segments, the other based on elliptical fitting to edge segments. The result will be a 

more dependable and easily understandable index of soil grain size. A theoretical two-

dimensional model, validated by images of perfectly uniform spheres is compared to 

results from images of real soil grain assemblies to rationalize the proposed index and its 

relation to grain size. 

 

7.2   Selection of Edge Detector for Soils 

 

An “edge” in a digital image could be thought of as a contour across which the 

brightness (gray scale value) changes abruptly in magnitude (first derivative) or in the 

rate of change of magnitude (second derivative). Edges are important features since they 

provide crucial clues to discriminate regions within or between objects. 

The boundaries of non-contacting soil grains are easily delineated because of the 

generally large difference in gray scale pixel values between soil grains and the 

background.  By contrast, in assemblies of contacting grains, the change in gray scale 

values around grain boundaries is less distinct and thus, the edges are not always as easily 

detectable. Some edge detectors are better suited than others for delineating boundaries of 

soil particles in assemblies. Therefore, selection of the best edge detector for soils is the 

first task. The clarity, or strength, of soil boundaries varies within an image. Some 
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boundaries are “strong”, others are “weak”.  Strong and weak edges will be defined and 

explained shortly. The best edge detector would be one that detects both the strong and 

weak soil grain boundaries. 

Many edge detectors have been developed for image processing but their 

functionalities and performances are not the same. Sharifi, et al. (2002) indicate that the 

four most commonly used detectors are: the Sobel (I. Sobel, unpublished but regularly 

cited in image processing literature); the Roberts (1965); the Zero Cross (Marr, 1982); 

and the Canny (1986). The first two are categorized as “gradient edge detectors” which 

search for maximums and minimums in the first derivative pixel grayscale in an image. 

Zero-cross and Canny are classified as Laplacian and Gaussian edge detectors, 

respectively. The former searches zero crossings in the second derivative of an image and 

the latter uses the derivative of a Gaussian to find edge strength by taking the gradient of 

an image. Figure 7.1 shows an image of a multi-sized grain assembly and the 

corresponding edge maps using the four detectors. The Sobel, Zero Cross and Roberts 

detectors are clearly less effective than the Canny at delineating soil grain boundaries. 

The reason why the three are less effective is that they do not detect weak soil grain 

boundaries. The edge map created by the Zero Cross method detects strong boundaries 

well but not the weak boundaries while the Sobel and Roberts edge maps miss not only 

weak boundaries but also many strong ones. By contrast, the Canny edge detector is 

superior at boundary identification because it finds all of the strong and some of the weak 

edges. Therefore, the present work will focus on and utilize only the Canny method, but
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Figure 7.1   Edge maps using four different edge detectors. 
 
 



 

 125 

with unique modifications that will prove to be particularly useful for the determination 

of size of three-dimensional assembly of uniform sized soil grains. 

 

7.3   Canny Edge Detector 

 

The first step in Canny edge detection is filtering to remove pixel-sized digital 

noise.  Such noise typically arises from stray electricity, damaged imager pixels or during 

digitization of an analog camera signal. However, in this study, noise filtering was not 

used for two reasons. First, it was found that filtering blurs the images and removes parts 

of good soil edges especially when PPD is small. Secondly, an algorithm will later be 

employed on edge maps that removes likely “false” particle edges, including those 

created by pixel-sized noise. 

The next step in Canny edge detection is computation of image gray scale 

gradients. This is done by convoluting the image using 9 by 9 Gaussian kernels in the 

pixel row (x) and pixel column (y) directions. The kernels shown in Figure 7.2 were 

found to be most effective for finding soil grain edges. The convolutions result in two 

gradient matrices, Fx and Fy. From Fx and Fy a single composite edge strength matrix, F(x, 

y), is obtained as: 

 

( ) 22, yx FFyxF +=                                                                                                      (7.1) 

 

Also computed is the maximum gradient direction (normal to the edge) matrix, θ(x, y): 
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
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
=
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y
F

Fyx arctan,θ                                                                                                  (7.2) 

 

Once F(x, y) and θ (x, y) are computed, nonmaxima suppression is applied to 

F(x, y).  This procedure eliminates many pixel locations from consideration as edge 

pixels. The unique feature of the Canny edge detection algorithm is that the nonmaxima 

suppression is only performed in the maximum gradient direction as follows. At each 

edge strength matrix location, the maximum gradient direction is rounded to one of four 

image matrix directions (row-horizontal column-vertical or one of the two diagonals) and 

nonmaxima suppression is performed in this direction only. An example of nonmaxima 

suppression is shown in Figure 7.3. As indicated, a pixel retains its original pixel value in 

F(x, y) only if it has the largest edge strength of the three successive pixels along the 

maximum gradient direction. Otherwise, its edge strength is set to zero. Performance of 

this operation over the entire edge strength matrix results in a thinning of the edges to 

only one pixel width. The new matrix is called the nonmaxima suppressed edge strength 

matrix. 

The next step, also unique to Canny, is called hysteresis. Here, two edge strength 

thresholds, high and low, are applied to the nonmaxima-suppressed edge strength matrix. 

The two thresholds used in this study were 0.08 and 0.15 when the largest value in the 

edge strength matrix is scaled to 1.00. For example, if the largest edge strength is 100, 

edge strength of 5 is scaled to 0.05. If the value of an entry in the non-maxima suppressed 

edge strength matrix is larger than the high threshold, the pixels are considered strong  
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Figure 7.2   Gaussian kernel used to compute the edge strength matrices: a) Fx in the 
                   horizontal direction; b) Fy in the vertical direction. 
 

edges and automatically qualify as edge pixels. Entries below the low threshold are weak 

and are eliminated from further consideration. Entries between the two thresholds are 

also considered weak however, if such a weak pixel, or a chain of weak pixels, is 

attached to a pixel in a strong edge, the weak pixels become part of the strong edge. 

Weak edges not attached to strong edges are discarded. The recognition and attachment 

of weak edges to connected strong edges prevents many of the discontinuities in grain 

boundaries that are common in the Sobel, Roberts, and Zero-cross methods. At the same 

time, elimination of non-contacting weak edges discards many spurious edges attributed 

to noise of internal texture. 

One final step will be added to the image processing to further eliminate 

additional spurious false edges and improve the resolution of the Edge Pixel Density 

technique for grain size assessment. The step is to remove all edges that are shorter than  
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Figure 7.3   Description of nonmaxima suppression: a) suppressed target pixel; b) not suppressed target pixel. 
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the grain diameter and will be called false edge removal. Since false edge removal is a 

modification beyond the Canny algorithm; because it is uniquely suited to soil grain size 

determination; and because it requires a first estimate of grain size based on the 

unmodified Canny procedure, experimental and theoretical results will first be presented 

before implementation of the modification. 

 

7.4   Edge Pixel Density (EPD) 

 

Because most soil grains are roundish with few concave outward edges, the 

perimeter as measured by the number of edge pixels should be a good indicator of the 

nominal grain size diameter. It should be noted that consideration of the number of edge 

pixels as a soil grain size indicator comes from the premise that the thickness of an edge 

is always one pixel. This premise is achieved by one of the unique characteristics of the 

Canny edge detector, nonmaxima suppression. 

In a three-dimensional assembly of uniform size soil grains, many edges will be 

hidden, yet it is expected that on a statistical basis, the number of edge pixels per unit 

area in an image should reflect the size of the grains in the assembly. Therefore, the edge 

pixel density (EPD), defined by Hryciw et al. (1998) as the ratio of edge pixels to total 

pixels in an image could be used as an index of PPD. Figure 7.4 shows images of 

uniform soil assemblies at three different PPD: 9.5, 21.5 and 45.0. Also shown are the 

corresponding edge maps by the Canny edge detector. A decrease in the number of edge 

pixels with increasing PPD is visually obvious, even before computing the EPD. 
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Figure 7.4   Soil images and corresponding Canny edge maps for several PPD. 
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To establish a universal correlation between EPD and PPD, common sands were 

collected from three sites:  a sand quarry in Griffin, Indiana; Muskegon, MI dune sand; 

and a glacial deposit in Ann Arbor, MI. All three sands were sorted by size using 

standard US sieves. The soil grain size was defined as the average of the openings of the 

two successive sieves that had passed and retained the soil particles respectively. Using a 

CCD camera (Pulnix TM-7CN) with variable lens magnifications, images of each soil at 

PPD ranging from 3 to 57 were collected. All images were 558 pixel by 380 pixel in size. 

The PPD was then computed from the average grain size while the camera magnification 

was known from a high precision photo scale card. The images collected under various 

PPD were processed by the Canny edge detector and their EPD was computed. 

The EPD versus PPD results are shown in Figure 7.5. Each data point represents 

the average EPD of 10 red layer images of the same soil at the same magnification.  

Standard deviation bars show the scatter of EPD values. However, it should be noted that 

the standard deviation is somewhat meaningless. It merely shows the statistical limitation 

of using 558 pixel by 380 pixel images. If all ten images had been fused into one, or a 

higher resolution camera was used, there would be no error bars and the mean values 

would be the same. 

As expected, EPD decreases with increasing PPD. At high PPD, the correlation 

approaches a horizontal line and thus, the ability of the experimentally determined EPD 

to resolve the soil PPD (and therefore grain size) appears to decrease. However, it should 

be noted that the same change in PPD at high PPD values represents a smaller 

percentage change in grain size than the same change in PPD at low PPD values. Thus, 

the apparent decreasing resolution (slope of EPD versus PPD line) with increasing PPD   
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Figure 7.5   The relationship between EPD and PPD prior to false internal edge removal. 

 

is logical and not problematic. It can also be shown that a logarithmic PPD scale would 

result in a nearly straight-line relationship. However, this trend is not shown since an 

even better model will be presented later. 

 

7.5   Edge Pixel Density (EPD) Model 

 

A rational explanation for the EPD versus PPD behavior, based on the abilities 

and nuances of the Canny Edge Detector was sought. The successful model would need 

to recognize that edge detection would fail at particle contacts. This would occur 
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particularly when the contacting particles have similar gray scale values. The model 

development consisted of a theoretical pixel level analysis of particle contacts at select 

PPD values and experimental imaging of perfect spheres at ideal packing geometry. 

To develop the theoretical component of the EPD model, soil grains were 

simulated by perfect circles drawn on grid paper with the grid squares representing image 

pixels. The densest two-dimensional packing was assumed in which each circle had six 

contacts with six other circles at 60 degree intervals. PPD values of 8, 16, 32 and 64 were 

analyzed. Figure 7.6 shows some of the results. The dark grid squares represent the pixels 

that contain particle boundaries that are not in contact with other particles. In other words, 

these are the pixels that are expected to show the highest gray scale gradients and thus be 

identified as edges by the Canny edge detector. It should also be noted that because of 

non-maxima suppression, Canny edges will only be one pixel wide.  Each edge pixel may 

only have one of its four sides bordering another edge pixel, the only exception being 

when edges intersect orthogonally. This necessitated some judgment in choosing which 

pixels to call “edge pixels” and which not. One can see in Figure 7.6 a) that in some cases 

alternate pixels could have been considered as the edge pixels.  However, the overall 

number of edge pixels would not have changed significantly. 

For an image repeat unit, identified by the rectangular boxes in Figure 7.6, the 

ratio of the number of black (edge) grid squares to the total number of grid squares was 

computed. This was the theoretical EPD. The theoretical EPD for PPD = 8, 16, 32 and 64 

are shown by the solid points in Figure 7.7. Only four PPD were considered because it 

was difficult to compute the theoretical EPD for other PPD values. However, the four 

values bracketed the range of PPD values used for soil grain size determination. An 
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Figure 7.6.a)   Theoretical EPD for PPD = 16. 
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Figure 7.6.b)   Theoretical EPD for PPD = 32. 
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Figure 7.6.c)   Theoretical EPD for PPD = 64. 
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Figure 7.7   EPD versus PPD model for ideal 2-dimensional assembly of uniform circles. 

 

analysis of PPD = 4 was attempted by the same approach but the exercise was too 

difficult and too subjective to be useful. 

To verify the theoretical two-dimensional model just described, non-reflective 

opaque white acetate spheres of diameter 1.50 mm were arranged at their densest two-

dimensional packing and photographed at various magnifications, i.e. at various PPD. 

Figure 7.8 shows the photos of the densely packed white acetate spheres at PPD = 29.8 

and 62.7 along with their corresponding Canny edge maps. As expected, particle contacts 

resulted in missing edges, particularly at the lower PPD. It should be noted that although 

the particles were very uniform in size, no lateral confinement could be applied to the 

two-dimensional assembly, and thus some of the particles were not in contact. This 
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Figure 7.8   Image of white acetate spheres used for developing EPD model (left) with their edge maps (right). 
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resulted in separate completed edges for both particles at such points. The EPD values for 

the acetate spheres are shown by the open points in Figure 7.7 for comparison to the 

theoretical model. Excellent agreement was observed and thus, the experimental EPD 

data completes the model for PPD values other than 8, 16, 32 and 64. 

A comparison of the two dimensional EPD model with the previously shown EPD for 

real three-dimensional soil assemblies is shown in Figure 7.9. When PPD is greater than 

about 12 the model under-predicts the EPD while for PPD below 12 the model over-

predicts EPD.  Both observed differences are explainable. At high PPD, meaning large 

soil grains and/or high magnification, the images capture significant gray scale variations 

(texture) within the particle as previously discussed. The texture produces false internal 

edges resulting in an increased EPD. By contrast, the uniform-colored, non-reflecting 

acetate spheres produce no false internal edges, and thus exhibit a lower EPD. At low 

PPD, meaning, small soil grains and/or low magnification, while the actual EPD of real 

soil is higher than at high PPD, it is lower than the two dimensional model predictions. In 

the two dimensional model, the theory assumed, and the acetate spheres confirmed, a 

measurable gray scale contrast between the particles and the background seen through the 

voids. In real three dimensional soil assemblies, no such large contrasting background 

exists because there are other particles in the background. These real background 

particles, as well as other neighboring particles, often exhibit similar grayscales to the 

foreground grains. Thus, at low PPD, many edges between similar gray-scaled particles 

go undetected because the contrasting “edge” is too thin relative to the pixel size to create 

a perceptible gray scale gradient. The result is that at low PPD, the EPD of real soils is 

smaller than the EPD of the model. 
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Figure 7.9   Comparison of EPD of real 3-dimensional soil assemblies with EPD of ideal 
                   two dimensional packing of acetate spheres. 
 

7.6   False Edge Removal 

 

Even though there are differences between EPD by the two dimensional model 

and real three dimensional soil assemblies, at low PPD, the slope of the real soil EPD vs. 

PPD curve shown in Figure 7.9, is large enough to make EPD a reliable predictor of 

grain size. However, at high PPD, the curve flattens and thus, the predicted PPD 

becomes undesirably more sensitive to changes in EPD. An attempt was therefore made 

to correct the EPD of real soils to better agree with the model prediction. Since false 

internal edges due to soil texture were believed to be the primary cause of the 

discrepancy, an algorithm was devised to remove the false internal edges. Two different 

false edge removal methods based on the length and geometry of edge segments are 
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presented in the following sections. Revised EPD versus PPD calibration charts that 

account for the edges removed by the methods are presented. 

 

7.6.1   False Edge Removal Based on the Number of Connecting Pixels of Edge 
           Segments 
 

The guiding principles of the method are that false internal edges are shorter than 

those representing real particle boundaries and that the detected real particle boundaries 

are longer than the particle diameter. Both of these principles can be confirmed by 

observing the edge maps shown in the middle column of Figure 7.10. The author 

therefore established a first estimate of PPD as the minimum edge length that should be 

retained in an edge map. The first estimate of the PPD is made using the original Canny 

edge detector and the EPD versus PPD curve shown in Figure 7.5 or Table 7.1. All edges 

shorter than the first PPD estimate are then removed resulting in edge maps such as 

shown in the right column of Figure 7.10. 

 

Table 7.1: The first estimate of the PPD from the original EPD versus PPD curve. 

Initial EPD Initial PPD Initial EPD Initial PPD 

0.09 52 0.17 13 

0.10 49 0.18 11 

0.11 47 0.19 9 

0.12 45 0.20 7 

0.13 25 0.21 6 

0.14 21 0.22 5 

0.15 18 0.23 4 

0.16 15 0.24 3 
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Figure 7.10   Edge maps before and after the removal of false internal edges for three different PPD. 
                     The original images are in the left column. The central column shows edge maps prior to removal. 
                     The right column shows edge maps after removal based on the number of connecting pixels of edge segments. 
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The new short-edge-removed EPD versus PPD calibration curve is shown in 

Figure 7.11. It better agrees with the theoretical model prediction (Figure 7.9) at high 

PPD values. More importantly, it provides a larger range of EPD values over the range of 

PPDs. As such, it affords superior resolution to the original pre-false edge removal 

calibration curve (Figure 7.5). In addition to removal of false short edges due to the 

inherent particle textures associated with cracks, mineral variations and other blemishes, 

the short edge removal reduces or eliminates edges created by light reflections. It is also 

observed that the statistical spreading (vertical error bars) in EPD values is smaller after 

removal of the short false edges (Figure 7.11) than it was in the original Canny Method 

(Figure 7.5). Finally, if short edges are removed, the effects of pixel-sized image noise 

are automatically filtered out thereby justifying the elimination of earlier pre-filtering. 

The benefit of not deploying a filter prior to Canny edge detection is that the images 

retain their crisp sharp edges for analysis. 

A best-fitting mathematical expression for the EPD versus PPD curve is 

hyperbolic: 

 

21714.2 EPD
EPD

PPD −=                                                                                             (7.3) 

 

It is best visualized by plotting the reciprocal of EPD versus PPD as shown in Figure 

7.12. For PPD greater than about 20, the curve approaches the linear asymptote, PPD = 

2.4/EPD.  Extrapolation of the relationship 2.4/EPD beyond PPD = 60 would appear to 

be acceptable. However, at the 558 pixel by 380 pixel image used in this study, PPD =  
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Figure 7.11   The relationship between EPD and PPD obtained after removing false 
internal edges based on the number of connecting pixels of edge segments. 

Figure 7.12   The relationship between reciprocal EPD and PPD with the removal of 
internal false edges based on the number of connecting pixels of edge segments. 

0.00

0.05

0.10

0.15

0.20

0.25

0 10 20 30 40 50 60 70

Pixel Per Diameter (PPD )

Ed
ge

 P
ix

el
 D

en
si

ty
 (E

PD
)

16-18 Griffin, IN
18-20 Griffin, IN
20-25 Griffin, IN
25-30 Griffin, IN
25-30 Muskegon, MI
30-40 Muskegon, MI
40-50 Muskegon, MI
70-80 Ann Arbor, MI
100-140 Ann Arbor, MI
140-170 Ann Arbor, MI

PPD  = 
2.4

EPD
    1 - 17EPD2

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70

PPD

1/
EP

D

PPD  = 
2.4

EPD
    1 - 17EPD2

PPD  = 
2.4

EPD



 

 145 

60 represents only about 50 soil particles. Thus, larger image sizes are recommended to 

maintain statistical validity beyond PPD = 60. 

 

7.6.2   False Edge Removal with Consideration of Geometry of Edge Segments 

 
As seen in Figure 7.10, some false edges are not removed because the previously 

described false edge removal method uses the number of connecting pixels of individual 

edge segments as the indicator of edge length without considering their geometrical 

features (shape). Figure 7.13 shows an edge map of a single soil grain having PPD of 15 

before and after the false edge removal based on the number of connecting pixels of edge 

segments. Within the soil grain, there are two false edge segments having the same length 

in their longest axes. However, only one of them is removed from the edge map after 

false edge removal since the other edge contains more than 15 pixels. This observation 

suggests that the method of false edge removal could be more effective if the geometry or 

shape of edge segments is taken into consideration. 

Since even the longest dimension of an area bounding a false edge can not exceed 

the grain diameter, false edge removal should be performed by first measuring the longest 

dimension of such bounding areas. The simplest shape to bound an object is an ellipse 

and the procedure is known as elliptical fitting. The major axis of the ellipse defines the 

longest dimension of the object. Quantification of the longest and shortest dimensions 

and orientation by elliptical fitting is widely used for pattern recognition in image 

analysis and computer vision (Jain, 1989; Russ, 1995). 

An area-based elliptical fitting method uses the normalized second order central 

moments of an object in finding the best-fit ellipse (Hu, 1962; Jain, 1989; Haralick and 
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Figure 7.13   Disadvantage of false edge removal method based on the number of connecting pixels of edge 
                     segments a) before false edge removal; b) after false edge removal. 
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Shapiro, 1992) and equalizes the normalized second order central moments of the object 

with those of the best-fit ellipse. The normalized second order central moment of an 

object is defined as its second order central moments divided by its area. 

Equations 7.4.1 and 7.4.2 show how the major and minor axis lengths of an 

ellipse are expressed in terms of their normalized second order central moments. The 

derivation of the equations can be found in Haralick and Shapiro, 1992. 

 

( ) 22 4
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lengthaxisMajor
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=                                       (7.4.1) 

( ) 22 4
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=                                          (7.4.2) 

 

where uxx, uyy, and uxy are normalized second order central moments of an object with 

respect to horizontal axis, vertical axis, and center of the ellipse, respectively. 

For the purpose of area-based elliptical fitting of edge segments, one single pixel 

is considered as a square unit whose dimension is 1 by 1 and thus, has an area of 1. Its uxx, 

uyy, and uxy are 1/12, 1/12, and 0, respectively. An example of area-based elliptical fitting 

of an edge segment is shown in Figure 7.14. The expressions for its uxx, uyy, and uxy are: 
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Pi = (xi, yi)                           Area of one pixel (A) = bh = 1 
P1 = (x1, y1) = (7,4)             Total area of the edge (Atotal) = 8bh = 8 
P2 = (x2, y2) = (5,5)             The center of the edge, Pc = (xc, yc)  
P3 = (x3, y3) = (6,5)             Second order central moment of a pixel  
P4 = (x4, y4) = (7,5)                 with regard to its x axis (Mxx) = bh3/12 = 1/12 
P5 = (x5, y5) = (8,5)             Second order central moment of a pixel  
P6 = (x6, y6) = (9,5)                 with regard to its y axis (Myy) = hb3/12 = 1/12 
P7 = (x7, y7) = (4,6)             Product of inertia of a pixel  
P8 = (x8, y8) = (7,6)                 with regard to its center (Mxy) = 0 

 
 

Figure 7.14   An example of area based elliptical fitting. 
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where A, Atotal, xc, yc, Mxx, Myy, and Mxy are defined in Figure 7.14. 

After the longest dimension of an edge segment is measured by the elliptical 

fitting method, the edge is removed if its longest dimension is shorter than the first 

estimate of PPD. Figure 7.15 compares false edge removal based on the number of 

connecting pixels with the elliptical fitting method. It is clearly seen that the elliptical 

fitting method has a better ability to remove false edges. 

The EPD versus PPD calibration curve utilizing the elliptical fitting method for 

false edge removal is shown in Figure 7.16. A best-fitting mathematical expression for 

calibration curve is: 

 

( ) 85.0216195.1 EPD
EPD

PPD +





 +=                                                                                (7.4) 

 

It better agrees with theoretical EPD model prediction than the EPD versus PPD 

calibration curve shown in Figure 7.11. Also, it should be noted that the statistical spread 

in EPD values decreases. For better visualization, the reciprocal of EPD versus PPD is 

plotted as shown in Figure 7.17. For PPD greater than about 30, the EPD versus 
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Figure 7.15   Comparison of the two false edge removal methods. The original images are in the left column.  
                      The central column shows edge maps after false edge removal based on the number of connecting  
                      pixels of edge segments. The right column shows edge maps after false edge removal by area-based  
                      elliptical fitting. 
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Figure 7.16   The relationship between EPD and PPD obtained after removing false 
internal edges by area-based elliptical fitting method. 

 

Figure 7.17   The relationship between the reciprocal of EPD and PPD with removal of 
false internal edges by area-based elliptical fitting method. 
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PPD curve approaches the linear asymptote. Therefore, when PPD is larger than 60 the 

extrapolation of the relationship, 1.5/EPD + 9, would appear to be acceptable. 

 

7.7   Conclusions 

 

A procedure based on edge pixel density (EPD) has been developed for 

estimating the nominal grain size of soils from images of relatively uniform particles. The 

best edge detection for assemblies of uniform soil grains is based on a modified Canny 

algorithm. The modifications presented herein include elimination of noise filtering prior 

to edge detection and removal of short false edges after edge detection. Short edges are 

those that are less than the particle diameter in length. This requires a first estimate of the 

PPD from a preliminary pre-short-edge-removed EPD versus PPD curve. 

Two different methods are used to remove false edges. In the first method, an 

edge is considered as a false edge and removed if it consists of a fewer number of pixels 

than the first estimate of PPD. In the second method, the longest dimension of an edge is 

measured by area-based elliptical fitting and edges are removed if their longest dimension 

is smaller than the first estimate of PPD. The second method is more effective in 

identifying false edges than the first method. 

The results for real soils are compared to a theoretical model based on the 

assumption that contacting grains produce missing edges, particularly at low PPD. The 

theoretical model was verified by EPD analysis of images of uniform 1.50 mm acetate 

spheres arranged in perfect two-dimensional dense packing.  Deviations between the two 

dimensional model and real three-dimensional soil grain assemblies are explained. The 
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final product of this study is a mathematical expression for PPD as a function of EPD 

given by Equation 7.4. For PPD above about 30, the model asymptotically approaches 

PPD = 1.5/EPD + 9. 
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CHAPTER VIII 

Sedimaging Results and Analysis 
 

 

 

8.1   Introduction 

 

The three essential components of the Sedimaging method for soil grain size 

distribution determination were addressed in the previous chapters. Chapter III discussed 

the physical apparatus for segregation of soil grains by size, the imaging device, and the 

test procedure. Chapter IV evaluated void ratio variations in the sedimented soil column 

and showed that the variations are insignificant. As such, each increment of height in the 

soil column corresponds to a proportional percentage of the soil solids. In Chapter V, VI 

and VII, three different image processing techniques were presented for determining the 

size of approximately uniform soil grains at each increment of height in the soil column. 

This chapter integrates all the findings and procedures from the previous chapters to 

determine the soil grain size distribution by Sedimaging. The results are compared with 

sieve analysis throughout. Also, later in this chapter, a simplified test based on 

Sedimaging is suggested to classify soil according to the AASHTO system. 
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8.2   Sedimaging Results 

8.2.1   Preparation of Soil Specimens 

 
The soils used in the Sedimaging tests were collected from two different sites; a 

glacial deposit on the campus of the University of Michigan in Ann Arbor, MI;  and a 

sand quarry in Griffin, IN. Each soil was initially air-dried and 200g of it was sieved for 

20 minutes at a time using U.S. standard sieve No. 14, 16, 20, 30, 40, 50, 60, 70, 80, 100, 

140, 170, and 200. Following shaking with mechanical shakers, the soil remaining on 

each sieve was washed to make sure that no soil aggregations remained and no fines were 

attached to larger sand grains. The washed soil was air-dried and sieved by hand until no 

soil grains smaller than the sieve opening remained on each sieve. The segregated soil 

particles were then combined in pre-determined percentages by weight for Sedimaging. 

Each of the 16 vertical chutes of the soil release box was filled with approximately the 

same weight fraction of the specimen. The distance between the water surface in the 

sedimentation column and the bottom of the soil release box was 7.6 cm (3 in.). 

 

8.2.2   Results of Sedimaging and Comparison with Sieve Analysis 
 

A Sedimaging test was performed on a 400g soil specimen of a relatively uniform, 

poorly graded sand collected from Ann Arbor, MI (AA-P). The sedimented soil column 

shown in Figure 8.1 was imaged by the CCD camera (Pulnix model TM-7CN) at a 

magnification level of 44.7 pixel/mm. Wavelet decomposition, pattern spectrum, and 

edge pixel density image processing methods were applied to each 256 pixel increment of 

height in the soil column to compute the wavelet soil grain size index (CA), the 
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Figure 8.1   Sedimented soil column of 400g of soil collected from Ann Arbor, MI  

 (AA-P soil).The soil column image was taken at a magnification of 44.7 
pixel/mm.Coefficient of Uniformity (Cu) of the soil is 2.86. 

 

106 mm
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structuring element size at spectrum peak (SP), and the edge pixel density (EPD). 

Elliptical fitting as described in Chapter VI was used to remove false edges when 

computing EPD. The CA, SP, and EPD, were used in Equations 5.15, 6.11, and 7.5 to 

compute the corresponding PPDs. The soil grain size distributions by Sedimaging are 

shown versus elevation in the soil column in Figure 8.2. The sieve analysis based soil 

grain size distribution is also shown in Figure 8.2 for comparison. For constructing the 

sieve analysis based curves, it was assumed that the grain sizes between any two 

successive sieves were linearly distributed by weight. 

In the top half of the soil column where PPD is small, the computed soil grain 

size by the wavelet decomposition and pattern spectrum methods showed excellent 

agreement with the sieve based size. However, the computed soil grain size by the edge 

pixel density method showed some deviation from the sieve based distribution near the 

top of the soil column. This deviation may be due to the fact that, at small PPD, relatively 

large statistical spreads of EPD are observed in the EPD versus PPD calibration (Figure 

7.16). The other two soil grain size calibrations, CA versus PPD (Figure 5.21) and SP 

versus PPD (Figure 6.11), have smaller statistical spreads in the small PPD range. 

Figure 8.3 compares the traditional log-scale grain size distribution curves by 

Sedimaging with sieve analysis. Table 8.1 lists several soil grain size distribution 

parameters (D10, D30, D50, and D60) for comparison. The computed Coefficients of 

Uniformity (Cu) and Coefficients of Gradation (Cz) are also provided in the table. The 

parameters determined from the wavelet decomposition and pattern spectrum methods 

match very well with sieve results while those from the edge pixel density method do not 

match as well. 
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Figure 8.2   The computed soil grain size indices (CA, SP, and EPD), the corresponding PPD, and soil grain size 
                  are shown versus elevation of the soil column image of the AA-P soil. 
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Figure 8.3   Traditional log-scale soil grain size distribution of the AA-P soil by 

Sedimaging using a) the wavelet decomposition method, b) the pattern 
spectrum method, and c) the edge pixel density method. 
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Table 8.1: Comparison of grain size distribution parameters for the AA-P soil. 
 

 Sieve 
analysis 

Wavelet 
decomposition 

Pattern 
spectrum 

Edge pixel 
density 

D10 (mm) 0.14 0.13 0.14 0.20 
D30 (mm) 0.22 0.20 0.25 0.23 
D50 (mm) 0.32 0.28 0.28 0.28 
D60 (mm) 0.40 0.38 0.40 0.39 

Cu = D60/D10 2.86 2.92 2.58 1.95 
Cz = D2

30/D60D10 0.86 0.81 1.12 0.68 
 

Two more Sedimaging tests were performed using 500g and 450g of soil 

collected from Griffin, IN and Ann Arbor, MI, respectively. The 500g Griffin soil (GR-P) 

was finer but also more poorly graded than the soil (AA-P) shown in Figure 8.1. The 

450g Ann Arbor soil (AA-W) is coarser and better graded. The camera magnifications for 

the two tests are slightly different; 47.5 pixel/mm was used for the GR-P soil and 46.8 

pixel/mm was used for the AA-W soil. The soil column images for the two soils are 

shown in Figures 8.4 and 8.7. Figures 8.5 and 8.8 show the CA, SP, EPD, and 

corresponding PPDs versus depth in the soil column. Figures 8.6 and 8.9 compare log-

scale grain size distribution curves by Sedimaging with sieve analysis. The Sedimaging 

results are summarized in Tables 8.2 and Table 8.3. 

The GR-P soil showed excellent agreement between wavelet decomposition, pattern 

spectrum and sieve based size distributions. However, soil grain size distribution by the 

edge pixel density method exhibited two spurious data points at approximately 1400 and 

3700 pixels from the bottom of the soil column. It was observed in the soil column image 

shown in Figure 8.4 that the humps were not due to poor soil segregation. Instead, this 

deviation was due to an overly high first estimate of PPD, which was used as the 

minimum edge length that should be retained in an edge map. The overly high first 
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Figure 8.4   Sedimented soil column of 500g of soil collected from Griffin, IN  

 (GR-P soil).The soil column image was taken at a magnification of 47.5 
pixel/mm.Coefficient of Uniformity (Cu) of the soil is 2.20. 
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Figure 8.5   The computed soil grain size indices (CA, SP, and EPD), the corresponding PPD, and soil grain size 
                   are shown versus elevation of the soil column image of the GR-P soil. 
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Figure 8.6   Traditional log-scale soil grain size distribution of the GR-P soil by 

Sedimaging using a) the wavelet decomposition method, b) the pattern 
spectrum mehtod, and c) the edge pixel density method. 
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Figure 8.7   Sedimented soil column of 450g of soil collected from Ann Arbor, MI  

 (AA-W soil).The soil column image was taken at a magnification of 46.8 
pixel/mm.Coefficient of Uniformity (Cu) of the soil is 6.36. 

 
 

118 mm



 

 

             165 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 8.8   The computed soil grain size indices (CA, SP, and EPD), the corresponding PPD, and soil grain size 
                   are shown versus elevation of the soil column image of the AA-W soil. 
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Figure 8.9   Traditional log-scale soil grain size distribution of the AA-W soil by 

Sedimaging using a) the wavelet decomposition method, b) the pattern 
spectrum mehtod, and c) the edge pixel density method. 
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Table 8.2: Comparison of grain size distribution parameters for the GR-P soil.  
 

 Sieve 
analysis 

Wavelet 
decomposition 

Pattern 
spectrum 

Edge pixel 
density 

D10 (mm) 0.15 0.11 0.14 0.11 
D30 (mm) 0.23 0.21 0.23 0.27 
D50 (mm) 0.30 0.28 0.30 0.30 
D60 (mm) 0.33 0.30 0.33 0.34 

Cu = D60/D10 2.20 2.73 2.36 3.09 
Cz = D2

30/D60D10 1.07 1.34 1.15 1.95 
 

Table 8.3: Comparison of grain size distribution parameters for the AA-W soil.  
 

 Sieve 
analysis 

Wavelet 
decomposition 

Pattern 
spectrum 

Edge pixel 
density 

D10 (mm) 0.11 0.14 0.13 0.18 
D30 (mm) 0.28 0.39 0.28 0.28 
D50 (mm) 0.51 0.65 0.48 0.55 
D60 (mm) 0.70 0.81 0.59 0.68 

Cu = D60/D10 6.36 5.79 4.54 3.78 
Cz = D2

30/D60D10 1.02 1.34 1.02 0.64 
 

 

estimate of PPD removed some true edges of soil grains and resulted in lower EPD and 

thus larger determined soil grain size than it should have been. The overly high first 

estimate of PPD was attributed to the Canny edge detector’s misinterpretation of very 

weak but true soil grain boundaries as false edges. 

The AA-W soil shown in Figure 8.7 exhibited larger deviations from sieve based 

size distributions than the other two other soils did. This is partly attributed to the 

increasing statistical spread of soil grain size indices with increasing PPD in the CA 

versus PPD and in the SP versus PPD calibration models as well as the decreasing EPD 

resolution with increasing PPD in the EPD versus PPD calibration model. Despite this, 
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the soil grain size differences between Sedimaging and sieve analysis are not significant 

on a percentage basis. 

Overall, soil grain size distribution by Sedimaging fairly well mimics sieve based 

grain size distribution. In particular, the wavelet decomposition and pattern spectrum 

methods demonstrated their suitability to Sedimaging. However, the edge pixel density 

method’s implementation into Sedimaging was not as successful as the other two 

methods for the following reasons: 1. Weak but true soil grain boundaries are often not 

interpreted as true edges by the Canny edge detector. So, if an image contains such soil 

grain boundaries the EPD will be underestimated. That could result in a significant 

difference between soil grain size estimated from EPD and the actual soil grain size. 2. 

Not all the first estimates of PPD used for false edge removal are accurate. In some cases, 

when a 256 pixel increment of height includes highly uniform sized soil grains like the 

images used to develop the EPD versus PPD model, the first estimate of PPD identifies 

false edges with high precision. In other cases when a 256 pixel increment contains less 

uniform sized soil grains, the first estimate of PPD is not accurate and thus, the removal 

of false edges is poor. A smaller pixel increment than 256 could be used to accommodate 

highly uniform sized soil grains. However, such a pixel increment contains less number 

of particles, which leads to poor statistical validity of EPD. 

 

8.2.3   Identification of Problem Soils and Solutions 
 

Problems may develop with some gap-graded soils. The sedimented soil column 

of a gap-graded soil will show abrupt change in soil grain size in the size distribution 

curve. The change can be characterized by a distinct boundary between finer and coarser 
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soil grain textures. Soil images that contain such boundaries are problematic to soil grain 

size analyses. Also, in Sedimaging the finer soil grains may infiltrate the skeleton of the 

coarser material below. The depth and amount of penetration of the finer grains into the 

coarser skeleton will increase with the size of the gap in the size distribution. Gap graded 

soils therefore were tested to assess the magnitude of the problems and, if necessary, to 

find a solution. 

It is known that when an image includes two different sizes of soil grains, the 

computed CA represents a weighed average size based on the image area each soil grain 

size occupies. So, if a 256 pixel increment of height in a soil column image contains a 

boundary between two different particle sizes an imaginary intermediate grain size will 

be computed. Figure 8.10 shows the computed CA and the grain size distribution of a 

double gap-graded soil. The double gap-graded soil specimen was prepared by collecting 

three sizes of soil grains, which were retained between the No. 16 and 18, No. 40 and 50, 

and No. 140 and 170 sieves, respectively. A total of 400g of soil solids having 133.3g of 

each size was used for Sedimaging. The camera magnification was set at 43.8 pixel/mm.  

As shown in Figure 8.10, at the interface of two dissimilar grain sizes the 

computed CA represents an average of the two sizes. This problem can be easily solved 

by keeping a 256 pixel increment of height from containing the boundary between finer 

and coarser soil grains.  

If a soil is gap-graded and the grain size difference between finer and coarser soil 

grains is very large, the finer soil grains will sediment into the pores of the coarser soil 

below. Then, the finer soil showing through the glass column would not represent its 

actual volume. Rather, the volume of finer soil could be somewhat exaggerated because 
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Figure 8.10  a) CA, PPD, and soil grain size versus elevation of the soil column of a 400g  
                    double gap-graded soil. b) soil column image taken at the magnification level 
                    of 43.8 pixel/mm. c) soil grain size distribution by Sedimaging and sieving. 
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pore spaces between the glass column and the uppermost coarser grains may be 

filled with the finer material and thus, some fraction of the uppermost coarser soil is 

hidden behind the finer particles.  

A severely gap-graded soil was prepared and sedimented to observe the behavior 

of the fine soil in the boundary area and see its effect on the grain size distribution curve. 

The soil specimen consisted of two different sized soil grains, 200g of soil retained 

between the No. 16 and 18 and 200g of soil between the No. 140 and 170. Some of the 

finer soil grains infiltrated the pores of the coarse grains and thus the boundary between 

the finer and the coarser material is not as much distinct as in the double gap-graded soil, 

where the difference in particle size across both boundaries was smaller.  

The lack of a distinctive boundary between the finer and the coarser grains made 

it too difficult to maintain a 256 pixel increment of height in the area where uniform soil 

particles are. As shown in Figure 8.11, the resulting CA value at the top of the coarser soil 

deposit is smaller than the expected due to the characteristic of CA representing a 

weighed average of the two sizes.  

No noteworthy exaggeration of the finer soil volume is observed from the 

Sedimaging result shown in Figure 8.11. Instead, if the gap between the finer and the 

coarser is larger more of the finer soil grains would infiltrate the coarser soil below and 

thus, there would possibly be an exaggeration of the finer soil volume. In such a case, the 

amount of the finer soil infiltration should be also quantified for determining correct soil 

grain size distributions by Sedimaging. Fortunately, however, such severely gap-graded 

soils are not common in nature (they are most likely to be found in a research laboratory). 
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Figure 8.11 a) CA, PPD, and soil grain size versus elevation of the soil column of a 400g  
                 severely gap-graded soil. b) soil column image taken at the magnification level 
                 of 42.3 pixel/mm. c) soil grain size distribution by Sedimaging and sieving. 
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Furthermore, even “silty gravels” generally possess a sufficient fraction of intermediate 

sized material to form a natural filter between the gravel and silt during sedimentation. 

 

8.3  Application of Sedimaging for ASSHTO Soil Classification 

 

This section discusses a simple method based on Sedimaging to rapidly obtain the 

volume fractions of soils in the four grain size ranges needed to fully classify AASHTO 

soils in the A-1 and A-3 Groups, that is, soils with predominantly coarse-grained 

materials. Classification of soils in all other groups A-4 to A-7 also requires knowledge 

of the percentage passing the No. 200 sieve and separation of the minus No. 40 fraction 

for Atterberg limits testing. The method facilitates both tasks.  

 

8.3.1   Soil Percentage for ASSHTO Classification 
 

Digital soil grain size analysis by the three image processing techniques (wavelet 

decomposition, pattern spectrum, and edge pixel density) lends itself particularly well to 

the AASHTO soil classification system. This is because all of the images can be taken at 

a single fixed camera magnification of 32.5 pixels per image millimeter. At 32.5 pix/mm, 

the No.10 sieve opening of 2.00 mm corresponds to PPD10 = 65.0; the No. 40 sieve 

opening of 0.425 mm corresponds to PPD40 = 13.8; and the No. 200 sieve opening of 

0.075 mm corresponds to PPD200 =  2.4. From the CA versus PPD calibration shown in 

Figure 5.21, the CA values corresponding to PPD10, PPD40 and PPD200 are CA10 = 5.1, 

CA40 = 3.9 and CA200 = 2.9 respectively. From the SP vs. PPD and EPD vs. PPD 

calibration (Figure 6.11 and Figure 7.16, respectively), the SP and EPD values 
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corresponding to PPD10, PPD40 and PPD200 are SP10 = 71.6 & EPD10 = 0.026, SP40 = 

15.7 & EPD40 = 0.144, and SP200 = 3.3 & EPD200 = 0.235, respectively. These values are 

summarized in Table 8.4 for quick reference.  

 

Table 8.4: CA, SP, EPD, and PPD at image magnification of 32.5 pixel/mm for the 
critical sieve openings based on Figure 5.21, Figure 6.11, and Figure 7.16. 

 
Sieve No. Opening size (mm) PPD CA SP EPD 

10 2.000 65.0 5.1 71.6 0.026 
40 0.425 13.8 3.9 15.7 0.144 
200 0.075 2.4 2.9 3.3 0.235 

 

 

8.3.2   Three Point Imaging (TPI) for ASSHTO Soil Classification 
 

Unlike the Unified Soil Classification system which may require information of 

the grain size distribution curve above the No. 10 sieve and below the No. 200 sieve for 

computation of the coefficients of uniformity and gradation, the AASHTO system 

requires only the percentages of soil in the four zones shown in Figure 8.12. Therefore, 

the only task for image processing is to locate the height in the sedimented soil column at 

which the soil grain size index (CA, SP, and EPD) values corresponding to PPD10, PPD40, 

and PPD200 are found. The procedure can appropriately be called the Three Point 

Imaging (TPI) test for AASHTO Soil Classification. 

 

8.3.3   Example Soil Classification by Three Point Imaging Test 
 

A well graded sand with approximately 16% “fines” and 18% “coarse sand & 

gravel” was used to demonstrate the TPI test efficiency. The percentages of the soil in the 
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Figure 8.12   Soil regions by type, PPD and soil grain size index for a fixed magnification. 
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four zones (“fines”, “fine sand”, “medium sand”, and “coarse sand & gravel”) are 

provided in Figure 8.13. Also, the distributions from the sedimented soil column are 

shown in Figure 8.13. The soil column height can be expressed in image pixels or actual 

distances. While image pixels are used as the unit of measure they are easily converted to 

millimeters by dividing the pixels by the fixed image magnification of 32.5 pixel/mm. In 

Figure 8.13, CA10 was found at a height of 810 pixels (24.9 mm), CA40 was found at 2080 

pixel height (64.0 mm) and CA200 was observed at 3490 pixel height (107.4 mm). SP10 

was found at 570 pixel height (17.5 mm) while no “coarse sand & gravel” was not 

observed by the edge pixel density method. SP40 & EPD40 were found at a height of 2170 

& 2120 pixels (66.8 & 65.2 mm) and SP200 & EPD200 were observed at 3450 & 3722 

pixel height (106.2 & 114.5 mm). With an overall sedimented soil column height of 4096 

pixels (126.0 mm), the percentages of the four soil sizes are easily computed. The image 

based results are compared with the sieve analysis, as shown in Figure 8.13. They are in 

very good agreement with those from sieving, except the result by the edge pixel density 

method which missed the “coarse sand & gravel” soil fraction. By the AASHTO system, 

the soil would be classified as A-1-b. ASTM D-3282 would describe it as “material 

consisting predominantly of coarse sand, either with or without a well-graded binder”. 

A second test was performed on a poorly graded sand. The results are presented in 

Figure 8.14. Once again, when the wavelet decomposition and pattern spectrum methods 

are used, the image-based results show very good agreement with the sieving result. The 

observed percentages of the various soil sizes by the three image processing methods are 

within approximately 2% of the sieving result. By the AASHTO system, the soil is 
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Figure 8.13   Three Point Imaging test results on a well graded sand and their comparisons with sieve analysis. 

 

 Sieve analysis Wavelet decomposition Pattern spectrum Edge pixel density 
% fines (silt & clay) 15.8 14.8 15.8 9.2 
% fine sand 34.2 34.4 31.1 39.1 
% medium sand 31.9 31.0 39.2 51.7 
% coarse sand & gravel 18.1 19.8 13.9 0 
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Figure 8.14   Three Point Imaging test results on a poorly graded sand and their comparisons with sieve analysis. 

 

 Sieve analysis Wavelet decomposition Pattern spectrum Edge pixel density 
% fines (silt & clay) 2.1 0 3.3 0 
% fine sand 56.2 54.5 56.0 58.9 
% medium sand 39.6 42.3 40.7 41.1 
% coarse sand & gravel 2.1 3.2 0 0 
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classified as A-3. This is typically a fine beach sand or fine desert blown sand without 

silty or clay fines, or with a very small amount of non-plastic silt. 

 

8.3.4   One Point Imaging Test for Silty or Clayey Soils 
 

The key value for classification of soils in AASHTO groups A-2, A-4, A-5, A-6, 

and A-7 is the percent passing the No. 200 sieve. If 35% or less of the material passes the 

No. 200 sieve the soil is in the broad A-2 grouping with further refinement into 

subgroups A-2-4, A-2-5, A-2-6, or A-2-7 based on Atterberg limits.  If 36% or more of 

the material passes the No. 200 sieve the soil is A-4, A-5, A-6, or A-7 depending on the 

Atterberg limits. As such, to make the “35% determination” by imaging, only the depth at 

which the soil grain size index corresponding to PPD200 (CA200 = 2.9; SP200 = 3.3; EPD200 

= 0.235) in the sedimentation column must be determined.  If this depth is more than 

35% of the way down from the surface the soil is a silt or clay.  Depending on the 

Atterberg limits the soil would be A-4, A-5, A-6, or A-7. 

If more than 10% of a soil passes the No. 200 sieve, AASHTO soil classification 

calls for Atterberg limits tests to be performed on the soil fraction passing No. 40 sieve. 

This requires splitting the original soil sample to perform both sedimentation imaging and 

the Atterberg tests. Alternatively, soil may be recovered from the sedimented column to 

the depth of the soil grain size index corresponding to PPD40 (CA40 = 3.9; SP40 = 15.7; 

EPD40 = 0.144). As a practical matter, it is recommended to remove a bit more soil and 

washing it over the No. 40 sieve to collect the soil for the Atterberg tests. 

The results on a sandy silt are shown in Figure 8.15. The pixel heights 

corresponding to CA200, SP200, and EPD200 are 1408, 1400, and 1152, respectively. With a 
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Figure 8.15   Three Point Imaging test results on a sandy silt and their comparisons with sieve analysis. 

 

 Sieve analysis Wavelet decomposition Pattern spectrum Edge pixel density 
% fines (silt & clay) 63.6 65.1 65.4 71.5 
% fine sand 36.4 34.9 34.6 28.5 
% medium sand 0 0 0 0 
% coarse sand & gravel 0 0 0 0 
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measured total specimen height of 4040 pixels, the computed fines content by the wavelet 

decomposition and pattern spectrum method is 65.1% and 65.4%, respectively, in very 

good agreement with 63.6% observed by sieving. The fine content determined by the 

edge pixel density method is 71.5%. The soil is A-4, A-5, A-6, or A-7 depending on the 

Atterberg Limits. 

Overall, the Three Point Imaging (TPI) test is very well suited to AASHTO Soil 

Classification. However, the edge pixel density method’s implementation into the TPI 

test was not as successful as the other two soil image processing methods. Although the 

same three soil classifications by the AASHTO system were drawn from sieving and the 

TPI test with the edge pixel density method, the percentages of the three soils in the four 

zones determined by the TPI test somewhat depart from those by sieve analysis. 

Finally, in Figures 8.13 and 8.15, the CA value at the highest elevation (finest 

grain size) is uncharacteristically high. The apparent departure from the expected trend is 

due to laboratory fluorescent light illumination from above and can be fixed using a more 

uniform light source. 

 

8.4   Conclusions 

 

The information obtained from the previous chapters was combined together and 

implemented with Sedimaging. Sedimaging tests were performed on five soil specimens 

to determine their soil grain size distribution curves. Each soil specimen was sedimented 

through the water filled column to segregate it by grain size. Continuous gray scale 

images of the sedimented soil are taken at a magnification of around 45 pixel/mm. The 
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soil grain size determined by the wavelet decomposition, pattern spectrum, and edge 

pixel density methods were presented versus elevation in the column images for direct 

comparison with sieve based size distribution. The soil grain size distribution curves by 

sieve analysis and by Sedimaging with the wavelet decomposition and pattern spectrum 

methods were in good agreement. 

As for the application of the edge pixel density method to Sedimaging, the image 

processing method often produces a less reliable soil grain size index than the wavelet 

decomposition and pattern spectrum methods, as shown in the soil grain size profiles 

from Figures 8.2, 8.5, and 8.8. The reliability issue comes from the high sensitivity of the 

false-edge-removed EPD to the soil grain size uniformity in a 256 pixel increment of 

height in a given soil column image. Even if soil grains in the 256 pixel increment are 

relatively uniform, the soil grains are still more likely to have a larger size distribution 

than those in images used for developing the EPD versus PPD calibration model. In such 

a case, the chances that the false edge removal step either removes true edges or retains 

unwanted false edges increase. The sensitivity of the false-edge-removed EPD combined 

with the poorly resolved EPD in the high PPD range and the larger statistical spreading 

in the small PPD range could result in an unacceptably high or low EPD at a given soil 

column elevation. 

Potential problems of gap-graded soils were identified. The biggest problem of 

gap-graded soils is a lack of distinctive boundary between the finer and the coarser 

particles in the sedimented soil column. When such a boundary lies within a 256 pixel 

increment of height the wavelet decomposition method yields a weighted average size 

based on the fraction of the image area that each soil grain size occupies. The suggested 
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solution to such problem soils is simply to avoid having the boundary within the 256 

pixel increment of height. 

A Three Point Imaging (TPI) test based on Sedimaging was used to rapidly 

classify soils according to the AASHTO system. A sedimented soil column images is 

taken at a fixed camera magnification of 32.5 pixel/mm. At this camera magnification, 

the three critical grain sizes that separate coarse sands & gravels; medium sands; fine 

sands; and fines (i.e. sieves No. 10, 40, and 200), correspond to 65.0, 13.8, and 2.4 pixels 

per particle diameter (PPD). Each of the three critical values of CA, SP, and EPD 

corresponding to the three sieves of interest were provided in Table 8.4. AASHTO soil 

classification requires experimental determination of the three elevations in the 

sedimented soil column corresponding to the three critical soil grain size index values. 

Results of tests on a well graded sand with some silt and gravel, a poorly graded medium 

to fine sand, and a sandy silt demonstrated very good agreement between conventional 

sieve analysis and the TPI test when using the wavelet decomposition and pattern 

spectrum methods. 

The edge pixel density method produced somewhat erroneous soil grain sizes in 

both the small and large PPD ranges by comparison to sieve based soil grain size 

distributions. Therefore, it is recommended that the wavelet decomposition and pattern 

spectrum methods be used for determining soil grain size distribution with Sedimaging. 

Further research with the EPD method may improve this method’s capabilities. 
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CHAPTER IX 

Conclusions and Recommendations for Future 
Research 

 

 

 

9.1   Research Work Summary 

 

Proper classification of the earth material is essential for anticipation of soil 

behavior. For classification by either the AASHTO or the Unified Soil Classification 

system the soil grain size distribution must be determined. The grain size distribution 

provides quantitative estimates of engineering behavior of soils. This research work 

focuses on the characterization of soil grain size and size distribution of soils using digital 

image processing techniques. A new method termed “Sedimaging”, which combines 

rapid soil grain segregation by size through a water-filled sedimentation column with 

digital image processing, was developed to measure a grain size distribution. It should be 

noted that this volume-based distribution is fundamentally more appropriate for 

predicting the mechanical and hydrogeologic behavior of a soil than one based on mass. 

It is emphasized that Sedimaging does not redefine grain size or create a new 

classification system. The method requires calibrating image processing results against 

sieve based grain sizes in order to mimic traditional sieve analysis results. This is 
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important because soil classification and estimation of fundamental soil properties has a 

long tradition of being based on grain size distributions as determined by sieve analysis. 

However, Sedimaging has the potential to simplify, reduce cost and decrease the 

environmental impacts (noise, dust, energy consumption, and vibration) compared to 

sieve analysis by utilizing imaging technology to rapidly arrive at the same results.  

Development of Sedimaging consisted of three tasks. The first was to develop a 

soil sedimentation system to rapidly segregate soil grains by size and a vision system to 

capture images of the sedimented soil column. The second task was to evaluate possible 

void ratio variations with height in the sedimented soil column and to gauge the 

significance of the void ratio variations on the soil grain size distribution determined by 

Sedimaging. The third task was to develop a soil image processing technique for 

obtaining grain sizes at successive increments of height in the soil column where soil 

grains are uniform in size. 

This chapter presents the major findings from the three Sedimaging development 

tasks and draws conclusions from Sedimaging test results. Also, recommendations for 

further improvements to the Sedimaging testing method will be made. 

 

9.2   Soil Sedimentation System 

 

The segregation of soil grains by size during sedimentation is a critical step in 

Sedimaging. In the early stage of the study, a 48 inch long glass column with a 2 inch by 

2 inch cross section was built. Unfortunately, the length of the water filled column was 

not long enough to adequately segregate the soil grains by size. To improve segregation, 
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a longer, 96 inch column with the same cross section was employed. The longer column 

combined with the “battle” between upward seepage and gravitational deposition of soil 

grains provides a sufficient depositional distance to insure good segregation.  

In the early stage of the soil sedimentation system development, it was observed 

that uneven introduction of the soil into the column produced non-horizontal sediment 

surfaces. To avoid such non-horizontal layering, a soil release box was constructed. It 

contains 16 ½ inch by ½ inch vertical chutes with hinged trap doors at the bottom for 

instantaneous soil release. 

An automated motor-driven X-Z camera positioning system, which can be 

controlled remotely from a personal computer, was adopted to take digital images of 

sedimented soil column at all elevations continuously.  

 

9.3   Evaluation of Void Ratio in the Soil Column 

 

The soil grain size distribution determined by Sedimaging is inherently volume 

based. Since a soil column includes both voids and solids, void ratio variations in the 

column were assessed to determine the volume of soil solids in each 256 pixel increment 

of the soil column image. Effective stress and soil grain size are two major factors that 

have influence on void ratio distribution in the soil column. The effect of effective stress 

on the distribution of void ratio was evaluated by staged soil deposition using uniform 

grained soils. The test result showed that uniform soils do not exhibit significant variation 

of void ratio with depth. The result was also supported by sedimenting different amounts 

of uniform soil into the column and observing that the heights of the sedimented soil 
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columns were almost perfectly and linearly correlated to the weights of the uniform soil 

specimens. However, the void ratios were observed to decrease somewhat with 

increasing grain size. While corrections can easily be applied to the image-based grain 

size distributions by Sedimaging to obtain better agreement with the actual grain size 

distribution, the corrections are very small and can be neglected for practical purposes. 

 

9.4   Image Processing for Soil Grain Size 

 

Deterministic pixel counting methods for sizing individual grains in images of 

three dimensional soil assemblies are too difficult since it is practically impossible to 

obtain an optimal image threshold value for edge detection and image segmentation to 

delineate all soil grain boundaries. To overcome the shortcoming of the deterministic 

methods, three statistical soil grain size analyses based on image texture were developed 

to compute soil grain size indices. The three soil grain size analysis methods are wavelet 

decomposition, pattern spectrum, and edge pixel density. Using each method, a unique 

relationship (calibration model) between an image index and the Pixels Per Diameter 

(PPD) was established. Once the index was computed from each 256 pixel increment of 

the segregated soil column image, the corresponding PPD was determined from the 

calibration model and with known camera magnification, the soil grain size at each 

elevation of the soil column was determined. 
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Wavelet decomposition method 
 

Wavelet transformation is found to be effective in determining the particle size 

from images of three dimensional soil assemblies of uniform grains. This is because the 

mathematical transformation, which is a Multi Resolution Analysis method (MRA), is 

well suited to analyze soil images which have high (internal textures) and low frequency 

(soil grains) components for short and long durations, respectively. 

Using wavelet transformation, Shin and Hryciw (2004) developed the soil grain 

size index (CA) to determine the particle size from images of three dimensional soil 

assemblies of uniform soil grains. The CA versus PPD calibration for dry soil conditions 

was developed. Initially, the calibration was available for a range of PPD from 2 to 50 

from Shin and Hryciw (2004). In this study, the calibration was extended to a range from 

0.2 to 110 PPD. It was shown that the CA for PPD less than 1 (CA corresponding to 1 

PPD is 2.4) does not carry any useful soil grain size information. 

For implementation of the wavelet decomposition method in Sedimaging, the 

effect of water on CA was studied by using the Vision Cone Penetrometer (VisCPT) and 

the double ring soil saturator (DRSS). It was shown that water blurs internal textures 

within individual soil grains and thus increases CA. The change in CA due to water was 

evaluated for various PPD and a new CA versus PPD calibration under saturated soil 

condition was presented. 

It was also shown that CA is independent of the image capturing systems as long 

as the pixel aspect ratio is kept consistent by either digitally compressing digital images 

or by using camera systems that produce the same pixel aspect ratios. 
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Pattern spectrum method 
 

A pattern spectrum method has been developed for statistical soil grain size 

analysis as opposed to other methods that take a deterministic approach using 

mathematical morphology. The statistical pattern spectrum method eliminates the need 

for image preprocessing, such as image binarization and segmentation of individual soil 

grains. Such preprocessing is greatly influenced by operator skill. 

A Structuring Element Size (SES) at the peak of the pattern spectrum was initially 

considered to be a soil grain size index. However, due to the inherent difference in shape 

between real soil grains and diamond structuring element, the SES at peak of the pattern 

spectrum can not be used as direct indication of PPD or soil grain size. Therefore, the 

calibration, SES at the peak of the pattern spectrum (SP) versus PPD, was developed. The 

calibration showed a nice linear relationship between SP and PPD and was successfully 

applied to three dimensional soil assemblies of uniform grains. 

In the calibration model, a wide statistical spreading was observed at high PPD. 

This spread can be simply diminished when larger images are used, which is not doable 

in the wavelet decomposition method which requires a fixed image size, 256 pixel by 256 

pixel, to use the CA versus PPD calibration. 

 

Edge pixel density method 
 

An Edge pixel density (EPD) method based on a modified Canny edge detector 

was developed to determine the grain size of soils from images of three dimensional 

assemblies of uniform soil grains. A major modification made is the removal of false 
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edges (edges due to noise and internal textures) smaller than a soil grain diameter. This 

requires a first estimate of the PPD from a preliminary pre-short-edge-removed EPD 

versus PPD curve. 

Two methods were suggested to remove false edges. The first method removes a 

false edge if it consists of fewer pixels than the first estimate of PPD. The second method 

performs false edge removal based on the longest dimension of an edge segment 

determined by area-based elliptical fitting. Edges were classified as false edges if their 

longest dimension was smaller than the first estimate of PPD. It was shown that the 

second method is more effective in identifying false edges than the first method although 

it is computationally more demanding. 

 

9.5   Sedimaging 

 

Sedimaging tests with the three developed image processing techniques were 

performed on three soil specimens having different size gradations. The soil grain size in 

each specimen ranged from 0.038 mm to 2 mm. The soil grain size distribution curves by 

sieve analysis and by Sedimaging with the wavelet decomposition and pattern spectrum 

methods were generally in good agreement even if slight differences in soil grain size 

was observed in the bottom area of the sedimentation column where PPD is high. The 

difference is largely attributed to the inherent statistical spreading of CA and SP at high 

PPDs in the CA vs. PPD and the SP vs. PPD calibration models. 

The edge pixel density method produces a less accurate and reliable soil grain size 

distribution from a soil column image than the wavelet decomposition and pattern 
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spectrum methods. That would be because the false-edge-removed EPD is sensitive to 

soil grain size uniformity in a 256 pixel increment of height in the soil column image. 

Also, the sensitivity of the false-edge-removed EPD combined with the poorly resolved 

EPD in the high PPD range and the larger statistical spreading in the small PPD range 

may be the reason for an unacceptably high or low EPD values at a soil column elevation. 

A Three Point Imaging (TPI) test based on Sedimaging was used to rapidly 

classify soils according to the AASHTO system. At a fixed magnification of 32.5 

pixel/mm, the three critical soil grain size index values that separate coarse sands & 

gravels; medium sands; fine sands; and fines (i.e. sieves No. 10, 40, and 200) were found. 

AASHTO soil classification by TPI requires experimental determination of the three 

elevations in the sedimented soil column corresponding to the three critical soil grain size 

index values. Results of tests on three soil specimens having different gradations 

demonstrated very good agreement between conventional sieve analysis and the TPI test 

with the wavelet decomposition and pattern spectrum methods. However, TPI test with 

the edge pixel density method was not as successful as the other two methods. 

Sedimaging grain size distributions by the edge pixel density method consistently 

showed larger deviations from sieve based results than the other two image processing 

methods did. Therefore, it is recommended that the wavelet decomposition and pattern 

spectrum methods be used for determining soil grain sizes until further improvement to 

the EPD method can be made. 
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9.6   Recommendations for Future Research 

 

To date, Sedimaging has characterized soils with grain diameters up to 2.0 mm. 

The image processing methods developed are size and scale independent. Therefore, they 

can be used for sizing coarser aggregate. However, the Sedimaging hardware would have 

to be modified to accommodate particles at least up to 4.75 mm (No. 4 sieve) in size. A 

study needs to be performed to determine the required hardware modifications for such a 

task. It may involve design of a wider sedimentation column, although it may not need to 

be square in cross section. The sedimentation column length requirement may need to be 

reevaluated to accommodate segregation of larger grain sizes. Also, the soil release box 

needs to be modified for larger grain sizes. The air gap between the water surface in the 

sedimentation column and the bottom of the soil release box causes a large initial falling 

velocity. So, elimination of the undesirable air gap and saturation of soil specimen prior 

to release may provide better segregation of larger grain sizes. 

When a series of Sedimaging tests are to be performed, the removal of water and 

the soil specimen out of the glass sedimentation column will take up the majority of 

Sedimaging testing time since the column has to be disassembled from the support tower. 

A modified system to reduce the pre- and post-test activity is needed to make Sedimaging 

user-friendly. This can be done by building a sedimentation system which consists of two 

parts, a sedimentation tube for segregation of soil grains and a cartridge having a glass 

window for soil deposition and imaging. The tube can be fixed to a sedimentation column 

support tower while the cartridge can be disassembled from the tube for easy disposal of 
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the used soil specimen. Also, permanently fixing the position of the tube can eliminate 

the need to adjust its verticality every test. 

The number of soil grains that are actually used for the image processing 

techniques constitutes a small fraction of the overall number of grains in a typical soil 

specimen. Therefore, considerations should be given to find a way that maximizes the 

ratio of exposed surface area to volume while facilitating segregation by size. 

Currently available camera magnifications do not extend Sedimaging into the clay 

sized grains range.  However, considering the development rate of digital camera optics, 

off-the-shelf low-light digital camera optics will soon be available that will permit grain 

sizing into the micron range where 0.002 mm delineates silt-sized from clay-sized soil 

particles. Such a system will be able to extend soil classification to the upper clay-size 

particle limit. It should be noted that, when classifying the clay sized grains range, 

corrections for void ratio variations may have to be applied to the image-based grain size 

distribution since the difference in depositional void ratio for different sizes may be no 

longer insignificant in the soil grain size range. 

Sedimaging tests have been performed mostly on alluvial and glaciofluvial soil. 

The soil grains are generally sub-rounded and multi-colored. Soil of other colors 

(including uniform and translucent) and angular particle shape have not been tested. So, it 

is desirable to perform tests on various soils to see if they pose any unusual problems for 

Sedimaging. 

A digital image of the sedimented soil column can be obtained at higher 

resolution. After appropriate segmentation of non-occluded soil grains, an image could be 

used to determine particle shape and angularity. 
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It was shown that, in the high PPD range, soil grain sizes computed by the three 

image processing techniques are not in as good agreement with sieve based sizes as they 

are in the lower PPD range. That is attributed to the large statistical spreading in the 

calibration models. The statistical spreading is due to fewer soil grains included in a 256 

pixel increment of height with increasing PPD. This problem can be overcome by using 

variable magnification so that all of the PPD values fall into the range where statistical 

spreading is a minimum, although this introduces complexity to the hardware 

requirement and data acquisition. 

In this study, a fixed vertical image increment of 256 pixels was used to compute 

soil grain size indices. In some cases, the image increment could have some variation in 

size, which is not desirable. If the size of an image increment can be adjusted 

automatically depending on the uniformity of particle sizes so that each image increment 

only contains relatively uniform soil gains, more accurate Sedimaging results would be 

expected. 

Since soil with some variation in size displays a wider distribution of the 

Normalized Energy and pattern spectrum across the decomposition levels and structuring 

element sizes, respectively, than observed for uniform grains, a numerical index of the 

spread in Normalized Energy and pattern spectrum could be useful for particle size 

uniformity assessment. 
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