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ABSTRACT

General expressions for the power spectra of
carriers frequency and phase modulated by Gaussian noise
are obtained as functions of the shapes of the power
spectra of the modulating voltages. Speciflc asymptotic
(closed-form) expressions are obtained for the special
case when the modulating voltage has a rectangular low-
pass power spectrum. This particular case corresponds
to the use of maximally flat and similar video amplifier
tuning schemes. The half-power bandwidths of the power
spectra of the modulated carriers are obtained from these
asymptotic expressions and are plotted as functions of
the root-mean-square frequency and phase deviations. The
delta function at the carrier frequency (representing
power remaining in the carrier) 1s evaluated for phase
and frequency modulation where, in the latter case, the
delta function exists only if the power spectrum of the
modulating voltage does not extend to zero frequencye.
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THE POWER SPECTRA OF SIGNALS PHASE AND
FREQUENCY MODULATED BY GAU3SSIAN NOISE

1. INTRODUCTION

A knowledge of the power spectra of phase-and frequency-
modulated signals is of conslderable interest in the design of
networks intended to accommodate these signals - in particular,
when the modulating voltage consists of random Gaussian noise. In
addition to interest in such signals per se, Gaussian noise is
often a reasonable "signal™ to assume as a replacement for many
types of very complex modulating waves such as those of voice and
television.

It should not be inferred that a knowledge of the power
spectrum of a frequency-or phase-modulated carrisr tells a great
deal. In fact, the power spectrum of FM or @M yields much less
(relative) data than that of an amplitude-modulated wave. For
example, if the frequency deviation of an FM signal is larger
than the bandwidth of the modulating voltage, the shape of the
spectrum is essentially independent of the bandwidth of the modu-
lating signal. Yet, a knowledge of whether the bandwidth of the
modulating signal is, say, one megacycle per second rather than
one cycle per year is of obvious importance.

Nevertheless, an important piece (albeit incomplete) of
information relating to frequency-or phase-modulated signals (mod-
ulated Ly Gaussian noise) is the power spectrum. It is the spec-

trum of such signals that is of concern here.
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The problem solved in this report was solved (in essence)
by Middleton * . The theoretical approach given here is a modifica-
tion of Middleton's (suggested to the author by Professor Hok of
this laboratory) and the resulting answers apply to somewhat diff-
erent situations. Middleton did not treat the case of a rectangu-
lar modulating signal power spectrum - he solved for the Gaussian
case. Actually, the rectangular spectrum more closely corresponds
to the use of maximally flat, shunt-peaked, and similar amplifier
tuning schemes. Middleton presented his results in the form of
power spectrum curves computed from infinlte series. Here,
asymptotic (closed form) expressions are obtained with the half-
power bandwidth of the power spectrum ultimately appearing
graphically.

2. SUMMARY OF RiSULTS

The power spectrum and autocorrelation function of a
time variable are Fourier pairs; thus, if one is known, the other
is completely specified.

In the present analysis, the time function of the fre-
quency modulated wave is used directly to find the autocorrelation
function of the modulated carrier in terms of the autocorrelation
function of the modulating voltage. By Fourier inversion, there
results an expression for the power spectrum of the frequency-

3%

“ D. Middleton, "On the Distribution of Energy in Noise-and Signal-
Modulated Waves", Cruft Laboratory, Harvard University,
Cambridge, Massachusetts, Technical Report No. 99, March 1, 1950.
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modulated signal in terms of the power spectrum of the normally
distributed modulating signal. A similar expression is obtalned
for phase modulation.

Once the general expressions have been derived, the spec-
ial cases may be inserted and the equations solved.

The power spectrum of a frequency-modulated wave is

glven by
z
Ao /2 exp ("Awg/gDog), Do/B.>> 1
~2]1/2
21Do
Wp(Aw) = 1 (2.01)
2 2 2
Aoc/2 | _ mDoS/2B* , Do/B<<1
| B (mDo2/282)2+(4sw/B)"
where
A, = peak amplitude of carrier voltage (assuming a one

ohm impedance level),
D02 = mean-squared instantaneous radian frequency devia-

tion (proportional to the mean-squared modulating

voltage),

Aw = radian difference frequency from the unmodulated
carrier frequency,

B = radian bandwidth of the modulating voltage.

The power spectrum of the modulating voltage is assumed to be con-
stant from a frequency of zero to B and zero for all higher

frequencies.
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The two asymptotic expressions can be set equal to Ay2/4
to define a particular Aw at the relative half-power point of the
power spectrum of the modulated wave. This value 1s Aw = Bp which
is obtained from the two asymptotic expressions and is plotted in
Fige 1« The dotted line in this figure shows the general way that
the bandwidth actually varies (the asymptotic expressions are quite
approximate for some values of Dy/B).

The power spectrum for Dy/B>>1 has the familiar Gaussian
shape with variance Do2. For Do/B<<1 it 1s that of a single-tuned
resonant circuit fed with white noise.

If the spectrum of the modulating voltage is not constant
to zero frequency but cuts off at a frequency of By (where By is
much smaller than the upper cut-off frequency Bg), there exists a
delta-function in the power spectrum of the frequency-modulated
signal as well as the continuous spectrum. This delta function

singularity is given by
Wp'(8w) = (Ag2/2) exp (-D,%/B1Bo) 8(Aw) (2.02)

where O(Aw) is the delta function at Aw = O. For BjBg<<Bs2, the
power in the delta function is very small and can be neglected -
it is generally too small to appreclably affect the magnitude of
the continuous part of the power spectrum.

Similar asymptotic expressions can be obtained for the
power spectrum of a phase-modulated wave. For large Dy, the

spectrum is
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exp<_Am2/ZDg§E§)

175 (2.03)

Wg(Aw) = (A 2/2)exp(-Do?) B(dw)+
h > ° (2mD,2B2/3)

Here, the delta function is always present. The only difference
in the terminology between this and the case of FM for large DO/B
is that D02 is the mean-squared 1lnstantaneous phase deviation
caused by the moduiating signal. (As beforé, it is proportional
to the mean-squared value of the modulating voltage).

For small Dj

(A,2/2)exp(-Do2) [8(aw) *+ Do2/25], Aw < B
Wﬁ(Aw) = (2.04)
0, Aw>B
which, except for the delta-function, has the same half-bandwidth
as that of the modulating signal and 1s rectangular just as is the
power spectrum of the moduleting signal.

The half-power bandwidth of the continuous parts’of these
asymptotic expressions for the power spectrums of phase-modulated
signals (by normally distributed noise) may be found as before.

The bandwidth relations are plotted in Fig. 2 analogously to that
for frequency modulation in Fig. 1.

3. BASIC EQUATION FOR FREQUENCY MOUULATION

In this section, the general formula for the spectrum of
a frequency-modulated carrier (by normally distributed noise) will
be obtained. Correlation analysis will be used with some useful
techniques applied to simplify the work. In the sequel, the re-
sults of thils section will be extended to include a phase-modulated

carrier.
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The voltage of an FM wave can be taken as
V(t) = Ay exp {J [wot+ W(t)]} (3.01)

where Ay is the peak amplitude, wo is the (radian) carrier fre-
quency, and yY(t) is the instantaneous phase-angle shift created
by the modulation. In B,
t
¥(t) = [ D(tr)at: (3.02)
where D(t') is the modulating voltage. If a normalized modulating
voltage V. (t) is defined such that

5 _
[va(t) ] " =1 [Valt)] =0 (3.03)

the total modulating voltage becomes
D(t) = DoV, (t) (3.04)

where Do2 is the mean-squared deviation (from the carrier frequency)
of the FM. It is a radian measure. It is also the mean-squared
value of the modulating voltage.

The total power in the wave is the autocorrelation func-

tion R( t) for v = 0,

Ao®

2

R(0) = (1/2) Re [V(t)v* (tﬂ

(3.05)

where V¥ 1is the complex conjugate of V and the answer is obvious.

The autocorrelation function is
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i
’—l
~N
N
o v
(]

R(T) [V(t)V ¥ (t+ T)] (3.06)

Agz {exp [-on] exp [j{‘ﬁ(t)- P(t+ T)}] }

.l.

The two dimensional normal probability density function

Wo(x,y) has a characteristic function given by ¥

Wit,e) = E { exp [J(txtuy)]} = exp [ J(txtuy)]

[::%XP [j(tx+“Y)] Wo(x,y)dx dy (3.07)

2 2
t24puq ottt
oxp [_ 11 821 p bl tug ol }

2
where "E" signifies "expectation"™, where the process is assumed to
be stationary (time and ensemble averages are the same), and where

the moments are

— — —
b1 =X wgp = ¥ b1g = Xy (3.08)

Setting t = 1, p = -1 and P11 = Moo, (3.07) becomes

E{exp [J(x-y)]} = exp [-(nyy-p1p)] (3.09)
which amounts to particular evaluation of the integral of (3.07).
Equation (3.09) has the same form as the average of

(3.06). Thus,

R(T) = 553 cos w,T exp [-(¢f2 - ¥y ¥) (3.10)

where

* H. Cramer, "Mathematical Methods of Statistics", Princeton
University Press, 1946 P. 278
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ye = [¥(e)] ® (5.11)

Y1 P2 = [Y(t) ¢(t+ T]]
The second equation of (3.11) can be used to define Wl and ¢2-

The average { Yo is the autocorrelation function of

the angle modulation.
o b Tyt
Ry (T) = Do [[ vn(tv)dtv][f Vn(t")dt"](s.lz)

Derivatives can be taken of expected values (under the

defining integrals) as follows: #

Ry (7) = E { y(t) y(t+ 7)} (3.13)

then

a[ry (7] E{yit) ¥r(t+ )} (3.14)

changing the variable t to t; -7,
f
d =
= [ry (0] =& {ylty- 7) yriep)} (3.15)
then

2 Ry () | = E (t) y"( )t = -E "(t9-T) Yt(tqy)
g, [y (ool (o yner )= (pime oy}

Changing the varlable again,

ad;g[aq, (v)] =-E {¥r(t) yrie+ )} (3.17)

* Derivatives and integrals of normal functions are also normal
functions.

10
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Substituting for ' (observe equation (3.12),

a%‘ig [Ry (t)] = -Do2E {V(6)V (t+ 7 )} (3.18)
= =D PRy( T )

where Rm('r) is the autocorrelation function of the (normalized)
modulating voltage.

The Wiener-Khintchine theorem can be used at this point.
If Wy(w) is the power spectrum (normalized) of a time function,

the direct and inverse Fouriler integral relations are

W () %—fowam( T )cos WT dt (3.19)

00]
Ru(T) = [ Wylw)cos ot du (3.20)

R¢,( T ) in (3.18) can be obtained by integrating (3.20)

twice with respect to Tv. Thus,

(w)cos wT

Ry (T ) = Do2fo°° Tin — do (3.21)

Equation (3.10) can also be written
_ Ag® 2
R(tT) = 5= COS WyT exp {-Do [Rw (O)-Rw (1‘”}(3.22)

Again using the Wiener-Khintchine theorem and substituting for
R(0) and R( 7 ), the power spectrum of the frequency modulated

wave 1s found to be

11
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2 @© © )
WF(UJ) = é—%—é/‘ COS WT COS WpT eXxp {—Dozf Yrm(m) l-cos w7

dm}dr(s.zcs)
(o] @

The product of cosines can be converted to sum and 4iff-
erence functions. The function cos(w+w,) varies so rapidly
compared to the exponential that its contribution 1s entirely
negligible. (In particular, this is true when the narrow band

approximation applies). In this case, there is obtained

2 @ 00] - T
Wp(se) = 3= [ cos BT exp {-D 2/ Wy(w) l—‘ig%—‘i’—— dw } ar (3.24)
0 o}
where AW = W - W, 1s the frequency difference (from the carrier
frequency wg).

4. BASIC EQUATION FOR PHASE MODULATION

Equation (3.01) is also valid for the case of phase
modulation. However, V¥(t) is the modulating voltage directly

rather than its integral,
Y(t) = D(t) = DoVu(t) (4.01)

where Vn(t) is the normalized modulating voltage as before. D02
is now the mean-squared phase deviation--it remains the mean-
squared amplitude of the modulating voltage.

Equation (3.10) is also valid but Y has a somewhat diff-

erent and simpler interpretation.

V¥ =[p(t)] # = py? (4.02)
Y1 Vg = Do [Vu(E)V,(E+ T)]= D 2Ry (T ) (4.03)

12




—  ENGINEERING RESEARCH INSTITUTE - UNIVERSITY OF MICHIGAN —

Substituting (4.02) and (4.03) into (3.10),

R(T) = é%ﬁ cos W, T exp {-D02 [Rm(O)-Rm(t'ﬂ} (4.04)

By the Wiener-Khintchine theorem, (4.04) becomes

R(t) = égg cos WyT exp {-Do2£f%m(w) [1-cos wT] dw} ar (4.05)

which leads to the spectrum of a phase-modulated signal as

2

(0 0)
(00 ‘
Wg(Aw) = 38— [ cos tuT exp {-DOEfO Wip(0) [1-cos ot ] de} dv (4.06)
(0]

The only observable difference between (3.24) and (4.06)
is the factor l/wz. By taking an FM wave modulated with a voltage
having the power spectrum Wh(w) and changing the spectrum by means
of a linear filter to mzﬁﬁ(m) (a differentiating network), phase
modulation 1s obtained. The converse also applies. The close
relation between FM and @M is notable.

5. FM SPECTRUM WITH RECTANGULAR MODULATION POWER SPECTRUM

At this point, a specific (normalized) power spectrum
can be assumed for W (w) in Equation (3.24). This will lead to a
specific expression for the power spectrum of a frequency modu-
lated wave, A rectangular power speétrum will be assumed for
the modulating voltage. This choice will simplify some of the
relations while at the same time is a falr approximation to many

types of wide-band amplifier functions.

13
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Let Wy(w) be given by

%,O<w<B

Wylw) = (5.01)
O, w>B
where B 1s the radian bandwidth of the modulating-voltage power

spectrum. Using (5.01) in (3.24) results in

A2 @ Do2 B sin p]?
Wr(Aw) = i /'cos AwT exp { - o T f 2 ik dio $dAT (5.02)
21‘ro B o b

Changing the variable BT to x, expanding (sin p/p)? and integrat-

ing termwise,

(60
p(be) = orE B - WS :
: B2 |l.28 3.4

It 1s to be noted that Aw, the frequency deviation,
appears only in a normalized form (with respect to B). For large
DO/B, the exponential is appreciable only for small x; that is,
the value of the integrand 1s negligible otherwise. Thus, the

asymptotic case exists:

ECD D22

Wep(dw) = %%E j'cos A%E exp~[- —ggg— ] dx (5.04)
0

This integral is well known ¥with the result

Aoz} exp ( -802/2D02) (5.05)

Wr(Aw) = [ > (21TD02) 172

% u, B.Dwight , "Tables of Integrals and Other Mathematical Data",
revised Edition, The Macmillan Co., New York, 1947 Integral No.
863.3.

14
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which (fortunately) turns out to have the correct multiplying
factor and which is Gaussian. To facilitate plotting, (5.05) can

be normalized to B (although B does not appear) to give

exp[ (Aw/B)% ]

2(Do/B)" ] (5.06)
[en(po/B)2 ]1/2

It is to be noted that the carrier has been smeared entirely into

2

a continuum.

The Gaussian nature of the poWer spectrum is a more
general consequence of large DO/B than might at first be thought.
In fact, by inspecting the nature of the expansion of (5.03},
almost any "ordinary" sort of spectrum shape for Wp(w) leads to
the Gaussian power spectrum for Wp(w).

The relative half-power point of (5.06) is given when
Wp(w) = 1/2 [A%E}. If the frequency yielding this is called Bp,

there 1s obtained
Bp = Do V2 1n 2'= 1.18 Do (5.07)

which is one of the asymptotic expressions plotted in Fig. 1.

At the other extreme 1s the spectrum Wp'(w) as D /B —0.
In this case, inspection of (5.02) shows that only a small part
of the total value of the integrel in the exponentlial is made up
of parts for which E%; is small. In the limit, the only signifi-
cant contributions occur for large E%_. Thus the integral of
{sin u/u)? can be approximated by its asymptotic value of m/2 to

give

15
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2 @ 2
~ Ao Awx : DX
Up'(dw) = —— f cos —— exp [— — 5 ] dx (5.08)
28 o B 2B

This integral is also known® with the result

o ﬁDog
~ 2
WF'(A(&)) = é‘..Q._. l‘._. 2 Bx (5.09)
2 B (TTD02 )2 . (_A_@->2
2B% B

which 1s that at the output of a2 simple resistance-capacitance fil-
ter with white noise at the input.

The half power point of (5.09) occurs for a Aw = Bp' of

-2 2

— _ _ Do

bF' =5 e —%——1.57T (5-10)
BEquation (5.10) (divided by B) is also plotted in Fig.

1. In this figure, the dotted line shows the "estimated" true

curve.

Equations 5.07 and 5.10 yield the same value at the

"crossover" point for a Dy/B of

[DO/B ]c,o, =2 V2 ine =o0.751 (5.11)

™
As a matter of classification, the usual frequency-mod-
ulated signal can be sald to persist for DO/B>-O.751 whereas for
DO/B'<O.751, the condition aponroaches that of narrow-band frequency
modulation.

6. BFFECT OF LOW-FREQUENCY CUTOFF

An interesting effect exists with frequency modulation

when the modulation power spectrum is not constant down to zero

* Dwight, loc. cit., Integral No. 863.2

16
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frequency. It will be assumed that the spectrum is flat out to a

radian frequency of Bgo as before but that it is zero below w = Bj.

Thet is,
( 1 By< W<B
Bo-B1’ 1 2
Wat(w) =41 0, w>Bo (6.01)
| O, (.0<Bl
Using (6.01) in (3.24) there is obtained
Wal —_13:9_2_ ® AWT 6 _.Illg..azwd a (6.02)
' (Aw) = o g'cos WwT exp {- Bo-B1 A Y ") T .
t

The integral in the exponential can be expressed as the sum of two

integrals and rearranged to give

%T
W' (Aw) = %#Ejocos AWT exp 4 - %S?BTI J (55-3—&)2 dp
B 1 (6.03)
j;)—éz ( Si:ll b )2 éu
1 - By ‘ » }dr
sin
[2 () & 1

For small B,T , the ratio of the two integrals is small
and can be neglected. In this case, the same spectrum 1s obtained
as was the case when B1=0. However, for large B1T , the ratio is
practically unity thus yielding a constant for the exponent; hence,
the presence of a delta function at Aw=0 is indicated. This can
more clearly be seen by noting that at Aw=0 in (6.03) for By> O,
Wp"(Aw) is divergent. An approximation can be utilized to obtain

the magnitude of this delta function.

17
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Using

sin u 2 ~ C
(—T ) ooE (6.04)

where C 1s a constant and which i1s correct "on the average" for

large pu, the ratio of the two integrals becomes

BT
2

]‘ du tan~1 BlT_

0 1+u2 2
B:T g, = L Bot (6.05)
2 —~&g tan™+ —&—

-é 1+u 2

Expanding the arctangent in a series valid for large E%; and man-

ipulating in such a manner that only the linear terms are retained,

the ratlio becomes

-1 B1T 2
tan —%~' 27 Bit

4 1 1
N o w1 - 4 (1 _ 1 (6.06)
tan-l B2T e _ —2 T (Bl B2)
2 2 Bo

which, for Bg>> Bl’ finally becomes

4

Using (6.07) in (6.03) (an% ;he fact that Bg>> Bl)’

B21
2
~ Ag2 Do sin p\2 4
WF"(Aw) = 5%—‘fcos AwT exp | - By /~ (——E—E) d“.FEI dt (6.08)
T large o]

Since BoT 1s conslidered large in (6.08), the integral
of (sin p/p)z can be replaced with its asymptotic value /2 to give

2

WF"(Aw) = %ﬁ— /‘cos AWT exp (- g?gi) dr (6.09)
T large

18
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But the half delta function is defined as

(00
% d(w) = %F J cos wT dT (6.10)
which finally results in
" = (AQ2 2Do% \ 3 (6.11)
Wp"(sw) = (2g=) exp (- ) 8(aw) .

B1Be

When (Do/Bg)2 is at all large, D°2/B1B2 is even larger; consequent-
ly, the delta function will generally be quite small (as long as

Bo >> By ) and usually can be neglected. The power that remains in
the carrier will not be great enough to have an appreciable effect on

the continuous part of the power spectrum as obtalined in Section 5.

7. $M SPECTRUM WITH RECTANGULAR MODULATION POWER SPECTRUM

In this section, the power spectrum of a phase-modulated
signal with a rectangular modulation power spectrum will tbe ob-
tained in close analogy to that done for the case of frequency-
modulated waves in Section 5.

Substituting the modulation spectrum
as given by (5.01) into (4.06),

BT
e @ 2 3
Wﬁ(Aw) = 5%— f cos AwT exp |- 22%? j'z sinzpdp] ar (7.01)
0 0}
Using a change of variable, this expression becomes
(00) -
_ Ao® AWX 4D,2 X2, o
Wﬁ(Aw) = =g J cos =g~ exp |- —EQ—'L sin® pdp| dx (7.02)
The integral in the exponent can be evaluated to give
_ Age @ Awx [ o sin x
Wé(Am) = §%§-L cos —g— exXp L-Do (l— —_i——) dx (7.03)

19
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At Aw=0, the integral of (7.03) does not converge. This
indicates the presence of a delta function at Aw=0. It is nec-
essary to remove this singularity from the integral bveforc the
continuous part of the spectrum may be obtained.

The number e~Do? may be added and subtracted in a factor
containing the exponential in (7.03) as

Wgldw) = %ﬁ;—/;wcos _A_%gc_ {exp(—DOQ)-exp(-Dog)

+ GXp [ —DO? (l - Eigki)]}' dx

(7.04)

which gives

2 (e 0] o ®
Wglaw) %%g exp (-Dg?) g.cos é%ﬁ dx + %%E | cos é§5

(7.05)
{exp [-Do? (1 - §_i_g__£§)] —exp(-Doz)} dx

I

The first of these integrals is related to the half
delta function and the second 1s convergent at Aw=0 which indicates

that 1t gives the continuous part of the power spectrum. Thus,

(¢0]
Ag? Ag? Aw
Wgaw) = 28— exp(-Dy2) Saw) + -g—g-é-gcos o

{exp [—D02 (l - Ei%~§ ﬂ -exp(-Doz)} dx

For large D,, the energy remaining in the carrier becomes

(7.06)

quite small and can often be neglected.

An interesting observation concerning FM and @M can be
made by comparing (7.06) and (5.09). As the magnitude of the
modulating voltage in FM is decreased, the spectrum becomes narrow-

er and narrower without limit finally resulting in a delta function.

20




However, the spectrum is continuous at all times. In phase modula-
tion, on the other hand, reducing the magnitude of the modulating
voltage removes power from the side bands and places it in the
ever present delta function at the carrier frequency causing the
delta functlion to increase in included area.

The second term of (7.06) gives the continuous part of
the spectrum. For large D,, the integrand of (7.06) is appreciable

only for small x. In this case

o0 [0 (1= 25)] coxo-0 = oxp [ 02 (- 5+ +o)]

- exp(-D,2) = exp(- -‘ﬁ;—-)
Using this in (7.06) and performing the integration,
exp ( 02 )
. ~ [Ag2 ~ 2Do<Be/3
wgo0) = [285] | exp(-pg2)+ /s (7.08)
(2nDo2B2/3)*/ ©

The half power point of the continuous part of the spec-

trum occurs at a Aw=BA of

Bg = DoB v 2222 = 0,68 D B (7.09)

Equation (7.09) is one of the asymptotic expressions plotted in
Fig. 2.
For small D,, there exist important contributions for

large V&lues of x in Equation (7.04) as well as for small values.
sin x

However, D02 is always small; hence, the series expansion

for the exponential may be used to advantage to give

2l
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(00)
AQQ A 2D92 Awx sin x
Wﬁ(Aw) = =3 exp(-Dg?) S(aw)+ ng exp(=Dg?) f cos g X
0]
2 . 3
Dol (sin x Do%4 (sin x
§T—( = ) + 3? ( - ) + ..]dx (7.10)

The integral of (7.10) becomes a sum of integrals. The
first order term is a known integral,

~

m B
.[ sin x cos A%E A o
dx = 9 .11 _Q_). = .
= 7 (B ) 1 (7.11)
0

2.
RGN

To a first order, the spectrum consists of a delta func-
tion at Aw=0 and a continuous and flat spectrum over the range of
frequencies occupied by the modulating signal. For this asymptotic
case, the bandwidth of the continuous part of the spectrum 1is

constant at

Bg' = B (7.12)
which is plotted as one of the asymptotic expressions in Fig. 2.

The spectrum for small D, can thus be written

Wﬁ(Aw) = égg [exp(-Doz) S(aw)+ g%g exp(—Doz)] , Aw<B

0, Aw>B (7.13)
It is instructive to sketch the shape of the spectrum for
phase modulation for large and small D, as is done in Fig. 3.
A second-order approximation for the continuous part of
the spectrum for small Dy can be obtained by including the second

integral of the series of (7.10). Only the general effect will be

22
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noted here. The function (§i§—§)2 can be approximated very
roughly with the Gaussian function e~8%%% 1n which case, the
correction term becomes a Gaussian function which is to be added
to the rectangular spectrum of Fig. 3. The "corrected" spectrum
might appear as in Fig. 4. This means, simply, that there is a
continuous transition from the rectangular to Gaussian spectrum

as DO increases.
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FIG. 4
CORRECTION FOR SMALL D,.
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