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CHAPTER I

Introduction

During the last twenty years, mirror symmetry has been a driving force for much progress

in geometry and physics. This thesis contributes a version of mirror symmetry purely in the

Landau-Ginzburg (LG) setting. Roughly speaking, given a singularity W : CN → C and a

symmetry group G we produce a ‘mirror pair’ (W T , GT ) such that the LG A-model of the

pair (W,G) is isomorphic to the LG B-model of (W T , GT ).

Landau-Ginzburg mirror symmetry is not a new idea; it was an important physical tool

used to verify Calabi-Yau mirror symmetry in the early investigations of this phenomenon.

Throughout the literature, a striking construction [BH] was Berglund–Hübsch’s transposed

potential W T , which applies in the case of a so-called invertible potential W (Definition 1).

Berglund–Hübsch proposed almost twenty years ago that W and W T form a mirror pair.

It was known that orbifold LG models (W,G) and (W T , GT ) must be considered for this

proposition to be valid, and the construction of the dual group GT was known in many cases

(e.g. for the Fermat Quintic). We present a general construction in Section 2.7.

Equipped with the correct notion of duality for orbifold LG theories, we prove a mirror

theorem relating the FJRW theory of Fan–Jarvis–Ruan–Witten (which we denote ‘FJRW

theory’) [FJR1] and the orbifold B-model of Intriligator–Vafa [IV]:
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Theorem 1.1. Let W be a non-degenerate invertible potential and G a group of diagonal

symmetries of W . There is an isomorphism of bi-graded vector spaces

HW,G
∼= QW T ,GT ,

where HW,G is the FJRW A-model of (W,G) and QW T ,GT is the orbifold B-model of (W T , GT ).

Furthermore, we establish a mirror isomorphism at the level of Frobenius algebras when G

is the maximal diagonal symmetry group and GT is the trivial group.

Theorem 1.2. Let W be a non-degenerate invertible potential and Gmax its maximal group

of diagonal symmetries. There is an isomorphism of Frobenius algebras

HW,Gmax
∼= QW T ,

where QW T is the unorbifolded B-model of W T .

Invertible potentials include, for example, Arnol’d’s list of simple, unimodal and bimodal

singularities [AGV]. Theorem 1.2 has already been proven for the simple and parabolic

singularities [FJR1] and the unimodal and bimodal singularities [KP+]. The 14-families of

exceptional (unimodal) singularities exhibit the famous Arnol’d strange duality. It seems

natural to consider this duality from the LG mirror symmetry perspective. For example, we

apply Theorem 1.2 to show that strange duality indeed agrees with LG mirror symmetry.

Corollary 1.3. Let W be one of Arnol’d’s 14 exceptional singularities with strange dual

W SD, and J its exponential grading operator. Then

HW,〈J〉
∼= QWSD .

i.e. the LG A-model for W orbifolded by J is isomorphic (as a Frobenius algebra) to the
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unorbifolded LG B-model of W SD.

We should emphasize that the subject of LG mirror symmetry was never fully developed

in physics because (i) a construction of the A-model was absent, and (ii) although the

orbifold B-model state space was given by Intriligator–Vafa [IV], the ring structure was still

lacking. The first problem was solved recently by Fan–Jarvis–Ruan–Witten [FJR1]-[FJR3]

with the construction of FJRW theory. As for the second problem, Kaufmann wrote down

the multiplication in many cases and proposed a general recipe [Ka1]-[Ka3].

Guided by his recipe, we produce a multiplication for non-degenerate invertible potentials W

and G ⊂ SLNC. Our definition of multiplication has an important restriction not present in

Kaufmann’s recipe, namely that the B-model orbifold group should be a subgroup of SLNC.

This is dual to the fact that in Fan–Jarvis–Ruan–Witten’s construction, every admissible

A-model orbifold group must contain the exponential grading operator J .

It is worth noting that Theorem 1.1 specializes to the main result of Kreuzer [K] in the case

where G is the maximal group of diagonal symmetries of W . That work considers only a

single grading, and appeals to physically motivated ‘twist selection rules’ to argue that the

mirror map is degree-preserving. We clarify the physical picture, and establish our theorems

in a more general context (bi-grading, dual group, Frobenius algebra structure) which may

facilitate future applications of LG mirror symmetry.

Compared to the other forms of mirror symmetry such as Calabi-Yau to Calabi-Yau and toric

to LG, our version is more general and has the benefit of not having any poorly behaved

exceptional cases. For example, the LG orbifold theories under consideration do not have to

correspond to Calabi-Yau manifolds. Even if they do correspond to Calabi-Yau manifolds

(orbifolds), they may be embedded in non-Gorenstein orbifolds, so Batyrev’s proof [B] of

mirror symmetry may not apply.

This generality, combined with a proof of LG / CY correspondence, has been exploited by
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Chiodo-Ruan [CR] to generalize Batyrev’s theorem on Calabi-Yau hypersurfaces of Goren-

stein weighted projective spaces.

Another important application is the integrable hierarchies problem. Recall that for the

unorbifolded B-model of W T , there is Saito’s semi-simple Frobenius manifold theory (in

genus zero) [S] and the high-genus theory due to Givental [Gi]. Theorem 1.2 naturally

suggests the following conjecture

Conjecture. Let W be a non-degenerate invertible potential and Gmax be its maximal group

of diagonal symmetries. Then the full FJRW-theory of (W,Gmax) is isomorphic to the Saito–

Givental theory of W T .

In many cases, the Saito–Givental theory of W T is expected to satisfy certain integrable

hierarchies. The study of these examples leads to a generalization of Witten’s famous ADE

integrable hierarchies conjecture solved by Fan–Jarvis–Ruan [FJR1]. We refer the interested

reader to [R2] for the details.

This thesis is organized as follows.

1.1 Organization of thesis

We present some basic notions regarding invertible potentials in Chapter I, including Kreuzer–

Skarke’s classification of invertible potentials.

In Chapter II we review the construction of the FJRW A-model Frobenius algebra, as well

as the orbifold B-model state space of Intriligator–Vafa. We introduce a multiplication on

the orbifold B-model and show that this multiplication respects a suitably shifted version of

the bi-grading of Intriligator–Vafa.

In Section 2.8 we prove Landau-Ginzburg mirror symmetry for state-spaces, after introduc-
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ing a suitable notion of duality between the symmetry groups of Berglund–Hübsch dual

potentials.

In Chapter III, we show that there is an isomorphism of Frobenius algebras between the

maximally orbifolded A-model of a potential and the unorbifolded B-model of the Berglund–

Hübsch dual. We present evidence that the Frobenius algebra isomorphism extends beyond

this maximally orbifolded case, and demonstrate a relation between Arnol’d’s strange duality

and Landau-Ginzburg mirror symmetry.

1.2 Preliminaries on Invertible Potentials

Definition 1. Given c1, . . . , cs ∈ C, we call

W : CN → C(1.1)

(X1, . . . , XN) 7−→
s
∑

i=1

ci

N
∏

j=1

X
aij

j ,(1.2)

an invertible non-degenerate quasihomogeneous potential if

• W is quasi-homogenous of degree 1 with respect to a unique set of weights (q1, . . . , qN) ∈

QN .

• W has an isolated singularity at the origin in CN .

• The number of monomials equals the number of variables (i.e. s = N).

Non-degeneracy encompasses the isolation of the singularity and the uniqueness of the

weights. Invertibility is the condition on the number of monomials.

The exponent matrix A = (aij) encodes the potential, modulo the coefficients ci of the

monomials.
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The weights (or charges) qi are determined by the condition that

(1.3) A













q1

...

qN













=













1

...

1













.

Since the matrix AW is square, the uniqueness of the weights is equivalent to invertibility

of AW . Note that the ci may therefore be absorbed by rescaling the variables, so in what

follows we will take ci = 1 without loss of generality.

The transposed matrix AT
W will also correspond to a quasi-homogeneous polynomial, which

we denote by W T . In fact, W T will also be an invertible potential. The only condition that

is not obvious is that W T has an isolated singularity at the origin in CN , but this will follow

easily from the Kreuzer-Skarke classification of invertible potentials in Section 1.2.

Definition 2. We define the maximal group of diagonal symmetries of W , denoted by Gmax,

to be the kernel of the homomorphism

(C∗)N → (C∗)N(1.4)

(λ1, . . . , λN) 7→ (
N
∏

j=1

λ
a1j

j , . . . ,

N
∏

j=1

λ
aNj

j ).(1.5)

(As above, the matrix AW = (aij) is the N ×N matrix whose (i, j) entry is the exponent of

Xj in the ith monomial of W .)

An element of Gmax will be called a diagonal symmetry of W . Concretely, (λ1, . . . , λN) ∈

(C∗)N is a diagonal symmetry of W if

W (λ1X1, . . . , λNXN) = W (X1, . . . , XN)

for all (X1, . . . , XN) ∈ CN .
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Remark. It is immediate from invertibility of AW that a diagonal symmetry g ∈ Gmax is of

the form (e2πiΘg
1 , . . . , e2πiΘg

N ). We we call Θg
i ∈ [0, 1) the phase of the action of g on the

variable Xi.

Definition 3. We write

(1.6) A−1 =

(

ρ1 ρ2 · · · ρN

)

, with column vectors ρk =













ϕ
(k)
1

...

ϕ
(k)
N













Then each ρk defines a symmetry of W via

ρkXj = exp(2πiϕ
(k)
j )Xj.

We will abuse notation and use the same symbol to denote the symmetry and the column

vector.

Remark. Suppose g ∈ (C∗)N is a diagonal symmetry of W , with gXk = exp(2πigk)Xk. Since

g preserves W ,

A













g1

...

gN













∈ ZN ,

so the phase vector (g1, . . . , gN)T is a linear combination of the columns of A−1. This implies

that the ρk generate the group Gmax of diagonal symmetries of W , and for any g ∈ Gmax, we

can write g =
∏N

i=1 ραi

i .

Remark. The group Gmax is non-trivial, as it contains the exponential grading operator J ,

which acts on Xk with phase qk.
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Multiplying Equation (1.3) by A−1, we see that J is given by

(1.7) J =
N
∏

i=1

ρi.

In [KS], Kreuzer and Skarke prove that an invertible potential is non-degenerate if and only

if it can be written as a sum of (decoupled) invertible potentials of one of the following three

types, which we will refer to as atomic types :

WFermat = Xa.

Wloop = Xa1
1 X2 + Xa2

2 X3 + · · · + X
aN−1

N−1 XN + XaN

N X1.

Wchain = Xa1
1 X2 + Xa2

2 X3 + · · · + X
aN−1

N−1 XN + XaN

N .

Although this classification allows for terms XkXk+1 (i.e. ak = 1), we will only consider

the case ai ≥ 2 so that the weights satisfy qi ≤ 1
2
, as this condition is necessary for the

construction of the FJRW A-model.

Remark. The proof of Theorem 3.1 (Chain potentials) is valid only if aN > 2, so that all

weights are strictly less than 1
2
. The omitted only non-trivial case thus omitted is the chain

potential with aN = 2.

It is clear that the transpose construction W T preserves the above types. Our arguments will

rely heavily on an understanding of these ‘atomic’ potentials and their symmetry groups, and

we will recall some elementary facts from [K] without proof. Because the Fermat potential

is particularly straightforward, our discussion focuses on Loops and Chains.

Notation. We use the following notation for quantities which take value either 0 or 1:

δα,β :=















1 if α = β,

0 else.
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Also

δeven
i :=















1 if i is even,

0 else,

with δodd
i defined similarly.

Definition 4. The fixed locus of g ∈ (C∗)N acting on CN is either {0} or a co-ordinate

subspace of CN . We define Fg ⊂ 1, . . . , N to be the set of indices corresponding to coordinates

fixed by g. That is,

Fix(g) = {(x1, . . . , xn) |xi = 0 for i /∈ Fg}.

We now recall without proof the facts from [K] which will be useful in what follows.

The following lemma facilitates the computation of the phase of a given symmetry on a

variable Xj.

Lemma 1.1. Let W ∈ C[X1, . . . , XN ] be a non-degenerate invertible potential of atomic

type, with exponent matrix AW and generators of Gmax given by ρ1, . . . , ρN corresponding to

the columns of A−1
W . Let g =

∏N
i=1 ραi

i , with 0 ≤ αi < ai. For j ∈ {1, . . . , N} with Xj not

fixed by gJ (i.e. j /∈ FgJ),

ΘgJ
j =

N
∑

i=1

(αi + 1)ϕ
(i)
j .

i.e. The phase of gJ on Xj is given by the exponent-weighted algebraic sum of the phases of

the ρi on Xj, without the need to reduce this sum modulo 1.

If Xj is fixed by gJ , ΘgJ
j = 0 although the algebraic sum of phases may equal either 0 or 1.

Definition 5. For W : CN → C, the Milnor Ring (or local algebra) QW of W is the quotient

of C[X1, . . . , XN ] by the Jacobian ideal of W . That is

QW = C[X1, . . . , XN ]/ 〈∂X1W, . . . , ∂XN
W 〉 .
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It is a fact that if W has an isolated singularity at the origin, QW is finite-dimensional over

C. More details will be given in Chapter 2.1.

The following lemma gives explicit vector space generators over C for the Milnor ring of a

loop or chain potential.

Lemma 1.2.

• The Milnor ring QWloop
for a loop potential is generated over C (as a vector space) by

{
∏N

i=1 Xαi

i | 0 ≤ αi < ai}, and has dimension
∏N

i=1 ai.

• The Milnor ring QWchain
for a chain potential is generated over C (as a vector space)

by {
∏N

i=1 Xαi

i | 0 ≤ αi < ai} subject to the condition that the largest set {1, . . . , s} of

consecutive indices for which αi = δodd
i (ai−1) has an even number of elements (possibly

zero). Its dimension is
∑N+1

i=1 (−1)i−1
∏N

j=i aj, where we interpret the empty product as

equal to 1.

The next lemma explicitly identifies the diagonal symmetry groups of atomic invertible

potentials.

Lemma 1.3.

• Let Wloop be a loop potential. Then Gmax
W has order

∏N
i=1 ai − (−1)N .

If N is even, any diagonal symmetry g of Wloop may be written

g =
N
∏

i=1

ραi

i with 0 ≤ αi < ai.

This presentation is unique, except in the case of J−1, where

J−1 =
∏

i even

ρai−1
i and J−1 =

∏

i odd

ρai−1
i .
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If N is odd, any diagonal symmetry g 6= J−1 of Wloop may be written uniquely as

g =
N
∏

i=1

ραi

i with 0 ≤ αi < ai.

• Let Wchain be a chain potential. Then Gmax
W has order

∏N
i=1 ai, and any g ∈ Gmax

W may

be written uniquely as

g =
N
∏

i=1

ραi

i with 0 ≤ αi < ai.

Remark. Lemmas 1.2, and 1.3 combine to show that for loop and chain potentials, the image

of the C-linear map

ΩN(CN)/(dW T ∧ ΩN−1) −→ C[Gmax
W ]

generated by
N
∧

i=1

Y αi

i dYi 7−→

(

N
∏

i=1

ραi

i

)

J

is the subring of the group ring generated by group elements with even dimensional fixed

loci. The map is injective for chains, and for loops with N odd. For loops with N even, J−1

has two preimages, while every other group element has a single pre-image.

As complex vector spaces, ΩN(CN)/(dW T∧ΩN−1) and QW T are clearly isomorphic. However,

the presentation in terms of forms is more natural because it reflects the identification [Wa1]

between the space of Lefschetz thimbles and the space of versal deformations (i.e. the local

algebra) which plays a central role in the construction of the FJRW A-model [FJR1].

Two observations are worth bearing in mind. First, a key distinction between an element of

the local algebra and the corresponding N -form is that the natural Gmax action differs by a

determinant twist coming from the volume form; it is this twisted action which is appropriate

in the LG mirror symmetry setting. Second, as is evident from the above map, there is a

compensating shift by J in the group-grading of the A-model, which serves to produce an
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A-model multiplicative identity in the J-graded summand. For the evident duality between

monomials and group elements to preserve the bi-grading (Section 2.5), the volume form is

necessary.

For g ∈ Gmax, the next lemma identifies the Gmax-invariants in QFix(gJ).

Lemma 1.4.

• For a loop potential Wloop, the only symmetry gJ with non-trivial fixed locus is gJ = id,

which has fixed locus CN . Generators of the Gmax invariants as a C-vector space are

given by

Q
Gmax

Fix(gJ) =































∅ if gJ = id, and N is odd.

{

∧N
i=1 X

δeven
i (ai−1)

i dXi,
∧N

i=1 X
δodd
i (ai−1)

i dXi

}

if gJ = id, and N is even.

{1} otherwise.

• For a chain potential, Wchain, if a symmetry gJ fixes Xt, it must fix {Xt, . . . , XN}.

Now, Fix(gJ) = {Xt, . . . , XN} implies g =
∏N

i=1 ραi

i has αi = δeven
N−i(ai − 1) for i ≥ t,

and this relation does not hold for i = t − 1.

The Gmax-invariants in QFix(gJ) are generated by

Q
Gmax

Fix(gJ) =































∅ if Fix(gJ) = {Xt, . . . , XN} is odd-dimensional.

{
∏N

i=t X
δeven
i−t (ai−1)

i dXi}, if Fix(gJ) = {Xt, . . . , XN} is even-dimensional,

{1} if Fix(gJ) = ∅.
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CHAPTER II

The A and B models

2.1 FJRW A-model

Let W be a non-degenerate quasi-homogeneous potential (Definition 1 in the variables

x1, x2, . . . , xN with weights q1, q2, . . . , qN respectively. Recall that non-degeneracy requires

that these weights are uniquely determined by the condition that each monomial in W has

total weight 1, and that W has an isolated singularity at the origin.

Definition 6. The central charge of W is

ĉ :=
N
∑

j=1

(1 − 2qj).

Definition 7. The Jacobian ideal J (W ) is given by

J (W ) =

〈

∂W

∂x1

,
∂W

∂x2

, . . . ,
∂W

∂xN

〉

.

Definition 8. The Milnor ring QW is given by

QW := C[x1, x2, . . . , xN ]/J (W ).

13



The Milnor ring is a finite dimensional vector space over C, of dimension

µ =
N
∏

j=1

(

1

qj

− 1

)

.

It is graded by weighted degree, where the weighted degree of a monomial
∏

i X
αi

i is
∑

i αiqi.

The elements of top degree form a one-dimensional subspace generated by hess(W ) =

det
(

∂2W
∂xi∂xj

)

. One can check directly that the top degree is equal to ĉ.

Definition 9. For f, g ∈ QW , the residue pairing 〈f, g〉 is given by

(2.1) fg =
〈f, g〉

µ
hess(W ) + terms of weighted degree < ĉ.

This pairing is non-degenerate, and endows the Milnor ring with the structure of a Frobenius

algebra (i.e. 〈fg, h〉 = 〈f, gh〉). For more details, see [AGV].

To define the FJRW ring, we require in addition to W a choice of a group of diagonal

symmetries of W . The choice of group heavily affects the resulting structure of the FJRW

ring.

Recall the maximal group of diagonal symmetries

Gmax
W =

{

(λ1, λ2, . . . , λN) ⊆ (C∗)N |W (λ1x1, λ2x2, . . . , λNxN) = W (x1, x2, . . . , xN)
}

,

which always contains the exponential grading element J = (e2πiq1 , e2πiq2 , . . . , e2πiqN ). In

general, the theory requires that the symmetry group be admissible (see [FJR1] section 2.3).

In Theorem 2.5 we prove that admissible groups of diagonal symmetries are precisely those

containing J .

The Landau–Ginzburg Mirror Symmetry Conjecture states the following:
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Conjecture (Landau–Ginzburg Mirror Symmetry Conjecture). For a non-degenerate, quasi-

homogeneous, potential W and diagonal symmetry group G, there is a dual potential W T with

dual symmetry group GT so that the FJRW-ring of (W,G) is isomorphic to an orbifolded

Milnor ring of (W T , GT ).

Remark. We use the notation W T suggestively for the dual potential, as one of our main

theorems is that the Berglund–Hübsch transposed potential is the appropriate dual in the

context of LG-to-LG mirror symmetry for non-degenerate invertible potentials.

2.2 The A-model state space

We now outline the definition of HW,G as a C-vector space, after which we will define the

pairing, grading, and multiplication that make HW,G a Frobenius algebra.

In [FJR1], the state space HW,G is defined in terms of Lefschetz thimbles:

HW,G =
⊕

γ∈G

Hmid(Fix γ,W−1
γ (∞), Q)G.

Here, W−1
γ (∞) is a generic smooth fiber of the restriction of W to Fix γ; for further details,

see [FJR1]. For our purposes, it will be most convenient to give a presentation in terms of

Milnor rings, but we should point out that the isomorphism between the two presentations

is not canonical ([Wa1], [Wa2]).

Definition 10. Let G be an admissible group. (i.e. G ⊆ Gmax
W and J ∈ G). For h ∈ G, let

Fix h ⊂ CN be the fixed locus of h, and let Nh be its dimension. Define

Hh := ΩNh(CNh)/
(

dW |Fix h ∧ ΩNh−1(CNh)
)

∼= QW |Fix h
· ω

where ω = dxi1 ∧ dxi2 ∧ · · · ∧ dxiNh
is a volume form.

15



The group G acts on Hh via its action on the coordinates∗.

The FJRW state space is then given by

HW,G =

(

⊕

γ∈G

Hγ

)G

.

The state space HW,G is Q-graded by the so-called W -degree, which depends only on the

G-grading. To define this grading, first recall that each element h ∈ G can be uniquely

expressed as

h = (e2πiΘh
1 , e2πiΘh

2 , . . . , e2πiΘh
N )

with 0 ≤ Θh
i < 1.

Definition 11. For αh ∈ Hh, the W -degree of αh is defined by

(2.2) degW (αh) := dim Fix h + 2
N
∑

j=1

(Θh
j − qj).

Remark. We introduce the A-model bi-grading in definition 2.10, with respect to which the

W -degree is simply the sum of the gradings. For the moment, the reader may note that the

W -degree ensures that the summand corresponding to the distinguished group element J

has degree zero; it is this summand which will contain the identity for the A-model product.

Since Fix h = Fix h−1, we have Hh
∼= Hh−1 , and the residue pairing on QW |Fix h

induces a

pairing

Hh ⊗ Hh−1 → C.

The pairing on HW,G is the direct sum of these pairings. Fixing a basis for HW,G, we denote

the pairing by a matrix ηα,β = 〈α, β〉, with inverse ηα,β.

∗
Note the volume form encodes a determinant-twist on the natural G-action on QW |Fix h

.
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2.3 The A-model Frobenius Algebra

For each pair of non-negative integers g and n, with 2g − 2 + n > 0, the FJRW co-

homological field theory produces for each N -tuple (α1, α2, . . . , αN) ∈ (HW,G)N classes

ΛW
g,n(α1, α2, . . . , αN) ∈ H∗(M g,n) of complex degree 3g − 3 + n − D, where the ‘homology

degree’ D is given by

D := ĉW (g − 1) +
1

2

N
∑

i=1

degW (αi).

The n-point correlators are defined to be

〈α1, . . . , αN〉g,n :=

∫

M g,n

ΛW
g,n(α1, . . . , αN),

so 〈α1, . . . , αN〉g,n obviously vanishes unless the homology degree of ΛW
g,n(α1, . . . , αN) is zero.

The ring structure on HW,G is determined by the genus-zero three-point correlators. In other

words, if r, s ∈ HW,G, then

(2.3) r ⋆ s :=
∑

α,β

〈r, s, α〉0,3 ηα,ββ

where the sum is taken over all choices of α and β in a fixed basis of HW,G. This product

endows HW,G with the structure of a Frobenius algebra. That is, the product interacts well

with the pairing in the sense that for α, β, γ ∈ HW,G,

〈α ⋆ β, γ〉 = 〈α, β ⋆ γ〉

The classes ΛW
g,n(α1, . . . , αN) satisfy the following axioms which facilitate the computation

of the genus zero three-point correlators 〈α1, α2, α3〉. In particular, we show in Chapter III

that these axioms completely determine the product structure on the A-model state space.

The reader may wish to skip to Section 2.4 on a first reading.

17



Axiom 1. Dimension: If the homology degree D /∈ 1
2
Z, then ΛW

g,n(α1, α2, . . . , αn) = 0. In

particular, if g = 0 and n = 3, then 〈α1, α2, α3〉 = 0 unless D = 0, which occurs if and only

if
∑3

i=1 degW αi = 2ĉ.

Axiom 2. Symmetry: Let σ ∈ SN . Then

〈α1, . . . , αn〉g,n =
〈

ασ(1), . . . , ασ(n)

〉

g,n
.

The next few axioms relate to the degrees of line bundles L1, . . . ,LN endowing a k-pointed

orbicurve C with a so-called W -structure. This means that for each monomial
∏N

j=1 z
aij

j of

W ,
⊗N

j=1 L
⊗aij

j
∼= ωC ,log. Here, ωC ,log is obtained by pulling back from the underlying curve

C = |C | the bundle ωC ⊗ O(p1) ⊗ · · · ⊗ O(pk). The identification of monomials in the Lj

with ωC ,log arises naturally in the attempt to solve the Witten equation on the orbicurve

C . The details may be found in [FJR1] and provide geometric background to the present

construction.

Consider the class ΛW
g,k(α1, α2, . . . , αk), with αj ∈ Hhj

for each j ∈ {1, . . . , k}. For each

variable Xj, the rational number lj := deg |Lj| is given by

(2.4) lj = qj(2g − 2 + k) −
k
∑

i=1

Θhi

j .

(|Lj| denotes the pushforward of the bundle Lj on the orbicurve C to the underlying coarse

curve).

Axiom 3. Integer degrees: If lj /∈ Z for some j ∈ {1, . . . , N}, then ΛW
g,k(α1, α2, . . . , αk) = 0.

Remark. This axiom has the following important consequence, which follows immediately

from examining Equation (2.4).
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Corollary 2.1. Suppose Λg,k(α1, . . . , αk−1, αk) 6= 0, with αi ∈ Hhi
. Then

Λg,k(α1, . . . , αk−1, α̃k) = 0 for any α̃k /∈ Hhk
.

Proof. Since Λg,k(α1, . . . , αk−1, αk) 6= 0, we know that for all j

lj = qj(2g − 2 + k) −
k
∑

i=1

Θhi

j ∈ Z.

Suppose αk ∈ Hh̃k
, where h̃k = (h̃kh

−1
k )hk. In order to have

l̃j = qj(2g − 2 + k) −
k−1
∑

i=1

Θhi

j − Θh̃k

j ∈ Z,

we need Θ
h̃kh−1

k

j ∈ Z.

Now, by Axiom 3, Λg,k(α1, . . . , αk−1, α̃k) = 0 unless this holds for all j, which is equivalent

to h̃k = hk.

Axiom 4. Concavity: If lj < 0 for all j ∈ {1, 2, . . . , N}, then 〈α1, α2, α3〉 = 1.

The next axiom is related to the Witten map. When H0(
⊕N

j=1 Lj) and H1(
⊕N

j=1 Lj) have

the same rank, the Witten map is given by:

W : H0(
N
⊕

j=1

Lj) → H1(
N
⊕

j=1

Lj)

(s1, . . . , sN) 7→

(

∂W

∂x1

,
∂W

∂x2

, . . . ,
∂W

∂xN

)

|xi=si
.

Concretely, for each k ∈ {1 . . . , N}, ∂W
∂xk

|xi=si
is a poloynomial in the si. The degree of W is

minus one times the highest exponent occuring among the ∂W
∂xk

|xi=si
. (The sign comes from

complex conjugation).

Example. If W = x3
1x2 + x5

2, then W(s1, s2) = (3x1
2x2, x1

3 + 4x2
5), and the degree of the
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Witten map is degW = −5.

The fact that the Witten map is well-defined is a consequence of the geometric conditions

on the Lj considered in [FJR1]. For further details, we refer readers to the original paper.

Put hi
j = rank H i(Lj).

Axiom 5. Index-Zero: Consider the class ΛW
g,n(α1, α2, . . . , αn), with αi ∈ Hγi

. If Fix γi =

{0} for each i ∈ {1, 2, . . . , n} and Λg,n(α1, α2, . . . , αn) is of homology degree

N
∑

j=1

(h0
j − h1

j) = 0,

then 〈α1, α2, . . . , αn〉g,n is equal to the degree of the Witten map.

Axiom 6. Composition: If the four-point class, ΛW
g,n(α1, α2, α3, α4) is of homology degree

zero, then the correlator 〈α1, α2, α3, α4〉 decomposes in terms of three-point correlators in the

following way:

〈α1, α2, α3, α4〉 =
∑

β,δ

〈α1, α2, β〉 ηβ,δ 〈δ, α3, α4〉 ,

where the sum is taken over a basis for HW,G.

As indicated earlier, the exponential grading operator J plays a special role in the A-model

product. Note that Fix J = {0} so HJ
∼= C and deg HJ = 0. The identity element in the

FJRW-ring is an element of HJ , and we denote this element by 1.

Axiom 7. Pairing: For α1, α2 ∈ HW,G, 〈α1, α2,1〉 = η(α1, α2), where η is the pairing in

HW,G.

Axiom 8. Sums of potentials: If W1 ∈ C[x1, . . . , xr] and W2 ∈ C[y1, . . . , ys] are two non-

degenerate, quasi-homogeneous potentials with maximal symmetry groups G1 and G2, then

the maximal symmetry group of W = W1 +W2 is G = G1×G2, and there is an isomorphism
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of Frobenius algebras

HW,G
∼= HW1,GW1

⊗ HW2,GW2

Remark. We note an important consequence of Axiom 8. Under the same hypotheses as in

the statement of the axiom, we have a Frobenius Algebra isomorphism

QW
∼= QW1 ⊗ QW2 ,

and similarly

QW T
∼= QW T

1
⊗ QW T

2
.

Consequently, in order to prove the Mirror Symmetry Conjecture for W = W1 + W2 a sum

of decoupled potentials (with maximal A-model orbifold group, dual to the trivial B-model

orbifold group), it suffices to prove it for W1 and W2 individually.

Axiom 9. Deformation Invariance: ΛW
g,n(α1, α2, . . . , αN) is independent of the representative

W of a fixed deformation-equivalence class of potentials.

2.4 Orbifold B-model

Let W ∈ C[y1, . . . , yN ] be a non-degenerate quasi-homogeneous potential, where yi has weight

qi ∈ Q.

We will take W to be an invertible potential, so W =
∑

Wj where each Wj ∈ C[y
(j)
1 , . . . , y

(j)
nj ]

is of loop, chain, or Fermat type.

Definition 12. Let G ⊂ (C∗)N be a group of diagonal symmetries of W .

For g ∈ G, Fix(g) is a Ng-dimensional co-ordinate subspace of CN , where Ng = dim Fix(g).

Put Qg := QW |Fix g
ωFix g, where as before the presence of the volume form ωFix g encodes a

determinant twist of the natural G-action on QW |Fix g
.
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The unprojected state space of the Landau–Ginzburg orbifold B-model of (W,G) is defined

to be

Q =
⊕

g∈G

Qg.

This defines Q as a G-graded C-vector space. Q also possesses a Q bi-grading, which we

discuss in the next section. We will show that the multiplication defined in this section

respects the bi-grading.

Pairings Qg⊗Qg−1 → C are induced by the residue pairing under the identification Qg
∼= Qg−1 .

The sum of these pairings endows Q with a non-degenerate pairing 〈 , 〉.

We aim to equip Q with an algebra structure which preserves both the G-grading and the

Q bi-grading. We observe that for g ∈ G, we have a restriction homomorphism Qid → Qg

given by setting variables not fixed by g equal to zero. This induces on Qg the structure of

a Qid module, with 1 · ωFix g ∈ Qg as the generator of the g-graded summand.

So to define an algebra structure on Q, it suffices to define a compatible multiplication

1g ⋆ 1h = γg,h1gh.

Since 1e will be the identity for the multiplication, we require

(2.5) 1e ⋆ 1g = 1g so γe,g = 1g = γg,e.

For the multiplication to be associative, we must have

(2.6) (1g ⋆ 1h) ⋆ 1k = 1g ⋆ (1h ⋆ 1k) so γg,hγgh,k = γg,hkγh,k.

We propose the following definition of γ and check that it satisfies (2.5) and (2.6).
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Definition 13. For g ∈ G, recall Fg = {i : gXi = Xi}. Define γ through the equation

(2.7) γg,h
hess W |Fix g∩Fix h

µW |Fix g∩Fix h

=















hess W |Fix gh

µW |Fix gh

if Fg ∪ Fh ∪ Fgh = {1, · · · , n}

0 otherwise.

Remark. By definition, γg,h has non-zero pairing with the determinant of the Hessian of W

on the common fixed locus of g and h, provided each variable is fixed by at least one of g, h

and gh.

The denominators are dimensions of the local algebra of W restricted to appropriate fixed

loci. The choice of denominator has no bearing on the associativity of the product, as one

observes that a triple-product vanishes unless one of the factors comes from the identity

summand. Nevertheless, the choice is of some consequence in the context of mirror symme-

try. While the above prescription is intrinsic and consistent, it is certainly possible that a

different scaling of the γg,h will be useful for studying compatibility of the B-model product

with that on the A-model. To date, direct computation of the A-model product beyond the

maximally orbifolded case studied in Section 3.1 has been elusive.

Proposition 2.1. The above multiplication ⋆ is associative.

Proof. This definition obviously satisfies (2.5), and it remains to check the associativity (2.6)

of the candidate cocycle γ.

We see here the benefit of restricting our attention to invertible potentials (sums of loops,

chains, and Fermat types).

We first check associativity of multiplication when W is of one of these atomic types. The

key point here is that if a symmetry of W fixes y1, then it acts trivially on all of CN . So

1g ⋆ 1h = γg,h1gh can be non-zero only if one of g, h, or gh is the identity.

If g = id, h = id, or k = id then associativity is obvious.
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Suppose g 6= id, h 6= id and k 6= id. We show that both sides of (2.6) vanish. Consider the

left hand side. If gh 6= id then by the above remark, 1g ⋆ 1h = 0. If gh = id, the left hand

side is γg,g−11k. Now, γg,g−1 pairs with hess W |Fix(g), so depends on the variables not fixed

by g (in particular y1). Since k 6= id, y1 is not fixed by k, and γg,g−11k = 0 ∈ Qk. A similar

argument applies to the right hand side.

Thus we have an associative multiplication on Q for W a loop, chain, or Fermat potential.

In fact, we have shown furthermore that a triple-product vanishes unless one of the factors

is in the identity sector, and the other two factors are in sectors corresponding to mutually

inverse group elements.

This multiplication (Definition 13) extends to any invertible potential, as the product may

be decomposed into contributions from each atomic summand, and associativity on the

summands implies associativity for the whole invertible potential.

In the next section, we show that the multiplication on the unprojected state space descends

to a multiplication on invariants, without making any assumptions about the potential being

of atomic type.

2.4.1 Projecting to invariants

Now we turn our attention to the G-invariants in Q for the determinant-twisted G action.

We make the important restriction that G ⊆ SLNC, so that the G-invariants in Qid are

the same whether or not we twist by the determinant on Fix id = CN . This means that

the Qid-module structure on Q =
⊕

g∈G Qg descends to a (Qid)
G-module structure on the

determinant-twisted G invariants
(

⊕

g∈G Qg

)G

. This ‘SL’ hypothesis will be justified later

when we see that admissible A-model orbifold groups correspond to subgroups of SLNC on

the B-side.
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To see that the product descends to invariants, we prove the following lemma.

Lemma 2.2. Suppose H,K ∈ Qe are monomials such that H1h ∈ Qh and K1k ∈ Qk

are (determinant-twisted) G-invariants. Then HK1h ⋆ 1k is a (determinant-twisted) G −

invariant.

Proof. The lemma is trivially true if HK1h ⋆ 1k = 0. We may therefore suppose that for

each i ∈ {1, . . . , n}, at least one of hi, ki or hiki equals 1.

G-invariance of the H1h and K1k yields

g(H)
∏

i∈Fh

gi = 1(2.8)

g(K)
∏

i∈Fk

gi = 1,(2.9)

where g(H) denotes the phase of the action of g on the monomial H, and similarly for g(K).

We need to compute the action of g on HK1h ⋆ 1k.

Since we assume 1h ⋆ 1k 6= 0, Equation (2.7) applies. The phase of g on either side of this

relation must coincide, so

g(γh,k) =

∏

i∈Fhk
g−2

i
∏

i∈Fh∩Fk
g−2

i

.

Then, using (2.8) and (2.9), the phase of g on

(H1h) ⋆ (K1k) = HKγh,k1hk
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is

g(H)g(K)g(γh,k)
∏

i∈Fhk

gi =
∏

i∈Fh

g−1
i

∏

i∈Fk

g−1
i

∏

i∈Fh∩Fk
g2

i
∏

i∈Fhk
g2

i

∏

i∈Fhk

gi

=
∏

i∈{1,..., n}

g−1
i

= 1,

by the assumption G ⊆ SLNC. (For the penultimate equality, recall that at least one of h,

k, and hk equals id.)

So the ⋆-product of G-invariants is again G-invariant.

2.4.2 Pairing and Frobenius Algebra

The pairing 〈 , 〉 on QW,G is the sum of the pairings Qg ⊗ Qg−1 → C, which are induced by

the residue pairing under the identification Qg
∼= Qg−1 .

The orbifold Milnor ring (after projecting to G invariants) is a Frobenius Algebra. This

follows from the definition of the pairing and the associativity of multiplication.

By construction, the above multiplication preserves the G-grading, and we will show in the

next section that it preserves the Q bi-grading also.

2.5 Bi-grading

To introduce the bi-gradings for Landau–Ginzburg theories, we introduce the following stan-

dard notations.
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Notation. A form α =
∧

Xαi

i dXi ∈ QW |Fix g
· ωFix g has weighted degree

deg α :=
∑

(αi + 1)qi.

Note that the volume form contributes to the degree on an equal footing with the monomial.

A symmetry g = (e2πiΘg
1 , . . . , e2πiΘg

N ) ∈ (C∗)N with Θg
i ∈ [0, 1) has age

age(g) :=
N
∑

i=1

Θg
i .

Definition 14. For an invariant α in the fixed locus of a symmetry h = (e2πiΘh
1 , . . . , e2πiΘh

N ),

we define the bi-gradings as follows.

(QA
+, QA

−) := (deg α,Nh − deg α) + (age h, age h) − (
N
∑

i=1

qi,
N
∑

i=1

qi)(2.10)

(QB
+, QB

−) := (deg α, deg α) + (age h, age h−1) − (
N
∑

i=1

qi,
N
∑

i=1

qi)(2.11)

Remark. Note this grading recovers the A-model grading of Equation 2.2 as the sum of the

A-model bi-gradings.

Lemma 2.1. The B-model multiplication (Def. 13) preserves the bigrading (QB
+, QB

−) of Eq.

(2.10).

Proof. Consider a product

H1h ⋆ K1k = γh,kHK1hk

If the product vanishes, it trivially preserves bi-degree. If it is non-vanishing, we consider

the two cases hk 6= id and hk = id.
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If hk 6= id, then we may suppose h = id so γh,k = 1.

(

deg(H1id) + age id−
N
∑

i=1

qi

)

+

(

deg(K1k) + age k −
N
∑

i=1

qi

)

= deg(HK1k) + deg 1id + age k − 2
N
∑

i=1

qi

= deg(HK1k) + age k −
N
∑

i=1

qi,

and similarly with age k replaced by age k−1, so bi-degree is preserved.

If hk = id then

age h + age k = age h + age h−1 = N − Nh.

This case is symmetric in h and h−1, so to show the bi-grading is preserved by multipli-

cation we need only show deg + age−
∑N

i=1 qi is preserved. This follows from the following

computation.

(

deg(H1h) + age(h) −
N
∑

i=1

qi

)

+

(

deg(K1h−1) + age(h−1) −
N
∑

i=1

qi

)

= deg(HK) + deg 1h + deg 1h−1 + (N − Nh) − 2
N
∑

i=1

qi

= deg(HK1id) + (N − 2 deg1id
) − (Nh − 2 deg1h

) −
N
∑

i=1

qi

= deg(γh,kHK1id) + age id −
N
∑

i=1

qi,

because age(id) = 0, and by definition of γh,k, we have

deg(γh,k) = deg hess W − deg hess W |Fix h

= (N − 2 deg1id
) − (Nh − 2 deg1h

).
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The last equality holds because hess W is the determinant of the matrix (∂i∂jW ), so

deg hess W = deg
N
∏

i=1

∂2
i W =

N
∑

i=1

deg ∂2
i W =

N
∑

i=1

(1 − 2qi) = N − 2 deg 1id,

and similarly for W |Fix h.

2.6 Relation between A and B model for a fixed potential

Note that the state spaces of the A and B models for a fixed potential are isomorphic as

vector spaces. The relationship between the bi-gradings is:

degA
+ = degB

+ , degA
− = −degB

− + ĉ.

This simple relation is particularly relevant in the Calabi-Yau case (
∑

qi = 1) where the same

relation holds for the Calabi-Yau hypersurface defined by W = 0, giving further evidence of

Landau–Ginzburg mirror symmetry.

2.7 Duality of Groups

As before, let

W =
N
∑

i=1

N
∏

j=1

X
aij

j

be a non-degenerate quasi-homogeneous potential, with exponent matrix A = (aij).

Following Berglund–Hübsch [BH], we consider the transposed potential

W T =
N
∑

i=1

N
∏

j=1

Y
aji

j ,
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which has exponent matrix AT .

If the ith row of A−1 is given by ρi = (ϕ
(i)
1 , · · · , ϕ

(i)
N ), we get diagonal symmetries of W T as

before:

ρk = (e2πiϕ
(k)
1 , · · · , e2πiϕ

(k)
N ).

As above,the ρk’s are symmetries of W T and generate Gmax
W T . The exponential grading oper-

ator is J =
∏N

i=1 ρi.

The following lemma is straightforward, but essential to what follows.

Lemma 2.1.
N
∏

i=1

ραi

i preserves the monomial
N
∏

j=1

X
rj

j

if and only if
N
∏

j=1

ρ
rj

j preserves the monomial
N
∏

i=1

Y αi

i .

Proof. Both statements are equivalent to

(r1, . . . , rN)A−1
W (α1, . . . , αN)T ∈ Z

In particular, since each ρk preserves every monomial
∏

i Y
aij

i appearing in W T , we have

that
∏

i ρ
aij

i preserves every Xk. That is:

Corollary 2.2. Let W =
∑N

i=1

∏N
j=1 X

aij

j be a non-degenerate, invertible potential with

exponent matrix A = (aij). Let the symmetry ρk be given by the kth column of A−1 as above.

Then
N
∏

i=1

ρ
aij

i = 1

for every j ∈ {1, . . . , n}.
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Remark. In [K], this observation is attributed to Skarke in the special case of Loop potentials.

Definition 15. For a group G of symmetries of W , we define the dual group GT as

(2.12) GT :=

{

N
∏

i=1

ρri

i ∈ GW T

∣

∣

∣

∣

∣

(r1, . . . , rN)A−1
W (α1, . . . , αN)T ∈ Z for all

N
∏

i=1

ραi

i ∈ G

}

.

If g =
∏N

i=1 ρ
α′

i

i is a different presentation,
∏N

i=1 ρ
αi−α′

i

i = 1. Hence

A−1
W [α1 − α′

1, · · · , αN − α′
N ]T ∈ ZN

and the above definition is independent of presentation of elements of G.

The following lemma will be used to show that (GT )T = G.

Lemma 2.3. Let G,H ⊂ (C∗)N be groups acting diagonally on C[X1, . . . , XN ] with

C[X1, . . . , XN ]G = C[X1, . . . , XN ]H .

Then the fixed fields for the induced actions of G and H on C(X1, . . . , XN) also coincide,

i.e.

C(X1, . . . , XN)G = C(X1, . . . , XN)H .

Proof. Given an element k = a/b of C(X1, . . . , XN) with a a sum of distinct monomials ai,

G-invariance of k is equivalent to G-invariance of each summand ai/b, so we may suppose

the numerator is a monomial. Since invariance of k is equivalent to invariance of 1/k, we

may suppose that both numerator and denominator are monomials.

Now given k in C(X1, . . . , XN) a ratio of monomials, we may (since the G-action is diagonal)

augment numerator and denominator by the same monomial to express k as f/g, where f is

a monomial and g is a G-invariant monomial, so that G-invariance of k is equivalent to G
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invariance of the monomial f . This is then equivalent to H-invariance of f by hypothesis,

and since g is also H-invariant, this is equivalent to the H-invariance of the rational function

f/g = k.

Lemma 2.4. Let G be a group of diagonal symmetries of the non-degenerate invertible

potential W , and GT the dual group of symmetries of W T . Then

(GT )T = G.

Proof. It is clear from the definition that G ⊆ (GT )T and C[X1, . . . , XN ]G ⊆ C[X1, . . . , XN ](G
T )T

.

This implies that G and (GT )T have equal invariant rings, and the actions on C[X1, . . . , XN ]

extend to actions on the fraction field with the same fixed field. Because the groups acting

are finite, it follows (e.g. [Ar], Corollaries to Theorem 14) that G = (GT )T .

It is also obvious {1}T = Gmax. Now we compute 〈J〉T . Since J =
∏N

i=1 ρi, h =
∏N

i=1 ρ̄ri

i ∈

〈J〉T if and only if
∑

i riqi ∈ Z. Since
∑

i riqi is precisely the phase of det(h), we have

〈J〉T = SLNC ∩ Gmax
W T .

This explains the SL restriction made in the proof of Lemma 2.2 that the orbifold B-model

multiplication descends to the invariants under the action of the orbifold group.

We can use the argument from the proof of Lemma 2.4 to settle a question suggested in

[FJR1], namely whether any diagonal symmetry group containing J satisfies the following

definition of admissible groups.

Definition 16 ([FJR1] Defn 2.3.2). We say that a subgroup G ≤ Gmax
W is admissible or

is an admissible group of Abelian symmetries of W if there exists a Laurent polynomial Z,

quasi-homogeneous with the same weights qi as W , but with no monomials in common with

W , and such that G = GW+Z .

Remark. In our discussion of the moduli space M
W

g,k of orbifold curves endowed with line
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bundles L1, . . . ,LN forming a W structure, we glossed over the orbifold structure at the

marked points p1, . . . , pk. In general, the marked points should have isotropy in Gmax
W . Re-

stricting the isotropy to some lie in some subgroup G of Gmax
W , it is not clear that the moduli

space one obtains is a proper stack. The above notion of admissibility is a sufficient condition

for properness of this stack, which allows the construction of the Landau-Ginzburg A-model

for proper subgroups of Gmax
W .

The following proposition therefore indicates that the construction of the Landau-Ginzburg

A-model in [FJR1] is valid for any subgroup G ⊆ Gmax
W containing J .

Proposition 2.5. For W ∈ C[X1, . . . , XN ] a non-degenerate (not-necessarily invertible)

potential, any group of diagonal symmetries of W containing J is admissible.

Proof. For a group G of diagonal symmetries of W containing J to be admissible, we require

the existence of a Laurent polynomial Z in X1, . . . , XN , quasi-homogeneous with the same

weights as W , such that G is the maximal diagonal symmetry group of W + Z.

Now, the ring of G-invariants is finitely generated by monomials; let us fix a generating

set. Suppose W =
∑

i Wi is a sum of distinct monomials Wi. If we let Z be the sum of

those generators not divisible (in C[X1, . . . , XN ]) by any Wi, then G is the maximal diagonal

symmetry group of W + Z. (Otherwise there is a diagonal symmetry group H, with G ⊆ H

and C[X1, . . . , XN ]G ⊆ C[X1, . . . , XN ]H , implying G = H as before). Since J preserves each

of the constituent monomials of Z, each of these monomials has integral quasi-homogeneous

degree. We may correct each of these monomials by a (negative) power of any monomial

in W to ensure that each of the monomials has quasi-homogeneous degree equal to 1, and

since we are correcting by G-invariants not dividing the monomials of Z, we do not change

the maximal symmetry group of W + Z.
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2.8 Mirror Symmetry for State Spaces

We propose in this section a ‘Total Unprojected Mirror map’. The adjective ‘total’ indicates

that the map involves a sum over maximal symmetry groups, while ‘unprojected’ indicates

that the map is defined without taking invariants for any diagonal action. Mirror Symmetry

for LG state-spaces will be obtained by restricting the orbifold groups and taking invariants.

First, we need a lemma, which will allow us to exploit the Remark following Lemma 1.2,

in which we noted that the natural map from B-model Milnor ring elements
∏

i Y
αi

i dYi to

A-model symmetries
∏

i ρ
αi

i J maps onto the collection of symmetries with even-dimensional

fixed locus.

Lemma 2.1. Let W be an invertible potential, and let h ∈ Gmax
W T and

∧

j∈Fh
Y

αj

j dYj ∈

QW T |Fix h
. Define g =

∏

j∈Fh
ρ

αj+1
j ∈ Gmax

W . Then Fg ∪ Fh = {1, . . . , N} and Fg ∩ Fh has an

even number of elements.

Proof. It suffices to prove this for atomic potentials. For Fermat type, we have N = 1 and

either h = id or g = id, so the lemma is clear.

For loop potentials, the only symmetry with non-trivial fixed locus is the identity. So if

h 6= id, then g = id and the lemma holds. If h = id and g 6= id, the lemma also holds, so

the only case to check is h = id and g = id. But by Lemma 1.2, this can only happen if N

is even, so the result follows.

The only non-trivial case is the chain potential. Here, Fh = {1, . . . , t} and Fg = {s, . . . , N}

for some s and t. If Fg = {s, . . . , N}, we must have s ≤ t + 1 and αj = δeven
t−j (aj − 1) for

s ≤ j ≤ t. Further, since Ys−1

∏t
j=s Y

δeven
t−j (aj−1)

j vanishes in QW T |{Y1,··· ,Yt}
when t − s is even,

we see that t − s must be odd. i.e. There is an even number of elements (possibly zero) in

{s, s + 1, . . . , t}, and the result follows.

Lemma 2.2 (Definition of mirror elements). Let W be an atomic invertible potential, h ∈

34



Gmax
W T and H =

∧

j∈Fh
Y

αj

j dYj ∈ QW T |Fix h
. Put gH :=

∏

j∈Fh
ρ

αj+1
j ∈ Gmax

W . If W is of

chain or Fermat type, there is a unique element Gh =
∧

j∈FgH
X

rj

j dXj ∈ QW |Fix gH
such that

gH =
∏

j∈FgH
ρ

rj+1
j .

If W is a loop potential we have a unique choice of Gh as above unless h = id and gH = id.

In this case there are two choices of α1, . . . , αN for which gH = id, and correspondingly two

choices of Gh.

Proof. (Note it follows from Corollary 2.2 that different monomial representatives H of a

given element in the Milnor ring of W T correspond to the same element gH ∈ Gmax
W .)

If W is a loop potential with N even, and h = id, we may have gH = id, in which case

αj = δeven
j (aj − 1) or αj = δodd

j (aj − 1). In each instance, we prescribe rj = αj for all j.

Otherwise, Lemma 2.1 implies that Fh∪FgH
= {1, . . . , N} and #Fh∩FgH

is even, and by the

remark following Lemma 1.4, there is a unique generator Gh =
∧

j∈FgH
X

rj

j dXj ∈ QW |Fix gH

such that h =
∏

j∈FgH
ρ

rj+1
j .

Notation. We use ‘ket’ notation to indicate group grading. For example, we denote by

Gh | gH〉 the element Gh ∈ QW |Fix gH
⊂ ⊕g∈Gmax

W
QWg

whose existence was asserted in the

preceding lemma.

Definition 17 (Total Unprojected Mirror Map). Let W be a non-degenerate, invertible

potential of atomic type. We define the Total Unprojected Mirror Map as a linear map

given on monomial generators by

⊕

h∈Gmax
WT

QW T |Fix h
−→

⊕

g∈Gmax
W

QW |Fix g

H |h〉 7−→ Gh | gH〉 .

(2.13)

If W =
∑

j Wj is a sum of atomic potentials, note that Gmax
W =

⊕

j Gmax
Wj

and QW |Fix(⊕jgj)
=

⊗

j QWj |Fix gj
.
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So

⊕

g∈Gmax
W

QW |Fix g
=
⊗

j







⊕

g∈Gmax
Wj

QWj |Fix g






,

and similarly for W T . We may therefore define the Total Unprojected Mirror Map for an

arbitrary invertible potential W =
∑

Wj as the tensor product of the map 2.13 on the

atomic summands Wj.

Theorem 2.3. The total unprojected mirror map is an isomorphism.

Proof. Applying the above definition with GT in place of G, and recalling that (GT )T = G,

we obtain the inverse map.

Theorem 2.4 (Projected Mirror Map). Let W be a non-degenerate, invertible potential and

G an admissible A-model diagonal symmetry group of W . Restricting the total unprojected

mirror map to QW T ,GT yields an isomorphism

QW T ,GT
∼= HW,G.

Proof. Certainly, the restriction of the total unprojected mirror map to QW T ,GT yields and

isomorphism onto its image. By definition of GT , this image is contained in HW,G. On

the other hand, restricting the inverse mirror map to HW,G yields an isomorphism onto its

image, which is contained in QW T ,GT .

Remark. For G = Gmax
W , this recovers the main result of [K].

Example. We present here the example of the two-variable loop potential W = x3y + xy5,

orbifolded by J = (e(2πi)2/7, e(2πi)1/7) on the A-side and by the dual group JT = 〈(−1,−1)〉 on

the B-side. The table below presents the vector space generators for the A-model (W, 〈J〉)

and the B-model (W T ,
〈

JT
〉

), along with the bi-grading. We denote the standard volume

form on Fix ρa
xρ

b
y by eρa

xρb
y
. The A and B model invariants in each column correspond to each

other under the Mirror Map (Equation (2.13)), and evidently the bi-grading is preserved.
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(W, 〈J〉) eρ1
xρ1

y
eρ2

xρ2
y

eρ0
xρ2

y
eρ1

xρ3
y

eρ2
xρ4

y
eρ0

xρ4
y

x2eρ0
xρ0

y
xy2eρ0

xρ0
y

y4eρ0
xρ0

y

degA
+ 0 6

7
12
7

4
7

10
7

16
7

8
7

8
7

8
7

degA
− 0 0 0 0 0 0 0 0 0

(W T , SL) eρ0
xρ0

y
xyeρ0

xρ0
y

x2y2eρ0
xρ0

y
y2eρ0

xρ0
y

xy3eρ0
xρ0

y
x2y4eρ0

xρ0
y

x2eρ3
xρ1

y
eρ2

xρ3
y

y4eρ1
xρ5

y

degB
+ 0 6

7
12
7

4
7

10
7

16
7

8
7

8
7

8
7

degB
− 0 0 0 0 0 0 0 0 0

Example. Now we present the example of the two-variable chain potential W = x3y + y4,

orbifolded by J = (e2πi/4, e2πi/4) on the A-side and by the dual group JT =
〈

(e2πi/3, e−2πi/3)
〉

on the B-side. The table below presents the vector space generators for the A-model (W, 〈J〉)

and the B-model (W T ,
〈

JT
〉

), along with the bi-grading. The A and B model invariants in

each column correspond to each other under the Mirror Map (Equation (2.13)), and we see

again that the bi-grading is preserved.

(W, 〈J〉) eρ1
xρ1

y
eρ2

xρ2
y

eρ0
xρ3

y
x2eρ0

xρ0
y

xyeρ0
xρ0

y
y2eρ0

xρ0
y

degA
+ 0 1 2 1 1 1

degA
− 0 0 0 0 0 0

(W T , SL) eρ0
xρ0

y
xyeρ0

xρ0
y

x2y2eρ0
xρ0

y
y3eρ3

xρ1
y

eρ2
xρ2

y
eρ1

xρ3
y

degB
+ 0 1 2 1 1 1

degB
− 0 0 0 0 0 0

We now prove that the (total, unprojected) Mirror Map (Equation (2.13)) preserves bi-

degree. Of course, the LG state-space isomorphisms corresponding to different pairs (H,HT )

of orbifold groups inherit this property.

Theorem 2.5. Let W be a non-degenerate invertible potential. The Unprojected Mirror Map

defined on generators by Equation (2.13) is a bi-degree preserving isomorphism of vector

spaces.
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Proof. The following lemma will be useful to reduce the amount of direct computation re-

quired.

Lemma 2.6. If the mirror map sends H |h〉 7→ G | g〉 with deg H = age g, age h = deg G

and Nh + Ng = N then Q±
B(H |h〉) = Q±

A(G | g〉).

Proof. It is clear that under the above hypothesis, the ‘+’ grading is preserved. To show the

‘−’ grading is also preserved, it suffices to observe that

Nh − deg H = N − Ng − age g = age g−1.

Inspection of Equations (2.10) indicates that the bi-degrees are simply sums of contributions

from each atomic summand, so if the total unprojected mirror map preserves bidegree for

atomic potentials, it does so for all invertible potentials.

We may therefore restrict our attention to the invertible potentials of Fermat, Loop and

Chain type. For each of these cases, we will prove that Equation (2.13) is a bi-degree

preserving vector space isomorphism.

Fermat: W = XN

The total unprojected mirror map is defined on generators by:

Y kdY | id 〉 7−→ 1
∣

∣ ρk+1
〉

, 0 ≤ k < N − 1,

and

1
∣

∣ ρk+1
〉

7−→ XkdX | id 〉 , 0 ≤ k < N − 1.
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Lemma 2.6 in this case, after noting that the mirror map exchanges degree and age, and the

fixed loci on either side of the mirror map have complementary dimension.

Loop: W =
∑N

i=1 Xai

i Xi+1

(The subscripts are taken modulo N).

The structure of the loop potential means that the only group element with non-trivial

fixed locus is the identity. Therefore we study the total unprojected mirror map out of the

B-model identity sector and twisted sectors separately.

Identity B-model sector:

N
∧

j=1

Y
αj

j dYj | id 〉 7−→
∧

X
rj

j dXj

∣

∣

∣

∣

∣

N
∏

j=1

ρ
αj+1
j

〉

,

where we are purposefully vague about the range of the product for the A-model monomial,

since it may either be empty (in which case the monomial should be interpreted as 1) or it

may run from 1 to N (when the B-model monomial corresponds to the A-model identity

group element).

In the first case, we have

N
∧

j=1

Y
αj

j dYj | id 〉 7−→ 1

∣

∣

∣

∣

∣

N
∏

j=1

ρ
αj+1
j

〉

,
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so

(QB
+, QB

−) = (
N
∑

i=1

(αi + 1)qi,
N
∑

i=1

(αi + 1)qi) + (age id, age id) − (
N
∑

i=1

qi,
N
∑

i=1

qi)

= (age g, age g) + (deg 1, deg 1) − (
N
∑

i=1

qi,

N
∑

i=1

qi)

= (QA
+, QA

−).

On the other hand, if
∏N

j=1 ρ
αj+1
j = id, N is even and the mirror map looks like

N
∧

j=1

Y
δeven
j (aj−1)

j dYj | id〉 7−→
N
∧

j=1

X
δeven
j (aj−1)

j dXj | id〉 ,

or a similar expression with ‘even’ replaced by ‘odd’. We note that

deg
N
∧

j=1

X
δeven
j (aj−1)

j dXj =
∑

i even

(ajqj + qj+1) = N/2,

since ajqj + qj+1 = 1 by definition of the weights. (Here we take indices modulo N .) A

similar statement holds with ‘even’ replaced by ‘odd’, and the bi-degrees are

(QB
+, QB

−) = (N/2, N/2) + (age id, age id) − (
N
∑

i=1

qi)

= (N/2, N − N/2) + (age id, age id) − (
N
∑

i=1

qi)

= (QA
+, QA

−)

Twisted B-model sectors:

Since the B-model twisted sectors have trivial fixed loci, the mirror map sends them all to

40



the A-model untwisted sector.

1

∣

∣

∣

∣

∣

N
∏

j=1

ρ
rj+1
j

〉

7−→
N
∧

j=1

X
rj

j dXj | id 〉 ,

In this case, the fixed loci are of complementary dimension, deg 1 = age id and deg
∧N

j=1 X
rj

j dXj =

age
∏N

j=1 ρ
rj+1
j by Lemma 1.1, so Lemma 2.6 ensures that bi-degree is preserved.

Chain: W = Xa1
1 X2 + Xa2

2 X3 + · · · + X
aN−1

N−1 XN + XaN

N

This case is more involved than the others, because a symmetry of the chain potential may

fix {Xs, Xs+1, . . . , XN} for any s = 1, . . . , N or it may have trivial fixed locus.

The total mirror map acts on generators via

t
∧

j=1

Y
αj

j dYj

∣

∣

∣

∣

∣

N
∏

j=s

ρ
rj+1
j

〉

7−→
N
∧

j=s

X
rj

j dXj

∣

∣

∣

∣

∣

t
∏

j=1

ρ
αj+1
j

〉

,

where {Y1, · · · , Yt} are the B-model fixed variables and {Xs, · · · , XN} are the A-model fixed

variables. We will consider t = 0 and s = N + 1 to denote trivial fixed loci, and empty

products and sums will be assumed to equal 1 and 0 respectively.

We now proceed to compare the bi-gradings on either side of the total mirror map. This is

facilitated by the following lemma.

Lemma 2.7. Consider the mirror map acting on a B-model generator via

H |h〉 7→ Gh | gH〉 .

Then

deg H = age gH +
1

2
(Ng + Nh − N),
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and

deg Gh = age h +
1

2
(Ng + Nh − N).

Proof. This lemma is proved by a direct computation similar to that in the proof of Lemma

1.1.

We then have

(QB
+, QB

−) = (deg H, deg H) + (age h,N − Nh − age h) − (
N
∑

i=1

qi,
N
∑

i=1

qi)

= (age gH , age gH) +
1

2
(Ng + Nh − N,Ng + Nh − N)+

(deg Gh,− deg Gh) +
1

2
(N − Ng − Nh, Ng − Nh + N),−(

N
∑

i=1

qi,
N
∑

i=1

qi)

= (age gH , age gH) + (deg Gh, Ng − deg Gh) − (
N
∑

i=1

qi,

N
∑

i=1

qi)

= (QA
+, QA

−),

as desired.
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CHAPTER III

Mirror Symmetry for Frobenius Algebras

In the previous chapter, we proved the mirror isomorphism for Landau-Ginzburg state spaces.

This isomorphism holds at the level of bi-graded vector spaces, but it is interesting to ask

about the relationship between Frobenius Algebra structures for the A-model of (W,G) and

the B-model of (W T , GT ).

We prove the following theorems in this direction.

Theorem 3.1. Let W : CN → C be a non-degenerate, invertible potential with maximal

diagonal symmetry group Gmax and all charges qj < 1
2
. Let W T be the Berglund–Hübsch dual

potential of W , with Milnor ring QW T . Then

QW T
∼= HW,Gmax

as Frobenius algebras. i.e., The maximally orbifolded A-model of W is isomorphic to the

unorbifolded B-model of W T .

Note that by the classification of

Theorem 3.2. Let W (X1, . . . , XN) be a loop potential with N odd, satisfying the Calabi-Yau

condition:
∑

i qi = 1. Let G be an admissible A-model orbifold group such that G ⊂ SLNC.

Then the mirror map (Equation (2.13)) is a Frobenius algebra isomorphism.
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Remark. It is not clear whether the Frobenius algebra structures on the A-model and the B-

model are compatible with the mirror map in general. The difficulty lies in the computation

of the A-model product structure when the algebra generators are in summands graded by

group elements with non-trivial fixed locus, and this case remains essentially open.

Notation. Following the physical literature on Landau-Ginzburg models, we introduce the

following terminology. We refer to the G-graded summands in HW,G as sectors. We call

summands with trivial fixed locus Neveu-Schwarz sectors, and summands with non-trivial

fixed locus are called Ramond sectors.

3.1 Maximal Symmetry Group

Theorem 3.1. Let W : CN → C be a non-degenerate, invertible potential with maximal

diagonal symmetry group Gmax and all charges qj < 1
2
. Let W T be the Berglund–Hübsch dual

potential of W , with Milnor ring QW T . Then

QW T
∼= HW,Gmax

as bi-graded Frobenius algebras.

The restriction to qj < 1
2

ensures that the ring generators of HW,Gmax are in Neveu-Schwarz

sectors, for which the FJRW multiplication can be computed using algebro-geometric meth-

ods. As remarked earlier, the only non-trivial case for which this hypothesis fails is the chain

potential with aN = 2. It is unclear whether the conclusion of the theorem holds in this

case.

Note this corresponds to the duality of state spaces, since Gmax is dual to the trivial group.

However, the linear isomorphism in Theorem 3.1 may in general differ from that of Theorem

2.5. In the earlier theorem, there was a choice of parity involved in the presentation of the
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Mirror Map for loop potentials. We have been unable to determine whether this choice is

compatible with the FJRW product structure on the A-model.

Remark. We would like to note that in the case N = 2, Theorem 3.1 has been proven

independently by Fan-Shen [FS] in the case of chain potentials, and Acosta [A] in the case

of loop potentials.

Notation. To make the notation less cumbersome in this case, we will omit the notation

dY1 ∧ · · · ∧ dYN | id〉 for the B-model sector.

To prove the theorem, we recall that by combining the remark following Axiom 8 and the

classification of invertible potentials ([KS], recalled in Section 1.2), it suffices to prove The-

orem (3.1) for potentials of Fermat, Loop and Chain type, which we address individually

below.

Fermat Potentials: W = Xa

The Mirror Theorem in this case was proved as the Ar case of the ‘self-duality’ theorem in

[FJR1]. The essential point here is that the exponent matrix is equal to its transpose in the

self-dual cases proved in [FJR1]. Our results show that self-duality is in a sense coincidental,

and that in general it is the transposed potential W T which is the B-model mirror to W .

Loop Potentials: W =
∑N

i=1 Xai

i Xi+1 (indices taken mod N)

Since degree is additive under multiplication in QW T and in HW,Gmax , the isomorphism (2.13)

of graded vector spaces suggests that the desired ring isomorphism

(3.1) QW T

∼=
−→ HW,Gmax
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should be induced by the map

C[Y1, . . . , YN ] −→ HW,Gmax

Yi 7−→ 1ρiJ ,

(3.2)

where for g ∈ Gmax, 1g denotes the identity in H Gmax

g
∼= QGmax

W |Fix(g)
, and the map is extended

to C[Y1, . . . , YN ] by multiplicativity.

The following two lemmas show that HW,Gmax is generated by the elements 1ρiJ , subject to

the relations

(1ρkJ)⋆ak + ak−11ρk−2J ⋆ (1ρk−1J)⋆(ak−1−1) = 0.

This means that the kernel of the above map is precisely the Jacobian ideal dW T , yielding

the desired isomorphism.

We proceed to prove the necessary lemmas.

Notation. Define

ρ
α :=

N
∏

i=1

ραi

i .

Lemma 3.2. If αi + βi ≤ ai − 1 for i ∈ {1, . . . , N}, and id /∈ {ραJ,ρβJ,ρα+βJ}, then

1ραJ ⋆ 1ρβJ = 1ρ(α+β)J .

Proof. The lemma is obviously true when ρ
α = id or ρ

β = id, since 1J is the multiplicative

identity in HW,Gmax .

By definition (Equation (2.3)),

1ραJ ⋆ 1ρβJ =
∑

µ,ν

〈

1ραJ , 1ρβJ , µ
〉

ηµνν.
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For the three point correlator
〈

1ραJ , 1ρβJ , µ
〉

to be non-zero, we must have

deg 1ραJ + deg 1ρβJ + deg µ = 2ĉ.

By Corollary 2.1, µ ∈ HgJ for the unique g = ρ
γ ∈ Gmax satisfying the condition

N
∑

i=1

(αi + βi + γi)qi = 2
N
∑

i=1

(ai − 1)qi

and having line bundles |Lj| of integral degree.

Note that since
∑

i qi =
∑

i qi and aiqi + qi+1 = 1 we have

2ĉ = 2
N
∑

i=1

(1 − 2qi) = 2
N
∑

i=1

(aiqi − qi) = 2
N
∑

i=1

(ai − 1)qi = deg 1ρmaxJ .

Since 0 ≤ αi + βi ≤ ai − 1 by hypothesis, γi = ai − 1 − αi − βi potentially prescribes the

group element g, and we demonstrate below that the corresponding line bundles indeed have

integral degree.

We compute the degrees lj of the line bundles |Lj|, using the formula

lj = qj(2g − 2 + k) −
k
∑

i=1

Θhi

j ,

Where g is the genus of the correlator (zero in this case), k is the number of insertions (i.e.

three), hi ∈ Gmax is the group grading of the ith insertion, and Θhi

j is the phase of the action

of hi on Xj. Recalling that ϕ
(i)
j is the phase of ρi on the variable Xj, we have

lj = qj − (ΘραJ
j + ΘρβJ

j + Θργ J
j ) = qj −

N
∑

i=1

(αi + 1)ϕ
(i)
j −

N
∑

i=1

(βi + 1)ϕ
(i)
j −

N
∑

i=1

(γi + 1)ϕ
(i)
j

= −2qj−
N
∑

i=1

(αi+βi+γi)ϕ
(i)
j = −2qj−

N
∑

i=1

(ai−1)ϕ
(i)
j = −2qj−

N
∑

i=1

(δi,j−ϕ
(i−1)
j −ϕ

(i)
j ) = −1
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By the concavity axiom (Axiom 4),
〈

1ραJ , 1ρβJ , µ
〉

= 1. Since µ and ν correspond to sectors

with trivial fixed loci, ηµν = 1.

We conclude on substituting into Equation (3.1) that

1ραJ ⋆ 1ρβJ = 1ρα+βJ ,

as claimed.

Lemma 3.3. For N > 2,

1ak

ρkJ = −ak−11ρk−2ρ
ak−1−1

k−1 J
.

Proof. By definition,

(3.3) 1
ρ
(ak−1)

k
J

⋆ 1ρkJ =
∑

µ,ν

〈

1
ρ
(ak−1)

k
J
, 1ρkJ , µ

〉

ηµνν.

The only non-zero term in the sum occurs when

deg 1
ρ
(ak−1)

k
J

+ deg 1ρkJ + deg µ = 2ĉ

and the corresponding line bundles have integral degree.

This first condition is equivalent to

(ak − 1)qk + qk + deg µ =
N
∑

i=1

(ai − 1)qi.

Recalling that for all i, aiqi + qi−1 = 1, so

qk−2 + (ak−1 − 1)qk−1 = 1 − qk−1 = akqk,
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and denoting g = ρ
γ, we see that

N
∑

i=1

γiqi =
N
∑

i=1

(ai − 1)qi − (ak − 1)qk − qk =
N
∑

i=1

(ai − 1)qi − qk−2 − (ak−1 − 1)qk−1.

Thus we can solve for γi in the range 0 ≤ γi < ai, namely

γi = (ai − 1) − δi,k−1(ak−1 − 1) − δi,k−2.

We now confirm that the line-bundles which determine the correlator in question have inte-

gral degree, via

lj = qj − (ΘραJ
j + ΘρβJ

j + Θργ J
j )

= qj −
N
∑

i=1

(αi + βi + γi + 3)ϕ
(i)
j

= −2qj − akϕ
(k)
j −

N
∑

i=1

γiϕ
(i)
j

= −2qj − akϕ
(k)
j −

N
∑

i=1

((ai − 1) − δi,k−1(ak−1 − 1) − δi,k−2) ϕ
(i)
j

= −2qj − akϕ
(k)
j − (1 − 2qj) + (ak−1 − 1)ϕ

(k−1)
j + ϕ

(k−2)
j

= −1 + δj,k−1 − δj,k

=































0 if j = k − 1

−2 if j = k

−1 else.

By the index-zero axiom (Axiom 5), the non-vanishing three-point correlator is given by −1

times the Xk−1-degree of

∂W

∂Xk

= X
ak−1

k−1 + akX
ak−1
k Xk+1,
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so
〈

1
ρ
(ak−1−1)

k
J
, 1ρkJ , µ

〉

= −ak−1.

As in the preceding lemma, we have µ and ν necessarily in sectors with trivial fixed loci (i.e.

not in the untwisted sector), so ηµν = 1.

Substituting into Equation (3.3), we conclude that

1
ρ

ak−1

k
J

⋆ 1ρkJ = −ak−11ρk−2ρ
ak−1−1

k−1 J
,

as claimed.

For completeness, we address the case of two-variable loop potentials in Lemma 3.4 below.

As already indicated, this result has been obtained independently by Acosta [A].

Lemma 3.4. For N = 2, k ∈ {1, 2},

1ρ
ak
k

J = −ak−11ρk−2ρ
ak−1−1

k−1 J
.

Proof. The method of proof for the preceding lemma is not directly applicable here, because

for a two-variable loop, ρ
ak−1

k J = id, so the multiplicands used in the proof do not all lie in

Neveu-Schwarz sectors and the index-zero axiom is not directly applicable.

However, if ak > 3, so H
ρ

ak−2

k
J

and Hρ2
k
J are Neveu-Schwarz sectors, the proof of Lemma

3.3 is easily amended to yield the same conclusion by considering the product 1ρ
ak
k

J =

1
ρ

ak−2

k
J

⋆ 1ρ2
k
J .

So it remains only to consider the cases of two-variable loop potentials with one of the

exponents (which we may take to be a2) equal to 2 or 3.

For convenience of notation, we will use variables x := x1 and y := x2, and change the
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subscripts in the obvious way, so for example ρx := ρ1 and ρy = ρ2.

• W = xaxy + xy3, with ax ≥ 3. To prove the lemma, we need to show

1⋆3
ρyJ = −3

(

1ρ2
xρyJ

)

.

(If ax = 3, then by symmetry of the W , the corresponding relation will hold with x

and y exchanged.) Using Corollary 2.1, we see that

1⋆2
ρyJ =

〈

1ρyJ , 1ρyJ , µid

〉

ηµ,ννid,

and

1⋆3
ρyJ =

〈

1ρyJ , 1ρyJ , µid

〉

ηµ,ν
〈

νid1ρyJ , 1ρyJ

〉

1ρ2
xρyJ .

The coefficient of 1ρ2
xρyJ is, by the composition axiom (Axiom 6) equal to

〈

1ρyJ , 1ρyJ , 1ρyJ , 1ρyJ

〉

.

The line bundle degrees for this correlator are

lx = 2qx − 4ΘρyJ
x = 2(2

8
) − 4(1

8
) = 0,

ly = 2qy − 4ΘρyJ
y = 2(2

8
) − 4(5

8
) = −2.

So the correlator is given by −1 times the x-degree of ∂W/∂y. i.e
〈

1ρyJ , 1ρyJ , 1ρyJ , 1ρyJ

〉

=

−3, as required.

• W = x2y +xy3. The composition axiom argument used to compute 1⋆3
ρyJ above applies

here, yielding 1⋆3
ρyJ = −2(1ρxρyJ).

For degree reasons, we see that HW,Gmax has a ring generator µ = αx2dx∧dy+βy2dx∧

dy ∈ Hid that is not in the vector subspace generated by 1⋆2
ρxJ = γx2dx∧dy+δydx∧dy.
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Here γ and δ are determined by the ⋆-product, and we seek α and β so that

µ2 = −3(1ρxJ ⋆ µ).

It turns out that the matrix of the pairing Hid ⊗ Hid → C is given by the symmetric

matrix −1
6
A−1

W . Then, by the pairing axiom (Axiom 7), the desired relation is equivalent

to
(

α β

)

A−1







α

β






= −3

(

γ δ

)

A−1







α

β






.

Consider a non-zero vector v orthogonal to (γ, δ) with respect to the inner product

with matrix A−1 on C2. Putting (α, β) = (γ, δ) + λv and substituting into the above

relation, we obtain the quadratic equation

λ2vT A−1v + 4

(

γ δ

)

A−1







γ

δ






= 0.

The coefficients in this equation are non-zero, as the vanishing of either of them would

contradict non-degeneracy of the form A−1. Either solution specifies µ, which is not a

multiple of 1
(⋆2)
ρxJ because λ 6= 0.

With µ determined, the lemma follows.

• W = x2y+xy2. In this case, Gmax = 〈J〉, with J = (e2πi/3, e2πi/3). The sectors HJ and

HJ−1 are Neveu-Schwarz, respectively of minimal and maximal degree (degA
+). The

identity sector is Hid = C[xdx∧ dy, ydx∧ dy], and the multiplication of the generators

into HJ−1 is determined by the pairing axiom (Axiom 7), from which it is easy to see

that

(xdx ∧ dy)2 = −2(xdx ∧ dy)(ydx ∧ dy) = (ydx ∧ dy)2.

These are precisely the defining relations for the generators of QW T , so the desired
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isomorphism holds.

Using associativity of A-model multiplication to avoid the identity (Ramond) sector, it is

easy to see that the mirror map is surjective. The dimension count of Lemma 1.4 then

guarantees that the relations are generated by those in Lemma 3.3 if N > 2 or Lemma 3.4

if N = 2, from which the desired isomorphism follows.

Chain Potentials: W =
∑N−1

i=1 Xai

i Xi+1 + XaN

N

Since degree is additive under multiplication in QW T and in HW,Gmax , the isomorphism (2.13)

of graded vector spaces suggests that the desired ring isomorphism

(3.4) QW T

∼=
−→ HW,Gmax

should be induced by the map

C[Y1, . . . , YN ] −→ HW,Gmax

Yi 7−→ 1ρiJ ,

(3.5)

which is extended to C[Y1, . . . , YN ] by multiplicativity. The following two lemmas show that

HW,Gmax is generated by the elements 1ρiJ , subject to the relations

(1ρkJ)⋆ak + ak−11ρk−2J ⋆ (1ρk−1J)⋆(ak−1−1) = 0.

This means that the kernel of the mirror map is precisely the Jacobian ideal dW T , yielding

the desired isomorphism.
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Remark. Note the assumption that qN < 1
2

is essential to our arguments, as we will use the

fact that Fix(ρNJ) is trivial.

We proceed to prove the necessary lemmas.

Notation. Define

ρ
α :=

N
∏

i=1

ραi

i .

Lemma 3.5. If αi + βi ≤ ai − 1 for i ∈ {1, . . . , N}, and ρ
αJ,ρβJ and ρ

α+βJ have trivial

fixed loci, then

1ραJ ⋆ 1ρβJ = 1ρ(α+β)J .

Proof. The argument here is practically identical to the one used to prove Lemma 3.2.

Lemma 3.6.

1
ρ

aN−1

N
J

⋆ 1ρN−1J = 0

Proof. Note this relation corresponds to the Jacobian relation
∂W T

chain

∂YN
= 0.

By definition (Equation (2.3)),

1
ρ

aN−1

N J
⋆ 1ρN−1J =

∑

µ,ν

〈

1
ρ

aN−1

N J
, 1ρN−1J , µ

〉

ηµνν.

For the three point correlator
〈

1
ρ

aN−1

N J
, 1ρN−1J , µ

〉

to be non-zero, the line bundles |Lj| must

have integral degree.

We know from Corollary 2.1 that there is at most one group element gJ for which µ ∈ HgJ

yields a non-zero three point correlator. For the sector HgJ , let us consider the implication
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of integrality of the line bundles |Lj|, for j ∈ {N,N − 1}:

lN = qN − Θ
ρ

aN−1

N J

N − Θ
ρN−1J
N − ΘgJ

N

= qN − (aN + 1)ϕ
(N)
N − ΘgJ

N

= −1 − ΘgJ
N .

For this to be integral, we require ΘgJ
N ∈ Z, i.e. gJ fixes XN . Furthermore,

lN−1 = qN−1 − Θ
ρ

aN−1

N
J

N−1 − Θ
ρN−1J
N−1 − ΘgJ

N−1

= qN−1 − (aN + 1)ϕ
(N)
N−1 − 3ϕ

(N−1)
N−1 − ΘgJ

N−1

= −ϕ
(N−1)
N−1 − ΘgJ

N−1.

For this to be integral, we require ΘgJ
N−1 = 1 − ϕ

(N−1)
N−1 /∈ Z, i.e. gJ does not fix XN−1.

Since a chain potential fixes consecutive variables, we conclude that gJ has one-dimensional

fixed locus, and consequently HgJ is empty, and the product vanishes as claimed.

Lemma 3.7. For k ∈ {2, . . . , N},

1
⋆(ak)
ρkJ = −ak−11ρk−2ρ

ak−1−1

k−1 J
.

Proof. Note these relations correspond to the Jacobian relations ∂W T
chain

∂Yk−1
= 0.

For 2 ≤ k ≤ N − 1, the proof proceeds exactly as in Lemma 3.3.

For k = N , we face the obstacle that ρaN−1
N J is a Ramond Sector, so we cannot use the

index-zero axiom as before. We could realize 1
⋆(aN )
ρNJ as the product of 1⋆2

ρNJ and 1
⋆(aN−2)
ρNJ , but

this fails to avoid the Ramond sector when aN = 3. Instead, we mimic the computation in

[FJR1], where the composition axiom (Axiom 6) is used to determine the ring structure of

HE7,Gmax .
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The reader may check using Corollary 2.1 that

1
ρ
(aN−2)

N J
⋆ 1ρNJ =

〈

1
ρ
(aN−2)

N J
, 1ρNJ , µ1∏ ρ

γi
i J

〉

ηµ,νν1
ρ

aN−1

N J
,

with

γi =































0 if i = N − 1

ai − 2 if i = N − 2

ai − 1 else.

.

Multiplying by 1ρNJ , we see

1⋆aN

ρNJ =
〈

1
ρ
(aN−2)

N J
, 1ρNJ , µ1∏ ρ

γi
i J

〉

ηµ,ν
〈

ν1
ρ

aN−1

N J
, 1ρNJ , 1∏

ρ
γi−δi,N
i J

〉

1
ρN−2ρ

aN−1
N−1

.

Now, by the composition axiom,

〈

1
ρ
(aN−2)

N
J
, 1ρNJ , µ1∏ ρ

γi
i J

〉

ηµ,ν
〈

ν1
ρ

aN−1

N J
, 1ρNJ , 1∏

ρ
γi−δi,N
i J

〉

=
〈

1
ρ
(aN−2)

N
J
, 1ρNJ , 1ρNJ , 1∏

ρ
γi−δi,N
i J

〉

.

Since all the sectors in this four-point correlator are Neveu-Schwarz, we may use the index-

zero axiom to determine its value. A calculation similar to the other index-zero calculations

yields for the degrees of the line bundles |Lj|:

lj =































−2 if j = N

0 if j = N − 1

−1 else.

So, the four-point correlator is −1 times the XN−1 degree of ∂W/∂XN = aNXaN−1
N +X

aN−1

N−1 ,

namely −aN−1. This completes the proof of Lemma 3.7.

Surjectivity of the mirror map is again clear from associativity of A-model multiplication,
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where we avoid Ramond sectors (so we can apply the preceding lemmas) by noting that

ρ
γJ has trivial fixed locus as long as γN < aN−1. A dimension count using Lemma 1.4 then

indicates that the relations in HW,Gmax are generated by those in the lemmas, and the desired

isomorphism follows.

3.2 SL symmetries for Calabi-Yau Loop Potentials

As evidence that the B-model multiplication defined in Section 2.4 is the appropriate product

to consider in the context of LG-to-LG mirror symmetry, we prove the following theorem.

Theorem 3.1. Let W (X1, . . . , XN) be a loop potential with N odd, satisfying the Calabi-Yau

condition:
∑

i qi = 1. Let G be an admissible A-model orbifold group such that G ⊂ SLNC.

Then the mirror map (Equation (2.13)) is a Frobenius algebra isomorphism.

Remark. Note that the group generated by the exponential grading operator J is automati-

cally a subgroup of SLNC in the Calabi-Yau case.

The theorem is applicable more generally than the statement initially suggests, as the FJRW

A-model depends only on the charges and the orbifold group, not the presentation of the

potential [R1]. So, for example, the J-orbifolded A-models coincide for Wloop = X4
1X2 +

X4
2X3 +X4

3X4 +X4
4X5 +X4

5X1 and WFermat = X5
1 +X5

2 +X5
3 +X5

4 +X5
5 , and the J-orbifolded

A-model of the latter maybe computed as the SL-orbifolded B-model of the former.

Proof. Recall that because of the loop structure of the potential, the fixed locus for g ∈ G

is trivial unless g = id.

By Theorem 2.5, we know the mirror map is a bijection. To see that it is an isomorphism of

Frobenius algebras, we consider B-model multiplication between untwisted sectors, between

twisted sectors, and between an untwisted sector and a twisted sector.
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Untwisted B-model sector:

N
∏

j=1

Y
αj

j dYj | id 〉 7−→ 1

∣

∣

∣

∣

∣

N
∏

j=1

ρ
αj+1
j

〉

,

where we note that since N is odd, the A-model sector corresponding to the monomial
∏N

j=1 Y
αj

j is not the identity sector, so has trivial fixed locus.

Note that on the A-model side, the identity sector has degree ĉ = N − 2
∑

qi, which is an

odd integer, while the twisted sector corresponding to a group element g ∈ SLNC has degree

2
∑

i(Θ
g
i − qi), an even integer. Since degree is additive under multiplication, the product of

two Neveu-Schwarz invariants has no contribution from the identity sector.

Consequently, in the A-model product (Equation (2.3)), all invariants appearing with non-

zero coefficient on the right-hand side are Neveu-Schwarz invariants for the action of the

maximal A-model symmetry group, and the correlators required to determine the multiplica-

tion are as computed in the section on Loop potentials in Section III. i.e. The multiplicative

relations on the A-model twisted sectors correspond precisely to the Jacobian relations in

the B-model untwisted sector.

We must now consider the Twisted B-model sectors:

Since the B-model twisted sectors have trivial fixed loci, the mirror map sends them all to

the A-model untwisted sector.

1

∣

∣

∣

∣

∣

N
∏

j=1

ρ
rj+1
j

〉

7−→
N
∏

j=1

X
rj

j dXj | id 〉 ,

On the A-model side, by the pairing axiom (Axiom 7),

(

N
∏

j=1

X
rj

j dXj

)

1id ⋆

(

N
∏

j=1

X
sj

j dXj

)

1id =

〈

N
∏

j=1

X
rj

j ,
N
∏

j=1

X
sj

j

〉

1J−1 ,
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On the B-model side,
∣

∣

∣

∣

∣

N
∏

j=1

ρ
rj+1
j

〉

⋆

∣

∣

∣

∣

∣

N
∏

j=1

ρ
sj+1
j

〉

vanishes unless every variable is fixed in
∣

∣

∣

∏N
j=1 ρ

rj+sj+2
j

〉

, which means precisely that
∏N

j=1 X
rj+sj

j =

λ hess W for some λ ∈ C. i.e. we have the same condition for the non-vanishing of the A

and B model products above. When this condition is satisfied, the B-model product is given

by
∣

∣

∣

∣

∣

N
∏

j=1

ρ
rj+1
j

〉

⋆

∣

∣

∣

∣

∣

N
∏

j=1

ρ
sj+1
j

〉

= (hess W )1id,

which clearly corresponds up to scalars with the above A-model product under the mirror

map.

It remains only to check that the multiplication between the twisted and untwisted B-

model sectors satisfies the same relations as the corresponding A-model products. The

B-model Qid-module structure means the only way such a product can be non-trivial is if

the multiplicand from the untwisted sector is 1id – the multiplicative identity. Since the

mirror map preserves the identity, we need only show that on the A-model side,

∣

∣

∣

∣

∣

N
∏

j=1

ρ
αj+1
j

〉

⋆

N
∏

j=1

X
rj

j | id〉 = 0.

This holds for degree reasons: the untwisted sector is the only sector with odd degree, and

the twisted sectors all have even degree; by additivity of degree, the product has odd degree,

so since it does not lie in the untwisted sector it must vanish.

Remark. The hypotheses for this theorem ensure that there are no non-zero contributions

from the Ramond sector to products of Neveu-Schwarz invariants. The above argument may

be adapted whenever such a situation is established, so it should be possible to extend this

result beyond the case of Calabi-Yau potentials orbifolded by subgroups of SLNC.
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3.3 Strange Duality

Arnol’d’s list of 14 exceptional singularities provides a source of interesting examples of

Landau–Ginzburg Mirror Symmetry. In particular, we have the following:

Proposition 3.1. Let W be one of the 14 exceptional unimodal singularities, and W SD its

Strange Dual. Then, there is a Frobenius algebra isomorphism

HW,〈J〉
∼= QWSD .

Proof. Of course, when J generates Gmax
W and W SD = W T , this is just a restatement of

Theorem 3.1. However, examining Table 3.1, we see this is only the case for S12, Z12 and

E12 (which are self-dual), and Z11 and E13 (which are strange dual to each other).

To realize the observation for the remaining singularities in Arnol’d’s list, we choose an

equivalent singularity W ′ for each singularity W in such a way that

• QW ′ ∼= QW .

• The charges of W ′ coincide with the charges of W , so JW ′ = JW .

• The maximal symmetry group of W ′ is generated by JW ′ .

• Transposition yields the Strange Dual class in the updated list of exceptional singular-

ities.

The Landau Ginzburg A-model HW,G constructed in [FJR1] depends only on G ⊂ (C∗)N

and the charges q1, . . . , qN , and not on the specific choice of representative of the equivalence

class of the singularity W [R1]. This means we are free to compute the FJRW ring of W

orbifolded by 〈J〉 as HW ′,〈J〉.
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Table 3.1: Arnold’s list of the 14 exceptional unimodal singularities W , with representatives
W ′ chosen so Strange Duality is compatible with transposition.

Class W 〈J〉 = Gmax
W W ′

Q10 x2z + y3 + z4 Yes x2z + y3 + z4

E14 x2 + y3 + z8 No x2 + y3 + xz4

Q11 x2z + y3 + yz3 Yes x2z + y3 + yz3

Z13 x2 + y3z + z6 No x2 + y3z + z3x
Q12 x2z + y3 + z5 No x2z + y3 + xz3

S11 x2y + y2z + z4 Yes x2y + y2z + z4

W13 x2 + y4 + yz4 No x2 + xy2 + yz4

S12 x2y + y3z + xz2 Yes x2y + y3z + xz2

U12 x3 + y3 + z4 No x2y + xy2 + z4

Z11 x2 + y3z + z5 Yes x2 + y3 + yz5

E13 x2 + y3 + yz5 Yes x2 + y3z + z5

Z12 x2 + y3z + yz4 Yes x2 + y3z + yz4

W12 x2 + y4 + z5 No x2 + xy2 + z5

E12 x2 + y3 + z7 Yes x2 + y3 + z7

Since W ′ is chosen so that J generates Gmax
W ′ , we can then apply Theorem 3.1 to W ′ to yield

the isomorphisms

HW,〈J〉
∼= HW ′,〈J〉

∼= Q(W ′)T
∼= QWSD .

Appropriate choices of W ′ are indicated in Table 3.1.

One can attempt to use the original representative W where 〈J〉 is not necessarily Gmax. In-

deed, it fits into the general Landau–Ginzburg Orbifold Mirror Conjecture using the orbifold

B-model of Section 2.4.

Example. We present here the case of U12, which exhibits the general features of the other

examples. We use Proposition 2.5 to show that we have a Frobenius algebra isomorphism

HU12,〈J〉
∼= QUT

12,Z/3Z,

rather than just the bi-graded vector space isomorphism guaranteed by Proposition 2.5.
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We know from the preceding discussion that

HU12,〈J〉
∼= QUSD

12

∼= C[x, y, z]/
〈

x2, y2, z3
〉

.

Remark. Note the isomorphism claimed between the Milnor rings of U ′
12 = X2Y +XY 2 +Z4

and U12 = x3 + y3 + z4 is induced by the map

C[X,Y, Z] → QU12

which sends X 7→ ωx + ω2y, X 7→ ω2x + ωy, and Z 7→ z. (Here ω = e2πi/3).

For the B-model of UT
12 = x3+y3+z4, we note that the group dual to 〈J〉 is the SL subgroup

of Gmax
UT

12
, namely Z/3Z generated by ρ := (ω, ω2, 1).

Now,

ρk =















C3
xyz if k = 0

Cz if k = 1, 2

and

Q
UT

12

ρk =















〈e0, ze0, z2e0, xye0, xyze0, xyz2e0〉 if k = 0

ek if k = 1, 2,

where e0 = dx ∧ dy ∧ dz and e1 = dz = e2.

We put X = e1, Y = e2 and Z = ze0.

Note

deg X = deg Y = 1
2
(1 − 2qx) + 1

2
(1 − 2qy) = 1

3
,

while

deg Z = qz = 1
4
.
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We observe immediately that Z3 = 0 (since multiplication in the untwisted sector is just

multiplication in the unorbifolded Milnor ring).

Further, X2 = 0 = Y 2, since the variables x and y are fixed in neither the (ω, ω2, 1)-sector,

nor the (ω2, ω, 1)-sector.

Meanwhile, XY = αxye0 for α 6= 0, since xy has non-zero pairing with hess(U12|Cz
) = 12z2.

Thus we see the degree preserving map

C[X,Y, Z] 7→ QUT
12,Z/3Z

generated by X 7→ e1, Y 7→ e2 and Z 7→ ze0 is surjective, with kernel 〈Z3, X2, Y 2〉, and

induces an isomorphism

HU12,〈J〉
∼= QU12 7→ QUT

12,Z/3Z.
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