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INTRODUCTION

The dissertation, Repression and Network Science: Tools in Fight against
Terrorism, explores what determines post-terror repression in democracies and
what alternative tools network science may ultimately reveal to for compelling
authorities to rely on repression less. To do this three papers concentrate on some
aspect of the question at hand. The first chapter is empirical, using a panel, cross-
section design to evaluate under what conditions democracies use state terror or
state repression following terrorism. Chapter 2 takes the opposite view, using high-
powered statistics to evaluate a single case. At question is the tool in use more than
the terrorist network under inspection. Network science is fascinating,
disappointing, and daunting, offering a world of potential with few advances, in the
area of theoretical evaluation, and therefore large amount of work ahead. Chapters 2
and 3 explore various aspects of what is needed with 2 focusing on improving
methods in network statistics and 3 stressing the need for further development of
theories for testing with improved statistical models.

Chapter 1 uses the following observation as its point of departure. Countries
can respond to terrorism judicially, extrajudicially, or by doing nothing. Human
rights proponents decry extrajudicial responses as repressive and illiberal, but
advocates for such countermeasures consider them effective at promoting security
and the reason that terrorists rarely attack non-democracies. Amid this controversy,
democracies rarely use extrajudicial responses. Why do democracies moderate
responses to terrorism? Both sides of the debate claim that it is due to legislative
constraints obstructing chief executives. I argue that political ideology motivates use
repression and therefore determines its use. To test the theories, I define measures
for ideology and legislative constraint and use them on an original dataset covering
nearly 20 years of terrorism and repression in approximately 70 countries.
Empirical results show that ideology determines repression against terrorism and
conditions the effect of legislative opposition. The demonstration that ideology

interacts with governmental institutions to determine post-terror repression is the



first step to redefining a theory about which factors influence the way that
democracies negotiate security-liberty tradeoffs in the fight against terrorism.

Chapter 2 outlines a set of procedures for using exponential random graph
modeling (ERGM) to maximize the fit of network statistics models used to profile
the structure of observed networks. The procedures include sweeping the
parameter space of exponential parameters when network formulas include
statistics that have more parameters than they do sufficient statistics. Another
proposal is to use filter and rank methods for evaluating models following
estimation. Application of the methods to the analysis of the terrorist network
produced by the Jemaah Islamiyah organization in 2000 demonstrates that the
procedures perform as described.

Chapter 3 begins with the following observation as its point of departure.
News cycles today seemingly produce a consistent stream of reports on how the
latest counterterrorism efforts have resulted in the death or arrest of a terrorist
“leaders,” yet the attacks continue and new “leaders” emerge. Research has shown
religiously motivated terrorist groups are less susceptible to decapitation strategies
(Jordan, 2004), but the literature has to this point offered little explanation for how
this occurs. To argue religiously motivated or other population-based groups benefit
from community support does not shed light on how they harness these resources
and what happens to make them stop. Filling the void in the literature, this paper
provides statistical evaluations of network structure and narrative accounts of how
a terrorist group contended with successive counterterrorism efforts that
decimated its ranks but largely failed to prevent its attacks. It finds that scale-free
theory does not explain the variation in outcomes because the group never
exhibited the characteristics. Narrative analysis of the time series focused attention
on the dual aspects of dynamically growing networks and the importance of
equipping members with skills and resources prior to drawing the attention of

authorities.



CHAPTER1

How Executive Ideology and Legislative Opposition Determine

Post-Terror Repression in Democracies

L. Introduction

Between 1980 and 2000, one in four months a democracy suffered at least
one terrorist attack.! Responses to terrorism include acting judicially,
extrajudicially, or doing nothing. Judicial responses are legal actions like arresting
terrorism suspects and bringing them to trial. Extrajudicial responses are illegal
actions like killing terrorism suspects without bringing them to trial and without
just cause. Some consider repression illiberal and against norms that protect
individual rights, but others see repression as the preferred countermeasure against
terrorism.2 A frequent argument is that non-democracies use repression and that
terrorists attack them comparatively less for this reason. Some democracies seem to
have incorporated similar approaches, while others have yet to do so.

Recent cases in Western democracies seem to reinforce the argument
favoring repression. After 9/11, Spanish and American authorities coordinated
efforts to bring down a Spanish cell of radical Islamists associated with Al-Qaeda.
Wiretapped conversations recorded members like Imad Barakat Yarkas praising
Allah for the eventual strike on the United States, convincing many American
authorities that he had prior knowledge of the attack and deserved the highest

allowable punishment. Spanish law maximizes life sentences at 40 years but Yarkas

1 The statistic uses terrorism data from the Global Terrorism Database (GTD) and a composite
definition of democracy developed using indices from Polity IV and the Database on Political
Institutions.

2 For example, the debate surrounding extrajudicial killing is the belief that everyone has the right to
a fair trial before receiving a death sentence, and the belief that being a terrorist negates such rights.
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received far fewer than even that, leaving American authorities to question how
democratic policies are supposed to deter future terrorist attacks when their
punishments seem so lax. Shortly thereafter, in 2004, remnants of Yarkas’s cell
participated in the largest terrorist attack in Spanish history and emphasized that
the judicial approach proved ineffective. Compare this to democracies like France,
which grants the chief executive a considerable amount of autonomy and who uses
the equivalent of Special Forces proactively to counter threats in ways that some
consider borderline repression. The “new wave” of radical Islamist terrorism saw
strikes against the Americans (9/11), English (London Bombings), and Spanish
(Madrid Bombings), while the French remained unscathed. Repression, or at least
the ability to use it, appears to represent a clear, tactical advantage: deter terrorism
with the threat of death or other extreme punishments.

Despite the apparent advantage, democracies rarely use repression against
terrorism, which leads to my research question, “What determines the use of post-
terror repression?” Extant theory argues that legislative opposition, defined as
politically motivated "checks" and "balances,”" determines when democracies
repress. Unopposed leaders repress, while opposed ones do not. My theory claims
that ideology—not legislative opposition—determines the use of repression. Chief
executives and their beliefs about the acceptability of repression determine whether
a state uses it to combat terrorism. Legislative opposition meant to constrain them
is ineffective, possibly because actions like oversight and budget control are
reactive, ex post measures.

Tests of the two theories incorporate measures for ideology, legislative
opposition, terrorism, and repression, defined as extrajudicial killings, on an original
dataset of behavior by approximately 70 democracies over 18 years to identify what
happens following terrorist attacks. The primary finding is that ideology determines
the use of repression and legislative opposition is ineffective at stopping it.

The remainder of the paper proceeds in the following manner. First, it
reviews the extant theory on legislative opposition and highlights problems with
one of its motivating assumptions that the new theory relaxes. An outline of the
theory of ideologically influenced counterterrorism follows, providing a basic

4



description of what ideology is and why it might influence how acceptable
repression is to improve security. Next, it describes the research design that
evaluates the argument along with the data used to conduct the test. The remaining
two sections present the findings and conclude with statements about how they
refine extant theory of democratic counterterrorism and what the next steps are for

developing the theory further.

I1. Literature Review

Two assumptions in the security-liberty tradeoff paradigm motivate extant
theory to predict that legislative opposition restricts repression against terrorism.
Used in a decision-theoretic model to derive expectations for counterterrorism
policy, one assumption states that chief executives (hereafter referenced as
executives) or leaders of countries uniformly prefer to suppress terrorist violence
with repression. An additional assumption drawn from conjecture is that legislative
opposition constrains executives and explains when they do not repress as much
theoretically expected. Combined, the assumptions lead to the theoretical prediction
that legislative opposition prevents executives from using repression against
terrorism.

A decision-theoretic model explains the tradeoff between security and liberty
the combined behaviors of three different actors—terrorists, voters, and
executives—to explain how the security-liberty tradeoff determines observed
behavior (Enders & Sandler, 2006; Viscusi & Zeckhauser, 2003). Terrorists,
motivated to attack for a variety of reasons (Schneckener, 2006), do so according to
the freedoms a society affords them (Crenshaw, 1981; Farrell, 1982; Wilkinson,
1976). Social networks are the medium that terrorists use to mobilize for attack
(Sageman, 2004), which is true even in the case of “lone wolves” (i.e., terrorists that
act alone) because of the need to acquire materials like explosives and detonators.
Communication, movement, and assembly are all behaviors critical to the growth
and mobilization terrorist networks. Distributed training manuals instruct members

on how to convene meetings in secret, acquire materials necessary for attack, and



perform other such activities.? None of these manuals explicitly calls for action only
in democracies, a fact attested to by the presence of terrorist groups in places like
Saudi Arabia, Iran and other repressive non-democracies. The difference between
democracies and non-democracies is that network growth and function are
comparatively easier in countries where national law treats freedoms as inherent
rights, rather than centrally controlled freedoms.

Individuals hold political preferences for security and liberty that determine
how much repression executives use against terrorism because voter support
determines executive political survival. Theorists assume that this is not the case in
non-democracies.* Although the exact of these preferences is subjective and
conditioned on personal rankings for the two outcomes as well as perceptions of
terrorist threats (Viscusi & Zeckhauser, 2003),5 a tradeoff exists as long as voters
attribute benefits to security and liberty. Ceteris paribus, increasing levels of
terrorism at fixed levels of liberty render them dissatisfied, leaving executives with
the option of expanding or retracting freedoms. To do the former increases
terrorism and makes voters even more dissatisfied; hence, leaders restrict rights at
levels that balance security and voter tolerance for repression. Repression occurs in
democracies because voters tolerate it. As controversial as the theorized behavior
seems, experimental research seems to support it, showing that subjects prefer
certain forms of repression when faced with increasing terrorism threats (2003, pp.

4-14).6

3 Material referenced includes manuals from the Animal Liberation Front, White Supremacist groups,
and Al-Qaeda.

4 Specifically, security-liberty tradeoff theorists assert that the responsiveness of government to
average individuals requires democratic institutions (Enders & Sandler, 2006, pp. 34-35). In non-
democracies, the vote does not constrain executives, so their only interest is in maximizing social
stability. Alternative theoretical models recognize that even autocratic leaders face constraint, albeit
in a different form than the need to respond to mass preferences (Bueno de Mesquita, Smith,
Siverson, & Morrow, 2004). One attempt to generalize the relationship in the context of
counterterrorism is to use a general responsiveness parameter that characterizes the relationship
between mass preferences and political elite action (Denardo, 1985).

5 An additional influence is historical experiences with repression like those of African Americans
and French North Africans.

6 Specifically, experimental results show that terrorism threats compel individuals to tolerate
profiling (e.g., racial, ethnic, religious, national, and so forth) that uses group membership, rather
than individual behavior as probable cause for accosting by state authorities.
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Applications of the theoretical model include using it to explain differences in
terrorism outcomes conditioned on comparisons between regimes and
characteristics of regimes. Comparisons between regimes describe why
democracies suffer more terrorist attacks than non-democracies, arguing that the
differences in repression induced by voter preferences explain why democracies
suffer more terrorist attacks for any given level of terrorist threat (Crenshaw, 1981;
Eubank & Weinberg, 1994; Farrell, 1982; Wilkinson, 1976).” Comparisons between
regimes, according to their characteristics seek to identify what it is about certain
governmental systems that explain the occurrence of terrorism (Eyerman, 1998; Li,
2005). Quan Li’s argument about the effect of legislative opposition to executive
behavior is relevant to the discussion in this paper. He argues that institutional
constraints, such as legislative opposition, make it comparatively more difficult for
leaders to repress against terrorism. In the context of security-liberty tradeoff
theory, his argument asserts that certain democratic leaders do not repress as much
as others do because legislative opposition obstructs them. He is not alone in this
basic assessment (Chalk & Rosenau, 2004; Donohue, 2008). Processes like
deliberation and oversight carried out by “veto players,” political actors with the
capability (e.g., roles like committee chair or floor leader) and the incentive
(because of conflicting political interests) to oppose certain policies (Tsbelelis,
2002), are the reason why executives cannot raise repression to the desired
increment.8 He concludes that legislative opposition causes higher terrorism levels,
because it prevents executives from using repression to thwart attack. Though
empirical results show that measures of executive constraints correspond with

higher amounts of terrorism, they do not substantiate the argument that Li

7 One criticism of this conclusion is that use of event-count data for terrorism from “open source”
media like newspapers and other such outlets biases higher counts in favor of democracies because
of their “free speech” laws (Drakos K., 2007; Drakos & Gofas, 2006). Outside of the fact that
terrorism levels might also increase because terrorists exploit news reporting to carry their message
to wider audiences (Bassiouni, 1981), an empirical problem faced by the literature as a whole is that
no one has distinguished terrorism threat from terrorism events. Thus far, the use of event-count
data has conflated the two concepts and prevented a veritable, regime-based comparison.

8 His argument also extends to the formulation of anti-terror policies, which lies beyond the scope of
this paper, as it is not information contained, en masse, within publicly available sources.
Additionally, detailed information is unavailable for certain activities carried out by domestic
equivalents to Special Forces units and intelligence agencies.

7



proposes. Measures of executive constraint share a strong correlation with other
measures of democracy and therefore reinforce the original finding that
democracies experience more terrorism than non-democracies do; hence, they are
inadequate proxies for indicating repression and make Li’s point a conjecture worth

testing, rather than an empirically verified result.

IIlI. Theory

A growing body of literature significantly differs from extant theory and its
reliance upon governmental institutions to explain post-terror repression and its
place within the overall understanding of democracies and terrorism. Extant theory
assumes that political elites have role-defined counterterrorism preferences,
making executives prefer post-terror repression and legislators oppose it. At face,
the argument appears satisfactory but quickly unravels when questioned why
executives and legislators would differ in counterterrorism preferences according to
their institutional roles. A competing theory based upon political ideology argues
differently, asserting that political elites have counterterrorism preferences
influenced by political ideology. The theory presented here builds upon micro-
foundations established in the literature on social psychology and attempts to
extend them to counterterrorism behavior.?

Political ideology is a term used to describe the beliefs maintained by
individuals, which ascribe importance to outcomes according to perceptions of what
their constituent events entailed (Rokeach, 1973; Schwartz & Bilsky, 1987, 1990).
Observed outcomes occur according to a sequence of events that produce them.
Some refer to such sequences as “descriptive histories,” but it is important to
understand that these are more than just knowledge about what combination of
actions and behaviors led to the observed event. Equally as important is the rank
ordering of these constituent events by individuals, which is what makes
subjectively maintained value systems important. Originally based in psychology

and described as values and desired end-states, political scientists have long since

9 A related approach in the literature compares terrorism rates in countries according to the political
ideology of governments (Koch & Cranmer, 2009).



bridged the divide to connect these abstract concepts to the notion of political
references, giving rise to the concept of political ideology (Campbell, Converse,
Miller, & Stokes, 1960).10 Research on individual attitudes, collective behaviors, and
political outcomes has attempted to demonstrate how a value-based rationality
view of political behavior illustrates the connection what psychological and formal
theoretic operationalizations of personal motivations (Chong, 2000). The linkage
between values as well as beliefs on one hand and core preferences on the other is
that both serve as explanations for what systematically determines individual
action.

Value-based reasoning, in the context of counterterrorism preferences,
argues that the liberal and conservative ideologies differ on principal grounds that
influence views about how acceptable post-terror repression is. Research that
evaluates the internalization of values as a product of anthropological evolution and
refers to them as “virtues,” finds that liberals and conservatives differ significantly
in their moral foundations. Specifically, liberals internalize the virtues of
“harm/care” along with “fairness/reciprocity,” while conservatives uphold
“ingroup/loyalty, authority/respect, and purity/sanctity,” (Graham, Haidt, & Nosek,
2009, pp. 1,032). What matters concerning attitudes toward post-terror repression,
[ argue, is the contrast between “fairness/reciprocity” and “ingroup/loyalty.”
Perceptions of individual rights, whether they are public or private goods,
distinguish liberal and conservative political ideologies from one another and
largely determine opposition and support for the use of repression against
terrorism. “Fairness” drives the perception that individual rights are public goods,
requiring society to provide them to individuals irrespective of their transgressions.
“Ingroup” drives the perception that individual rights are private goods, allocated by
the state to those considered deserving and in the “in groups” for whom respect of
legal restrictions applies and withheld from “out groups.” The result is nearly

unconditional support for rights and freedoms by liberals and a conditional view on

10 Applications of political ideology within political science concentrate on orienting individuals
along a single dimension of political preference, which is a practice that began with studies of the
American Voter but has since extended to general conceptualizations of politics worldwide (Powell
Jr., 2000).



the extension of liberties by conservatives. This is not a matter of “good” versus
“pbad” but instead an identification of socially constructed difference that social
scientists can systematically observe and investigate.

Political elites like executives and legislators are not uniformly motivated to
support or oppose use of repression conditioned on the political office they hold or
political conflict, as extant theory argues. Instead, what motivates them is the desire
to retain office, which they do by satisfying a political constituency. Attaining and
retaining office (political survival) requires taking actions deemed desirable within
an accepted political ideology for the partisan group. Whether political elites in
alternative partisan camps fully internalize the tenets of competing ideologies
remains in question but what is clear is that constituents refer in part to political
ideologies when evaluating the performance of leaders (Aldrich, Gelpi, Feaver,
Reifler, & Sharp, 2006).

What effect does legislative opposition have? One argument is that it is
wholly ineffective at moderating repression, because of being reactive and limited in
scope to ex-post investigations and budgetary coercion. Independent legislatures
formulate law or public policy but repression is extrajudicial or extralegal, which by
definition lies outside the official policy process; thus, limiting the influence that
legislators can have on restricting its occurrence. Many acts of repression, such as
extrajudicial killing and torture, occur at the level of individual agents acting against
suspected and alleged terrorists or associates of terrorists. Such behavior does not
require explicit instruction from the chief executive to occur. Instead, it can result
from a range of actions including ambiguous suggestion (e.g., enunciation of “win at
all costs” strategies) and the perception of tacit approval because known violators
go unpunished. The opportunity for legislators to act under these circumstances is
by hearing about transgressions and responding with investigations that serve as
exposés or slashing budgets as punishment for the misuse of governmental
resources. Either way, the options left to legislators are reactive and therefore
deterrents based on the logic of punishments. Prosecution by a special investigator
is an action that makes legislative response credible, but it is also an occurrence

with little historical precedent in the anti-terrorism context for democracies. Budget

10



slashing is another alternative, but it faces opposition when supporters of
repressive countermeasures argue that the actions made the country safer and that
cutting finances amounts to punishing agencies for doing their jobs.

Another argument about the effect of legislative opposition looks to its
intersection with ideology and posits that if there is a constraining effect, it will be
most apparent in the case of liberal legislative opposition against conservative
executives. The unbounded ideological nature of centrists makes it difficult to
declare universally how they feel about equality and whether they may find the
conservative argument for repression persuasive during times of crises. For those
reasons, the effect of centrist legislative opposition is outside the scope of the

ideological theory presented here.

IV. Research Design
The empirical question evaluated in this paper asks, “What determines the
use of post-terror repression?” To answer the question I use the following

equations:

P(Rgir = 1|T'T_5, B'X)

Equation 1

PRt = 1|V T, T'T 5, A (I._1'T;_;), B'X)
Equation 2

Repression, Raw, dichotomously measured for repression type x and in year ¢t
can happen under two types of chief executive leadership (a): liberal (left) or
conservative (right). Evaluation of post-terror repression includes three categories
of abuse: extrajudicial killing, disappearances, and political imprisonment.11
Extrajudicial killing is execution without just cause, such as the threat of death, by
state agents or their proxies. Disappearances amount to kidnapping by state agents
or their proxies. Torture is unlawful physical abuse of prisoners by state authorities
or their proxies. Political imprisonment occurs when state authorities or their

proxies detain individuals without charge and for reasons unrelated to the

11 Torture is not a form of post-terror abuse systematically used by democracies. It does occur, as
evidenced in certain American and Israeli cases, but it is not a regular occurrence, at least not
according to data contained in the CIRI database.
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commission of a crime. Terrorism, T'Ts2, is a set of two integer measures. One is an
indicator of terrorism level or the total number of monthly attacks in a country. This
is the measure used in the interaction terms with legislative opposition. Another is a
control variable that indicates terrorism surges or the positive deviation in
terrorism events between seasonally adjusted months (see the description for
seasonal adjustment in the Data section below). Terrorism surges represent
deviations from steady states and amount to crises that are likely to make reporting
state abuses less likely in nearly all governments. $'X measures the influence of
control variables discussed in the Data section below.

Both regression equations have a lag structure that evaluates repression at
time t and terrorism at time t - 2 or L2. Equation 2 adds the moderating effects of
repression measured at time ¢ - 1 or L1. Archival research into the few publicly
documented instances of extrajudicial killing as repression in democracies, such as
those cases in Peru and Colombia at the hands of death squads, shows tendencies of
a considerable lag between terrorist attacks and reports of repression even when
the alleged violations happened shortly thereafter. In an empirical analysis of
correlations on repression following terrorism unreported here, findings show a
strong, positive correlation between a two-year lag (L2); hence, its selection as a
covariate for the reported model. The one-year lag (L1) on legislative opposition
allows time for the legislature to react to undisclosed reports of repression that they
may prompt to become public the following year through investigations or other
forms of reprimand.1?2 The measure for legislative opposition is the result of multiple
calculations.

The term y'l.; represents the effect of legislative opposition, measured
according to political strength and ideological distance from the empowered

executive. Opposition to the executive is the combination of ideological distance and

12 Some might argue that the separation of terrorism events and legislative influence potentially
constraints legislative opposition to only having post hoc influence post-terror repression, so the
analysis includes an alternative model with jointly observed terrorism and legislative opposition. The
results do not qualitatively differ from the lagged sequence; hence, the reported findings contain only
the estimates for the lagged model.

12



vote-based strength.13 Ideology is a three-category measure, containing values of
left, center, and right. Calculation of ideological distance reviews the top four vote-
receiving parties in government and assesses the maximum point of difference
between the any of these parties and the party of the executive. For example, if an
executive is a conservative (on the right), and the most different political party in
the top four is centrist, then the ideological distance is coded as centrist. If the most
different political party is liberal (or left), then the ideological distance is coded as
liberal. Political strength is a measure indicating the total number of votes that a
political opposition has in a government. Each government has a total number of
votes allocated to legislators, and the political strength indicator tallies the total
number of votes held by parties opposed to the executive’s party. For coalition
governments, the measure includes parties not in the coalition. The final calculation
of strength sets the total number of government votes in the denominator and the
number of oppositional votes in the numerator, creating a weight that moderates
the effect of ideological opposition in a given year. An exception to the rule for
constructing these variables is the condition stating that legislative opposition is
equal to zero when the party of the executive has majority control of the
legislature.l* Interpretation of the constant term in these models is for an executive-
led system without relevant political opposition. The interaction term, A'(I¢-1'Te2), is
the product of terrorism levels and the two types of legislative opposition (each
with its respective interaction).

The two equations use panel-averaged probit to produce estimates.l
Equation 1 produces estimates used to evaluate the hypothesis that ideology
determines post-terror repression. The theory of ideologically motivated repression

states that terrorism should elicit repressive responses in conservatively led but not

13 These two variables are calculated using measures from the Database on Political Institutions
(DPI). The ideological distance component of the legislative opposition variable is derivation of the
“polarization” variable in DPI.

14 When there are two legislative houses, legislative opposition is equal to zero when the party of the
executive controls the lower and upper houses. Coding for this condition comes from the DPI variable
“allhouse.”

15 A technical appendix discussing issues of endogeneity and temporal persistence is available upon
request.
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liberally led democracies. This means that the marginal effect of terrorism on
repression should be positive and statistically significant for conservative-led
systems but not liberal-led ones. Equation 2 produces estimates used to evaluate the
hypothesis that legislative opposition constrains post-terror repression. Extant
theory argues that legislative opposition restricts the use of repression irrespective
of ideology. To evaluate the argument it is necessary to calculate the difference in
marginal effects, subtracting the marginal effect of terrorism on repression from the
marginal effects of terrorism and legislative opposition on repression. To support
extant theory, this quantity should be less than zero and statistically significant. A
combination of the two theories extends this analysis by saying that liberal
legislative opposition should constrain conservative executives and not vice versa.
The theoretical challenge to this combination of theories says that legislative

opposition to repression is reactive and therefore ineffective.

V. Data

State repression is action taken by an agent of the state in violation of laws
protecting individual rights. Data on state repression comes from the Cingranelli-
Richards or CIRI dataset (2004), which records state violations of human rights
across multiple categories. The categories of interest in this paper are extrajudicial
killing, disappearances, and political imprisonment, which studies have shown to
share an association with terrorism (Piazza & Walsh, 2009; Wright D. , 2009).16
Extrajudicial killing occurs when state authorities or their proxies are responsible
for the death of an individual, which occurred outside the auspices of law and an
official trial. Disappearances occur when agents of the state or their proxies kidnap
individuals, rather than lawfully arrest them.17 Political imprisonment occurs when

state authorities or their proxies hold individuals without charge, for example,

16 The authors found that extrajudicial killing and disappearances correspond with terrorism but not
political imprisonment.

17 Given current debates among policy makers, some might liken the practice to rendition or the
kidnapping and transfer of individuals to other countries for interrogation likely to include torture
and other abuses meant to coerce information from the suspect. The measure of disappearances used
in this paper accounts only for kidnappings that occur by state authorities within their sovereign
territories and is therefore not synonymous with rendition.
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during mass arrests. All three measures of abuse are dichotomous measure
indicating whether there have been any reports of such behavior. Research
assistants in the CIRI project derive values for these variables from field reports
provided by Amnesty International and country-reports provided by the United
States State Department. Data contained in the field reports is the result of an
“abuse generating process” carried out by the state and recorded by anonymous
observers in the field. Keeping their identity secret is paramount to the ability of
Amnesty International being able to collect information that state authorities find
highly objectionable. Data collection of this sort is linear in form with a micro-level
sampling process and a discrete reporting mechanism (Cingranelli & Richards,
1999).18

Data on governmental institutions define the analyzed sample of
democracies, measure the effect of legislative opposition, and indicate the
ideological stance of executives. The identification of democracies used a
combination of indicators, the Polity Index from Polity IV (Marshall & Jaggers, 2009)
along with the Legislative and Executive Competitiveness Indices (LIEC and EIEC
respectively) from the Database of Political Institutions or DPI (Beck, Clarke, Groff,
Keefer, & Walsh, 2001). Use of the three variables enabled a flexible but tractable
definition of democracy.l® The Polity Index is a 21-category variable meant to
measure alternative levels of democracy with the lowest values indicating
autocracy, middle values indicating anocracy or transitioning regimes, and upper
values indicating democracy. It is common to represent the variable on the negative
ten to ten number line [-10, 10]. LIEC and EIEC variables are seven-category

indicators describing how competitive the government under evaluation is, where

18 The linear component is a count function that tallies the accumulation of abuses performed by
state personnel against identifiable victims. Sampling occurs according to the direct and indirect
observation of these abuses by field representatives, which has spatial and sociological components
unreported by Amnesty International and the State Department. Spatial components connote the
proximity of an observer to the event with the assumption being that the farther the person is away
from an incident, the less likely that he or she is to have witnessed it. Sociological components are the
social network lines of communication that an observer can use to view events vicariously and
therefore dampen the effect of the spatial component.

19 Criticisms in the literature that find fault with use of the Polity Index as an explanatory variable
(Gledistch & Ward, 1997; Treier & Jackman, 2008) do not apply here because it does nothing more
than help define the sample in this paper.
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competitiveness indirectly represents how well democratic institutions in the
country function. A strict “filter” for democracy states that a country must have a
Polity Index score of eight or greater and LIEC and EIEC values of six or greater.
Results unreported here indicate that legislative opposition does not restrict
repression, but an insufficient number of cases of repression under liberal-led
regimes made the sample inadequate for testing the effects of ideology. A less
restrictive sample for democracies sets the threshold for the Polity Index at six and
leaves the LIEC and EIEC values unchanged.

A measure for ideology drawn from DPI distinguishes between types of
executive leadership and informs the ideological component in the legislative
opposition measure (see the Research Design section for a description of its
construction). Economists created the DPI dataset and intended use of the ideology
measure to predict alternative economic platforms but there is nothing inherent to
the coding that is explicitly economic.2? Ideology, in DP], is a three-category measure
that identifies left, centrist, and right political orientations. I define liberal ideology
as left and conservative ideology as right. Coding of the variable by DPI analysts uses
four sources and follows a five-stage process that begins with evaluating party name
and concludes with comparing internally coded values to a platform-based measure
from an alternative dataset.2! The first stage evaluates the name of a political party.
Those containing the words conservative, Christian-Democratic, or right wing are
conservative. Those containing the words communist, socialist, social-democratic,
or left wing are liberal. The identification of centrists relied on the description of a
government in the referenced sources as centrist according to professed party
positions. The next two stages are attempts to reference other sources of
information if the party name is insufficient for ascribing an ideological position.
The final two include comparing the name-driven assignment with a platform-based

measure and reconciling differences between the two.

20 There is some precedence in the literature for using the DPI ideology variable in terrorism studies
(Koch & Cranmer, 2009).

21 Sources include the Europa Year Book, The Political Handbook of the World, the PARLINE database
from the International Parliamentary Union, and the IFES Election Guide.
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Data used to measure terrorism come from the Global Terrorism Database
(GTD), which is a measure of domestic and transnational terrorism within
countries.?2 The measures for terrorism indicate terrorism levels and changes in
levels (or "shocks" of violence). Both measures are count variables that operate at
the level of events. Terrorism level measures the absolute number of attacks
committed within a sovereign territory during each month. Research has shown
that it is necessary to account for seasonal trends in terrorism (Brin, 2006; Drakos &
Kutan, 2003; Tournyol du Clos, 2009). The reason for this is that a primary goal
associated with the act of terrorism is to use fear as method of coercion, which the
culprits achieve through the spread of news about their attacks (Bassiouni, 1981).
Irrespective of ideological motivation and goal, many acts of terrorism (especially
events targeting people) become more likely and frequent in number during and in
places where people are most likely to congregate. To account for this effect, the
measure of terrorism used in this paper includes seasonal adjustments that measure
terrorism on a monthly scale. Besides de-trending exogenous cycles unrelated to the
question of repression and governmental institutions, seasonally adjusted terrorism
measures also facilitate analyzing time series data when the outcome variable of
interest is annual. Traditional time series analysis restricts evaluation to two
months out of twelve in a year (losing more than 90% of available data), but
seasonal adjustments prevent such data loss by evaluating change in monthly dyads

between years. Figure 1 illustrates this point.

22 Tests that used the transnational terrorism measures of RWITD (from RAND) and ITERATE did not
demonstrate a positive correlation with repression values in democracy. A systematic comparison of
these datasets with GTD will reveal whether the difference is because of the domestic terrorism cases
in GTD or because of a difference in what accounts for transnational terrorism between the
databases.
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Figure 1 (Seasonally Adjusted Terrorism Levels): Seasonally adjusted terrorism data purge the measure of exogenous
cycles at the same time that it preserves data otherwise loss using other time series techniques. The top figure in the
panel shows the month-to-month construction of standard time series and the data loss when measuring an annual
outcome. The bottom figure shows how seasonal adjustment creates twelve dyad pairs of months.

Control variables in the regression models account for the effects of
alternative types of government, civil war, economic downturns, and voter
participation on the occurrence of repression. Analysis of repression and legislative
opposition implies and evaluation of executive power, which may differ according to
the governmental system under consideration. To account for this, presidential
systems serve as the reference category in the empirical model that includes
measures for parliamentary systems and mixed systems as dummy variables.
Repression is more likely to occur during periods of conflict (Davenport, 2008), so
the empirical model includes an indication for those countries that have
experienced civil war at any point during the period analyzed. Data on the
occurrence of civil wars comes from Nicholas Sambanis.23 Other research has shown
that “voice” or voter participation significantly determines whether states repress in
general. The theory asserts that activation within the electorate restrains not only
political elites but also bureaucrats that carry out state action. More indirectly, voter
participation also helps to stimulate the constraining role of other institutional

actors like the judiciary. Data on voter participation during the last election (the

23 His dataset is available at: http://pantheon.yale.edu/~ns237/.
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percentage of enfranchised individuals that voted), drawn from Van Haanen is what
Davenport used to express this relationship previously; hence, it is suitable here.
Lastly, research has shown that wealthier countries are less likely to use repression
(Davenport, 2008). If prosperity makes state violence less likely, then it is possible
that the opposite will also hold true; economic downturns may spur terrorism levels
and other types of social disorder that invite repressive responses. Annualized data
on economic contractions provided by William Easterly, Ross Levine, and David
Roodman (2003) form the measure, economic contraction. The indicator measure
takes on a value of one when the gross domestic product per capita in the current

year is less than the previous one, and zero otherwise.

VI. Findings
Two regression models use the panel-averaged probit estimator to answer
question, “What determines post-terror repression?” The first model assesses
whether the ideology of executives influences the occurrence of post-terror abuses

like extrajudicial killing, disappearances, and political imprisonment.

Extrajudicial Killing Disappearances Political Imprisonment
Conservative  Liberal  Conservative  Liberal  Conservative  Liberal
. 0.0294** 0.0008 0.0259** 0.0046 0.0066 0.0002
Terrorismg;
(0.0065) (0.0045) (0.0054) (0.0047) (0.0043) (0.0055)
. -0.0254** 0.0029 -0.0113 -0.008 -0.0074 -0.0043
Terrorism Surge.s...,
(0.0074) (0.0053) (0.0064) (0.0057) (0.0052) (0.0064)
. 1.2897** 1.2187** 0.8784** -t 0.8294** 1.2747**
Civil War +
(0.2859) (0.4107) (0.2669) - (0.291) (0.3267)
Voter Participati 0.0017 0.0005 0.001 -0.0056** 0.0072** 0.0094**
orerrarticlpation = 90013)  (0.0013)  (0.0018)  (0.0015)  (0.0013)  (0.0018)
-0.1839* -0.0221 0.1656 -0.7066** -0.2121** 0.5441**

Economic Downturn
(0.0735) (0.0722) (0.0879) (0.152) (0.0686) (0.0856)

-0.7763** -0.7136** -1.4143** -0.8575** -0.9432** -1.1788**

Constant (0.1669)  (0.1904)  (0.1855)  (0.167) _ (0.1744)  (0.1771)
Country-Months 4,308 3,528 4,308 3,528 4,308 3,528
Countries 54 42 54 42 54 42
Wald X 39.24 10.44 5691 35.52 4236 86.55
p>X* 0 0.0636 0 0 0 0

Table 1 (Regression Results): Regression estimates on the occurrence of post-terror repression across three types of
abuse and according to the ideology of executive leaders. **indicates that the coefficient is significant at the p < 0.01
confidence level & * indicates statistical significance at the p < 0.05 confidence level findicates that the variable was
dropped for reasons of collinearity.
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Table 1 displays the regression results for levels of repression following
terrorist attacks, as indicated by coefficient estimates for Terrorism:.z, showing that
post-terror repression occurs at a statistically significant level in conservative-led
democracies but not liberal-led ones. Under conservative-led systems, democracies
are likely to encounter post-terror abuses in the areas of extrajudicial killing and
disappearances but not political imprisonment.2# The variable, CIVIL WAR,
significantly accounts for all forms of abuse irrespective of executive type,
demonstrating that the influence of ideology has its limits. Voter Participation, or
“voice,” does not have the pacifying effect theorized in the literature, at least not
consistently across abuse and executive types. It reduces the occurrence of
disappearances in liberal-led regimes but increases political imprisonment
irrespective of leadership type and has no statistically significant effect on the
occurrence of extrajudicial killing.?2> Economic Downturns do not demonstrate a
consistent pattern of influence for abuse in relation to repression or executive type.
Surges in terrorism (Terrorism Surge:3:..-2) generally have a statistically insignificant
effect on the occurrence of repression. Coefficient estimates in categorical choice
models are first step to understanding the influence covariates have on outcomes.
Marginal effects represent the true influence that terrorism has on repression

according to executive type.

24 A disaggregated measure of political imprisonment shows that conservative-led systems are likely
to experience post-terror abuses at moderate but not excessive levels. Other disaggregated results
show that conservative-led systems are likely to have excessive post-terror abuses in extrajudicial
killing and disappearances.

25 Other analyses that evaluated “voice” used composite outcome variables comprised of the Political
Terrorism Scale and other measures for abuse (Davenport, 2008). Future research should investigate
the difference between aggregate measures of abuse like those used by Davenport, disaggregated
measures of abuse like those used in this paper, and a portfolio approach to abuse that treats
alternative forms of repression as substitutes.
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Extrajudicial Killing Disappearances Political Imprisonment

. . 0.0112** 0.0059** 0.0024
Conservative Executive

(0.0026) (0.0015) (0.0016)

Liberal Executive 0.0003 0.001 0.0001

(0.0016) (0.0011) (0.0018)

Table 2 (Marginal Effects of Terrorism): Changes in the likelihood of observing repression given changes in terrorism
levels under alternative ideological leadership contexts. Calculation for the values occurs at the mean for all
variables. ** indicates statistical significance at the p < 0.01 level of confidence & * indicates statistical significance at
the p < 0.05 confidence level.

Table 2 shows that with respect to instantaneous change, terrorism attacks
in conservative-led systems cause the likelihood of extrajudicial killing to raise 0.01
units and the likelihood of disappearances to raise 0.006 units. Both of these effects
have high levels of statistical significance. Liberal-led systems demonstrate
negligible relationships with post-terror repression, having marginal effects that are
relatively small in magnitude and statistically insignificant. The findings support the
theory that ideology matters in determining whether democracies use repression. A
remaining question is whether legislative opposition has an effect on post-terror
repression. Specifically, in the case of conservative-led systems, does the presence of
centrist or liberal opposition limit the occurrence of post-terror repression?

Extant theory maintained that legislative opposition prevents repression-
wielding executives from abusing rights following terrorist attack. Analysis of post-
terror repression conditioned on executive ideology showed that extant theory
wrongly assumes all executives abuse rights after attacks. Conservatives repress
while liberals do not. The extension of a theory that combines the role of ideology
and the controlling effect of legislative opposition uses an empirical test to
determine if liberal legislative opposition constrains post-terror repression by

conservative executives.
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Extrajudicial Killing  Disappearances

-0.0192** -0.0128
Centrist O iti
entrist Upposttion (0.0034) (0.0078)
: . -0.007** 0.02**
Liberal Opposition
(0.0014) (0.0025)
. 0.009 0.0163
Terrorism.;
(0.007) (0.0087)
. : 0.0237** 0.0051*
Centrist Opp. * Terrorism,., (0.0063) (0.0021)
: . 0.0001 -0.0003
Liberal Opp. * Terrorismg; (0.0001) (0.0002)
Terrorism Surge ~0.0069 ~0.0072
Bet3:02 (0.0075) (0.0098)
Civil W 0.3672 0.6077*
tviar (0.3401) (0.2732)
L 0.0079** 0.0005
Voter Participation
(0.002) (0.0034)
. -0.2399* 0.4242**
Economic Downturn
(0.1031) (0.1551)
Constant 0.0005 -1.609**
(0.2976) (0.2656)
Country-Months 1,548 1,548
Countries 23 23
Wald X* 67.56 87.36
p > X* 0 0

Table 3 (Conservative Leaders & Opposition): A comparison of the difference in marginal effects between
conservative-led systems dealing with legislative opposition to those that operating without it. Calculation occurs at
the variable means. ** indicates statistical significance at the p < 0.01 level of confidence & * indicates statistical
significance at the p < 0.05 confidence level.

Table 3 shows the regression estimates for the effects of legislative
opposition on post-terror repression in conservative-led systems. The analysis of
legislative opposition includes presidential and semi-presidential democracies to

the exclusion of parliamentary ones because some argue that opposition parties

have no power in these latter systems.2¢ Individual coefficients in these regression

26 That said, the results for extrajudicial killing extend to parliamentary democracies. Centrist and
liberal opposition in the legislature, even if not officially empowered, makes it less likely that post-
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models do not convey all of the information necessary to evaluate the argument
about the effects of legislative opposition (Brambor, Clark, & Gloder, 2006).
Assessment of legislative opposition requires calculating the difference of

differences in marginal effects (Berry, DeMerritt, & Esarey, 2010).

Extrajudicial Killing Disappearances

: " -0.0099** -0.0034
Centrist Opposition (0.0024) 0:0023)
- kk _ *

Liberal Opposition L0202 0.005
(0.0049) (0.0025)

Table 4 (ME of Legislative Opposition): Table showing the difference in marginal effects for legislative opposition
conditioned on ideological type. Results show that centrist and liberal legislative opposition tends to limit post-terror
repression in conservative-led systems. ** indicates statistical significance at the p < 0.01 level of confidence & *
indicates statistical significance at the p < 0.05 confidence level.

To perform difference of differences calculations in this analysis requires
calculating the unconditioned marginal effect of terrorism on the alternative types
of repression and subtracting it from the marginal effect of terrorism conditioned on
the two types of legislative opposition. If the difference is less than zero, the
estimated effect is a modifying one. Results presented in Table 4 show that
legislative opposition tends to have a statistically significant modifying effect on the
occurrence of post-terror repression in conservative-led regimes. Additionally, the

magnitude of this marginal effect tends to be larger for liberal opposition than it is

for centrist opposition.

VII. Conclusions

What motivated this paper was the question, “What determines post-terror
repression in democracies?” Conclusions drawn from the empirical analysis in this
paper are that ideology determines the occurrence of post-terror repression in
democracies and that ideologically motivated legislative opposition acts to constrain
it. Until now, conjecture, rather than empirical findings, motivated the argument

that legislative opposition constrains executive leaders and the relationship

terror repression occurs under conservative-led regimes. These results are statistically and
substantively significant.
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extended to post-terror repression. The contribution of this paper is that it put the
argument about legislative opposition on an empirical foundation and showed that
the motivation to use post-terror repression has ideological underpinnings.
Research in this paper is part of a growing literature considering the role of
ideology, terrorism, and counterterrorism within democracies from the bottom-up.
One theory is the “Cheney Hypothesis,” which states that terrorists attack
liberal-led states, rather than conservative ones, because they know that liberals
will refrain from using repressive responses. It is the standard “hawk” versus “dove”
argument, claiming the success of conservative-led deterrence through post-terror
repression. Empirical results in the literature appear to confirm the argument (Koch
& Cranmer, 2009), showing that terrorists target liberal-led regimes more
frequently for attack than they do conservative-led ones. Results presented in this
paper appear to be the link between the psychological studies cited in the Theory
section and the empirical results presented by Koch and Cranmer. At the level of the
individual, liberal political ideologies oppose post-terror repression and
conservative ones condone them. At the level of the state, liberal executives preside
over governments that do not use post-terror repression, while conservative ones
engender the opposite. Vis a vis the state and terrorists, the consequence is clear, as
terrorists target democracies led by liberals more than they do those led by
conservatives. Inclusion of the other theory about the role of legislative opposition
leads to the extended conclusion that if democracies want to protect themselves
from terrorist violence, they should elect conservative executives and shift the
balance of power in favor of the executive relative to the legislature. Such reasoning,
however, seems to overlook the fact that 9/11 and the Madrid 2004 Train Bombings
(3-11 or M-11), two of the historically largest attacks in their respective countries
and the new Millennium, both occurred under the watch of unquestionably
conservative governments. Arguably, these attacks by radical Islamists occurred
because of the foreign policies of the United States and Spain, not because of who
the leadership at the current time was. An interpretation of this sort addresses
whether terrorists attack because who their targets are, as the “Cheney Hypothesis”

claims, or because of what they do as other works in the literature claim (Potter &
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Wright, 2009). Answering the question will require a thoughtful analysis that does
more than compare coefficients and thinks hard about to identify what truly
amounts to support for either or both of the claims.

Left looming in the background of the analysis on repression has been the
related question of what determines legal response to terrorism. Does ideology
matter or are other forces at play? When terrorists strike, is it better to counter the
tactics that they used to attack or to deter them from being a terrorist in the first
place? Legal approaches can act as responses to both of these questions, while
repressive ones operate only on the second. After first World Trade Center and the
Oklahoma City Bombings, the American Congress enacted laws that sought to give
counterterrorism officials a long-term edge over anyone considering acts of
terrorism like those used in the two attacks. Exact components to the two sets of
bombs differed on various grounds but one aspect they shared was reliance on
ammonium nitrate fertilizer, which is appealing because the nitrates in it help to
create a forceful blast cycle under the right conditions of heat and pressure. Even
more appealing at the time was the fact that fertilizer containing the nitrates was
plentiful, relatively cheap, and otherwise easy to acquire, evidenced by the fact that
it was as easy for the respective terrorists to acquire it in New York City as it was in
the American heartland. Legislative acts taken by Congress and supported by then
President Clinton, despite the complaints from farming interests, sought to dilute
the fertilizers and make them ineffective resources for bombs. Other measures
included adding “taggants” or chemical markers to more conventional explosives
like SEMTEX. Taggants are what trigger “sniffer” machines at places like airports,
governmental buildings, and other likely targets of terrorism. Countermeasures of
these sorts recognize that truly deterring terrorists, especially those willing to
commit suicide, is unlikely and therefore it is more important to incapacitate them
temporarily in a technologically driven game of “cat and mouse.” To understand
counterterrorism in democracies and elsewhere, it is necessary to think of the
overall set of actions that governments may pursue. An openly available, large-N

dataset on legal and repressive counterterrorism is unlikely to arise anytime soon,
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but it is this information that researchers require to answer the questions driving

debates in the literature and policy circles.
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CHAPTERII

Maximizing the Goodness of Fit for Social Networks: An Application
of Amended ERGM Procedures to the Analysis of Terrorist Network
Data

I. Introduction
Except for some exceptional circumstances, all network-generating
processes are latent.2?” Network-generating processes produce social networks by
specifying the “rules” individuals must follow when self-organizing into groups.
Latency arises because the rules groups tend not to be common knowledge. What
researchers observe are the social structures that individuals following these rules
form. A technicality about networks makes it extremely difficult to study collective
structures as the outcome of interest. Whereas a standard statistical approach to the
described estimation problem would be to determine how a proposed set of factors
condition the observed social structures, it is computationally impossible to
distinguish one network from another definitively. This is known as the network
isomorphism problem, defined as NP-Hard, because the amount of time it takes to
compare how close two networks of even moderate size (e.g., 20 members) is

computationally infeasible.
Network science has sought to circumvent the problem by evaluating
networks according to their structural signatures or unique characteristics of
network emergence. An emergent characteristic is one that arises unexpectedly

through simple rules or from the “bottom up” (de Marchi, 2001). Current statistical

27 Some exceptions include those instances of simulation through computational algorithms or
concurrent observation in experimental or natural-experiment settings.
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technologies limit the evaluation of network emergence to readily known and easily
quantified mathematical distributions like the Power Law and other long-studied
quantities. The problem is not every proposed theory exhibits emergence in a form
following from the limited repertoire contained in the library of available tests. It is
one thing to demand a theory is internally consistent and empirically falsifiable. It is
quite another to demand it fit into one of only a few forms. The methodological
choice is to continue developing tests from known distributions then to evaluate if
the best fitting mold is the one theory predicted (Clauset, Shalizi, & Newman, 2009).
An alternative is to develop a flexible tool used to identify network emergence in
any form it occurs. Combined with the methods outlined in this paper, exponential
random graph modeling (ERGM, also known as p* statistical modeling) is a network
statistics estimator offering researchers a path to evaluating their theories flexibly.
ERGM is a statistical model often misunderstood and misapplied in the
literature. The misunderstanding is thinking that the estimates it produces directly
test for the determinants of the latent network-generating process. This is not true
nor is it the intention of those that developed. At its core, ERGM detects patterns of
values in adjacency matrices, commonly restricted to binary entries. One way to
represent a network is with an adjacency matrix, clearly demonstrating the
applicability of ERGM to characterizing patterns of connections. This is where the
misunderstanding occurs. Graph theory has long used algorithms, which are rules,
to characterize various types of structural properties in networks also known as
graphs (Wasserman & Faust, 1994). ERGM incorporates these algorithms, in the
form of network statistics, to characterize structural properties of an evaluated
network as a profile. Many ERGM users have conflated the rules of structural
characterization with those of structural growth. A metaphor makes clear why this
is wrong. Upon observing the complex structure of a tree, someone could diligently
record the type of bark it has, the arrangement of its branches, its type of leaves, the
presence of stomata on its leaves, and so forth. A reporting of these descriptions
would quickly separate trees along lines like deciduous from coniferous, palm from
oak, and so forth, but it would not explain the genesis from seed to tree for any one

of them. The same observation applies for ERGM as a tool of structural
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characterization. Even those who understand this is what ERGM does tend to
misapply it, which is what this paper devotes its attention to correcting.

Misapplication of ERGM arises because researchers tend not use it to
maximize the fit of a proposed network formula to the evaluated data. A problem
that is most egregious when using network statistics that have more parameters
than sufficient statistics (e.g., the curved exponential-family of functions) whose
undefined values researchers should “sweep” across a well-defined state space in
search of a global optimum. Frequently, however, this is not the practice followed.
What results is the identification of a local optimum in the parameter space and not
the global one. When a network formula contains numerous such terms, the global
optimum is a jointly specified quantity users should identify through jointly
conducted parameter sweeps.28 Compounding the estimation problem in ERGM
when using these terms are issues with “network degeneracy” and failed MCMC
convergence, two issues discussed at length in the technical review below then
followed with a set of prescriptions.

This paper proposes and demonstrates methods or procedures for using
ERGM to maximize fit of a statistical model to observed network data. Analysis of its
results reveals the procedures perform as expected but highlights needs for further
considering what it means to maximize fit of structure in a network. Fit
maximization captures the most prominent features of network data but not its
rarely occurring features. Although expected, given the use of maximum likelihood
estimation, it is still a problem. In summary, the paper makes two contributions. It
offers a clear path for substantive theorists to test their theories of network
emergence without having to restrict them to known mathematical distributions.
Additionally, it demonstrates for technical, ERGM users improved methods for best
harnessing the estimator, while also highlighting shortcomings in the evaluation of

its results.

28 Middle-of-the-road practices sweep parameters independently then fix their values for estimation
in the joint model specification. Future evaluation will compare this to the procedures described
here.
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Organization of the paper proceeds as follows. After the introduction is a
brief presentation of the data used in the analysis. The paper then continues with a
review of ERGM. A discussion of problems encountered when using ERGM leads into
a description of procedures useful for overcoming them. Deploying the procedures
requires focus on maximizing fit of the proposed model to the evaluated data. The
next section demonstrates application of the procedures to a single case identifying
what network formula best describes the network of the Jemaah Islamiyah terrorist
organization in 2000. Final sections of the paper review estimation results of the

parameter sweeps and present some concluding thoughts.

II. A Review of the Literature Demonstrating the Need for

Improved Network Statistics Methods

An argument made in the introduction is that some theories about network-
generating processes produce expectations with network emergence characteristics
easily characterized by known mathematical distributions. Others do not. What
follows in the sections below are prescribed remedies for this estimation problem.
Before engaging in the technical discussion, this section engages in the substantive
area of terrorism networks, comparing a theory with easily characterized
emergence to one whose expectations do not follow from extant mathematical
distributions.

Barabasi and co-authors argue that preferential attachment processes
produce “scale-free” networks,?® which have the structural trait of Power Law
distributed connections among members when sufficiently matured.?® There are
few members with many connections and many with few connections: hubs and

spokes. From a counterterrorism perspective, the prospect of combating networks

29 See Watts (2004) for a review of the literature on “scale-free” networks and the following works as
examples of the original contributions (Barabasi & Albert, 1999; Barabasi & Bonabeau, 2003;
Bianconi & Barabasi, 2001).

30 A “scale-free” network contains a “hub and spoke” membership. Hubs in the network are
individuals with many connections and spokes are those with relatively few. Clauset, Shalizi, and
Newman (2009) present a series of tests for identifying Power Law distributions in observed data.
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of this type is appealing because targeting the hubs structurally dismantles the
group.31

Enders and Jindapon (2009) build upon a rational framework of terrorist
networks (Enders & Su, 2007) to argue that terrorists self-organize under the
competing pressures attack maximization and threat minimization. Attack
maximization induces a high rate of connections among members for the purposes
of exchanging resources and information. Avoiding detection means minimizing the
size of a “behavioral footprint” (i.e., actions that authorities can trace, such as
correspondences like phone calls and e-mails or direct encounters like meetings)
according to the threat level posed by authorities.32

The “MinMax” combination makes for an optimizing network formation
process. One conclusion is that terrorists operating under similar threat
environments and drawing from populations with similar distributions of
capabilities should form networks with similar structural features; an interesting
hypothesis that excludes ideology and goals as determinants of self-organization. It
also excludes a clear structural signature like the Power Law distribution forecasted
by “scale-free” theory. Rather than a single characteristic readily identified through
comparison against known mathematical distributions, expectations forwarded by
“MinMax” theory concern relative similarities and differences in structure. Precisely
evaluating this theory and others that are unable to associate their expectations
with readily known mathematical distributions requires evaluation with an
empirical tool that accurately describes structural properties of an observed
network unable to associate their expectations with readily known mathematical
distributions. Test availability is not a suitable metric for evaluating proposed

theories; hence, the purpose of this paper.

31 At least as long as the counterterrorism operations also include attempts to prevent the group
from continuing to form connections with one another and expanding its membership by recruiting
from the surrounding population. If not, the prospects of breaking the network are low because
failure to stop for the dynamics of flow and continued percolation (tie formation).

32 Authorities determine a threat level by how vigilant they are at detecting terrorist threats, which is
a function of counterterrorism efforts like patrols, data mining, surveillance, informants, and so forth.
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III. Introduction to the JJATT Data on Jemaah Islamiyah

< / \
/
Figure 2 (Jemaah Islamiyah, 2000): A graphical depiction of the binary, undirected data on Jemaah
Islamiyah in 2000.

Figure 2 is a network visualization of Jemaah Islamiyah (JI) terrorist
organization. The representation comes from the year 2000, a turning point in the
evolution of the group. This was the first year its membership organized and
executed three terrorist attacks in Indonesia and one in the Philippine’s.33 Data on
this group comes from the John Jay & ARTIS Transnational Terrorism (JJATT)
project and contain information on the various social linkages between members of
the terrorist organization.3* The graph above is a binary and undirected, capturing
the association between individuals along the social dimensions of friendship,
family, and mutual participation in terrorist operations.3> Data collection for JJATT
included field-based interviews of individuals associated with JI or members of ]I,
secondary materials (e.g., police interrogation reports, court discovery material, and

court transcriptions), and tertiary or “open source” materials (e.g., newspaper

33 These attacks were the Philippine Ambassador’s Residence Bombing, the Jakarta Stock Exchange
Bombing, the Christmas Eve Bombings, and the Metro Manila Bombings.

34 These data are available at: http://doitapps.jjay.cuny.edu/jjatt/index.php.

35 This is the most basic representation of the data, which compounds alternate social networks into
a single network. One interpretation of such a network is that it is the meta-network or composite set
of all social relations linking individuals within a group (Carley, 2006, p. 55). The methods described
and applied in this paper are appropriate for the characterization of meta-networks and any other
sub-network suitable for ERGM analysis.
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articles, governmental white papers, and non-governmental organization reports).
The working assumption for the methods presented in this paper is that Indonesian,
Malaysian, and Filipino authorities correctly identified the membership of JI in 2000
but may have been wrong about the connections they drew between members. A
section in the Conclusion of the paper addresses ways forward for weakening the
assumption about correctly identified membership within the framework presented

here.

IV. Reviewing Exponential-Family Random Graph Models

(ERGM) and Problems with Using It

Y is the infinite space defining all possible networks with distinct partitions
in Y made according to membership size (N). N is a discrete variable, such that

N = 3 (according to the standard definition in sociology that the smallest unit of

analysis is a triad) and N = . Furthermore, let n, = 3 be an element in N. Y.
represents the partitions or slices in Y that describes the distribution of all networks
in each partition. A mass density function defines the distribution in Y. and varies
according to the ratio of the total number of members with connections to those
with possible connections.

> Z?':_ll Xi j#i

D
n?—n

Equation 3
Equation 3 shows that for a network dyad containing members i and j,

network density (D) is equal to the total number of connected dyads (x; = 1) divided
by the difference between network membership (r) raised to the second power and
network membership. Subtracting r from the square of itself indicates that a
member i cannot have a connection to itself (i ¢ i).3¢ So, every Y, rises from the
single network that represents D = 0% or no connectivity, maximizing at D = 50%
density, and then decreasing again to the concluding point at D = 100% or full

connectivity for any network of size n. Density varies from D = 0, indicating no

36 This is also the reason why the first summation runs fromj=1tor- 1.
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connections, to D = 1, indicating that all possible connections in the network have

been realized.

b
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Network Density v Network Density

Figure 3 (Network Space): A visual representation of the theoretically infinite set, Y that contains all possible network
combinations. A three dimensional representation of Y maintains that networks can vary by membership size and
density. A third dimension captures the relative frequency of networks for each value of density. The boundary value
for each slice is one, indicating that only one network apiece describes the empty and full sets.

Figure 3 is a visual representation of an interval in Y, displaying its three
dimensions according to Yn-1, Yn=2, and Yn-3. Defining the three-dimensional space
are the quantities network density (D) along the X-axis, membership size (N) along
the Y-axis, and relative frequency (C) along the Z-axis. From the figure it is clear that
density acts as a standardized measure. The graphic on the right places a sheet over
the slices and uses it to convey that Y is approximately continuous for all integers in
R*. A combinations function specifies the value of the mass density function and
produces the height of each slice in Y according to the total possible number of

possible networks formed according to the number of members having at least one

connection.
n!
Cy (rln) = ——
v (71m) rl(n—7)!

Equation 4
Equation 4 defines the count (Cy, ) for the alternate number of ways to create

connections between r members of a network with membership sized to n. C is non-

monotonic but symmetric with respect to r. When r = 0 or r = n, C = 1, indicating
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“empty” and “full” networks respectively. This relationship is true for any Y.
Equation 5 shows that Zy is the cumulative density function, representing the
aggregate number of networks in Yy, as r increases.

r= nz
- Xi j#i
£y (rln) = f 2 2j=1 Xijzi

r=0

d(r)

Equation 5
The graphic on the right of Figure 3, shows that the maximum value of Ey

continuously increases as membership size increases. This results in a cumulative

density of Y being:

Iy(r,N) = ff Md( )d(N)

Equation 6
Casual inspection of Equation 6 shows I'y quickly transitions from being an

easily manageable quantity when N = 3 to sub-infinite but extremely large number
at even moderate values of N like N = 20. In other words, it is not necessary to for a
network to have anywhere near an infinite number of members for it to have a near-
infinite number of alternate forms that it could take. Understanding this general
quality about networks is important for comprehending some of the challenges
faced when attempting to estimate the likelihood that a given set of network
statistics accurately summarizes the structural properties of an observed network.
Exponential-family random graph modeling (ERGM) is an estimation
technique used to identify determinants of network structure (Robins, Pattison,
Kalish, & Lusher, 2007; Snijders, 2002; Wasserman & Robins, 2005). It aims to
describe how likely an observed network, yi, is relative to all possible networks in
Y., conditioned on network statistics in the vector g and their sufficient statistics

contained in the vector 0. Equation 5 depicts this relationship.

Po(Yn = Yin|8) = 1™ exp{0f Vi, 8)}
Equation 7
In Equation 7, k is a normalizing constant, such that KEYH(G(g)),

representing the evaluation of yiw as a function of the statistics g relative to all

networks in Y, produced according to g.
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=) explOf (Wi, 8))
k=1
Equation 8
Let yin be the kth network with membership size n in an ordered subset of

networks in Yy, w. Equation 8 makes clear that the evaluation in Equation 7 is in fact
the likelihood that network formula 8'g accounts for the structure of yi, relative to
all of the other networks in w produced by the formula. Another way of stating this
is that for the subset of ¥;, or w produced according to 0'g, what are the odds of
observing yi? The purpose of estimation with ERGM is to maximize this quantity.

The network formula f(y,, g) attempts to describe the pattern of
connections throughout the network, yi. Consider the representation of a network
with an adjacency matrix. The rows represent each it" member and the columns
represent their possible j connections. Recall that 0 is a vector of change coefficients
and g is a vector of network statistics functions. A network statistic is a function
valued according to the application of an algorithm to the network in question. 0
captures the overall effect that network statistics have on the rate of connections in
a network. Each element in 0 is a measure of effect relative to random chance,
defined as the odds 50:50. Any 64 valued less than zero indicates that the statistic in
question accounts for connections at a rate less than random chance. Any 64 valued
greater than zero indicates the opposite. Network statistics can be structural,
pertaining to connections between members, or personal, describing the individual
characteristics of members and dyads.

This paper restricts analysis to elements in g that are structural

determinants.3?” An additional restriction is to a certain type of network, the

37 The author is not convinced that popular ERGM software like “ergm” or SIENA properly account
for individual attributes when performing the Markov Chain Monte Carlo simulation of replicate
networks discussed below. To do so, these programs would have to construct multi-variate
correlation matrices for structural factors and attributes as well as between structural factors and
attributes. Inspection of the source code for “ergm” offers no indication that the MCMC process is
uses employs such a multi-variate covariance structure; hence, the skepticism offered by the author.
This does not mean that attributes will not explain patterns of connections in an observed network.
Just that there is no way to determine what this really means in the context of a larger undefined
population. Note that even if estimation must approximate Y, through simulation, the population of
networks is a theoretically known quantity. The same is rarely true for characteristics observed in a
sample of individuals that form a network.
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undirected or dichotomous graph. These networks are such that for members i and
J, a connection from i to j implies a connection from j to i (i «< j). For the analysis
conducted in this paper, a formula of network statistics effectively describes the
pattern of 1’s and 0’s in the upper triangle of the adjacency matrix.38

ERGM calculates values in 0 in one of two ways. If the proposed formula f
(0,g) contains terms in g that demonstrate “dyadic independence,” then estimation
of @ uses what the literature calls maximum pseudo likelihood (Hunter, Goodreau, &
Handcock, 2008, p. 250). A term is dyadically independent when it acts as a co-
variate of the node in question and does not change conditioned on a change made
to any other node in the network. Terms like individual attributes and descriptions
of aggregate structural properties (e.g., network density) have dyadic independence.
Equation 9 shows that the maximum pseudo likelihood calculation of @ under these
circumstances is a logit model with the state of a dyad (x; = 0 or x;; =1) being the

outcome variable and terms in g acting as the regressors.

e9's
p(xi; = 1|ypm) = T+ e
Equation 9

As a maximum pseudo likelihood estimator, the logit function in Equation 9
accounts for variation in structure for elements in g with respect to yx but in no way
accounts for the likelihood sought for maximization in Equation 7 because it makes
no account for the denominator represented in Equation 8. Rather than being a
pseudo likelihood, Equation 9 amounts to a biased representation of the estimates
for all cases other than when the specification of g is such that yi, is at the center of
the distribution in w. The literature has largely concluded that use of this estimator
is inappropriate (Wasserman & Robins, 2005, pp. 157-159).

Terms that demonstrate “dyadic dependence” compel ERGM calculation of 0
that uses a maximum likelihood estimator for the logit function. What distinguishes
it from the pseudo likelihood calculation is use of a Markov Chain Monte Carlo

process to generate a sample population of networks that approximates the

38 Evaluating only half of the adjacency matrix is sufficient the i & j relationship makes it a
symmetric matrix. Additionally, analysis does not include “self-ties” or i < i connections, so
estimation also excludes the diagonal.
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calculation of Equations 1 and 2.3° Altogether, the calculation is known as Markov
Chain Monte Carlo maximum likelihood estimation, hereafter referred to as
MCMCMLE. Calculation of @ evaluates the distribution of values supplied by the
application of toggling to the dyads in yk, and the replicate sample. Calculation of
each 64 in O consists of evaluating changes in the value of a statistic according to
“toggles” of network dyads. To toggle a dyad means to turna 1 to 0 or a 0 to 1. ERGM
determines preliminary estimates of values for 0 then uses these values to generate
replicate networks.

Generation of network replicates uses the preliminary estimates of @ from yx,
and user-set specifications for simulation to generate a sample of replicates.*® One
simulation parameter is sample size, which indicates the total number of replicates
it is necessary to generate to complete estimation. Two other parameters are burn-
in and interval. ERGM uses a Markov Chain Monte Carlo (MCMC) process to generate
replicate networks. Recall that estimation begins with just one network. To generate
replicates, ERGM randomly selects dyads in the observed network and alters their
states according to the specified network formula. Network sampling in this manner
returns to the view that y,k is a random variable drawn from Y, and that any
different configuration of y,k represents another draw from the subset of Y,,, w. The
parameter burn-in defines how many replicate networks the generator will simulate
before initiating construction of the sample. Burn is an appropriate description
because the parameter determines how many changes to y.x will ensue before
populating the sample. The literature prescribes using a relatively large value for
burn-in to distinguish members in the sample of w from yi, as much as possible.
Once sampling has begun, the parameter interval states how many changes must
ensue between evaluations of replicates potentially added to the sample. As a step-
length, interval specifies how distinct from one another sampled members in w are

from one another. Replicate evaluation uses the measure of density to determine

39 Calculation of the true likelihood would require evaluating a network formula across all of the
networks in Y,, which is computationally infeasible for even moderate sized networks. This is
because of the permutation function described above.

40 All of the parameters have default settings, so it is unnecessary for users to input values unless
they want to customize the estimation runs.
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where a proposal lies in Y, according to network density and how different it is from
Vnk- Rejection of a network occurs when a replicate falls outside a density bandwidth
of D(yn) £ .4

Largely unrecognized in the literature is the fact that the replicate evaluation
mechanism in ERGM incorporates a certain type of measurement error into the
estimates. Random selection of replicates with a density that varies according to the
D(yrn) £ € threshold accounts for differences in the absolute number of
connections recorded in the data. Narrowing the threshold inserts, perhaps falsely,
an increasing level of confidence in having recorded the correct number of
connections within the network. The extreme specification is € = 0, which imposes
the assumption that the data contain the correct number of connections and that all
comparisons should have only that number. Users should set € = 0 only when they
are 100% confident that the data contain the right number of connections.

Evaluation of ERGM estimates determines whether the MCMC process
converged and—if it has—which of the formula terms are statistically significant
along with what the magnitude of their effects are. MCMC convergence occurs when
the sufficient statistics estimated from the replicate sample form a uni-modal
distribution. A uni-modal distribution of coefficients indicates that only one regime
of networks exists for the formula g. Statistical significance and coefficient
magnitude combine to reveal whether the term in question accounts for connections
in yin at a rate greater or less than random chance (i.e., 8 = 0) at a specified level of
statistical significance. Beyond these two points of assessment, the literature also
advises that users evaluate “goodness of fit” for the specified model (Hunter,
Goodreau, & Handcock, 2008). To do this, users are to evaluate how much the
replicate networks that an accepted formula produces resemble yi,. Direct
comparison of even moderately sized networks (i.e., nine or more members) is an

NP-Hard problem (or non-polynomial time “hard” problem) and therefore

41 Users have a limited choice on how to alter this sampling parameter. For example, they can choose
to make all replicates have the same density as yi, to make the replicates have the same relative
distribution of degree as yw, to make all replicates have a maximum or minimum number of
connections, and so forth. For more details on the options, see the software documentation.
Specification of the bandwidth parameter requires users to state the minimum and maximum
number of connections members can possess, which is not always the easiest calculation to make.
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computationally infeasible for most networks (e.g., n > 4). An alternative is to define
the same structural properties for at least two networks then determine how close,
in terms of the properties, the two are to one another. Here, this evaluation amounts
to determining whether the property in question of the observed network falls
within the confidence interval produced by the formula replicates (Morris, 2003).
Commonly analyzed structural properties include degree distribution (i.e., the
relative frequency of connections in ynk), shared partner distribution (i.e., relative
frequency of the number of mutual partners actors in yn« share), and geodesic
distribution (i.e., the relative frequency of path-lengths describing the minimal
distances between members of yu«). Altogether, calculation of ERGM and evaluation

of its estimates roughly consists of five steps.

1 Specify a formula of network statistics and calculate coefficients for the
B observed network.

5 Use the specified formula along with the calculated coefficients to
I ocnerate alternate networks also known as replicates.
3 Produce a sample of replicates according to a set of simulation
B parameters.
Estimate new coefficient values for the specified formula by evaluating

4. . .. . .
- the replicates, determining whether estimates in the sample converge.

estimates.

Analyze the coefficients and the “goodness of fit” diagnostics for the

Table 5 (ERGM in 5 Steps): A five-step description of Markov Chain Monte Carlo maximum likelihood estimation using
ERGM.

V.  Estimation Problems with ERGM
As many in the literature have come to find, it is difficult to achieve good
estimates with ERGM by following the five steps outlined in Table 5. Two major
hindrances encountered are network degeneracy and failed convergence of the

MCMC process. When a 0 for a formula produces a network sample, w, whose
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members occur at or near the extremes of Yy, estimation encounters the problem of
degeneracy. Unless yin is obviously near the boundaries of Yy, there is little reason to
consider the generated replicates useful. This has not prevented a debate from
ensuing in the literature with some contending there is theoretical merit to
identifying degenerate and near degenerate formula specifications is useful
(Wasserman & Robins, 2005, pp. 156-157). This is true for theoretical explorations
for the f (v, 8) specifications that produce networks at or near the boundaries, but
it is not true for characterizing yi not lying in either extreme. For this reason,
standard ERGM estimation simply halts when it encounters network degeneracy.
The literature has treated degeneracy as a problem that arises because of the
formula f (y.n, g), highlighting the need to for improved model specification.

A favored approach to improving model specification replaces static,
dyadically dependent terms in g (e.g., triangulation, node degree, k-star, and so
forth) with more complex ones. One such class of terms comes from the curved
exponential family of functions (Hunter D., 2007).42 Curved exponential functions
have more parameters than they do sufficient statistics (Efron, 1975). In the context
of a network statistics formula, this means that the estimator calculates a value for

not only the associated 8 but the exponential parameter as well.

n-—1

GW Degree (yy) = e Y {1 = (1 = &™)}, (ym)
=1

Equation 10

Equation 10 defines the curved exponential function known in the literature
as geometrically weighted degree. Geometrically weighted degree as a function of
ynk compresses the frequency distribution of connections among members into a
single value. The exponent, a, indicates the weight placed on a given category of
connections or I The index of the summation operator runs from/=1to/=n-1,

because that is the most connections a member in the network can have without

42 Other candidates include “alternating k-stars” and other similar functions. Procedures outlined in
this paper extend to all network statistical terms containing exponential parameters in addition to
the change statistics calculated in the network formula. That means that they include “alternating k-
stars,” which the paper has excluded from the analysis for the purpose of brevity.
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counting a connection to itself. The term D; designates the number of members in
the network with [ connections. When o = 0, no transformation of the degree
distribution occurs. However, when o > 0 members with higher numbers of
connections receive lower weights and the opposite when a < 0.

Curved exponential functions like geometrically weighted degree are flexible,
meaning that users can vary values of the exponent in search of a @ that maximizes
goodness of fit (Hunter, 2007, p. 228; Hunter, Gooderau, & Handcock, 2005, p. 27).
Exponents can take on any values in the set of real numbers, R. This means an
expanded parameter space, the range of values specified as in the domain of the
function, for identifying the fit maximizing value. Locating such values entails
sweeping through this space in some way. Such a search casts aside notions of
substantive inquiry#3; a point alluded to at the outset of this paper. The stated need
for parameter sweeping is not without precedence. In a brief, concluding, note on
how to identify exponent values that best fit the data, Hunter and Handcock write,
“Naturally, however, data-driven estimation of 65 [the exponent] is to be preferred
unless 65 can be pre-set based on theoretical considerations,” (2004, p. 20). Under
what conditions, other than simulation, will a researcher know the value of a
generative exponent? Very few circumstances —if any—are likely. The best
conclusion one should draw from this statement is that it is necessary to sweep the
parameter space when specifying a network formula containing one or more of the
curved exponential-family terms.

Parameter sweeping to avoid degeneracy and to maximize fit does not
automatically resolve all of the estimation problems. Failed MCMCMLE convergence
is another issue bemoaned for some time in the literature (Snijders, 2002). No
convergence in the estimates of sufficient statistics implies an underlying multi-
modal distribution of values that indicate alternate regimes of networks. Fully

appreciating what it means to have alternate regimes generated by a single set of

43 Substantively, positive values of a indicate anti-preferential attachment processes, while negative
values indicate preferential ones. Recall the theory of “scale-free” networks and the argument that
preferential attachment produces networks with Power Law distributions. Reported findings in the
literature tend to place substantive weight on the interpretation of these values within a variety of
social network settings. For an example, see Goodreau, Kitts, and Morris (2009).
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initial estimates is important. Remember that the purpose of ERGM is to identify the
MLE for yi. A situation characterized by multiple network regime differs from a
single regime, because of separate one of Failure to converge reflects a lack of
agreement among alternate modes that represent different regimes of networks
produced by the sampling process (10). Rather than there being too few networks in
a low density probability mass of Yy, as encountered in degeneracy, there are too
many networks with distinct differences. The resulting estimate is the original
pseudo likelihood estimate that users should have little confidence in regarding
estimation of Equation 7. The estimates will fit the observed network (i.e., have a
desirable AIC) but will not include an evaluation of the other networks in w. Since it
is the approximate likelihood evaluation for the performance of the parameter
estimates in w that ERGM aims to achieve, this is not an acceptable estimation

result.
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Figure 4 (Failed MCMC Convergence): An example of a multi-modal degree distribution produced in the analysis of a
five-member, "toy network"” using an ERGM formula containing the geometrically weighted degree distribution terms
for a directed network.

Figure 4 displays the MCMC distribution of the geometrically weighted

degree distribution term applied to a five-member network used for the purpose of
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exposition.** Four regimes are apparent in the data, making estimation of a single
estimate along the dashed line somewhat meaningless for all but one regime of the
sample. Snijders offers a number of techniques for coercing the network-generating
sampler into producing network replicates with convergent statistics (14-29). Two
of the discussed strategies include increasing sample size and using a alternate
sampling algorithm. Increasing sample size aspires to use the “law of large
numbers” as leverage against the underlying inherent multi-modality, but its
shortcomings should be apparent. To ignore the estimates drawn from the alternate
modes means to waste information about what estimates may maximize the fit for
the yin. Unnecessarily discarding information is rarely a boon to estimation.

The other option of altering the sampling algorithm appeals to the standard
MCMC dictum of achieving convergence, but it may also serve as a more
sophisticated way of unnecessarily discarding information. MCMC convergence
works upon the idea that a sufficiently tuned Marko Chain will reach equilibrium
and that failure to do so means to evaluate the model under disequilibrium. Sorting
through this matter convincingly is beyond the scope of this paper, but it is possible
that the multi-modal distribution represents multiple equilibria that have varying
probabilities of realization. If this is true, then estimation should include the pair-
wise combination of these values and evaluate them accordingly. To perform such
an assessment requires rewriting code in the software then comparing the strategy
to those that Snijders proposes. The endeavor constitutes a point of future research
but not something to implement currently. Given the disagreement on the matter,
this paper treats regions of the parameter space as “dead zones” and looks to

reassess the matter in the future.

44 Simulation of the network used the terms “edges” and “triangle” with 8¢ = 0.3 and 61 = 0.05. The
ERGM estimation used included the “edges” and “geometrically weighted degree” terms, including a
parameter sweep of the o exponent that ran from -1 to 1. Regions of failed MCMC convergence
occurred in the range a =-0.3to a = 1.
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VI. Procedures for Maximizing fit with ERGM and Evaluating
Their Application

Procedures proposed in this paper amend steps outlined in Table 5 to
include sweeping the parameter space of network formulas that contain curved
exponential-family terms and filtering estimation results according to various
statistics that indicate how well the model performed. As indicated above, sweeping
the parameter space of the specified model is not controversial according to the
discussion in the literature. Rather, it is a process that the literature has not been
clear regarding how to do it. This paper presents two separate procedures that
users can follow; only one of rich the demonstration applies.

Ideally, parameter sweeping consists of two, iterative phases: broad search
and drill-down or narrow search. Broad search specifies a very wide interval in the
state space in a series of integers and their median points, for example, the series 0,
0.5, 1, 1.5, 2, 2.5 and so forth. Evaluation of these intervals does not “fix” the
exponents as constants but instead uses them as initial conditions then allows the
MLE to perform as it should by estimating the most likely combination of
exponential values along with the sufficient statistics for the data networks in the
sample. Analysis of the results collected during the first phase identifies which
regions of the parameter space have the highest likelihoods, treating each of them as
candidates for the MLE estimates. The second phase of narrow search establishes
intervals around each candidate and applies a more granular search around in the
space, meaning smaller increments than 0.5 steps. Although time consuming, this is
the ideal procedure. The less time consuming procedure establishes the interval for
narrow search, ex ante. This paper implements the second procedure of narrow
search only but future research will evaluate it in comparison to the broad-narrow
combination. It is possible that which type of sweep is best depends upon the
structure of the network in question. Ultimately, the goal will be to specify a
diagnostic test for helping users make an informed decision.

Parameter sweeping strategies assist in the identification of possible

solutions for maximizing model fit but do not make the evaluation themselves.
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Recall the estimation problem posed by Equation 7: estimate 0 for g such that it
makes the network yi, most likely in Y. Recall that the literature advised “goodness
of fit” statistics to make the evaluation. These effectively compare structural
properties of yin to those exhibited by the rest of the networks in w on condition of
0'g. To do this is an easy task for a few evaluations but extremely time consuming
following even the shorter version of the outlined parameter sweeps. What makes
the process difficult is the fact that ERGM does not automatically generate these
statistics following its simulations. It requires a post-estimation step of simulating
large numbers of replicate networks from w to form the confidence interval used to
assess fit with yxn.

Research results on a simulated, 5-member network shows that “goodness of
fit” performance parallels three results retrieved directly from the estimation
results. The three results are whether the formula parameterization avoided
degeneracy, whether estimates demonstrated MCMC convergence, and whether the
formula identified statistically significant values for all of the included terms at a
confidence level of p < 0.05. It may seem odd at first that all of the values for
included terms must have statistically significant values, since this seems to force
the term upon the model unnecessarily. The assessment would be valid if the
empirical question was theoretical, but it is not. Instead, it is about identifying the
best description. From that perspective, researchers must determine whether they
want to include or exclude a term. The point made here is that the terms
researchers include must have estimates relevant to the formula; otherwise they act
as noise that distorts estimates that the model makes. Having filtered the results
according to these three criteria, the Akaike information criterion (Akaike, 1973) or
AIC score ranking mirrored that produced using the traditional “goodness of fit”

measures.#> A claim that this makes is that the proposed combination of filtering

45 The formula for AIC is: AIC(M) = —Z(InLL(M)) + 2xy. The equation says that AIC is a function of
the evaluated model, M. It is the difference between two times the number of terms in the model (xm)
and two times the log likelihood (LL) of the model. LL is approximated in the case of ERGM. To see
why AIC scores produced during a parameter sweep track LL, it is only necessary to realize that xn,
becomes a constant, since the formula does not change regarding the number of evaluated terms. So,
the only change that occurs is in the performance of LL as a function of M. Since everything in the
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and ranking sufficiently approximates evaluations made using “goodness of fit”
statistics. An assessment of this claim concludes the section that analyzes estimates
produced from the case study of the Jemaah Islamiyah terrorist network.

Review of ERGM and problems encountered when using it has led to an
outlining of procedures in this section that extend as well as revise current practices
in the literature. The extension consists of recognizing that estimations using
network statistics possessing more parameters than sufficient statistics should
include parameter sweeps that attempt to identify the likelihood maximizing
parameter value within a defined parameter space. When a network formula
consists of more than one of these terms, then the parameter sweep should occur
jointly across a grid for the combination of two terms, a cube for the combination of
three, and so forth. The revision to current practice amends calculation of the
“goodness of fit” statistics for incorporation within the time-consuming parameter
sweep procedure. A claim that the paper makes is that filtering then sorting
estimation results approximates evaluations made using “goodness of fit”
simulation and confidence interval evaluation procedures. Filtering requires
sequentially establishing non-degeneracy for a given parameter space,
demonstrating MCMC convergence, and identifying parameter and sufficient
statistic estimates that are statistically significant. Ranking entails sorting estimates
by their AIC scores from lowest to highest. Discussion in the paper has led to the
corollary argument that estimation should occur for the parameters as well as the
sufficient statistics, which is something that has yet to become common practice in
the literature.

Assessment of the proposed procedures involves demonstrating them in a
case study and evaluating the core and secondary arguments made about their use.
The core argument is that these procedures are useful for maximizing the fit of a
proposed model. Testing this proposition involves applying the filtering and ranking
steps then assessing the “goodness of fit” for the highest and lowest ranked

estimates. If the procedures do what the paper claims, then the model fit for the

formula remains constant except for the fit of the model, the AIC effectively subsumes the BIC (which
includes an account of sample size) within this type of parameter sweep analysis.

47



highest ranked model specification (i.e., the one with the lowest AIC) should be
better than that of the lowest ranked one. Importantly, this is a conservative test
biased against finding support for the proposed procedures. Filtering excludes all
specifications that have not converged and do not contain parameterizations for
network statistics terms that are statistically significant. The comparison then is one
at the margins, distinguishing the best from the best and not merely comparing the
best against the worst.

The secondary argument is that ERGM estimation should occur for sufficient
statistics for formula terms in g in addition to the exponents of the terms also
contained in g. Two types of visual analysis evaluate this proposition. One consists
of rendering the likelihood surface in its “fixed” state, displaying performance of the
estimates according to the height throughout the parameter space. Comparison of
this “fixed” condition to a graphic that illustrates where the final estimates settled
establishes support for estimating the exponents if the MLE shows that the final
exponent values differ considerably from those specified in the initial conditions. If
the estimated landscape differs significantly from the “fixed” one, then there is
support for the argument. A second evaluation of the argument evaluates the phase
portrait of the estimation sequence. Phase portraits illustrate with vectors the
trajectories and distance of change between the initial conditions (or starting
values) and the final estimates. Support for the argument rests in a portrait that

exhibits a high degree of movement during the sequence of estimations.

VII. The Best fit Description of Jemaah Islamiyah, 2000: A Case
Study

The statistical model used to characterize the Jemaah Islamiyah network
consists of three terms, one dyadically independent term and two curved
exponential family terms that are dyadically dependent. The equation for the model
is:

e8'8(D.ah)

p(xij = 1|ykn) = 1+ ee’g(D,a,?\)

Equation 11
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The full expression of g(D, a, A) is:
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Equation 12

Equation 12 presents a formula that characterizes structure of the terrorist network
as a function of network density, a geometrically weighted degree distribution, and
a geometrically weighted shared partner distribution. The terms network density
and geometrically weighted degree have been discussed, respectively in Equation 3
and Equation 10 above. The geometrically weighted shared partner distribution is
similar in form to the geometrically weighted degree distribution, but its
interpretation differs considerably. The exponent, A, resembles o by assigning a
weight to  but now [ represents the number of mutual partners that members i and j
share. [ still has a range from I =1 to I = n - 1, but it now serves as an indicator for
clustering in the network, rather than just the central connectivity of member i. The
term D; indicates the total number of dyads in the network with a total of / shared
partners.

Equation 12 contains two exponential parameters that require evaluation
with a parameter sweep. This paper demonstrates the drill-down or narrow version
of the sweep by evaluating both of the parameters throughout the interval [-1, 1].

Increments used to cover this space are steps of 0.05.
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Figure 5 (Joint Parameter Sweep): A graphic displaying the joint-parameter space analyzed along with a
categorization of the alternate regions.

Figure 5 summarizes the joint parameter space and the sequence of
parameter values used for the exponents for estimation. Alternately colored regions
indicate what combined effects the parameters have on their respective
distributions. Counting counter-clockwise, Quadrant I indicates joint decay for the
parameters, since they are both positive. Quadrant Il indicates growth in A but decay
in a. Quadrant III indicates growth, since both are negative. Quadrant IV indicates
decay in A but growth in a. Steps with length 0.05 across the parameter space make
for a total of 41 increments along the two axes. Combined, this produces a total of
1,681 ERGM estimations. Estimation set the MCMC simulation parameters as the

following:

Sample Size 10,000
Burn-In 4,000

100
Maximum lterations 5

Table 6 (MCMCMLE Specifications): Table outlining the simulation parameters used during the 1,681 estimations.
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Table 6 shows that the sample sizes generated contained a total of 10,000
replicates, that burn-in culled 4,000 replicates before initiating sampling, that 100
changes occurred between sample evaluations began, and that the estimator had 5
attempts to identify the maximum likelihood estimates for each step in the
sequence. Snijders (2002) suggested users take at least 1,000,000 steps away from
Vim When selecting replicates from the Y, sample space. The product of sample size,
burn-in, and interval is 4,000,000,000 or 4 x 10° well beyond the prescribed
threshold.

Figure 6 (JI 2000 Likelihood Surface): A visualization of the likelihood surface for the Jemaah Islamiyah terrorist
organization in the year 2000.

Figure 6 displays alternate renderings of the likelihood surface produced
from approximately 1,000 of it 1,681 estimations. It visually represents the
exponents o and A as “fixed,” rather that estimated quantities. AIC-1 along the Z-axis

proxies representation of the log-likelihood in Equation 7, which is suitable given
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the fixed number of parameters (see 45 for further elaboration). Two features in
Figure 6 are prominent. First, there appears to be a convergence in estimates for A,

indicated by a single mode. Alternately, estimates in o appear bimodal.

Figure 7 (Comparison between “Fixed” and Varying Renderings of the Exponents): Contrasting renderings of the
estimates in the parameter space between artificially “fixed” and varying depictions. Compression in a and the
indication of a good candidate for a converging mode support the argument for estimating, rather than fixing
parameters for terms with exponents.

Figure 7 contrasts the artificially “fixed” rendering of the complete surface
containing all 1,681 estimates with a cloud plot of the final exponential estimates.
Compression in o, the reduction from a reasonably spread set of different modes, is

significant and clear. Clearly, the initially specified values rarely turned out to be the

MLEs, a point that the phase portrait summarizes.
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Figure 8 (Parameter Sweep Phase Portrait): A phase portrait graphic of the changes in value that frequently occurred

for the exponents, clearly distinguishing the “initial conditions” from the MLEs.

Figure 8 presents the phase portrait of changed values for the exponents,

highlighting the frequent difference between their “initial conditions” and their

MLEs. Regions in the plot that look like nearly empty dots represent points in the

parameter space where the MLE differed insignificantly from the initially specified

indicating with vectors of alternate

values. Darker regions show the contrary,

lengths regions not only differed from the original specifications but also tended to

converge in the calculation of a new estimate. Sometimes the distance traveled

characterized by very lengthy arrows). In light of the

proved considerable (i.e.,

such an approach would not

)

exponent values

“fixed”

earlier discussion about using

have led to the same convergence by construction. The estimator would not have

had the opportunity. This points up the importance of at least considering regular

inclusion of parameter sweeps in analyses that include curved exponential family
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terms. Otherwise, users seem to be relying on sheer luck of the draw (or

specification) when attempting to identify the MLE for such network formulas.

Network Statistics [gle[aERARERICT I MOV #RE )1 C]e!

Density 0.033** -1.898****
S.E. (0.014) (0.082)
GW Degree 30.654**** 0.767****
S.E. (0.442) (0.255)
o -0.064**** -0.601****
S.E. (0.014) (0.097)
GW Shared Partner -0.455**** -0.075****
S.E. (0.013) (0.013)
A -0.205%*** -0.851****
S.E. (0.033) (0.155)
AIC 542.51 804.82
BIC 568.06 830.37
MCMC Sample Size 10,000 10,000
Burn-In 4,000 4,000
Interval 100 100
Maximum lterations 5 5

Table 7 (Highest and Lowest Filtered Estimates): Estimated sufficient statistics and parameter values for the highest
and lowest ranked, filtered estimates from the joint-parameter sweep.

Estimation using the joint-parameter sweep produced 1,681 records of
results. Out of these, only eight sections or less than 0.4% of the parameter space
faltered because of degeneracy. The fact that about 12.8% of the estimates failed to
demonstrate MCMC convergence emphasizes that degeneracy and convergence are
separate estimation problems with their own unique solutions.#*¢ Including curved
exponential family terms in the formula largely resolved any concerns there might
have been with degeneracy, but the problem of multi-modality within certain
sections of the parameter space remain largely unresolved. Applying the filter that
removed degenerate regions, MCMC “dead zones,” and set a minimum p-value of

0.05 preserved approximately 14.2% of the sample (i.e., 238 entries).Minus the

46 Specifically, about 13% or 218 sections in the parameter space had one or more of the estimated
values fail to converge, while about 12.6% or 212 sections had all of the values fail to converge.
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invalid entries, this amounts to a 83.7% reduction in the evaluated parameter space
by selecting the best of the best estimates for a formula used to describe the
structure in yiw. Table 7 displays estimates for the highest and lowest filtered and
AlC-ranked entries.#” Inspection of the results shows that a difference in sign
emerged for only one of the network statistics, Density. For the remainder of the
statistics, including the parameter estimates for the exponents, there is a very big
difference in magnitude, despite the consistency in sign. To appreciate how different

the filtered estimates are requires comparing their “goodness of fit” statistics.

47 Table 7 also reports the BIC values for the ranked entries. The fact that factors like sample size and
the number of terms remained constant throughout the estimation makes the AIC and BIC values
differ by a constant value of 262.31.
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Figure 9 (“Goodness of Fit” between Best and Worst Performing Network Formulas): Comparison of two structural
characteristics, degree distribution and geodesic distribution, in terms of the “goodness of fit” producing by the best
and worst performing filtered estimates for the network formula.

Calculating “goodness of fit” statistics was computationally infeasible for all
1,463 of the viable regressions, but easily achieved for comparing the two,
alternately ranked entries. Figure 9 displays results of the comparison with visual

plots for two of the three structural properties commonly evaluated in the

literature.*8 The two distributions evaluated are the degree distribution and the

48 Near identically perfect matches for both entries on the calculation of the edgewise shared partner
distribution made including that figure meaningless for comparison. They both did equally well at
accounting for clustering. This is interesting, though, given their considerably different values for the
GW Shared Partner 6 and A.
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geodesic distance distribution. A degree distribution is a relative frequency of the
number of connections members have and the total number of members with that
amount. A geodesic distribution is somewhat more global for the network in
general, describing relative frequency for the numbers of path lengths apart
members are from one another. In the figures, the bold line depicts values for the
quantity in question, and the light grey line depicts the standard deviation
confidence interval for the simulated population. The Box-and-Whisker plots are
another way to represent the distribution with dark dashes in the middle of boxes
indicating the medians for respective categories. The vertical axis reports the
relative frequency of plots in the graph.

A review of the plots shows that the higher ranked model made better
predictions for a majority of the sample in the category of degree distribution, while
both models fared poorly in the prediction of geodesic distributions. The higher
ranked model over predicts the number of members with only one connection but
does a good job predicting the number of members with between two and four
connections. The lower ranked model, on the other hand, does a good job of
predicting members with three or more connections. Despite doing a better job
throughout most of the range of possible values, the lower ranked model did worse
in the area of accurately predicting values for a majority of the sample. Most of the
members have one or two connections, categories where the lower ranked model
fared the poorest. Using the absolute number of accurate predictions as a metric,
neither model did well in the category of geodesic distribution. This result could be
because of exploring too small a portion of the parameter space by using only the
narrow search or from not including the appropriate network statistic in the model
specification. Performing well for a majority of the sample is commendable but
there is also something to predicting lower probability occurrences, which the lower
ranked model did in for the degree distribution.

Not much of this paper has dealt explicitly with the structural modeling of
networks and the use of these techniques to study and counter terrorist networks,
but a review of the model results points to the need for bridging the two. Analysts

and authorities must contend with the fact that terrorist networks not only have
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latent social processes that generate them,*° but that they are also clandestine or
“dark.” Sometimes the terrorists with the least likely attributes prove to be the most
dangerous, making it important for authorities to have tools that balance between
getting most of the data right most of the time and making accurate predictions for
the rarely occurring events that are infrequent but important. Whereas this paper
originally set out to propose a way to identify the best fitting results, it has
concluded that, at least in the context of terrorist networks, a slightly different goal
is necessary. Rather than further developing methods for models that are right most
of the time but make no account for rare events, future developments should look to
combine the two. Bayesian model averaging offers one path to developing and
implementing these methods in network science. Another possibility is to run
“goodness of fit” statistics for the filtered results then to rank them according to
their ability to combine accurate mapping for a majority of the network at the same

time that they account for rarely occurring events as well.

VIII. Conclusion

Opening discussion in this paper described how most theories about
the generation of networks do not have emergence characteristics easily identified
by known mathematical distributions. This leaves many of them untested or poorly
tested. The paper then sought out to describe methods for identifying a flexible
statistical test researchers can use to test proposed any proposed theory. It then
forwarded prescriptions for use of the exponential random graph estimator,
emphasizing using it to maximize fit, as its original authors intended. After applying
the procedures to analysis of an empirically observed terrorism network, the paper
concluded that the methods identify the most likely components of a structure but
not its rarely occurring ones. This is less of a problem for testing theories than it is
for using simulation of estimated network properties to a population of networks

known to exist but difficult to detect. Immediate examples like terrorist networks,

49 No matter what the narrative of a person identified as a terrorist after an attack or failed plot is,
authorities rarely capture someone before they set down the path to become a terrorist.

58



crime syndicates, and other clandestine groups come to mind when thinking about
how this problem of partial characterization limits the application.

Some concluding remarks are in order, regarding the testing of theory
with the methods proposed in this paper. Maximizing fit of a model to the data is the
first and sometimes the only step to comparing observed data to proposed theory.
Enders and Su assert that networks generated under the same condition will display
similar properties. Assessing this theory amounts to observing a number of terrorist
networks produced from the same or comparable security environment as well as
source population (i.e., those who can become members) then determining how
close their MLEs are. Other theories require multiple steps. Any theory specifying
micro-foundations it asserts leads to unique outcomes for the data requires
empirically-driven simulation then comparison against the observed network. The
closer a simulated network is in the parameter space to the MLE of an observed
network, the more likely it is to explain its occurrence. Thus far, this is conjecture.
The Postscript will describe an example of a future analysis used to determine

where this logic holds and falters.
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CHAPTERIII

The Fallacy of “Decapitation”: A Case Study of Mantiqi I and a Failed

Counterterrorism Strategy

L. Introduction

News cycles today seemingly produce a consistent stream of reports on how
the latest counterterrorism efforts have resulted in the death or arrest of a terrorist
“leaders,” yet the attacks continue and new “leaders” emerge. Research has shown
religiously motivated terrorist groups are less susceptible to decapitation strategies
(Jordan, 2004), but the literature has to this point offered little explanation for how
this occurs. To argue religiously motivated or other population-based groups benefit
from community support does not shed light on how they harness these resources
and what happens to make them stop.

Network science is a framework premised on the importance of connections,
so an explaining intact groups sustain action is not a unique proposition. Scale-free
networks are patterns of social organization where few members act as “hubs” for
large numbers of otherwise unconnected members in the network (Bianconi &
Barabasi, 2001). Scale-free network theory argues that networks formed by
preferential attachment processes have “hub and spoke” patterns of structure,
which make them resilient to attacks that do not target their leaders (Barabasi &
Bonabeau, 2003). The reason for this is “hubs” serve as the significant bond in the
group, holding it together and sustaining flows of resources and information

between even disparate members.
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Mantiqi I, a splinter group of the terrorist organization, Jemaah Islamiyah, led
in the radicalization of Southeast Asia through waves of attacks lasting from 2000 to
2005. Bali I in 2002, which killed 88 vacationing Australians, sent shudders
throughout the post-9/11 world and quickly led a dragnet by the authorities causing
the group leader, Hambali, to flee. Despite his eventual arrest, the group developed a
new leader in Noordin Top and continued its rash of bombings. When the killings
finally stopped in 2005, the group was responsible for hundreds of deaths and many
more wounded.

Filling the void in the literature, this paper provides statistical evaluations of
network structure and narrative accounts of how a terrorist group contended with
successive counterterrorism efforts that decimated its ranks but largely failed to
prevent its attacks.

A unique proposition scale-free theory does not make is Power Law
distributions of connections, “hub and spoke” patterns of connections among
members, are signature characteristics of groups formed preferentially. The theory
section develops these thoughts further and proposes a test for examining whether
changes to scale-free state explains how Mantiqi I continued attacking.

The narrative tells a rich, but slightly different story, which focuses less on
leaders alone and more on the harnessing of resources from members and the
surrounding public. It provides no verbal evidence of the coup de grdce in 2005
being the final elimination of the last network “hub.” Instead, it shows attacks
stopped after counterterrorism efforts killed someone other than the leader
Noordin Top. Further emphasizing how the empirics contradict the theory, recent
events show attacks have begun anew in Indonesia, despite the recent assassination
of Noording Top by authorities.

A comparison of empirical findings and descriptive narrative do not support
the application of scale-free theory. At no time during the period did Mantiqi display
a Power Law distribution, making it impossible to conclude a transition from being
scale-free to not being scale-free explains why it stopped attacking. Closer

inspection of the narrative points to an alternative answer, observing the group
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stopped attacking when it no longer had the ability to do so. This was not because it
lost its leader but because it lost its remaining bomb maker, Azhari Husin.
Organization of the paper is as follows. The next section introduces the data
used in the analysis with a brief background on Mantiqi [ then a description of
methods for data collection. Next is a description of scale-free network theory
according to its descriptions of behavior and expectations of network structure. The
research design section describes the semi-parametric test used to test scale-free
network theory, followed by a presentation of the findings. A narrative describing
the terror-counterterror interaction between Mantiqi | and authorities fills the gap
left by the negative finding for scale-free theory. The paper then concludes with final

remarks.

II. Data on Mantiqi I

This paper evaluates whether during the period 2000-2006 the radically
violent, Jemaah Islamiyah (JI) splinter group, Mantiqi I, exhibited a Power Law
distribution of connections among members. Demonstration of the characteristics
during a period would provide support for the argument that the group was scale-
free and provide some grounds for using a “decapitation” counterterrorism strategy
against it. This section summarizes the history of Mantiqi I then describes the data
collection and coding procedures that produced the network data as part of
Department of Defense-sponsored data collection project that the author took part
in from 2006 to 2009.

Abdullah Sungkar and Abu Bakar Ba’asyir formed ]I in 1993 after they split
with the leadership of Darul Islam, a jihadist movement in Indonesia. Sungkar was
the central figure and the source of vision, inspiration, and direction for JI until he
died in 1999. His death left a leadership vacuum within ]I that no one ever truly be
filled. Many expected Ba’aysir, a long time confidant of Sungkar, to lead successfully
following Sungkar’s passing his death, but he proved a disappointment.

Allegedly taking over as amir (or the spiritual leader of the group), Ba’aysir
was an ineffective leader of operations, prompting group members to criticize him

for being full of lofty rhetoric but no action. Discontent grew then initiated a change
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in organizational structure drastically breaking from Sungkar era. Centralized and
hierarchical since its inception, the organization fractured into mantiqis (or regional
sub-organizations throughout Southeast Asia) under Ba’aysir. What resulted were
two factions, composed of moderates and violent radicals.

Mantiqis II (Indonesia), III (Philippines), and IV (Australia) all had relatively
moderate leaderhip. Mantiqi I (Malaysia and Singapore), on the other hand,
contained the radical minority wing. Mantiqi [ leaders included Hambali, the
regional head, and Zulkarnaen, the head of military affairs for JI’s Central Command
council. Ba’asyir put the confirmed his ineptitude as a leader by deferring to
Hambali who then radicalized the organization by pursuing a violent jihad
supported by funds and resources received from al-Qa’ida.

Ultimately, the Hambali-led militant minority engineered all ]JI terrorist
attacks from 2000-2003, including the devastating Bali I bombings in 2002. As the
attacks mounted, Southeast Asian authorities continuously tightened the security
environment. On the run, Hambali fled to Thailand in 2003 but did not escape arrest.
Noordin Top, former headmaster of Lukmanul Hakiem, one of the two most radical
JI madrassahs, took advantage of the power vacuum and ascended to the informal
role of attack leader. He led attacks on the Marriott Hotel in Jakarta (2003), the
Australian Embassy in Jakarta (2004), and three restaurants and clubs in Bali
(2005) before attacks stopped when authorities gunned down his accomplice,

Azhari, at a makeshift bomb making facility.
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Figure 10 (Mantiqi I, 2000-2006): A graphical depiction of the Mantiqi I faction of Jemaah Islamiyah time series from
when it first began attacking in 2000 to when the attacks stopped following culmination of counterterrorism efforts
in 2006.

Figure 10Figure 2 is a network visualization of Mantiqi I, assembled
according to the connections among members associated with attacks from 2000-
2006. Data on this group comes from the John Jay & ARTIS Transnational Terrorism
(JJATT) project and contain information on the various social linkages between
members of the terrorist organization.50 The binary, undirected graphs in the figure
show the effect counterterrorism operations had on its membership, increasingly
thinning it throughout the period.

Data collection for JJATT included field-based interviews of individuals
associated with ]I or members of ]I, secondary materials (e.g., police interrogation
reports, court discovery material, and court transcriptions), and tertiary or “open
source” materials (e.g., newspaper articles, governmental white papers, and non-
governmental organization reports). Coded connections capture the association
between individuals along the social dimensions of friendship, family, and mutual

participation in terrorist operations.

50 Between 2006 and 2009, the Air Force Office of Scientific Research funded the collection and
recording of data on individuals associated with jihadist terrorism in a variety of locales across the
world. Of particular interest to the JJATT project was further expanding the database on terrorist
networks built by Marc Sageman (2004). To that end, the project produced largest source of publicly
available data on terrorist attack networks. Such groups are those whose members were directly
involved with committing a terrorist attack or had a direct association with someone that did. These
data are available at: http://doitapps.jjay.cuny.edu/jjatt/index.php.
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Coders for the project defined relationships as being in place when
individuals would meet or otherwise contact one another (e.g., via telephone or
courier).51 The resulting coding methodology focused on relationships between
two or more individuals and changes in them over time. The source materials used
to compile this data included reports from field-based investigations (e.g.,
interviews with the associates of terrorists, members from the surrounding
community, and on rare occasions the terrorists themselves), court transcripts, case
discovery materials, and “open sources” (e.g., governmental and non-governmental
reports as well as journalistic accounts). The exact coding of relationships defined a
relationship as being in place once the researcher established that intentional
contact between two or members occurred. Once in place, researchers did not
consider a relationship dissolved unless there was a clear account of a dispute
between individuals (and therefore a severance in relations) or a significant change

in personal circumstances (such as imprisonment, arrest, or exile).

III. Scale-Free Networks

Scale-free networks arise because members connect with one another
preferentially; choosing more often to connect with highly connected members than
other. The literature does not validate, at the individual level through surveys or
other data, why this should happen but conjectures it occurs because of a desire to
move information and resources efficiently by connecting to a larger group, despite
some constraint on the ability to form relations. This is plausible but underspecified
in the proposed micro-foundations, since the only systematic component regularly
depicted is a Power Law generative function, which also serves as the means for
testing it. The expectation that scale-free networks follow a Power Law distribution
is less interesting as a theoretical proposition than it is as an empirical observation.
A wide variety of social and biological networks are scale-free, an outcome with

little chance of happening randomly (Barabasi & Bonabeau, 2003). As stated earlier,

51 This type of data differs considerably from recording detailed accounts of the interactions
themselves, the ideal foundation to network data.
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the Power Law distribution is a reliable test for determining whether a network is
scale free, given the expectation of “hub and spoke” distributed connections.

Before moving to a discussion of the methods used to evaluate whether the
Mantiqi I network was ever scale-free from 2000 to 2006, it is important to re-
emphasize why identifying such networks is important from a counterterrorism
perspective. These networks are of interest in counterterrorism because targeting
the “hubs” effectively breaks the networks. For counterterrorism officials,
arguments that terrorist networks may be scale-free offers some currency, since the

proposed strategy for stopping them is clear and not complicated.

IV. Power Law Distribution Test and a Robustness Check

Discussion of scale-free network theory closed stating the expectation of a
Power Law distribution characterizing degree distributions of mature networks.
Newman (2005) originally sketched out a semi-parametric test eventually
formalized in Clauset, Shalizi, and Newman (2009). Maximum likelihood estimation
(MLE) and bootstrap simulation form the primary mechanics of the test. It uses MLE
to estimate the most likely parameter value in a Power Law generating function to
have produced the observed distribution. Bootstrap simulation produces replicates
conditioned on the MLE estimates and compares them to the observed distribution
using the non-parametric Kolmogorov-Smirnov Test. The remainder of this section
augments the verbal description provided thus far then moves to a discussion of the
robustness check performed on one of the cases in the series.

p(x) < x™¢

Equation 13
Equation 13 describes the probability distribution of x as a function its value

raised to the parameter -a (a > 0). This is a standard representation of the Power
Law distribution. Negative values in the exponent act downward weights that grow
in proportion to the value transform. This means the larger x is the larger the
downward weight. What results is a decreasing probability of large values

occurring. Steepness of result depends upon the size of q, as displayed in Figure 11.

66



09
08 =

0.7 -+

0.6 +
05 +

\
04
03 + \

02 N S—
0.1 +— \‘ ——

Figure 11 (Power Law Plot): Graphic displaying Power Law distribution plots for three values of a.

Empirical examples from the natural world demonstrating the dictum “big things
happens in small numbers” abound, ranging from the magnitude of earthquakes to
links between servers forming the World Wide Web. The question in this paper is
whether the Mantiqi I terrorist network continues the trend.

Graphics like that pictured in Figure 11, when applied to empirical data, can
prove illustrative, but not demonstrate. Visual analysis alone does validate a Power
Law distribution. Furthermore, the authors note that few empirically observed
display a Power Law throughout the entire range of their values (i.e., x1, x2,..., xN).
Known in the literature as an “exponential cutoff” model, the observation implies
that detecting a Power Law just became more difficult. Not only is the line plot like
the one above insufficient, establishing what part of the distribution to include for
analysis is not as clear-cut as one would hope. Clauset, Shalizi, and Newman remedy
this issue by treating identification of the cutoff as a maximum likelihood estimation
problem that sequentially identifies likelihood maximizing values of x (i.e., “x min”
and a. The sequence involves iteratively identifying the likelihood maximizing value
of @ with a constant x,,;,, and choosing the value for x,;, along with its associated @

that provides the best fit in comparison to a Power Law distribution.
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Equation 14
Equation 14 is a representation of the MLE used to estimate @. This equation

is for discrete values of x.52 It specifies @ as the solution to the ratio of a zeta
function differentiated according to @ and the zeta function as function of @, where
in both cases the proposed value of x,,;, is constant. In Equation 15, @ has no exact,
closed-form expression, prompting the authors to identify an alternate function for

estimation.

-1

Z In——
xmm

Equation 15
Equation 15 is the function evaluated as an approximation of Equation 14,

which treats @ as if it were continuous. Correcting for indiscrete solutions produced
from Equation 15, the authors round results up to the nearest integer and state that
unreported analyses demonstrate the approach works well. Having identified the
MLE for @ conditioned on a fixed x,,;,, the next step is to evaluate how a the
distribution of observed data compare to a Power Law when transformed by the @
and X,i, values.

D= _max [S(x) — P(x)|

z Xmin

Equation 16
Equation 16 shows that a distance statistic (D) is the maximum result in

absolute distance between a cumulative probability function defined by the
estimates (S (x)) and the cumulative probability distribution defined by a Power
Law (P(x)). This is the Kolmogorov-Smirnov or KS, non-parametric statistic,
considered useful for assessing comparisons in non-normal data (Press, Teukolosky,
Vetterling, & Flannery, 1992).

A review of the procedures by the authors evaluated how well the estimator

performed when detecting parameter estimates for the Power Law distribution in

52 Only the discrete MLE receives attention here because x cannot take on indiscrete values when
depicting network connections. Individuals cannot share a partial social relation in this dataset nor
can they share a relation with a partial person.
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controlled experiments. The setup specified @ and x,,;, values then ran the
procedures to retrieve them. They identified the threshold for acceptable
performance at X, > 6. Below this point, the estimates became unreliable.
Another conclusion drawn from the evaluations was the sample size (the number of
x values) needed to exceed 50. Sample size restrictions limit analysis of the Mantiqi I
time series to the years 2000 to 2004, each of which had x,,;,, estimates larger than
the minimum threshold. Estimation of the most likely Power Law parameter values
for an evaluated distribution is phase one of a two-phased test. Next is the
comparison of these estimates to those produced from replicates simulated as a
counterfactual depicting what the observed data would like when generated by a
Power Law process.

Simulation of the replicates uses estimates from the observed data to
structure the counterfactual assessment. Prescription of these procedures rests on
the observation that simulating values only from a Power Law would result in an
uneven comparison, since the procedures model the observed data as resulting from
an exponential cutoff. Generation of the replicates effectively performs bootstrap
sampling of two distributions, populating values for the first sample with draws
from values in the observed distribution below the x,;,- The strategy ensures that
replicates resemble observed data, concentrating attention on differences in the fit
with a Power Law. Replicate generation draws from a Power Law with exponent set
to @. For each of the sub-distributions, replicates have the same number of entries as
observed data. Comparison of the replicates first applies the procedures for
Equation 15 and Equation 16 then evaluates whether the resulting KS statistic is
larger than that of the observed data. For the authors, a replicate KS statistic larger
than the evaluated distribution indicates an instance of the observed value falling
within the counterfactual Power Law distribution. The question is if, with respect to
the observed distribution, the ratio between replicates with larger KS values to
those with values smaller than or equal to a are statistically significant. If so,
evidence suggests support for the hypothesis the observed values came from a
Power Law distribution. Failure contests this conclusion. A statistical p-value

describes significant support by the number of replicates with larger values to the
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total number in the sample. The quotient determines how statistically significant the
findings are with a threshold for significance specified by the user.

Analysis in this paper uses computer code the authors provide for calculating
the MLEs original code written by the author in line with the procedures specified
above (see Error! Reference source not found.).53 Parameter estimations and the
imulations used the random number generator seed 1,000. Additionally, simulations

specified replicate sample sizes at 1,000.

V.  Results of the Scale-Free Analysis

Empirical analysis of the Mantiqi I network sequentially led by Hambali then
Top shows reveals no evidence that the group self-organized according to the
expectations of scale-free theory. Application of the semi-parametric test outlined
by Clauset, Shalizi, and Newman that identifies the MLE for parameter values in a
Power Law distribution consistently rejected the hypothesis the group exhibited the
signature trait of scale-free network emergence. Specifically, the observed data did
not demonstrate a smaller difference between its cumulative distribution and that
of a Power Law than replicate distributions drawn from a counterfactual

representation of it did.

Year a Xmn D p-value Membership Size
2000 2749 16 0.131 0.79% 87
2001 2730 16 0.152 0.881 83
2002 2578 12 0.126 0.861 79
2003 3.414 14 0.157 0.458 66
2004 3.222 20 0.131 0.015 57

Random Seed: 1,000
Sample Size: 1,000

Table 8 (Power Law Test Results): Results showing that from 2000 to 2004, the period when Mantiqi I had data
suitable for the semi-parametric analysis, the group did not exhibit a Power Law distribution.

Table 8 shows the results of applying the test for a Power Law distribution

with a lenient requirement for statistical significance set at p < 0.1 or the 90%

53 R code provided by the authors is available at: http://tuvalu.santafe.edu/~aaronc/powerlaws/.
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confidence level. This means a reported value must exceed 90% to support the
hypothesis the network displayed a Power Law distribution for the investigated
year. As the results show, none of the years satisfied this threshold and only two of
the years (2001 and 2002) came close. Recall that the p-value evaluates how many
replicates from the simulation had distance values greater than the observed
network. The assessment asks whether the network falls cleanly within the

confidence interval established through bootstrap simulation. Most of the time, it is

not close.
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Figure 12 (Mantiqi I Kernel Density Plot): Kernel plots depicting a Gaussian transformation of the distribution data
that works to smooth its appearance. Dots at the bottom of the graphic indicate where the data are in the distribution,
while the “x min” panels indicate the MLE estimates for each plot. Grey zones indicate the region of the data treated as
below “x min.”
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Figure 12 displays kernel density plots of the degree distributions
throughout the analyzed period. Although these are not “test” of the Power Law
distribution, they do provide some insight into the results. The grey region indicates
values below the “x min” threshold excluded by the MLE. White regions of the
curves indicate active regions used for evaluation. Estimations results designated
2001, 2002, and 2003 as the most likely Mantiqi I had a Power Law distribution.
Although not statistically significant, long tails in these distributions illustrate the
group sometimes came near demonstrating the expected scale-free characteristic.
Regardless, however, this trend clearly disappeared by 2004, yet the group
continued attacking for two more years. Even under severely relaxed evaluation, the
observed change from scale-free to not scale-free would not explain the cessation in

attacks.

VI. Case Study Narrative

The narrative about Mantiqi I and the greater Jemaah Islamiyah organization
from 2000 to 2005 is a detailed record of what events transpired during each
period. Unlike the description provided earlier, it is more abstract, not recounting
names other than those already listed in the preliminary description, choosing
instead to summarize what changes occurred overall. The first category of
“attacking” details how many attacks the group performed and what they were.
Attacking presents terrorists with the ability to recruit but also raises the stakes of
arrest. The amassing of monetary and physical resources is important for the
purchasing of weapons, among other materials for the group. Improvement of
human capital resources is occurs through the training of existing members or
forming new connections with others. Last, the category of suffering attack, a
negative feedback loop resulting from authorities hunting those responsible down

for arrest and assassination.

2000 to 2002

Attacking
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2000 to 2002 Attacks

2000 Medan Church Bombings

2000 Jalan Kenanga / Sitorus Bombing

2000 Philippines Ambassador Residence Bombing
2000 Jalan Sudirman bombing

2000 Indonesian Communion of Churches Bombing
2000 Rizal Day Bombing

2000 Christmas Eve Bombings

2001 HKBP / Santa Ana Bombing

2001 Atrium Mall Bombing

2001 Singapore Plots

2002 Bali I Bombing

Amassing monetary and other physical resources

As leader, Hambali used his connections to central members of the al-Qa’ida
membership, whom he first met during the 1990s, to obtain funding for all of the ]I
attacks he orchestrated (Conboy, 2006).

Improving human capital resources

Besides funding attacks, the al-Qa’ida connections enabled Hambali to send
certain network members away for training and technical skills. Most important
among these was as Azhari Husin, a formally trained mathematician that went onto
become an expert bomb maker (International Crisis Group, 2003). In addition to
sending members off for training, he worked with the rest of the JI leadership to
establish training camps in the Southern Philippines (International Crisis Group,
2004).

Getting Attacked

After the 2000 Christmas Eve bombings, the 2001 Atrium Mall bombings, and
the 2001 Singapore Plots, ]I suffered a series of arrests. Increased pressure from the
authorities forced Hambali and his leadership team (including Noordin Top and
Azhari Husin) into hiding.

2003
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Attacking

2003 Attack

Marriott Hotel Bombing

Amassing resources

Hambali, no longer in official power and control of the group because of
fleeing, can still access channels for funds from al-Qa’ida, tapping them to help fund
the Marriott Hotel Bombing.

Azhari and Top begin their ascent to strong leadership positions they use to
acquire financial resources to help finance the bombings as well as gain access to
previously hidden, from him at least, caches of explosives (International Crisis
Group, 2006).

Improving Human Capital

The new mantle of leadership enabled Top to expand his recruitment base
through new connections drawn from places like radical madrassah, al-Mukmin or
by mobilizing existing but previously untapped connections like Lukmanual Hakiem
(where he had served as headmaster) along with co-conspirators in previous
attacks (International Crisis Group, 2006).

Getting Attacked

Top’s search to expand his recruitment bases was as much out of a desire to
increase relationship as it was a necessity. Authorities arrested 19 of 22 made three
other important members flee to the point of effective exile. Out of the original
network that began in 2000, only 15% remained. Although recruitment occurred,

membership change was a net loss.

2004

Attacking

2004 Attack

Awustralian Embassy Bombing
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Amassing resources

Top mobilized his personal network for funds, establishing his first state of
independence from Hambali, regarding everything from the funding to logistical.

Improving Human Capital

Just as in 2003, Top reached out to his previously existing and newly
acquired connections, appealing to some of the terrorist organizations in the regions
(Kompak and Ring Banten) for assistance. This was necessary because of the way
the authorities had largely dismantled the entire ]I organization.

At this time, Azhari attempts to train new members in the art of bomb
making. Two students ultimately proved promising.

Getting Attacked

Authorities arrested a Mantiqi I leader who had previously provided Top and
Azhari with accommodations and explosives. Authorities also arrested members of
the other terrorist groups who contributed members in previous attacks.

By this time, nearly 79% of the entire network, not just the original network,

but the entire network, is either dead or arrested.

2005

Attacking

2005 Attack

Bali Il Attacks

Amassing resources
Nothing occurred.
Improving Human Capital

Nothing occurred.
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Getting Attacked

With no new recruitment to replenish the massive manhunt following
attacks, remaining membership sustains devastating losses. Key among these losses
are Azhari, the bomb maker along with one of his prized students. Authorities killed
these two and a number of others in raids following the attacks.

One of the remaining members, however, was Top.

This would be last of terrorist attacks in the country until 2009.

VII. Conclusion

This paper sought to improve understanding of how a terrorist group
suffering attacks to its leaders sustains the ability to not only survive but also
persist in its ability to attack. Scale-free network theory proposed that action
continued because authorities failed to remove the major “hubs” in networks
presupposed to have arisen from preferential attachment. Being a generalized
theory, this is the view imposed on nearly all empirically observed networks. A test
to verify a structural key to evaluating the theory, however, rejected the scale-free
network hypothesis. Additionally, for those cases in the time series that were
somewhat close in value, their change in state occurred too far in advance of stops
in attacks to have “predicted” them. An alternative evaluation approach presented a
narrative on patterns of outcomes experienced throughout the time series.

Review of the events made clear that a key feature to sustaining capability by
Mantiqi I and its remnant relied on a continued ability to mobilize past and new
connections within the population for contributions to membership and material
resources. Although the group consistently suffered net losses in the size of its
membership, the ability to mobilize connections made this value smaller than it
would have been. Lastly, although removed early on from leadership, actions
Hambali took as a leader had ongoing effects on the ability of the group in terms of
human capital and physical resources. While the authorities were unaware of the

virulent presence growing in their midst, Hambali took advantage of the
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opportunity (unlike Ba’aysir) and built a terrorist foundation that would last for

years.
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CONCLUSION

The dissertation set out to explore what determines the use of repression
against terrorism and how to improve understanding of a tool, network science, in
the hopes providing authorities with a suitable alternative. It found that in
democracies post-terror repressions works the one would think, conservative-led
states favor its use, while liberal and centrist legislatures help oppose it. It is wrong
to presuppose the micro-foundations downward to the level of the voter just
because of these findings. Instead of doing that, future research should explore the
two different but associated outcomes. The first being whether conservative and
liberal ideologies act the same way at the individual level, as they did at the state
level. Next, would be an exploration of whether adherence to the ideologically
defined strategy determined political survival. The rest of the Conclusion serves as a
postscript and sketches descriptions of alternate ways forward for some of the

network science topics addressed in the dissertation.

L. Using ERGM for Theoretical Evaluation

Chapter 2 and Appendi distinguished between identifying the best formula
for describing a network and testing a theoretical argument about what processes
generated it. Recall a structural formula is useful for reproducing networks with
structural characteristics similar to the network under investigation. At heart, the
formula is data-intensive and a-theoretical but with its uses. A network generation
process is the opposite. It offers a theory about why members join a network and
what determines connections formed between them. Supposition about what drives
these two processes can be right or wrong and appropriate application of ERGM can
serve as a tool for theory assessment.

Future model validation using ERGM will assume two things. First, it assumes
a network-generating process operating under fixed conditions produces networks
recognizable as having arisen from those conditions. Next, it posits these networks,
though different in appearance, will resemble one another in the structural

characteristics they exhibit. With these assumptions in hand, model evaluation with
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ERGM exploits the fact that the estimator maximizes formula fit, using it to compare
MLEs between two or more networks. What exact networks should serve as
comparison depends upon the proposed theory.

Theories hypothesizing about what process gave rise to an observed network
should follow a two-phase procedure, while those asserting only that certain
networks should resemble one another should follow just one phase. The two-phase
procedure combines empirically founded simulation followed by ERGM analysis.
Using empirical data to motivate generation of replicates is important for evaluating
the counterfactual, “Had this process taken place, this is how the network would
have turned out.” The only data requirement in this situation is that theorists have
data on the connections.>* Theorists should not restrict parameters and hence the
richness of theory according to available data, but they should be aware of the need
to sweep the parameter space of parameters not anchored by empirical data. Not
doing so will bias inference in a way few can imagine and none can dismiss.
Simulation should include the generation of numerous networks under the
hypothesized conditions.

One way to conduct the secondary phase of analysis is to run ERGM on each
of these networks, categorizing results according to changes in theorized conditions
of interest. Evaluation would then consist of identifying which sample produces
estimates closest to those of the original network. Another option is more direct,
using the theorized model as the sample replicator for ERGM, rather than randomly
perturbing the observed network. This should be more efficient and will give a more
direct answer. Assessment will determine which generating condition produced fit
with the highest MLE. Comparing multiple models means using different theoretical
devices as the engine for replicate generation. It is straightforward, conceptually,

but requires some changes to software and will inevitably prove time consuming to

54 A technical note on data collection is that the format for the data should be as granular as possible,
meaning it should code what network data indicate, such as interactions between individuals, for the
duration that they occur. Subsequent data analysis can transform these interactions into binary
relations if the researcher likes, but the data collector should afford them this opportunity.
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execute.>> Model evaluation under the alternate scenario requires only the
estimation step.

Available software like SIENA works toward this two-pronged approach,
reflecting the spirit but not the mechanics of the description above. Where the
proposed approach differs from SIENA is its emphasis on allowing any theory to be
expressed and compared relative to the network under investigation. SIENA, on the
other hand, restricts the parameters for theoretical assessment at the same time
that it claims openness to theoretical evaluation. Why does it fail here? Failure
occurs because SIENA concentrates on using “canned” theoretical terms to predict
whether a tie occurs and how long it exists between members of a network. Many
theoretical models do not include such parameterizations, making it necessary to
transform these theoretical models into expectations of values for the terms
included in SIENA before truly evaluating the models relative to theory. Otherwise
coefficients for the generative terms are without context and little better than the
ERGM structural estimates. When transforming proposed theory into SIENA terms
is easy, comparative evaluation should make use of SIENA. When such
transformation is difficult, comparative evaluation should follow the less-

constrained methods outlined here that make use of ERGM.

II. Chapter 3 Extension: An Analysis of Target-Driven

Measurement Error
Target-driven measurement error in network analysis arises when observed
data for a network incorrectly includes or omits individuals as well as connections
between individuals because of intentional behavior by the individuals under
surveillance. A simplification of the matter is to think of the issue as one-sided,
meaning that terrorists meant for all of the observed data to remain hidden and that

its observation is a failure on the part of terrorists to keep it concealed.>® Assuming

55 Current functionality of “ergm” and packages like it allow for the indirect testing method. The other
described method, which replaces the MC replicator, will require introducing new code.

56 Two-sided analysis would consider the possibility that some observed connections are misleading,
meaning that they are irrelevant to the conduction of terrorist action, portrayed instead in the
attempt to throw investigators off onto dead-end leads.
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that observed data results from a failure to conceal it and that some members of a
network have done a better job than others of remaining hidden and/or concealing
their connections implies that individuals in the group have a distribution of
capabilities. Latent network analysis first assumes a theoretical model about the
process governing network structure. It then presumes some understanding of the
composition of people associated with the dynamic network generation process. An
important detail of the composition assumption is that it consists of knowledge
about what attributes the individuals possess. Individual attribute information is
useful (although unnecessary) for identifying determinants of what enables
members to keep their connections along with themselves concealed. The section
below describes how to think about methods that assume the number of network
members is known but the true pattern of connections between members remains

unknown.

III. Random versus Behavior-Driven Errors in Network
Analysis

Some recent work in the application of network science to the study of
clandestine networks has sought to weigh results against the possibility of
measurement error. One concerns random or input error. Input error applied to a
network means stochastically “flipping on” or “flipping off” connections between
individuals in a group. Randomly select a dyad, evaluate its state (connection or no
connection), then change that state. In the context of data collection, “random error”
presumes that mistakes in coding relations arise randomly; hence the name input
error. What other types of error might there be? Clandestine networks contain
individuals that strive to throw authorities off in their surveillance of members and
their activities. From a network connections perspective, active attempts at
throwing authorities off the “scent” is likely to have a success rate conditioned on
some characteristic of the individual making the attempt. Capability defined
according to the successful incorporation of terrorist tradecraft is a latent

characteristic. No one takes the equivalent of a tradecraft I1Q test or some other type
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of aptitude exam, making it necessary to recognize that the quantity of interest is

latent and deserving of treatment becoming of latent variable analysis.
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Appendices

Appendix A

A Primer for Exponential Random Graph Modeling (ERGM)

L. Introduction

Networks consist of members (or nodes) and connections between members
(the lines in images of networks). Social network have nodes that are individuals
and connections that represent a value for a social relationship between
individuals.5? Binary, undirected networks are the simplest representation of a
social network. Binary assignment indicates that a relationship exists or it does not.
“Undirected” is a graph theory characteristic stating that a connection from member
A to B (A — B) implies a connection from B to A (B — A) or more simply A < B.
Discussion in this paper focuses on binary, undirected networks.

Exponential random graph (ERG) or p* modeling (hereafter referred to as
ERGM) is a class of network estimator that statistically profiles an observed
network. A statistical profile of a network is its description within an agreed-upon
language used in network science. The “words” of this language are network
summary statistics calculated by algorithms describing alternate characterizations
of a structure. For example, one summary statistic, triangle uses an algorithm to
identify how many triplets of nodes in a network share mutual relates. A completed
or transitive triangle is one where all three of the members share mutual
connections. For members 4, B, C, this means A «<» B, B« C,and A < C.

A series of summary statistics, in a sense, form a sentence describing the
evaluated network. An issue users of network science on contend with is that the

number of possible networks is infinite, meaning that a poorly crafted sentence of

57 It is possible to have a single network comprised of multiple social relations. These are multiplex
networks. Sometimes researchers treat each relationship type individually and other times they
separate them. The networks analyzed in this paper have a single, social dimension that describes
whether two individuals have a direct social relationship with one another.
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network statistics could describe any number of possible networks. If the goal is to
describe the network in question as accurately and uniquely as possible, then the
requirement is to identify a sentence structure accomplishing this goal; hence,
ERGM. Although this is what the estimator attempts to do, arcane and otherwise
inaccessible descriptions of its mechanics and purpose in the literature do not
convey the point adequately. To see this, one need only note many who use ERGM
think they have described what processes produced a network, which is like
thinking an accurate description of what something looks like automatically conveys
information about how it came to be, its genesis. Technical users of network science
recognize the fallacy of such thinking, noting the difference between network
generation and network description and developing separate literatures around the
two topics. This appendix serves as an attempt to persuade those who conflate
network genesis and network description to stop doing so. The hope is that an
accessible outlining of what ERGM does will prove persuasive through the provision

of accepted and understandable information.

II. A Description of Exponential Random Graph Modeling

Statistical profiling of a network produces a formula describing patterns of
connections in it. Components of the formula contains are structural characteristics
(i.e., network statistics) and individual attributes (characteristics of the individual
members) associated with the network.58 Together the structural and individual
components comprise network functions. A complete statistical profile contains
network functions with their associated logit coefficients, which state the odds of
the component in question generating a connection relative to random chance.>?

Conceptually, one can use the formula to create alternate networks that resemble

58 ERGM formulae can evaluate attributes individually or dyadically. Individual assessments consist
of determining whether certain personal traits determine the degree or number of connections for
that node. Dyadic assessments determine whether certain matching (homophily) or opposing
(mixing) patterns for values of a trait make a connection between two nodes more or less likely.

59 Generation is a term appropriate for the post-hoc analysis of the network in question and not the
evolutionary process that created it. It is possible that the function in question was part of the latent
data generating process for growing the network (i.e., the percolation function or algorithm), but it is
inappropriate to assume that this is the case without further tests.

84



the original network. The process ERGM follows to derive estimates for the
coefficients is that of Markov Chain Monte Carlo Maximum Likelihood Estimation
(MCMCMLE).

The MCMCMLE process in ERGM performs a few primary steps to produce
coefficient estimates. The first step is a conceptual one. Let Y be an infinitely large
set containing all possible networks for all possible membership sizes. One way to
conceptualize Y is as three-dimensional space partitioned by network density (D),
membership size (n), and relative frequency. Density is the total number of realized
connections between members relative to the total number possible. Formally, this
quantity is:

Yl Xi ji

D =
nZz-—n

Equation 17

Equation 17 shows that network density, D includes the interval [0, 1]. D =0
indicates no connections and D = 1 indicates all possible connections in the network
have been realized. Membership size, n is the total number of individuals within the

network. Each alternate membership size represents a slice in Y.

»
»
b
>

Relative Frequency
Relative Frequency

Network Density ¥ Network Density

Figure 13 (Network Space): A visual representation of the theoretically infinite set, Y that contains all possible
network combinations. A three dimensional representation of Y maintains that networks can vary by membership
size and density. A third dimension captures the relative frequency of networks for each value of density. The
boundary value for each slice is one, indicating that only one network apiece describes the empty and full sets.
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Figure 13 is a visual representation of the three-dimensional partitioning of
Y. The graphic on the left displays three density plots or “slices” of Y with each
indicating a different family of networks according to membership size. The graphic
on the right places a sheet over the slices and uses it to convey that Y is
approximately continuous for all integers in R*. A combinations function defines the
height of each slice in Y according to the total possible number of ways to distribute
a specified number of connections among members. A formal representation

combination is:

n!
r'(n—r)!
Equation 18

Equation 18 defines the alternate number of ways to create connections
between r members of a network with membership sized to n. It is non-monotonic
with respect to r, rising from the single network that represents D = 0%
connectivity, maximizing at D = 50% density, and then decreasing again to the
concluding point at D = 100% for any network of size n. The figure to the right
shows that the value of D at its maximum steadily increases as membership
increases, so V(D,,;3) > V(D,,;) > V(D,,;). All of this is useful for understanding that
Y is an infinite but readily defined space with discernible characteristics.

The next step in ERGM recognizes that an observed network is a “draw” from
the appropriate slice in Figure 13, meaning that it is a random variable. This
perspective is important for understanding the MCMC process that ERGM uses but
unimportant in terms of generalization. Let y;,,; be the observed network that is the

it member of the n-family drawn from Y with d density.
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>

Relative Frequency

Network Density

Figure 14 (Networks as Random Variables): An illustration of how an observed network is conceptually a "draw" from
aslice of Y according to membership size, n, and density, d.

To derive coefficient estimates on the network functions that make up the
statistical profile for y;,,4 requires calculating change statistics of it as well as other
comparable networks from the same family. These networks are replicates,
indicated individually by ¥;.; , and as a set with y. A change statistic is the aggregate
calculation of differences in value of a network statistic under evaluation elicited by
“toggling” connections observed in y;,; and y. To toggle a binary connection
between members a and b in any network (x,;) means to change x,, = 0 to x,;, =
1. The coefficient of change, 0, places the aggregation of these changes within a logit
function. The vector of these coefficients is 0.

The MCMC process of ERGM uses y;,4 to generate the replicate set, ¥, and
then calculates the convergent coefficient of change value for this entire sample
population. Determination of this sample population value uses Maximum
Likelihood Estimation (MLE). Final estimates for coefficient estimates and their
variation is in the form of a sample estimate, making them externally valid, in
theory, but also requiring extra work for evaluating the observed network within
the context of the estimates. One procedure contained within the “ergm” package is
goodness-of-fit statistics. Calculation and plotting of “first-moments” like degree
distribution, shared partner statistics, and path-length statistics are useful for

determining whether the observed network falls within the 95% confidence interval
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established by estimates for the population. This is a type of model “fit” diagnostics
in the broad sense but not a systematic one that provides definitive results other

than the interval determination.
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Appendix B

R-Script for the Producing Bootstrap Estimates of the Power Law

Distribution Fit Semi-Parametric Test

I. Introduction

Clauset, Shalizi, and Newman present a semi-parametric test for estimating
the parameter values of an evaluated distribution if a Power Law distribution
produced it. The parameter estimates themselves convey nothing. To interpret them
statistically requires comparing them to a sample population. One way to do this
would be to determine if parameter estimates for the observed network are within
the confidence interval of a simulated population. Such a test is not what the authors
prescribe, and it is unclear why they do not consider, especially given their focus on
specifying a statistical test. The alternate test the authors opt for outlines evaluating
how many of the sample replicates have distance or KS statistics greater than the KS
statistic of the evaluated network. They provide code for deriving the parameter
estimates but not for assessing these relative to a replicate sample. The code
(written in R-script) listed below is an implementation of what they specify. It
presumes the user has extracted the original parameter estimates after running the

“pl fit” function the authors have published online.

II. Power Law Distribution Fit Test in R-Script

plfit.test<-function(d,sim.length,seed){

set.seed(seed)

#Get Alpha Estimates
alpha.model<-plfit.alpha(d,finite=TRUE)

#Get Xmin Estimates
xmin.model<-plfit.xmin(d,finite=TRUE)

#D Object Code
D.model<-plfit.d(d,finite=TRUE)

89



#Code for Sub Xmin Count
model.locount<-length(d[d<xmin.model])

#Code for Xmin & Over Xmin Count
model.hicount<-length(d[d>=xmin.model])

#Code for Sub Xmin Subset
model.loset<-d[d<xmin.model]

#Code for Custom Power Law Sequence

model.pl<-
sample(xmin.model:max(d),100,replace=TRUE,prob=(xmin.model:max(d))"-
alpha.model)

tally<-list(1,sim.length,1)

# Simulation

for (tin 1:sim.length){
x1.model<-
ifelse(model.loset==0,NULL,sample(model.loset,model.locount))
#sample from the non PL region of the evaluated model
x2.model<-ifelse(model.pl==0,NULL,sample(model.pl,model.hicount))
#sample from the PL region of the evaluated model
x3.model<-c(x1.model,x2.model)
#combine the two samples
tally[[t]]<-plfit.d(x3.model,finite=TRUE)

#retrieve the D-score from the simulated sample

}

p.value<-1-(length(tally[tally>D.model])/sim.length)

Is<-c(alpha.model,xmin.model,D.model,p.value)

Is
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